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Synchronization of oscillators is ubiquitous in nature. Often, the synchronized oscillators couple
directly, yet in some cases synchronization can arise from their parametric interactions. Here, we
theoretically predict and experimentally demonstrate the parametric synchronization of a dissipative
Kerr soliton frequency comb. We specifically show that the parametric interaction between the soliton
and two auxiliary lasers permits the entrainment of the frequency comb repetition rate. Besides
representing the first prediction and demonstration of parametric synchronization of soliton frequency
combs, our scheme offers significant flexibility for all-optical metrological-scale stabilization of the
comb.

Introduction—Synchronization is ubiquitous in nature,
from coupled pendulums [1] to fireflies [2], neurons [3],
and quantum systems [4, 5]. Despite their drastic dif-
ferences, these systems’ synchronization dynamics typi-
cally follow common universal patterns and are, to first-
order, governed by the same mathematical equations.
In optics, the same is true for dissipative Kerr solitons
(DKSs), which are cornerstones for the creation of on-
chip frequency combs [6]. Synchronization between DKSs
has been demonstrated, for instance, between counter-
propagative solitons [7], or solitons existing in remote
resonators [8]. Recently, It has also been shown that a
DKS can synchronize to an external continuous-wave ref-
erence optical field [9, 10], following the same Adler model
as coupled oscillators [9, 11]. In this Kerr-induced syn-
chronization (KIS) regime, the phase locking of the DKS
results in the capture of one comb tooth by the reference
field [9, 12]. Since the main pump creating the DKS is
also a comb tooth, KIS provides a passive dual-pinning of
the DKS frequency comb, enabling low-noise operation of
the microcomb below the fundamental limit imposed by
the resonator thermorefractive noise [13], which is criti-
cal for metrology applications such as timekeeping [14],
time-transfer [15], ranging [16], or spectroscopy [17, 18].
Although KIS can occur at any comb tooth [10], efficient
synchronization requires that the reference laser is both
close to a comb line and on-resonance, which is challenging
to achieve simultaneously due to dispersion, particularly
for large frequency separations between the main and
reference pumps, which is desirable for optical frequency
division (OFD) and clockworks [9].
In this work, we leverage a Kerr parametric interac-

tion driven by two reference lasers to obtain a new DKS
synchronization regime that bypasses the above limita-
tion. Related parametric processes have recently attracted
significant attention, e.g., for all-optical random number
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generation [19] and optical spin-glasses [20], or for ob-
taining a new type of parametrically-driven dissipative
soliton [21]. However, this type of parametric interaction
has yet to be explored in the context of DKS synchro-
nization. We show for the first time that the interaction
between two on-resonance auxiliary lasers, outside of the
DKS comb frequency grid, along with the DKS comb
itself, can yield a parametric driving force for the soliton
that mediates synchronization. We theoretically unveil
the conditions for efficiently obtaining this “parametric-
KIS”, finding that the resonator must exhibit at least
third-order dispersion to support a zero crossing of the in-
tegrated dispersion. Experimentally, we demonstrate this
effect using an octave-spanning comb in a Si3N4 microring
resonator. Similar to standard KIS [9], parametric-KIS
stabilizes the microcomb, such that its repetition rate
becomes dependent on the three lasers at play.

Results— First, we present the theoretical framework
of the novel parametric-KIS scheme. The system consists
of a microring resonator that is triply pumped [Fig. 1a].
The intracavity field a(θ, t) can be modeled using using a
modified Lugiato-Lefever equation (mLLE) [22]:

∂a(θ, t)

∂t
=

(
−κ

2
+ i∆ω0

)
a+ i

∑
µ

Dint(µ)A(µ, t)eiµθ

− iγ|a|2a+ iF0

+ iF−e
iϖ−t+iµ−θ + iF+e

iϖ+t+iµ+θ

(1)

where θ is the azimuthal coordinate that rotates with the
DKS angular group velocity, t is time, µ is the mode differ-
ence with respect to the mode of the primary pump, and
A(µ, t) is the Fourier transform of a(θ, t). The parameters
κ, ∆ω0 = ωres(0)− ω0, and γ denote the total loss rate,
the offset between the primary pump ω0 and the primary
pump resonance ωres(0), and the Kerr coefficient, respec-
tively. The parameter F0 is related to the primary pump
power P0 = F 2

0 /κext, where κext is the coupling loss rate.
We similarly define F± via the relations P± = F 2

±/κext.
The modified integrated dispersion, which we define with
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the DKS repetition rate outside of synchronization ω
(0)
rep

instead of the angular free spectral range around the pump

resonance D1, is Dint(µ) = ωres(µ)−
(
ωres(0) + µω

(0)
rep

)
=(

D1 − ω
(0)
rep

)
µ+

∑
k>1 Dkµ

k/k!, where ωres(µ) is the fre-

quency of resonance at mode µ, and Dk the higher order
dispersion terms. The two auxiliary pumps are at fre-
quencies ω± and are located at modes µ± with respect
to the primary pump, such that µ− < 0 and µ+ > 0.
These pumps are offset from their nearest comb tooth by

ϖ± = ω± − ω0 − µω
(0)
rep.

In the regime of interest to us here, the integrated disper-
sion is sufficiently small for a three-component multi-color
soliton (McS) to form [23, 24]. The McS consists of the
DKS and two azimuthally localized structures with car-
rier frequencies ω± that are locked to each other in group
(but not phase) velocity, leading to different accumulated
phase shifts at each round trip. In the frequency domain,
the McS is associated with three interleaved frequency
combs that share the same repetition rate ωrep but are
offset from one another, with ϖ± representing the offset
of the combs around the auxiliary pump frequencies from
the DKS comb [Fig. 1b]. Standard KIS is achieved by
tuning ϖ+ orϖ− to be small, such that the corresponding
pump captures a comb tooth, at which point the colors
generated by the two pumps become indistinguishable [9].
In stark contrast, in the parametric-KIS regime explored
in this work, the parameters ϖ± are generally large such
that standard KIS does not occur. In this case, and similar
to ref. [24], the total intracavity field can be expanded as
a superposition of the three colors viz.

