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Abstract

Disentanglement of visual features of primi-
tives (i.e., attributes and objects) has shown ex-
ceptional results in Compositional Zero-shot
Learning (CZSL). However, due to the fea-
ture divergence of an attribute (resp. object)
when combined with different objects (resp. at-
tributes), it is challenging to learn disentangled
primitive features that are general across dif-
ferent compositions. To this end, we propose
the solution of cross-composition feature dis-
entanglement, which takes multiple primitive-
sharing compositions as inputs and constrains
the disentangled primitive features to be gen-
eral across these compositions. More specif-
ically, we leverage a compositional graph to
define the overall primitive-sharing relation-
ships between compositions, and build a task-
specific architecture upon the recently success-
ful large pre-trained vision-language model
(VLM) CLIP, with dual cross-composition dis-
entangling adapters (called L-Adapter and V-
Adapter) inserted into CLIP’s frozen text and
image encoders, respectively. Evaluation on
three popular CZSL benchmarks shows that
our proposed solution significantly improves
the performance of CZSL, and its components
have been verified by solid ablation studies.
Our code and data are available at: https:
//github.com/zhurunkai/DCDA.

1 Introduction

Compositional Zero-shot Learning (CZSL) aims to
recognize novel attribute-object compositions by
disentangling visual primitives from seen combina-
tions, a capability crucial for scaling visual recog-
nition systems (Misra et al., 2017). For instance,
a model trained on red tomato and green apple
should infer green tomato through primitive recom-
bination, despite never encountering this specific
composition. This paradigm not only enables zero-
shot generalization to exponentially many combina-
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Figure 1: Examples of divergent visual features of a
primitive (e.g., an attribute red or an object fomato)
across different compositions.

tions (Chen et al., 2023), but also advances vision-
language understanding by requiring precise fea-
ture decomposition aligned with textual semantics
(Chen et al., 2025).

Early CZSL approaches establish shared em-
bedding spaces to compare image features with
composition embeddings (Wei et al., 2019; Naeem
et al., 2021; Mancini et al., 2022). Recent ad-
vances leverage CLIP’s visual-semantic alignment
from large-scale pretraining (Radford et al., 2021;
Nayak et al., 2023), yet face inherent challenges:
Attribute-object primitives exhibit strong visual en-
tanglement—consider how red permeates all pixels
of a red tomato. This entanglement hinders both
primitive alignment and novel composition gener-
alization. Current CLIP-based solutions address
this through either disentangled text prompts (Lu
et al., 2023; Wang et al., 2023a) or vision adapters
(Zheng et al., 2024; Huang et al., 2024; Li et al.,
2024), but crucially overlook the diversity of prim-
itive manifestations across compositions. As Fig-
ure 1 illustrates, the visual realization of red varies
significantly when combined with different objects
(e.g., tomato vs. wine), exhibiting divergent color
tones and spatial distributions.

To quantify this challenge, we conduct feature-
space analysis on MIT-States (Isola et al., 2015)
using CAILA (Zheng et al., 2024), the current
SOTA method. As visualized in Figure 2 (left),
disentangled attributes like broken (purple circles)
exhibit two critical limitations: (1) Features from
the same attribute scatter widely with overlapping
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Figure 2: ¢-SNE visualizations of disentangled attribute representations of images in the test set of MIT-States,
learned by CAILA (Zheng et al., 2024) and our DCDA. Solid and hollow circles represent images of seen and

unseen compositions, respectively. Best viewed in color.

clusters (e.g., broken intermixed with cooked and
mossy), indicating poor intra-class consistency;
(2) This dispersion directly impacts generaliza-
tion—compositions containing unseen broken ob-
jects become indistinguishable due to the attribute’s
non-discriminative embeddings.

To overcome these limitations, we propose cross-
composition feature aggregation through graph-
guided learning. Our key insight is that ef-
fective primitive disentanglement requires cross-
composition feature aggregation. Drawing in-
spiration from compositional graphs (Naeem
et al., 2021), we construct a tripartite graph
(Figure 3a) connecting attributes, objects, and
their compositions. This graph enables our Dual
Cross-composition Feature Decomposing Adapters
(DCDA), which enhance CLIP’s text and image
encoders through complementary strategies: (1)
L-Adapter propagates textual features across com-
positionally related nodes via GNNs, consolidating
attribute/object semantics from multiple contexts.
(2) V-Adapter employs cross-attention between
primitive-sharing images (e.g., red tomato and
red wine) to extract invariant visual patterns, aug-
mented by a novel sampling strategy that weight-
edly selects compositions according to the at-
tribute/object co-occurrence degrees (derived from
our graph). When integrating L-Adapters and V-
Adapters into multiple layers of CLIP’s text and
image encoders, we retain the original parameters
of CLIP to avoid overfitting, but inject the task-
specific knowledge. Our contributions can be sum-
marized below:

* DCDA is the first systematic approach for

cross-composition feature disentanglement in
CLIP-based CZSL, explicitly addressing primi-
tive diversity.

