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ABSTRACT

This paper establishes a novel role for Gaussian-mixture models
(GMMs) as functional approximators of Q-function losses in rein-
forcement learning (RL). Unlike the existing RL literature, where
GMMs play their typical role as estimates of probability density
functions, GMMs approximate here Q-function losses. The new Q-
function approximators, coined GMM-QFs, are incorporated in Bell-
man residuals to promote a Riemannian-optimization task as a novel
policy-evaluation step in standard policy-iteration schemes. The pa-
per demonstrates how the hyperparameters (means and covariance
matrices) of the Gaussian kernels are learned from the data, opening
thus the door of RL to the powerful toolbox of Riemannian optimiza-
tion. Numerical tests show that with no use of experienced data, the
proposed design outperforms state-of-the-art methods, even deep Q-
networks which use experienced data, on benchmark RL tasks.

Index Terms— Gaussian-mixture models, reinforcement learn-
ing, Q-functions, Riemannian manifold, optimization.

1. INTRODUCTION

In reinforcement learning (RL) [1, 2], an “intelligent agent” interacts
with an unknown environment (typically modeled as a Markov de-
cision process (MDP)) to identify an optimal policy that minimizes
the total costs of its “actions.” RL offers a mathematically sound
framework for solving arduous sequential decision problems in real-
world applications, as in operations research, dynamic control, data
mining, and bioinformatics [1].

To identify an optimal policy, RL strategies typically com-
pute/evaluate the value/loss (Q-function) associated with an action
at a given state by observing feedback data from the environment.
The classical Q-learning [3] and state-action-reward-state-action
(SARSA) [4] algorithms evaluate Q-functions by look-up tables,
populated by Q-function values at every possible state-action pair.
Although such approaches appear to be successful in discrete-state-
action RL, there are many practical problems which involve very
large, or even continuous state-action spaces that render tabular RL
methods computationally intractable. To overcome this difficulty,
algorithms built on functional approximations (non-linear models)
of Q-functions have attracted considerable interest [1].

Functional approximations of Q-functions have a long his-
tory in RL. Classical kernel-based (KB)RL methods [5–7] model
Q-functions as elements of Banach spaces; usually, spaces com-
prising all essentially bounded functions. On the other hand, tem-
poral difference (TD) [8], least-squares (LS)TD [9–11], Bellman-
residual (BR) methods [12], as well as very recent nonparametric
designs [13–15], model Q-functions as elements of user-defined
reproducing kernel Hilbert spaces (RKHSs) [16, 17] in a quest to
exploit the geometry and computational convenience of the associ-
ated inner product and its reproducing property. Notwithstanding,

the number of design parameters of all of the aforementioned kernel-
based designs scale with the number of observed data, which usually
inflicts memory and computational bottlenecks when operating in
dynamic environments with time-varying data distributions. Dimen-
sionality reduction techniques have been introduced to address this
issue [11, 13], but reducing the number of basis elements of the
approximating subspace may hinder the quality of the Q-functions
estimates.

Deep neural networks have been also used as non-linear Q-
function approximators in the form of deep Q-networks (DQNs),
e.g., [18, 19]. Typically, DQN models require experienced data [20]
from past policies for their parameters to be learned, and may even
require re-training during online mode to learn from data with proba-
bility density functions (PDFs) which are different from those of the
past data (experience-replay buffer). Such requirements may yield
large computational times and complexity footprints, discouraging
the application of DQNs into online learning where lightweight
operations and swift adaptability to a dynamic environment are
desired.