a(θ, t) =a0(θ, t) + a−(θ, t)e
(iϖ−t+µ−θ)

+ a+(θ, t)e
i(ϖ+t+µ+θ)

(2)

After some algebra detailed in Supplementary Infor-
mation S.1, Eqs. (1) and (2) lead to the DKS equation:

∂a0(θ, t)

∂t
=

(
−κ

2
+ i∆ω0

)
a0 + i

∑
µ

Dint(µ)A0(µ, t)e
iµθ

− iγ
(
2|a−|2 + |a0|2 + 2|a+|2

)
a0

− i2γa∗0a+a−e
i(Wt+Mθ) + iF0

(3)

where W = ϖ− +ϖ+ is the frequency offset of the idler
wave that is generated via the parametric interaction
from its closest DKS comb line at mode M = µ− + µ+.
Equation (3) is similar to the master equation of the
χ(3)-mediated parametric soliton [21], except with an ad-
ditional direct driving force F0; Eq. (3) is also similar to
the equation used to study standard-KIS of DKSs [9], but
now with a parametric synchronization term 2γa∗0a+a−
from the four-wave mixing between the reference fields
a± and the soliton a0, which concomitantly generates an
idler field at ω++ω−−ω0. Hence, we may anticipate that
the DKS in the triply-driven scheme shown in Fig. 1(a)
can experience synchronization, provided that the para-
metric driving term is sufficiently close in phase with the

a0 a
– a

+

a–
a+

*

Microring
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F– exp(iµ–θ + iϖ– t)
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Fig. 1: a Schematic of the parametric-KIS system. A main pump
F0 generates a DKS a0. Two additional drives F± at mode indices
µ± and relative frequency offset ϖ± from their nearest DKS comb
tooth are injected into the same resonator to create the two other
colors a− and a+. The parametric interaction between the three
colors a0, a−, and a+ creates a parametric drive for a0, which
when in phase with the DKS can synchronize it. Thus, it disciplines
the pulse train repetition rate. b Spectral representation of the
same system as in (a) where each comb component is frequency
offset by ϖ± respectively, highlighting how the parametric drive at
M = µ− + µ+ provides the optical frequency division factor.

DKS. Indeed, a detailed analysis shows that, similar to
any other synchronization mechanism for coupled oscilla-
tors, parametric-KIS obeys an Adler equation (see Sup-
plementary Information S.2), where W is compensated
by a temporal phase-slip of the DKS to achieve phase
locking. The analysis (detailed in the Supplementary In-
formation S.1) leading to Eq. (3) also shows that, when
parametrically-synchronized, the comb exhibits the OFD
factor M = µ− +µ+ which, contrary to direct-KIS, arises
from the nonlinear interaction between the three colors.
Therefore, parametric-KIS enables for a triple-pinning of
the repetition rate from degenerated four-wave mixing, in
contrast with the direct-KIS dual-pinning:

ω(pkis)
rep =

ω− + ω+ − 2ω0

M
. (4)

Although off-resonance operation of the auxiliary
pumps (as in direct-KIS [10]) is possible, the efficiency
of parametric-KIS is optimized when the pumps are on
resonance to maximize their respective intracavity powers,
while allowing for |W | to be minimized. Such condition
exists if Dint(µ−) ≈ −Dint(µ+). Thus, to achieve on-
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Fig. 2: a Modifed integrated dispersion Dint(µ) of the resonator
used in the simulation. b Simulated comb spectrum for the three
colors at play: the DKS’ a0 (grey) and both auxiliaries’ a± with
µ− = −57 (red) and µ+ = 25 (blue) The resulting parametric
driving field for the DKS’ color a0 is then at M = µ− + µ+ = −32
(green). c Azimuthal profile (left, colorscale) of the DKS color with
respect to the negative auxiliary pump detuning δω− (right).
Outside of KIS, the parametric drive has an offset leading to a
phase slip in time relative to the DKS, resulting in a CEO offset in
the frequency domain. Once synchronized, their phase velocities
lock and the variation of W entrains the DKS’s and hence
disciplines its repetition rate, as apparent through its azimuthal
drift. d-e Repetition rate variation δωrep of the DKS with respect
to the detuning of the negative (d) and positive (e) auxiliary pump
detuning δω− and δω+ respectively. Once the parametric KIS is
reached, δωrep varies with the OFD M = µ− + µ−, accordingly
with Eq. (4)

resonance parametric-KIS operation, the resonator should
have at least one zero crossing in its integrated disper-
sion Dint(µ), and therefore should exhibit at least a non-
negligible D3 term.

We demonstrate parametric-KIS numerically by solv-
ing Eq. (3) along with the equation describing a− and
a+ (see Supplementary Information S.1), using an in-
tegrated dispersion described by a cubic function with
D2/2π = 21 MHz and D3/2π = 1.25 MHz, and assum-
ing D1/2π = 983.346 GHz. The DKS with ωrep/2π =
983.515 GHz, different from D1 because of dispersive wave
(DW) recoil [25], is generated by a main pump with power
P0 = 150 mW and detuning ∆ω0/2π = −3.2 GHz in a

system where κext = κ/2 = 2π × 200 MHz for critical
coupling condition. The modified integrated dispersion
presents a zero crossing at µ = −53 [Fig. 2a], where a0
exhibits the creation of a dispersive wave. We choose the
auxiliary pumps, with power P− = 1 mW and P+ = 3 mW
respectively, at µ− = −57 and µ+ = 25 for the compo-
nents a− and a+ to exhibit, while on resonance, rela-
tive offsets that are almost equal with opposite signs
−ϖ−/2π ≈ ϖ+/2π ≈ 10 GHz. By fine tuning the fre-
quency detunings δω± of the auxiliary pumps, the fre-
quency offset W between the parametrically generated
idler field and a DKS comb tooth can be pushed to lie
within the parametric-KIS bandwidth (i.e. ≲ 1 GHz). Ad-
ditionally, the colors a− and a+, which are not phase syn-
chronized with a0, experience the creation of additional az-
imuthal tones, regardless of their dispersion regime, thanks
to the group-velocity binding of all the colors through
cross-phase modulation (XPM) [26–28]. The parametric
driving force that synchronizes the DKS and which re-
sults from the three colors can be numerically extracted,
exhibiting a clear tone at M = µ− + µ+ = −32 at the
a0 color i.e. |W | ≪ |ϖ±|, as expected by the theory. The
azimuthal profile of a0 with respect to time allows us
to understand the synchronization mechanism [Fig. 2c].
Outside of synchronization, the parametric term exhibits
a phase slip Wt (mod 2π) from the DKS, resulting in a
non-stationary interference pattern, equivalent to a CEO
offset in the frequency domain. Once the parametric KIS
is reached and synchronization is achieved, the a∗0a−a+
driving term becomes in phase with the DKS, hence the
absence of modulation of the azimuthal profile in time.
While synchronized, a change in frequency of either