* Dual adapter architecture leveraging compo-
sitional graphs for text-side aggregation and
vision-side contrastive attention, enabling dis-
criminative yet generalizable primitive repre-
sentations.

* DCDA achieves great performance on MIT-
States and UT-Zappos (closed/open world),
with 5.1%/7.3% gains over CAILA method'.

2 Related Work

Conventional CZSL methods are roughly divided
into two groups. One is classifier-based which first
trains two separate classifiers to predict an input
image’s attribute and object labels, respectively,
and then combines them to predict the composi-
tional labels (Misra et al., 2017; Nagarajan and
Grauman, 2018). The subsequent works further
enhance the dependence of the attribute and ob-
ject in a composition (Li et al., 2020, 2022; Wang
et al., 2023b). The other group is embedding-based
which jointly represents attributes and objects to
capture the dependence, and then aligns them with
the images in a shared embedding space (Wei et al.,
2019; Karthik et al., 2022; Geng et al., 2021). In
particular, (Naeem et al., 2021) learn the joint rep-
resentation through graph convolutional networks.

'Visualizations confirm tighter clustering of disentangled
attributes (Figure 2, right), with extended object analyses in
Appendix C.



There are also some works concerning the disen-
tanglement of attribute and object features in the
visual space (Saini et al., 2022; Hao et al., 2023;
Kim et al., 2023; Chen et al., 2022a, 2024b) or the
label space (Geng et al., 2022; Chen et al., 2022b,
2024a). However, all these methods have to learn
the alignment between image features and text em-
beddings from scratch and are prone to overfit to
the seen compositions. It is expected to derive
pre-trained alignment knowledge from VLMs.
CLIP-based CZSL. After pre-training using 400
million image-text pairs, CLIP can be applied to
any visual classification task without fine-tuning
by setting prompts like “a photo of [class]”, where
“[class]” is filled with the name of the class to be
recognized. (Nayak et al., 2023) then had the first
attempt to design prompt “a photo of [attribute]
[object]” for CZSL, where “[attribute] [object]” are
tunable tokens to teach CLIP how to compose at-
tributes and objects.

To stress the roles of individual primitives,
(Wang et al., 2023a) additionally set an attribute
and an object prompt with only “[attribute]” or
“lobject]” tunable; (Lu et al., 2023) make the whole
prompt trainable and fuses the decomposed text
features with the encoded (entangled) image fea-
tures through a cross-modal fusion module. Dif-
ferent from these works focusing on optimizing
the prompts, (Zheng et al., 2024) propose to insert
trainable adapters inside the frozen transformer lay-
ers to decompose and recompose the attribute and
object features. With disentangled primitive fea-
tures, (Huang et al., 2024) establish three prediction
branches and pulls a static class prompt to its dy-
namic images via a cross-modal traction module.
(Li et al., 2024) investigate the relative specificity
of attributes when paired with different objects. In
contrast to these methods, our method DCDA is
more generalizable, with cross-composition knowl-
edge injected and dual adapters inserted in CLIP’s
image and text encoders.

3 Methodology

CZSL Task Formulation. Let D;, = {(x,¢)|z €
Xs, ¢ € Cs} be the training set, where X; contains
the training images and C; is a set of seen com-
positional labels that are available during training.
Each label is a tuple ¢ = (a, 0) of an attribute class
a € A and an object class o € O. After training,
the CZSL model can predict images of a set of
new compositions C,, that are unseen during train-