Aiming at a novel class of Q-function estimates with rich ap-
proximating properties, with few parameters to be learned to effect
dimensionality reduction, robustness to erroneous information, and
swift adaptability to dynamic environments, and with no need for
past experienced data, this paper introduces the class of Gaussian-
mixture-model Q-functions (GMM-QFs). GMM-QFs are weighted
sum averages of multivariate Gaussian kernels, where not only the
weights, but also the hyperparameters of the Gaussian kernels are
free to be learned [21]. This contrasts the aforementioned literature
of KBRL [5–12], where the hyperparameters of the user-defined ker-
nels are directly parameterized by the observed data and are not con-
sidered variables of learning tasks. GMMs have been already used
in RL, but via their typical role as estimates of PDFs: either of the
joint PDF p(Q, s, a) [22–25], where the Q-function Q, as well as
state s and action a are considered to be random variables (RVs),
or of the conditional PDF p(Q | s, a) [26]. This classical usage of
GMMs and its intimate connection with maximum-likelihood esti-
mation [27, 28] lead naturally to expectation-maximization (EM)
solutions [22–25]. In contrast, this paper departs from the typical
GMM usage and their EM solutions [22–26], employs GMMs to
model Q-functions directly, and not their PDFs, follows the lines
of Bellman-residual (BR) minimization [12, 15] to form a smooth
objective function, and relies on Riemannian optimization [29] to
minimize that objective function and to exploit the underlying Rie-
mannian geometry [30] of the hyperparameter space. GMMs and
Riemannian optimization have been used to model policy functions
as PDFs [31], under the framework of policy search [32]. The use of
GMMs to model Q-functions directly via Riemannian optimization
seems to appear here for the first time in the RL literature.

A fixed number of Gaussian kernels are used in GMM-QFs to
address the problem of an overgrowing nonparametric model with
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the number of data [5–12], effecting dimensionality reduction, and
providing low-computational load as well as stable performance un-
der erroneous information. Indeed, numerical tests on benchmark
control tasks demonstrate that the advocated GMM-QFs outperform
other state-of-the-art RL schemes, even DQNs which require experi-
enced data. Due to limited space, detailed definitions and arguments
of Riemannian geometry, proofs, results on convergence, and further
numerical tests are deferred to the journal version of this manuscript.

2. THE CLASS OF GMM Q-FUNCTIONS (GMM-QFs)

2.1. RL notations

Let S ⊂ RD denote the continuous state space, with state vector
s ∈ S, for some D ∈ N∗ (N∗ is the set of all positive integers). The
usually discrete action space is denoted by A, with action a ∈ A.
An agent, currently at state s ∈ S, takes an action a ∈ A and
transits to a new state s′ ∈ S under transition probability p(s′ | s, a)
with an one-step loss g(s, a). The Q-function Q(·, ·) : S × A →
R : (s, a) 7→ Q(s, a) stands for the long-term loss/cost that the agent
will suffer/pay, if the agent takes action a at state s. For convenience,
the state-action tuple z := (s, a) ∈ Z := S × A ⊂ RDz , where
Dz ∈ N∗.

Following [1], consider the set of all mappings M := {µ(·) |
µ(·) : S → A : s 7→ µ(s)}. In other words, µ(s) denotes the action
that the agent will take at state s under µ. The set of policies is
defined as Π := MN := {µ0, µ1, . . . , µn, . . . |µn ∈ M, n ∈ N}.
A policy will be denoted by π ∈ Π. Given µ ∈ M, a stationary
policy πµ is defined as πµ := (µ, µ, . . . , µ, . . . ). It is customary for
µ to denote also πµ.

2.2. GMM-QFs

Motivated by GMMs [21], and for a user-defined positive integer K,
GMM-QFs are defined as the following class of functions:

Q :=
{
Q(z) :=

∑K

k=1
ξkG(z | mk,Ck)

∣∣ ξk ∈ R ,mk ∈ RDz ,

RDz×Dz ∋ Ck is positive definite ,∀k = 1, . . . ,K
}
,

(1)

where G(z | mk,Ck) := exp[−(z − mk)
⊺C−1

k (z − mk)], with
mk and Ck being the hyperparameters of G(·), widely known as
the “mean” and “covariance matrix” of G(·), respectively, while
⊺ stands for vector/matrix transposition. The parameter space of
GMM-QFs takes the form

M :=
{
Ω := (ξ1, . . . , ξK ,m1, . . . ,mK ,C1, . . . ,CK)

∣∣ ξk ∈ R ,

mk ∈ RDz ,Ck is positive definite , ∀k = 1, . . . ,K
}

= RK × RDz×K × (SDz
++)

K , (2)

where SDz
++ stands for the set of all Dz ×Dz positive-definite matri-

ces. Interestingly, M is a Riemannian manifold [29, 30] because all
of RK , RDz×K , and SDz