auxiliary pump leads to a phase change of the synchro-
nized DKS, causing a drift in its position in time and thus
its repetition rate. However, none of the auxiliary pumps
directly capture any comb teeth, which is in stark contrast
with direct-KIS [9] or other color-KIS [28] schemes. We
can extract the repetition rate change δωrep of a0, which
through XPM is the same as a±, and study its entrain-
ment with the auxiliary pumps’ frequency change δω±.
As expected from Eq. (4) in the parametric-KIS regime,
we obtain δωrep/δω− = δωrep/δω+ = 1/M [Fig. 2d-e]. We
also confirm such results with different µ± combinations
(see Supplementary Information S.6), where unlike direct
KIS, which allows efficient resonant operation only at
the DW, parametric-KIS allows it at any µ± pairs where
Dint(µ−) = −Dint(µ+). In this context, parametric-KIS
enables more efficient synchronization at the off-resonance
comb tooth M than direct-KIS with comparable refer-
ence powers (see Supplementary Information S.8). This
occurs due to the the near-resonant input fields driving
an efficient non-degenerate four-wave mixing process that
produces large intracavity power at an (off-resonant) idler
frequency to capture that M th comb tooth.

We now proceed to demonstrate parametric-KIS ex-
perimentally. We use an integrated microring resonator
with a radius of R = 23 µm, made of H = 670 nm thick
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Si3N4, and a ring width of RW = 860 nm embedded in
SiO2. The bus waveguide is configured in a pulley fash-
ion with a length Lc = 18 µm, compensating for the
coupling dispersion [29] and allowing for efficient extrac-
tion of the entire comb. We pump the microring at a
frequency ω0/2π ≈ 281.3 THz with an on-chip power
P0 = 180 mW to generate an octave-spanning soliton mi-
crocomb at ωrep/2π = 999.60376 GHz (± 10 kHz), while
using a cooler-laser at ≈ 308 THz to thermally stabilize
the system [30, 31]. The comb exhibits two DWs [Fig. 3b]

at µ = −90 (191.3 THz) and µ = 108 (389 THz), due to
the two zero crossings of Dint(µ) [Fig. 3a]. As described
earlier, zero crossings lead to resonant modes µ± that
when pumped by auxiliary lasers, create colors a± with
opposite phases ϖ+ ≈ −ϖ−. Such mode combinations
can be found under dual pumping, where the a− color
creates through nonlinear mixing a third color for which
phase matching will be at µ+ (and vice-versa) [23, 24]. In
our experiment, such conditions, along with equipment
compatibility, are met at {µ−;µ+} = {−92; 25}, {−93; 32}
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and {−94; 43}, resulting in an OFD ofM = −67,−61, and
−51 [Fig. 3b]. For all the experiments, the on-chip powers
of the auxiliary pumps are set to P− = 1.25 mW and
P+ = 2.75 mW. We record the DKS repetition rate using
an electro-optic comb apparatus similar to refs [9, 28, 32]
(see Supplementary Information S.5). The parametric-KIS
is detected by recording the temporal trace of the EO-
comb frequency down-converted ωrep while only one of the
pump laser frequencies is swept. Once processed (see Sup-
plementary Information S.5), this enables us to retrieve
the dependence of ωrep on the laser detuning [Fig. 3c].

We confirm the parametric nature of such Kerr-induced
synchronization since we obtain the ωrep entrainment, sim-
ilar to the simulation, for δωrep/δω− = δωrep/δω+ = 1/M
for each of the µ± pairs under study. We note the differ-
ence in parametric KIS bandwidth from the µ± auxiliary
pumps, which we believe arises from the remaining κext dis-
persion, impacting the F− and F+ driving forces. A unique
feature of the parametric-KIS, deduced from Eq. (4), is
the double contribution from the main pump. While in
parametric-KIS, we change the main pump frequency by
δω0—different from ∆ω0 since the cooler pump thermally
stabilizes the detuning from the resonance—and we ob-
serve a disciplining δωrep/δω0 = −2/M , as expected from
the theory.

Finally, we characterize the parametrically synchronized
DKS noise. Like direct-KIS, the pinned repetition rate
shows significantly reduced noise compared to the un-
trapped case [Fig. 3d]. Measurements of the repetition
rate phase noise power spectral density (PSD) verify the
parametric-KIS OFD. Using an optical frequency discrim-
inator (see Supplementary Information S5), we find the
repetition rate phase noise PSD matches the combined
contribution of the three free-running lasers’ phase noise
PSD according to Eq. (4) [Fig. 3e], where the repetition
rate detection is limited only by the EOcomb appara-
tus noise floor used for spectrally translating two DKS
comb teeth into a detectable frequency. Since our OFD
is competitive with state-of-the-art two-point locked mi-
crocombs for low-noise microwave generation [33–35], we
expect similar performances when the three lasers would
be locked to frequency references.