ing, with C,, N Cs = (). Following previous works,
we study generalized CZSL (Purushwalkam et al.,
2019), where images of seen and unseen composi-
tions are both tested and the candidate label space
includes both seen and unseen labels. The test set
is thus denoted as Dy, = {(z,¢)|x € Xie, ¢ € Ce },
where Xpe = X, U X! with X! N X, = (), and
Cie = Cy U Cs. Notably, Cs and C,, share the same
attribute set .4 and object set O, CZSL assumes
that each a and o has been trained before testing
and only the composition (a, 0) € C, is novel.
Overview. In the following, we will first intro-
duce the details of L-Adapters for the language
side and V-Adapters for the vision side, and then
introduce how to integrate them into the frozen
CLIP encoders for CZSL. As shown in Figure 3(c),
the adapters are inserted into CLIP’s intermediate
computational units such as self-attention layers
or feed-forward layers. This means the input of
each adapter is the output of CLIP’s one compu-
tational unit, and its output is the input of CLIP’s
next computational unit. We use H* € R and
H?Y e RY*? to denote the output of CLIP’s one
specific computational unit in the text and image
encoders, respectively, where [ (resp. [’) is the
length of a tokenized input text (resp. image), d
and d' is the hidden state size of each token.

3.1 The design of L-Adapter

Each L-Adapter is built upon a compositional graph
for representing the global compositional relation-
ships among attributes, objects and compositions,
and a GNN module for propagating and aggre-
gating features among them to realize the cross-
composition learning of textual primitive features.

We first define the compositional graph. It con-
sists of N = |A| 4+ |O| + |C'| nodes, including
all the attributes, all the objects, and the compo-
sitions in the current computation (i.e., C' = Cs
for training and C’ = C;., for testing). Given these
nodes, for each ¢ = (a, 0), we connect (a, 0), (a, c)
and (o, ¢) to form a triangle in the graph, as shown
in Figure 3(a). For simplicity and efficiency, we
keep all graph edges unweighted and undirected
as in (Naeem et al., 2021) and obtain a symmetric
adjacency matrix A € RY*¥ to store the graph
structure, A;; = 1 if there is a connection between
node i and j otherwise A;; = 0.

To obtain the initial representations of graph
nodes, we first define individual prompts for at-
tributes and objects as “a photo of [attribute] object”
and “a photo of [object]” besides the composition
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Figure 3: Overview of DCDA during training: (a) The L-Adapter built upon the composition graph and GNN
module; (b) The V-adapter built upon the cross-attention and attribute/object relevance-guided sampling strategy;
(c) An illustration of the candidate position for inserting adapters in a transformer block. We take the learning of red

tomato as an example.

prompts “a photo of [attribute] [object]”, then for
each ¢ = (a, 0), we feed three prompts into CLIP’s
text encoder to output three hidden states H:, H'
and H! for a, o, c, respectively, and finally extract
the embeddings of the special token [EOT] in the
prompts as the initial features {h!} | of graph
nodes, with h! = Hi[EOT] and h! € R% In this
way, the text feature of each primitive is naturally
disentangled from the composition one.

Next, we exploit multiple GNN layers to prop-
agate features among graph nodes following the
graph structure defined in A. Formally, as Fig-
ure 3(a)’s top shows, for each ¢ = (a,0), three
identical AGG functions are parallelly applied to
aggregate neighborhood features for nodes a, o, ¢
at the k-th GNN layer, k € {0, ..., K — 1}, as:

al¥) = AGGH ({cM|¢; € NEY, {0l ]o; € N2Y)

(D
05\12 = AGG(k)({Cg-k)‘Cj e N2}, {ag»k)|aj e N2}
(2)
ct(zkz)(a 0) = AGG(k) (a(k)v O(k)) (3)

where NS (resp. NY) denotes the composition
neighbor set of a (resp. o) on the graph, and N?
(resp. N9) includes the objects (resp. attributes)
that compose the compositions in NS (resp. NY)
together with a (resp. o). Considering the exam-
ple in Figure 3(a) where ¢ = (a, 0) is red tomato,
N¢ includes compositions like red apple and N°
includes objects like apple. While the neighbor set
of each ¢ only contains its primitives a and o. a(¥)
is the input feature of a at the k-th layer, and is up-
dated using CON function to obtain the k-th-layer

output as a(Ft1) = CON(aS\IZ, a'®), similar for o

and ¢ with outputs 0o(**1) and ¢*+1), The input
feature of a, o, ¢ at the first layer of GNN is the
initialized node feature, e.g., c0) = hi. The out-
put features of a, o after K GNN layers a®) oK),
which have already fused their neighboring compo-
sitions’ features, and ¢’s output feature ¢(5), which
has aggregated the updated features of a and o, are
the final output of one L-Adapter, and will be in-
putted into the next computation unit of CLIP for
the latter computation.