++ are.
To learn the “optimal” parameters from (2), BR minimiza-

tion [12, 15, 33–35] is employed. Motivation comes from the
classical Bellman mappings [1], which quantify the total loss (=
one-step loss + expected long-term loss) to be paid by the agent,
had action a been taken at state s. More specifically, if B stands
for the space of Q-functions, usually being the Banach space of

all essentially bounded functions [1], then the classical Bellman
mappings T ⋄

µ , T
⋄ : B → B : Q 7→ T ⋄

µQ,T ⋄Q are defined as [1]

(T ⋄
µQ)(s, a) := g(s, a) + αEs′|(s,a)[Q(s′, µ(s′))] , (3a)

(T ⋄Q)(s, a) := g(s, a) + αEs′|(s,a)[mina′∈A Q(s′, a′)] , (3b)

∀(s, a), where Es′|(s,a)[·] stands for the conditional expectation op-
erator with respect to the potentially next state s′ conditioned on
(s, a), and α ∈ [0, 1) is the discount factor. Mapping (3a) refers
to the case where the agent takes actions according to the stationary
policy µ, while (3b) serves as a greedy variation of (3a).

Given mapping T : B → B, its fixed-point set FixT := {Q ∈
B | TQ = Q}. It is well-known that the fixed-point sets FixT ⋄

µ

and FixT ⋄ play central roles in identifying optimal policies which
minimizes the total loss [1]. Usually, the discount factor α ∈ [0, 1)
to render T ⋄

µ , T ⋄ strict contractions [1, 36]; hence, FixT ⋄
µ and

FixT ⋄ become singletons. It is clear from (3) that the computa-
tion of FixT ⋄

µ and FixT ⋄ requires the knowledge on the transi-
tion probabilities to be able to compute the conditional expectation
Es′|(s,a)[·]. However, in most cases of practice, transition probabil-
ities are unavailable to the agent. To surmount this lack of infor-
mation, designers utilize models for Q-functions. This manuscript
utilizes GMM-QFs in (1).

Motivated by the importance of fixed points of Bellman map-
pings in RL, and for the data samples Dµ := {(st, at, gt, s

′
t)}Tt=1,

for a number T of time instances under a stationary policy µ, the
following minimization task of the smooth objective L(·) over the
Riemannian manifold M will be used to identify the desired fixed-
point Q-functions for the policy µ:

min
Ω∈M

L(Ω) :=
∑T

t=1

[
gt + α

∑K

k=1
ξkG(z′t | mk,Ck)

−
∑K

k=1
ξkG(zt | mk,Ck)

]2
, (4)

where zt := (st, at) and z′t := (s′t, µ(s
′
t)). Task (4) is solved by

Algorithm 2.
Albeit the similarity of (4) with standard BR minimization [12,

15, 33–35], (4) is performed over a parameter space, parameterized
not only by the weights ξ, as in [12, 15, 33–35], but also by the
parameters {mk,Ck}Kk=1. In other words, and for a fixed K, (4)
provides more degrees of freedom and a richer parameter space than
the state-of-the-art BR-minimization methods [12, 15, 33–35].

3. POLICY ITERATION BY
RIEMANNIAN OPTIMIZATION

Following standard routes [1, 37], the classical policy-iteration (PI)
strategy is used in Algorithm 1 to identify optimal policies. PI com-
prises two stages per iteration n: policy evaluation and policy im-
provement. At policy evaluation, the current policy is evaluated
by the current Q-function estimate, which represents the long-term
cost/loss estimate that the agent would suffer had the current policy
been used to determine the next state. At the policy-improvement
stage, the agent uses the obtained Q-function values to update the
policy.

Nevertheless, looking more closely at Line 4 of Algorithm 1, the
policy-evaluation stage is newly equipped here with a Riemannian-
optimization task: solve (4) by the steepest-gradient-descent method
with line search of [29, §4.6.3]. To this end, the gradients of L(·)
along the directions ξ, mk and Ck are required, and provided by
Proposition 1. Definitions of basic Riemannian concepts [29, 30],
detailed derivations and proofs are skipped because of limited space.



Algorithm 1 Policy iteration by Riemannian optimization
1: Arbitrarily initialize Ω0 ∈ M, µ0 ∈ M.
2: while n ∈ N do
3: Policy evaluation Use the current policy µn to generate the

dataset Dµn := {(st, at, gt, s
′
t)}Tt=1.