Discussion—In conclusion, we have demonstrated that
harnessing the χ(3) nonlinearity of a microresonator hous-
ing a dissipative Kerr soliton enables parametric Kerr-
induced synchronization using two auxiliary lasers injected

outside the soliton microcomb’s frequency grid. As a re-
sult, the soliton is trapped in the field that is generated by
the parametric interaction of different colors in the cavity.
We have shown that this effect can be predicted by the
multi-color formalism of the LLE, where the parametric
interaction between the different waves gives rise to an ad-
ditional force to the soliton color. We have numerically and
experimentally demonstrated this effect, stabilizing the
microcomb with auxiliary lasers outside the DKS micro-
comb’s frequency grid. Additionally, other colors beyond
the DKS can undergo parametric synchronization with
suitable auxiliary pumping (see Supplementary Informa-
tion S.7). Leveraging the group velocity binding for DKS
stabilization through dual-pinning of another color [28],
this scheme offers enhanced flexibility for all-optical lock-
ing while relaxing the dispersion requirements for on-
resonance operation compatible with pure quadratic Dint.
Our work presents the first prediction and demonstra-
tion of parametric synchronization of a DKS microcomb,
opening new pathways for studying and applying the trap-
ping of DKSs without direct actuation. It is important
to note that parametric driving of solitons is not limited
to χ(3) systems [36, 37]. Thus, the parametric-KIS of a
DKS could be extended to other nonlinear orders, with
potentially significant implications for the dual-pinning
and noise of the frequency comb. Additionally, our work
presents the potential for using multi-color solitons in
metrology, harnessing their spectral extension [23] beyond
the resonator’s anomalous dispersion limit.
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W. J. Wadsworth, and P. St. J. Russell, Optical Frequency
Synthesizer for Precision Spectroscopy, Physical Review
Letters 85, 2264 (2000).

[19] Y. Okawachi, M. Yu, K. Luke, D. O. Carvalho, M. Lipson,
and A. L. Gaeta, Quantum random number generator us-
ing a microresonator-based Kerr oscillator, Optics Letters
41, 4194 (2016).

[20] Y. Okawachi, M. Yu, J. K. Jang, X. Ji, Y. Zhao, B. Y. Kim,
M. Lipson, and A. L. Gaeta, Demonstration of chip-based
coupled degenerate optical parametric oscillators for real-
izing a nanophotonic spin-glass, Nature Communications
11, 4119 (2020).

[21] G. Moille,M. Leonhardt, D. Paligora, N. Englebert, F. Leo,
J. Fatome,K. Srinivasan, andM. Erkintalo, Parametrically
driven pure-Kerr temporal solitons in a chip-integrated
microcavity, Nature Photonics 18, 617 (2024).

[22] H. Taheri, A. B. Matsko, and L. Maleki, Optical lattice
trap for Kerr solitons, The European Physical Journal D
71, 10.1140/epjd/e2017-80150-6 (2017).

[23] G. Moille, E. F. Perez, J. R. Stone, A. Rao, X. Lu,
T. S. Rahman, Y. K. Chembo, and K. Srinivasan, Ultra-
broadband Kerr microcomb through soliton spectral trans-
lation, Nature Communications 12, 7275 (2021).

[24] C. R. Menyuk, P. Shandilya, L. Courtright, G. Moille, and
K. Srinivasan, Multi-color solitons and frequency combs
in microresonators (2024), arXiv:2409.03880.

[25] A. V. Cherenkov, V. E. Lobanov, and M. L. Gorodetsky,

Dissipative Kerr solitons and Cherenkov radiation in opti-
cal microresonators with third-order dispersion, Physical
Review A 95, 033810 (2017).

[26] Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch,
and S. Coen, Universal mechanism for the binding of
temporal cavity solitons, Optica 4, 855 (2017).

[27] P. C. Qureshi, V. Ng, F. Azeem, L. S. Trainor, H. G. L.
Schwefel, S. Coen, M. Erkintalo, and S. G. Murdoch,
Soliton linear-wave scattering in a Kerr microresonator,
Communications Physics 5, 1 (2022).

[28] G. Moille, P. Shandilya, A. Niang, C. Menyuk, G. Carter,
and K. Srinivasan, Versatile optical frequency division
with Kerr-induced synchronization at tunable micro-
comb synthetic dispersive waves, Nature Photonics 19,
36 (2025).

[29] G. Moille, Q. Li, T. C. Briles, S.-P. Yu, T. Drake, X. Lu,
A. Rao, D. Westly, S. B. Papp, and K. Srinivasan, Broad-
band resonator-waveguide coupling for efficient extraction
of octave-spanning microcombs, Optics Letters 44, 4737
(2019).

[30] H. Zhou, Y. Geng, W. Cui, S.-W. Huang, Q. Zhou, K. Qiu,
and C. Wei Wong, Soliton bursts and deterministic dissi-
pative Kerr soliton generation in auxiliary-assisted micro-
cavities, Light: Science & Applications 8, 50 (2019).

[31] S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. M.
Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, and
P. Del’Haye, Sub-milliwatt-level microresonator solitons
with extended access range using an auxiliary laser, Optica
6, 206 (2019).

[32] T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R.
Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan,
S. A. Diddams, and S. B. Papp, Terahertz-Rate Kerr-
Microresonator Optical Clockwork, Physical Review X 9,
031023 (2019).

[33] S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J.
Vahala, and S. A. Diddams, Microresonator frequency
comb optical clock, Optica 1, 10 (2014).

[34] S. Sun, B. Wang, K. Liu,M. W. Harrington, F. Tabatabaei,
R. Liu, J. Wang, S. Hanifi, J. S. Morgan, M. Jahanbozorgi,
Z. Yang, S. M. Bowers, P. A. Morton, K. D. Nelson,
A. Beling, D. J. Blumenthal, and X. Yi, Integrated optical
frequency division for microwave and mmWave generation,
Nature 627, 540 (2024).

[35] I. Kudelin, W. Groman, Q.-X. Ji, J. Guo, M. L. Kelleher,
D. Lee, T. Nakamura, C. A. McLemore, P. Shirmoham-
madi, S. Hanifi, H. Cheng, N. Jin, L. Wu, S. Halladay,
Y. Luo, Z. Dai, W. Jin, J. Bai, Y. Liu, W. Zhang, C. Xi-
ang, L. Chang, V. Iltchenko, O. Miller, A. Matsko, S. M.
Bowers, P. T. Rakich, J. C. Campbell, J. E. Bowers, K. J.
Vahala, F. Quinlan, and S. A. Diddams, Photonic chip-
based low-noise microwave oscillator, Nature 627, 534
(2024).