3.2 The design of V-Adapter

Since attributes and objects are highly entangled
within the input image, we cannot build the same
computational graph in V-Adapters as that in L-
Adapters. Targeting this, we leverage the cross-
attention over primitive-sharing image pairs to ex-
tract cross-composition-sharing primitive features,
and design a primitive relevance-guided sampling
strategy to introduce more valid primitive-sharing
compositions. We take disentangling attribute fea-
tures from an input image as an example, object
features are processed similarly.

Specifically, as shown in Figure 3(b), given a
target image (4 o) to predict, which is labeled by
¢ = (a,0), we first randomly sample an auxiliary
composition that shares the same attribute as z(, )
but has different object o/, and select one of its
images (4 ) as an auxiliary image®. Then, we
feed these two images into CLIP to output two

2Regarding the absence of attribute-sharing compositions
or images, let’s consider an input image of red apple, if there
are no other red objects in the dataset, we take red apple itself
as the auxiliary composition and sample one of its samples
(excluding the input one) as the auxiliary image. And, if there

are no other red apple images, we treat the input image itself
as the auxiliary image.



hidden states H (” 0) and H? (a,0') and compute the
cross-attention as, with H/ (a,0) 3 the query and
H (”a 0) 3 the key and value:

CrossAttention(Q, K, V) = softma:r(Q\/Ig %
“)

Q = sza,o’)WQ’ K = H&Ua,o)WK’ V= sza,o)WV

4)
where Wi vy € R% > are three linear trans-
formation matrices for flexible computation. We
can see that every output embedding is a weighted
sum of the value embeddings, and the weights are
calculated by the similarity of the query and the
key By setting query as H/ (a,0)> WE can refine

(a o) 10 keep features that are more specific to a,
as well as attribute features that are general across
these two compositions. We also swap the query
and the value (also key) to refine H, E’ % The out-
put of cross-attention is thus denoted as H; (1,0)—A
and H? (a,0)— A" A feed-forward layer is also added
after the cross-attention.

Notably, the above cross-attention can only pro-
cess two attribute-sharing compositions at one time.
To introduce more compositions to learn more
general attribute features, the model relies on the
batched data and random sampling to switch the
auxiliary composition. However, when an attribute
is diverse with extensive composition neighbors,
e.g., red or broken, which also means extensive can-
didate auxiliary compositions, the model requires
more switches to traverse them, leading to inferior
overall performance as shown in Table 1. To bal-
ance the switch times of attributes with different
numbers of neighbors, we propose to select some
representative compositions instead of all the com-
positions as the candidates, and for a target image
T(q,0)» the top-n objects that are most and least
relevant to the target object o are paired with the
target attribute a to serve as the representative aux-
iliary compositions, while the relevance between
two objects can be determined by the number of
common attributes that co-occur in their associated
compositions in the training set; for example, if
there are compositions red fomato and red apple in
the training set, red is a common attribute of the
objects tomato and apple.

To this end, we refer to the attribute-object edges
in the training compositional graph to first create
an att-obj graph with structure matrix 4%
RHIXI91 where A}"°" = 1 means attribute i and

object j form a valid seen composition while 0
not. Then, an object relevance graph can be cre-
ated and its structure matrix is found as A° =
(Axt-obi)T gatobi with size [O] x |O], where A"}
represents the number of common attributes be-
tween ¢-th and j-th objects, large numbers mean
higher relevance. With this relevance graph, for
target image x(, ), and all of its a-sharing com-
positions besides (a, 0), denoted as {(a,0’)}, we
next refer to Ag % {0 obtain the relevance scores
of objects in {0’} w.r.t o, and select the compo-
sitions whose objects have top-n maximum and
top-n minimum non-zero scores as the representa-
tive compositions. Figure 3(b) presents a running
example of this procedure. Finally, we perform a
weighted random sampling over these representa-
tive compositions, i.e., the probability for selecting
(a,0') is determined by the normalized relevance
score between o’ and o, more details are attached
in Appendix A.1.