4: Update Ωn+1 via Algorithm 2.
5: Given Ωn+1, compute Qn+1 ∈ Q via (1).
6: Policy improvement Update µn+1 :=

a∈A

argminQn+1(s, a).

7: Increase n by one, go to Line 2.
8: end while

To run computations in Algorithm 2, the Riemannian metric [29,
30] of (5) on M is adopted: ∀Ω := (ξ,m1, . . . ,mK ,C1, . . . ,CK) ∈
M, and ∀Υi := (θi,µi1, . . . ,µiK ,Γi1, . . . ,ΓiK) ∈ TΩM,
i = 1, 2, where TΩM denotes the tangent space to M at Ω [29, 30],

⟨Υ1 | Υ2⟩Ω := θ⊺
1θ2 +

K∑
k=1

µ⊺
1kµ2k +

K∑
k=1

⟨Γ1k | Γ2k⟩Ck , (5)

where ⟨· | ·⟩Ck can be any user-defined Riemannian metric of SDz
++.

Here, the Bures-Wasserstein (BW) metric [38] of (6) is used, because
of its excellent performance in numerical tests: ∀Ck ∈ SDz

++, and
∀Γik ∈ TCkS

Dz
++, i = 1, 2,

⟨Γ1k | Γ2k⟩Ck
:= ⟨Γ1k | Γ2k⟩BW

Ck
:= 1

2
tr[LCk (Γ1k)Γ2k] , (6)

where the Lyapunov operator LCk (·) satisfies CkLCk (Γik) +

LCk (Γik)Ck = Γik [39]. Other Riemannian metrics on SDz
++, such

as the affine-invariant [40] or Log-Cholesky [41] ones can be used
in (5). Due to limited space, results obtained after employing those
metrics will be reported elsewhere.

Proposition 1 (Computing gradients). Consider a point Ω(j) :=

(ξ(j),m
(j)
1 , . . . ,m

(j)
K ,C

(j)
1 , . . . ,C

(j)
K ) ∈ M (see Algorithm 2),

and its associated GMM-QF Q(j). Let also δt := gt +αQ(j)(z′t)−
Q(j)(zt). Then, the following hold true.

(i) If the objective function in (4) is recast as L(Ω(j)) =

∥g + ∆ξ(j)∥2, where g := [g1, . . . , gT ]
⊺ and ∆ is a

T × K matrix with entries ∆tk := αG(z′t | m
(j)
k ,C

(j)
k ) −

G(zt | m(j)
k ,C

(j)
k ), then,

∂L

∂ξ
(Ω(j)) = 2∆⊺(g +∆ξ(j)) . (7a)

(ii) ∀k = 1, . . . ,K,

∂L

∂mk
(Ω(j))

=

T∑
t=1

4δtξ
(j)
k (C

(j)
k )−1[α(z′t −m

(j)
k )G(z′t | m

(j)
k ,C

(j)
k )

− (zt −m
(j)
k )G(zt | m(j)

k ,C
(j)
k )

]
.

(7b)

(iii) Under the BW metric [38], ∀k = 1, . . . ,K,

∂L

∂Ck
(Ω(j)) =

T∑
t=1

4δtξ
(j)
k [(C

(j)
k )−1Btk +Btk(C

(j)
k )−1]

∈ T
C

(j)
k

SDz
++ , (7c)

Algorithm 2 Solving (4)

1: Require: Sampled data Dµn := {(st, at, gt, s
′
t)}Tt=1; scalars

ᾱ > 0, β ∈ (0, 1), σ ∈ (0, 1), the number of steps J , a Rie-
mannian metric ⟨· | ·⟩·, and a retraction mapping R·(·) on M.

2: Ω(0) := Ωn.
3: for j = 0, 1, 2, . . . , J − 1 do
4: Ω(j) := (ξ(j),m

(j)
1 , . . . ,m

(j)
K ,C

(j)
1 , . . . ,C

(j)
K ).

5: By (7), compute:

∇L(Ω(j)) = ( ∂L
∂ξ

(Ω(j)), . . . , ∂L
∂mk

(Ω(j)), . . . , ∂L
∂Ck

(Ω(j)), . . . ).