[36] A. W. Bruch, X. Liu, Z. Gong, J. B. Surya, M. Li, C.-L.
Zou, and H. X. Tang, Pockels soliton microcomb, Nature
Photonics 15, 21 (2021).

[37] N. Englebert, F. De Lucia, P. Parra-Rivas, C. M. Arab́ı,
P.-J. Sazio, S.-P. Gorza, and F. Leo, Parametrically driven
Kerr cavity solitons, Nature Photonics 15, 857 (2021)

https://doi.org/10.1038/nphoton.2017.117
https://doi.org/10.1038/s41566-018-0261-x
https://doi.org/10.1038/s41586-023-06730-0
https://doi.org/10.1063/5.0170224
https://doi.org/10.1119/1.2074027
https://doi.org/10.48550/arXiv.2401.10160
https://arxiv.org/abs/2401.10160
https://doi.org/10.48550/arXiv.2405.01238
https://doi.org/10.1103/RevModPhys.75.325
https://doi.org/10.1103/RevModPhys.75.325
https://doi.org/10.1038/s41586-023-06032-5
https://doi.org/10.1063/1.4948593
https://doi.org/10.1063/1.4948593
https://doi.org/10.1126/science.aag1862
https://doi.org/10.1126/science.aag1862
https://doi.org/10.1103/PhysRevLett.85.2264
https://doi.org/10.1103/PhysRevLett.85.2264
https://doi.org/10.1364/OL.41.004194
https://doi.org/10.1364/OL.41.004194
https://doi.org/10.1038/s41467-020-17919-6
https://doi.org/10.1038/s41467-020-17919-6
https://doi.org/10.1038/s41566-024-01401-6
https://doi.org/10.1140/epjd/e2017-80150-6
https://doi.org/10.1038/s41467-021-27469-0
https://doi.org/10.48550/arXiv.2409.03880
https://doi.org/10.48550/arXiv.2409.03880
https://arxiv.org/abs/2409.03880
https://doi.org/10.1103/PhysRevA.95.033810
https://doi.org/10.1103/PhysRevA.95.033810
https://doi.org/10.1364/OPTICA.4.000855
https://doi.org/10.1038/s42005-022-00903-5
https://doi.org/10.1038/s41566-024-01540-w
https://doi.org/10.1038/s41566-024-01540-w
https://doi.org/10.1364/OL.44.004737
https://doi.org/10.1364/OL.44.004737
https://doi.org/10.1038/s41377-019-0161-y
https://doi.org/10.1364/OPTICA.6.000206
https://doi.org/10.1364/OPTICA.6.000206
https://doi.org/10.1103/PhysRevX.9.031023
https://doi.org/10.1103/PhysRevX.9.031023
https://doi.org/10.1364/OPTICA.1.000010
https://doi.org/10.1038/s41586-024-07057-0
https://doi.org/10.1038/s41586-024-07058-z
https://doi.org/10.1038/s41586-024-07058-z
https://doi.org/10.1038/s41566-020-00704-8
https://doi.org/10.1038/s41566-020-00704-8
https://doi.org/10.1038/s41566-021-00858-z


7

Supplementary Information: On-Chip Parametric Synchronization of a
Dissipative Kerr Soliton Microcomb

S.1. Derivation of the multi-color soliton coupled-LLE
Here we present the derivation of the multi-color LLE to help the reader understand equation (3) of the manuscript.
Such derivation can also be found in detail in ref [21] and particularly in ref [24].

We start with the multi-pump LLE similar to ref [22]:

∂a

∂t
=

(
−κ

2
+ i∆ω0

)
a+ i

∑
µ

Dint(µ)Aeiµθ − iγ|a|2a+ i
√
κextP0

+ i
√
κextP−e

i[δω0−δω−+Dint(µ−)]t+iµ−θ + i
√
κextP+e

i[δω0−δω++Dint(µ+)]t+iµ+θ

(S.1.1)

with κ and κext the total and coupling loss rates, respectively, γ the effective nonlinearity, θ and µ the azimuthal angle
and component respectively, A(µ, t) the Fourier transform of a(θ, t) with respect to θ, and Dint = ωres(µ)− (ω0+ωrepµ)
the modified integrated dispersion with ωrep the repetition rate of the DKS, and µ the mode number relative to the
main pumped mode. P0 = F 2

0 /κext, ω0, and ∆ω0 are the power, frequency and detuning of the main pump creating
the DKS, respectively; µ± is the mode number of the positive (negative) auxiliary pump with power P± = F 2

±/κext

and exhibiting an offset from the cloest soliton comb tooth ϖ± = ω± − ω0 − µω
(0)
rep. We defined the negative (positive)

auxiliary pump such that µ− < 0 (µ+ > 0).

We assume that three colors form from the three lasers injected in the cavity and therefore a can be written as,

a = a0 + a−e
(iϖ−t+iµ−θ) + a+e

(iϖ+t+iµ+θ), (S.1.2)

Using Eq. (S.1.2) to substitute it in Eq. (S.1.1) and discarding any non phase-matched terms,

∂a0
∂t

+
∂a−
∂t

e(iϖ−t+iµauxθ) + iϖ−a−e
iϖ−t+iµauxθ +

∂a+
∂t

e(iϖ+t+iµauxθ) + iϖ+a+e
iϖ+t+iµauxθ =(

−κ

2
+ i∆ω0

)
(a0 + a−e

iϖ−t+iµ−θ + a+e
iϖ+t+iµ+θ)

+ i
∑
µ

Dint(µ)a0e
iµθ + i

∑
µ

Dint(µ)a−e
iµθeiϖ−t + i

∑
µ

Dint(µ)a+e
iµθeiϖ+t

− iγ
[(
|a0|2 + 2|a−|2 + 2|a+|2

)
a0 +

(
2|a0|2 + |a−|2 + 2|a+|2

)
a−e

iϖ−t+iµ−θ +
(
2|a0|2 + 2|a−|2 + |a+|2

)
a+e

iϖ+t+iµ+θ
]

− iγ
[
2a∗0a−a+e

i(µ−+µ+)θei(ϖ−+ϖ+)t + a20a
∗
+e

−iϖ+t−iµ+θ + a20a
∗
−e

−iϖ−t−iµ−θ
]