The same applies to the output of the object
cross-attention H Z’a 00> which is learned from
a set of representative o-sharing compositions se-
lected by referring to the attribute relevance matrix
At = pat-obj( fattob)T' g jts row value A2, In
this way, we learn the cross-composition-sharing
primitive features of an input image, and have the
updated image features: H (10) = = H? (1,0)—a T
H E)a )0 which will be the final output of one
V-Adapter together with H (1,0)— A and H/ (

a,0)—0"
3.3 Integrating Adapters into CLIP

Given a single L-Adapter and V-Adapter, we next
present how to insert them into two connected com-
putation units in CLIP. Inspired by ViT (Dosovit-
skiy et al., 2020) which tends to learn general fea-
tures at lower layers and learn specific features at
higher layers, we add our adapters starting from the
top transformer blocks. After preliminary valida-
tions on MIT-States (see our Ablation Study results
for more), we decided to i) insert adapters at the
last three transformer blocks of both text and im-
age encoders, and ii) add L-Adapters behind the
self-attention layer and feed-forward layer in each
language transformer block (i.e., the positions @
and @ in Figure 3(c)), and attach V-Adapters after
the whole vision transformer block (i.e., the posi-
tion @ in Figure 3(c)). Moreover, we build a skip
connection between the input and the output of
each adapter before inputting it into the next com-
putation unit of CLIP. We use CLIP’s pre-trained
word embeddings to initialize each word in our



prompts, including the prefix words “a photo of”,
and keep these word embeddings trainable for cap-
turing more task-specific knowledge.

3.4 Training and Inference

At the last transformer blocks, we obtain the output
of L-Adapter and V-Adapter after skip connection,
denoted as H? and H, based on tlgs, we extract
the embeddings of [EQT] token, i.e., h”(= Hzorp)
and h'(= Hgyry), to measure the compatibility of
visual and textual features. Formally, for an input
image x; and a training composition ¢; = (a;, 0;),
we compute the compatibility score as:

s(zi, ¢; = (ai,01)) = a [hY - ’Alii]
+B[hY, 4 kL] (©)

where we also measure the individual primitive
compatibility via the second and the third items as
if one image belongs to an attribute-object pair, its
disentangled attribute and object features also be-
long to the corresponding primitive labels. We use
three learnable parameters «, (3,7 to balance the
overall score. - denotes the dot-product similarity.

We optimize these adapters and trainable token
embeddings by minimizing the cross-entropy loss
on the training set Dy, with seen compositions from
Cs, with T as the temperature widely used in CLIP,
and ¢; = (a4, 0;) as the ground-truth label:

els(@i,ci=(as,0:))/7]

1
lOg i,ci=(aj,05)/T
‘,Dtr’ xﬁ;ﬁ ZC]ECS e[s(%CJ*( 3+05)/7)]
(7)

During inference, for each testing image x;, we
estimate the compatibility score between x; and
each testing composition ¢ = (a,0) from Cy. as
Equation 6. The composition that has the highest
compatibility score is the predicted label. Besides,
since we have no idea about the attribute and ob-
ject labeled for x;, we take itself as the primitive-
sharing images to compute H;”, , and H/ .

L=—

4 Experiments

4.1 Experimental Settings

Datasets and Metrics. We experiment with three
popular benchmarks for CZSL: MIT-States (Isola
et al., 2015), UT-Zappos (Yu and Grauman, 2014)
and C-GQA (Naeem et al., 2021), and follow (Pu-
rushwalkam et al., 2019; Naeem et al., 2021) to
split the data for training, validation and testing.

For each dataset, we compute the prediction accu-
racy of seen and unseen compositions, and report
four metrics: the best Seen (S) and Unseen (U)
accuracy, the best harmonic mean (H), and the
Area Under the accuracy Curve (AUC). Among
them, AUC is the most comprehensive one and
is widely adopted as the core metric by previous
works (Purushwalkam et al., 2019; Zheng et al.,
2024). Please see Appendix B for more datasets
and metrics details.
Closed World and Open World Settings. Given
the attribute set A and object set O, the complete
compositional label set C should be the Cartesian
product of A and O, i.e., C = A x O with size
|A| x |O|. However, current benchmarks often
operate in a closed world setting where unseen
compositions C,, in Cye are a small subset of C \ Cs
and are assumed to be known. For example, MIT-
States contains 28,175 possible compositions with
115 attributes and 245 objects, but the label space
for testing is limited to 1,962 compositions (1,262
seen and 700 unseen), covering less than 7% of
the complete set. Thus, we follow (Mancini et al.,
2021) to evaluate our model in the open world set-
ting, where the testing images remain unchanged
but the testing label space is all possible combina-
tions, i.e., Cte = C and C,, = C \ Cs, which is more
challenging as the models have to generalize from a
small set of seen to a very large set of unseen com-
positions. Notably, not all the combinations are
feasible, such as eroded cat, for this, we apply post-
training calibration (Nayak et al., 2023; Xu et al.,
2024) to filter out unreasonable compositions.
Baselines and Model Variants. We mainly com-
pare our DCDA with the existing CLIP-based
CZSL methods, including the vanilla CLIP without
fine-tuning, CSP (Nayak et al., 2023), HPL (Wang
et al., 2023a), DFSP (Lu et al., 2023), CAILA
(Zheng et al., 2024), and Troika (Huang et al.,
2024). We also include two non-CLIP-based base-
lines that are most similar to us, namely CGE
(Naeem et al., 2021) and ADE (Hao et al., 2023).
In V-Adapters, we propose a novel primitive-
relevance guided (PRG) sampling method to
select representative auxiliary compositions to
sample rather than performing purely random
(RD) sampling over all neighboring compositions.
For detailed comparisons, we develop a vari-
ant DCDA[RD] and denote the vanilla model as
DCDA[PRG]. With the imbalanced sample dis-
tribution, we also focus on the tail compositions
in the neighbor set, and sample them according