6: Let

Υ(j) := (θ(j),µ
(j)
1 , . . . ,µ

(j)
K ,Γ

(j)
1 , . . . ,Γ

(j)
K ) := −∇L(Ω(j)) .

7: Find the smallest Ma ∈ N∗ such that

L(Ω(j))−L
(
RΩ(j)(ᾱβ

MaΥ(j))
)

≥ −σ⟨∇L(Ω(j)) | ᾱβMaΥ(j)⟩Ω(j) .

8: Define the step-size tA
j := ᾱβMa .

9: Update Ω(j+1) := RΩ(j)(tA
jΥ

(j)) via (8).
10: end for
11: Ωn+1 := Ω(J).

where Btk := α(z′t−m
(j)
k )(z′t−m

(j)
k )⊺G(z′t | m

(j)
k ,C

(j)
k )−

(zt −m
(j)
k )(zt −m

(j)
k )⊺G(zt | m(j)

k ,C
(j)
k ).

To run the steepest gradient descent in Riemannian optimization,
the retraction mapping RΩ [29] is needed, where, loosely speak-
ing, RΩ is a mapping which maps an element of the tangent space
TΩM to an element in M. The most celebrated retraction is the Rie-
mannian exponential mapping [29, 30]. Motivated by this fact, for
Ω := (ξ,m1, . . . ,mK ,C1, . . . ,CK) ∈ M, for a tangent vector
Υ := (θ,µ1, . . . ,µK ,Γ1, . . . ,ΓK) ∈ TΩM, and for the step size
tA > 0, met in Algorithm 2, the retraction mapping RΩ(tAΥ) =
(Rξ(t

Aθ), . . . , Rmk (t
Aµk), . . . , RCk (t

AΓk), . . . ) is provided by
the following: ∀k ∈ {1, . . . ,K},

Rξ(t
Aθ) := ξ + tAθ , (8a)

Rmk (t
Aµk) := mk + tAµk , (8b)

RCk (t
AΓk) := expBW

Ck
(tAΓk) , (8c)

where, under the BW metric,

expBW
Ck

(tAΓk) := Ck + tAΓk + LCk (t
AΓk)Ck LCk (t

AΓk) .

4. NUMERICAL TESTS

Two classical benchmark RL tasks, the Inverted Pendulum [42] and
the Mountain Car [43], are selected to validate the proposed Al-
gorithm 1 against: (i) Kernel-based least-squares policy iteration
(KLSPI) [11], which utilizes LSTD in RKHS; (ii) online Bellman
residual (OBR) [12]; (iii) the popular deep Q-network (DQN) [18],
which uses deep neural networks to train the Q-functions (experi-
enced data are required); and (iv) the GMM-based RL [25] via an
online EM algorithm (EM-GMMRL). Two scenarios for the one-
step loss function g are also considered, one where g is continuous
and another where it is discrete. The validation criterion (vertical
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Fig. 1: Inverted-pendulum dataset. Curve markers: Algorithm 1
with K = 5: , KLSPI [11]: , OBR [12]: , DQN [18]: , EM-
GMMRL [25]: .

axes in Figures 1 to 3) measures the total loss the agent suffers until
it achieves the “goal” of the task when operating under the current
policy µn, with n being the iteration index of Algorithm 1 as well as
the coordinate of the horizontal axes in Figures 1 to 3. Results are
averages from 100 independent tests. Software code was written in
Julia [44]/Python.

The “inverted pendulum” [42] refers to the problem of swinging
up a pendulum from its lowest position to the upright one, given a
limited number of torques. The state s := [θ, θ̇]⊺, where θ ∈ [−π, π]
is the angular position (θ = 0 corresponds to the upright position),
and θ̇ ∈ [−4, 4]s−1 is the angular velocity. The action space is the
set of torques A := {−5,−3, 0, 3, 5}N. The continuous one-step
loss is defined as g(s, a) := |θ|/π, while the discrete one is defined
as g(s, a) := 0, if θ = 0, and g(s, a) := 1, if θ ̸= 0.