+ i
√
κextP0 + i

√
κextP−e

iϖ−t+iµ−θ + i
√
κextP+e

iϖ+t+iµ+θ

(S.1.3)

Separating the terms based on their phase ϖ we get the system of three equations and noting that the system is set
such that ϖ+ +ϖ− is small before either ϖ− and ϖ+,

∂a−
∂t

=
(
−κ

2
+ iϖ−

)
a− + iD−(a−)− iγ

(
2|a0|2 + |a−|2 + 2|a+|2

)
a− − iγa20a

∗
+e

−i[Mθ+Wt] + i
√
κextP− (S.1.4)

∂a0
∂t

=
(
−κ

2
+ i∆ω0

)
a0 + iD0(a0)− iγ

(
|a0|2 + 2|a−|2 + 2|a+|2

)
a0 − 2iγa∗0a+a−e

i[Mθ+Wt] + i
√
κextP0 (S.1.5)

∂a+
∂t

=
(
−κ

2
+ iϖ+

)
a+ + iD+(a+)− iγ

(
2|a0|2 + 2|a−|2 + |a+|2

)
a+ − iγa20a

∗
−e

−i[Mθ+Wt] + i
√
κextP+ (S.1.6)

with the dispersion operator terms D0(a0) =
∑

µ Dint(µ)A0e
iµθ; D−(a−) =

∑
µ Dint(µ)A−e

i(µ−µ−)θ; and D−(a−) =∑
µ Dint(µ)A+e

i(µ−µ+)θ

The DKS a0 therefore experiences another parametric driving force through the term −2iγa∗0a+a−e
i[Wt+Mθ], which

has a phase offset from the DKS Wt = (ϖ− +ϖ+)t at an azimuthal mode M = µ− + µ+. Therefore, the system can
becomes synchronized when ϖ− +ϖ+ is within the KIS bandwidth, with an OFD factor of M

The above system is the one solved to obtain the results presented in figure 2, which also explains the comb generation
around the auxiliary pump at µ±.
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S.2. Adler equation for the parametric trapping
Similar to the standard KIS, one could derive an Adler equation to understand the parametric trapping [9]. From the
definition of the parametric drive in Eq. (S.1.5), its strongest azimuthal mode will be at M = µ− + µ+ and will define
the comb tooth of the DKS that will be captured. The variation of the phase offset of the + and − color relative to
the DKS are defined by:

∂φ+

∂t
= ϖ+ = ω+ − (ω0 + µ+ωrep) (S.2.1)

∂φ−

∂t
= ϖ− = ω− − (ω0 + µ−ωrep) (S.2.2)

Therefore the phase offset of the parametric drive relative to the DKS is:

∂Φ

∂t
=ϖ− +ϖ+

=− (µ− + µ+)ωrep − 2ω0 + ω− + ω+

(S.2.3)

From Eq. (S.2.3), the OFD M = µ− + µ+ becomes obvious since in the synchronization regime ∂Φ/∂t = 0, leading
to equation (4) of the manuscript:

ω(pkis)
rep =

ω− + ω+ − 2ω0

M
. (S.2.4)

From the above equation, we can derive the disciplining of the repetition rate against the frequency variation of either
pump laser:

∂ωrep

∂ω−
= +

1

µ+ + µ−
(S.2.5)

∂ωrep

∂ω0
= − 2

µ+ + µ−
(S.2.6)

∂ωrep

∂ω+
= +

1

µ+ + µ−
(S.2.7)

which correspond to the experimental results shown in Figure 3c where µ− + µ+ < 0. The factor of 2 in the OFD
relative to the main pump ω0 in Eq. (S.2.6) and the same OFD sign for ω± in Eqs. (S.2.5) and (S.2.7) regardless of
the sign of µ± are self-consistent and are clear signatures of the parametric nature of such Kerr-induced synchronization.

Eq. (S.2.3) links the repetition rate variation in time with the phase offset, assuming other terms are independent of
time (detuning, optical frequencies):

∂2Φ

∂t2
= − (µ− + µ+)

∂ωrep

∂t
(S.2.8)

In the approximation of small amplitude auxiliary driving force F±, their introduction has no impact on the soliton
repetition rate [9], which then can be written as:

∂ωrep

∂t
= − 1

Edks

∑
µ

D1(µ)

(
∂A0(µ)

∂t
A∗

0(µ) +A0(µ)
∂A∗

0(µ)

∂t

)
(S.2.9)

Using the modal expansion of the Lugiato-Lefever equation and achromatic dispersive coupling and losses, and that
only the terms at M = µ− + µ+ and µ = 0 will be significant and that the auxiliary pumps are not depleted:

− 1

κ

∂ωrep

∂t
=

2D1

Edks

√
E0(M)

4γ2P0P+P−κ3
ext

κ2
sin(Φ)− ωrep −D1 (K0 +KNL) (S.2.10)
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with E0(M) = |A0(M)|2, where the approximation D1(µ = 0) ≈ D1(µ = M) = D1 since the resonator is weakly
dispersive. The pump frequency shift and the self-phase modulation frequency shift are:

K0 = 2
√
κext

P0

κEdks
(S.2.11)

KNL =
γ

κEdksD1

∑
µ

D1(µ)

A∗ (µ)
∑
α,β

A(α)A∗(β)A(α− β + µ)− c.c

 (S.2.12)

which from the steady state form of Eq. (S.2.10) leads to D1 (K0 +KNL) ≈ ωrep since Ekis ≪ 1 .
Using Eqs. (S.2.3) and (S.2.8) we obtain the Adler equation:

β
∂Φ2

∂τ2
+

∂Φ

∂τ
= ∆− sin(Φ) (S.2.13)

with the normalized time τ = Ωpkist = 2MD1Epkist with Ωpkis the synchronization bandwidth and the normalized

KIS energy Epkis =
√

4γ2E0(M)P0P+P−κ3
ext/κ

2/Edks, the damping β = Ωpkis/κ, and the detuning Ωpkis∆ =
(ω− + ω+ − 2ω0) = W . Hence, if ∆ < 1, the DKS becomes synchronizes and acquires a phase slip ∂φdks/∂t which
compenstae for W such that ∂Φ/∂τ remains null. Since the main pump pins one comb tooth, this phase slip transduces
into a group velocity shift changing the DKS repetition rate.

S.3. Summary of parameters

κ
comb
linemain

pump
cavity
resonance

µ =–1 µ =1

µ =12

Dint(µ=12)

Tr
an

sm
is

si
on

ω

cavity
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ωres(µ)ωres(0) µωrep+ω0ω0

a+a–

a0
a0a–a+

*

ωrep ωrepωrep
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W=ϖ–+ϖ+

ϖ+

δω0δω– δω+

Tr
an

sm
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si
on

ω

ωω0

ωrep

ω– ω+

Fig. S.1: Graphical representation of the frequency parameters, ω0, ω±, µ, Dint(µ), ωrep, ωres(µ), κ, ϖ±, and W .

The different frequency parameters used in the manuscript are summarized in Fig. S.1. The main pump ω0 is
detuned from its cold cavity resonance ωres(0) by ∆ω0 = ωres(0) − ω0. The resonances have a linewidth κ, which
accounts for both intrinsic and extrinsic (coupling) losses κext. The frequency variation or tuning of the main pump
is δω0, which in the LLE can be related to ∆ω0. However, since experimentally we use a cooler pump to thermally
stabilize the resonator, ∆ω0 does not change linearly with δω0. The auxiliary pumps are located around comb teeth
µ± away from the main pump, such that µ− < 0 and µ+ > 0. They are frequency offset from their closest comb teeth
by ϖ±. The parametric interaction between the three colors at play a−, a+, and a0 pumped by the auxiliary pump
and main pump respectively generates an idler centered at the frequency ω0 +Mωrep +W , with M = µ− + µ+ and
W = ϖ− +ϖ+. In other words, the idler occurs around the comb tooth at mode M and is detuned from it by W .
When W is small enough to be within the KIS bandwidth, parametric synchronization occurs where the repetition
rate of the DKS is defined by ωrep = M−1 (ω− + ω+ − 2ω0).

S.4. Microring resonator design
The microring resonator’s chip consists of a stack of silicon, silicon dioxide (SiO2), silicon nitride (Si3N4), and SiO2.
The photonic fabrication is performed in a commercially available foundry, similar to the chips presented in [9]. The
photonics layer consists of H = 670 nm thick Si3N4, embedded in SiO2, enabling light guiding. The ring resonator



10

has a width of RW = 860 nm and a radius of RR = 23 µm. The waveguide that couples to the ring has a width
of W = 460 nm and is separated from the ring by a gap of G = 500 nm across a Lc = 17 µm length in a pulley
fashion [29]. The light is injected and collected through the facet edge. Light injection is efficient, with low insertion
losses of about 3 dB per facet, thanks to the inverse tapering of the waveguide down to a width of 250 nm.

S.5. Experimental setup

50 MHz APD.

Photodetector
Power
monitor

125 MHz low noise
Photodiode

1060
CTL

1550
CTL

980
CTL

980
CTL

OSA
YDFA

WDM

WDM

RF
synthesizer

50

50

PC

90

90

90

90
10

10

10

10

980980

1060

1060
1060

1550

2x EO phase 
modulator φ

TA

PNARSA
RSA

1100 nm

1070 nm
isolator

40 MHz MZI

VOA

Fig. S.2: Experimental setup. The 1060 nm continuously tunable laser (CTL), amplified with a ytterbium doped-fiber amplifier (YDFA)
and power-adjusted with a variable optical attenuator (VOA), generates the DKS thanks to the thermal stabilization of the microring
resonator by the 980 nm CTL cooler pump laser. The main pump laser along with the 1550 nm and 980 nm auxiliary CTL lasers are
combined by a wavelength demultiplexer (WDM). An isolator is present in the 980 nm path to avoid the cooler feeding into the auxiliary
pump CTL. The soliton step is detected by filtering the main pump from the comb power detection. The comb spectrum is detected by an
optical spectrum analyser (OSA). The repetition rate is detected thanks to the creation of an electro-optic comb (EOcomb) of two adjacent
DKS comb teeth, which is then filtered at the overlapping frequency of the two spectrally translated DKS comb teeth, and detected with an
avalanche photodiode (APD). The signal is then sent to a real-time spectrum analyser (RSA) and phase noise analyzer (PNA) for analysis.
The laser noise is measured thanks to a 40 MHz Mach-Zehnder interferometer (MZI) acting as an optical frequency discriminator and
detected with a 125 MHz low noise photodiode and a RSA.

The setup [Fig. S.4] consists of the previously described microring resonator, fiber elements, detector, analysis
instruments, and four lasers. The 1060 nm continuously tunable laser (CTL) is amplified through a ytterbium-doped
fiber amplifier (YDFA) to achieve the required > 150 mW of in-fiber power to generate a frequency comb. A polarization
controller (PC) sets the input light into transverse-electric (TE) polarization to pump the fundamental TE mode of the
microring resonator. A variable optical attenuator (VOA) controls the power to reach the single soliton state. A 980 nm
CTL, amplified through a tapered amplifier (TA) up to 400 mW, is used in a cross-polarized, counter-propagative
manner to thermally stabilize the microring while minimizing its nonlinear interaction with the DKS. This thermal
stabilization, similar to opto-mechanical cooling—hence the term cooler pump laser—enables adiabatic frequency
tuning to the single soliton state, detected by measuring the comb power while notching the main pump, while also
recording the spectrum with an optical spectrum analyzer (OSA).
The repetition rate ωrep of the microcomb is detected using two cascaded electro-optic (EO) phase modulators

driven by an amplified microwave synthesizer. By appropriately setting the driving frequency, the EO comb of two
adjacent DKS comb teeth overlaps within the bandwidth of the avalanche photodiode (APD) used for detection. The
repetition rate is determined as ωrep = Neoωeo ± ωbeat, where Neo = 56 is the number of EO comb teeth, ωeo is the
EO-comb microwave frequency, and ωbeat is the beat note frequency. The ± sign arises from the overlap (or not) of the
EO-combed OFC comb teeth. We record the signal through the real-time spectrum analyzer (RSA), extracting either
the spectrum, or the in-phase and quadrature (IQ) signal of ωbeat. The IQ signals enable, while sweeping one of the
pump lasers, the reconstruction of a spectrogram from which the instantaneous frequency of the beat note can be
extracted. Calibration of the laser detuning is obtained through a heterodyne beat against a local oscillator, in this
case, an additional laser close in wavelength.