To collect data samples Dµn in Algorithm 1, the pendulum starts
from an angular position and explores a number of actions under the
current policy µn. This exploration is called an episode, and per iter-
ation n in Algorithm 1, data Dµn with T := (number of episodes)×
(number of actions) = 20 × 70 = 1400 are collected. KLSPI [11]
and OBR [12] use the Gaussian kernel with bandwidth σκ = 2,
while their ALD threshold is δALD = 0.01. KLSPI and OBR need
T = 5000 to reach their “optimal” performance for the task at hand.
DQN [18] uses a fully-connected neural network with 2 hidden lay-
ers of size 128, with batch size of 64, and a replay buffer (experi-
enced data) of size 1×105. For EM-GMMRL [25], T = 500, while
its threshold to add new Gaussian functions in its dictionary is 10−4.

It can be seen from Figure 1, that the proposed Algorithm 1
scores the best performance with no use of replay buffer (ex-
perienced data), unlike DQN [18] which requires a large replay
buffer, and exhibits slower learning speed and higher variance than
GMM-QFs. KLSPI [11] underperforms, while OBR [12] and EM-
GMMRL [25] fail to score a satisfactory performance. Notice that
KLSPI and OBR are given more exploration data than Algorithm 1.
It is also worth noting here that EM algorithms are sensitive to ini-
tialization [28], and that several initialization strategies were tried in
all of the numerical tests.

“Mountain car” [43] refers to the task of accelerating a car to
reach the top of the hill from the bottom of a sinusoidal valley, where
the slope equation is given by y = sin(3x) in the xy-plane, with
x ∈ [−1.2, 0.6]. The state s := [x, v]⊺, where the velocity of the car
v ∈ [−0.07, 0.07]. The goal is achieved when the car gets beyond
xg := 0.5 with velocity larger than or equal to vg := 0, that is,
whenever the car reaches a state in Sg := {[x, v]⊺ |x ≥ xg, v ≥
vg}. The discrete one-step loss is defined as g(s, a) := 1, if s /∈ Sg ,
while g(s, a) := 0, if s ∈ Sg . The continuous one-step loss is
defined as g(s, a) := [max(xg − x, 0) + max(vg − v, 0)]/2.
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Fig. 2: Mountain-car dataset. Curve markers: Algorithm 1 with
K = 500: , others follow Figure 1.
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Fig. 3: Effect of different K in Algorithm 1 for the setting of Fig-
ure 2b. Curve markers: K = 20: , K = 50: , K = 200: . The
curve markers for K = 5 and K = 500 follow those of Figures 1
and 2. The larger the K, the richer the hyperparameter space M and
the faster the agent learns through the feedback from the environ-
ment, at the expense of increased computational complexity.

With regards to the data Dµn in Algorithm 1, a strategy similar
to that of the inverted pendulum is used. More specifically, T =
1000 for the proposed GMM-QFs, while T = 20000 for KLSPI [11]
and T = 1000 for OBR [12]. A Gaussian kernel with width of σκ =
0.1 is used for KLSPI [11] and OBR [12]. The implementation of
DQN [18] is identical to one for the inverted-pendulum case, while
T = 100 for EM-GMMRL [25].

The proposed GMM-QFs outperform all competing methods
in Figure 2a, while DQN [18] scores the best performance in Fig-
ure 2b. Note again here that DQN uses a large number of experi-
enced data (size of replay buffer is 1 × 105), while the proposed
GMM-QFs needs no experienced data to achieve the performance
of Figure 2. Observe also that by increasing the number K of Gaus-
sians in (1), GMM-QFs reach the total-loss performance of DQN in
Figure 2b, at the expense of increased computational complexity;
see also Figure 3. OBR [12] and EM-GMMRL [24] perform better
here than in Figure 1, with the EM-GMMRL agent showing better
“learning abilities” than the OBR one in Figure 2b, but vice versa in
Figure 2a.

5. CONCLUSIONS

This paper established the novel class of GMM Q-functions (GMM-
QFs), and offered a Riemannian-optimization algorithm, to learn the
hyperparameters of GMM-QFs, as a novel policy-evaluation step in
a policy-iteration scheme for computing optimal policies. The pro-
posed design shows ample degrees of freedom not only because it



introduces a rich hyperparameter space, but also because it estab-
lishes the exciting connection between Q-function identification in
RL and the powerful toolbox of Riemannian optimization. Numeri-
cal tests on benchmark tasks demonstrated the superior performance
of the proposed design over state-of-the-art schemes.
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