For noise analysis, we use a phase-noise analyzer to characterize ⟨ωbeat⟩. Since it carries both the DKS comb noise
⟨ωrep⟩ and the multiplied EO-comb microwave synthesizer noise N⟨ωeo⟩, our noise floor analysis is limited by the
EO-comb.
Finally, we measure the frequency noise of every CTL at play in this experiment using an optical frequency

discriminator based on a ωMZI = 2π × 40 MHz fiber Mach-Zehnder interferometer (MZI) and a 125 MHz low-noise
photodiode. The signal is then recorded with the RSA. From the electrical spectrum, we obtain the frequency spectral

density of noise of each laser Sω = ωMZI sin
−1

(
Srsa

Aπ

)2
with A the maximum amplitude of the interference pattern,

and Srsa the RSA signal. Converting the frequency noise PSDs to phase noise PSDs allows for the verification of the
repetition rate triple-pinning. We compare the weighted sum of the laser phase noise PSDs, using equation (4), against
direct measurements of the repetition rate phase noise (see Figure 3f of the main manuscript).
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S.6. LLE simulations for different parametric-KIS OFDs
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Fig. S.3: a Modified integrated dispersion, similar to the one displayed in Fig. 2. b Optical frequency comb spectra of the DKS (grey
center) and the auxiliary pumped color for different combination of µ± yielding different OFD factor M = µ− + µ+ =. c Repetition rate
disciplining from the parametric-KIS on the DKS a0, whose slope is following the OFD factor M = −32, −29, −25, and −22 and is
consistent with the theory presented.

We extend the LLE simulations presented in Fig. 2 to different sets of auxiliary pump modes µ± [Fig. S.3]. Using
combinations of modes µ−;µ+ = −57; 25, −58; 29, −59; 34, and −50; 38, corresponding to the parametric-KIS at mode
M = −32, −29, −25, and −22 respectively. Similar to the study presented in the main text, we vary the frequency of
the auxiliary pump δω± and observe the repetition rate disciplining of the DKS, with slopes consistent with the OFD
factor M [Fig. S.3c]. Importantly, the same microcomb (i.e given pump frequency and resonator dispersion) can be
efficiently on-resonance for parametric synchronization at multiple OFD values. This contrasts with direct-KIS, where
efficient on-resonance synchronization occurs only at the dispersive wave (not limited for off-resonance operation).
Such flexibility highlights the advantage of the parametric nature of this synchronization scheme.

S.7. Trapping of other colors

The system of equations derived in Eqs. (S.1.4) to (S.1.6) can be easily expanded to other colors by renormalizing it to
the +1 color instead of the DKS:

a = a0 + a+1e
i[µ+1θ+ϖ+1t] + a+2e

i[µ+2θ+ϖ+2t] (S.7.1)

from expansion of the multi-pumped LLE, yields:

∂a0

∂t
=

(
−κ

2
+ i∆ω0

)
a0 + iD0(a0)− iγ

(
|a0|2 + 2|a+1|2 + 2|a+2|2

)
a0 − iγa2

+1a
∗
+2e

−i[Mθ+Wt] + i
√
κextP0 (S.7.2)

∂a+1

∂t
=

(
−κ

2
+ iϖ+1

)
a+1 + iD+1(a+1)− iγ

(
2|a0|2 + |a+1|2 + 2|a+2|2

)
a+1 − 2iγa∗

+1a0a+2e
i[Mθ+Wt] + i

√
κextP+1 (S.7.3)

∂a+2

∂t
=

(
−κ

2
+ iϖ+2

)
a+2 + iD+2(a+2)− iγ

(
2|a0|2 + 2|a+1|2 + |a+2|2

)
a+2 − iγa2

+1a
∗
0e

−i[Mθ+Wt]a+ i
√

κextP+2 (S.7.4)
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with M = µ+2 − 2µ+1 and W = ϖ+2 − 2ϖ+1.
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Fig. S.4: Parametric trapping of other colors instead of the
soliton. a Integrated dispersion under consideration, similar to the
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Similar to Supplementary Information S.2, one can use Eq. (S.7.3) to reach the same normalized Adler equation:

β
∂Φ2

∂τ2
+

∂Φ

∂τ
= ∆+1 + sin(Φ) (S.7.5)

this time with τ = Epkis =, ∆+1 = W/Ωpkis. Hence, the OFD factor now becomes M = µ+2 − 2µ+1. This system can
also be understood in the same fashion as presented in Supplementary Information S.1 if the phase and azimuthal
offset of each color are normalized to the +1 color instead of the DKS.

We simulate this system, with results shown in Fig. S.4 that are consistent with the theory presented above.

S.8. Direct-KIS vs Parametric-KIS

We compare direct-KIS [9] and parametric-KIS efficiency under identical conditions [Fig. S.5] using the same dispersion
and microcomb from Figure 2 in the mLLE. For parametric-KIS, reference pumps with powers P− = 1 mW,
P+ = 3 mW at µ− = 57 and µ = +25 respectively create a parametric tone at M = −32, yielding a Ωpkis ≈ 0.6 GHz
synchronization bandwidth. For direct-KIS at off-resonant M = −32, achieving similar bandwidth Ωkis ≈ 0.6 GHz
requires Pref = 45 mW—significantly higher than parametric-KIS auxiliary powers. From Eq. (S.2.13), parametric-KIS

energy scales with
√
4γ2P0P−P+κ3

ext, while direct-KIS scales with
√
Prefκext at fixed comb tooth power E0(M),

mode number M , DKS energy Edks, and loss rate κ. On-resonant operation enables parametric-KIS to optimize
synchronization energy more efficiently than direct-KIS.
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