. MIT-States UT-Zappos C-GQA

Setting Methods S U H AUC| S U H AUC| S U H AUC
CGE 328 280 214 65 | 645 715 605 335 | 335 155 160 42

ADE - - - | - - —  _ 350 177 180 52

CLIP 302 460 261 110 | 158 49.1 156 50 | 7.5 250 86 14

CSP 466 499 363 194 | 642 662 466 330 | 288 268 205 62

Closed World | HPL 475 506 373 202 | 63.0 688 482 350 | 308 284 224 72
DESP 469 520 373 206 | 66.7 717 472 360 | 373 261 235 82

CAILA 510 539 399 234 | 67.8 740 57.0 44.1 | 404 286 261 9.9

Troika 490 53.0 393 22.1 | 668 738 546 417 | 380 284 253 92
DCDA[RD] 422 467 328 162 | 647 715 545 40.1 | 398 253 239 85
DCDA[PRG] | 573 55.1 432 269 | 687 724 565 430 | 391 267 245 89
DCDA[PRG+N] | 57.1 555 43.1 27.0 | 69.1 741 572 442 | 385 288 253 94

CGE 324 51 60 10 | 617 477 390 231 | 321 18 29 047

ADE -~ = |- - 351 48 76 142

CLIP 301 143 128 3.0 | 157 206 112 22 | 75 46 40 027

CSP 463 157 174 57 | 641 441 389 227 | 287 52 69 120

Open World | HPL 464 189 198 69 | 634 481 402 246 301 58 75 137
DFSP 475 185 193 68 | 668 600 440 303 | 350 49 7.3 142

CAILA 510 202 216 82 | 67.8 597 494 328 | 404 6.6 9.6 226

Troika 488 187 20.1 72 | 664 612 478 330 | 374 45 60 111
DCDA[PRG] | 546 273 258 11.5 | 68.6 564 512 33.8 | 355 44 67 1.30
DCDA[PRG+N] | 55.0 277 267 120 | 67.8 62.5 514 358 | 353 64 85 176

Table 1: Overall Results (%) on three benchmarks. In each setting, the best results are in bold and the second best
are underlined. We report DFSP in its £2¢ setting. Numbers in italics mean the results implemented with CLIP-base,

others are with CLIP-large.

to the reciprocal of their image numbers (N) to
supply DCDA[PRG], leading to a new variant
DCDA[PRG+N], these two sampling strategies are
switched batch by batch. Please see Appendix B.3
for more implementation details.

4.2 Main Results

Closed-world Performance. As shown in Table 1
(top), our DCDA variants achieve state-of-the-art
performance across benchmarks. On MIT-States,
both DCDA[PRG] and DCDA[PRG+N] surpass
previous methods with over 3% improvements
in AUC and harmonic mean (H), and over 6%
gains in seen accuracy compared to CAILA. For
UT-Zappos, DCDA[PRG+N] is the best on three
metrics and achieves substantial AUC improve-
ments over CGE despite the inferior result on H.
The initial experiments showed suboptimal perfor-
mance on C-GQA due to its low-quality images,
unfreezing CLIP’s image encoder eventually en-
abled DCDA to achieve competitive second-place
results, see Appendix B.4 for more.

Model Variants Analyses. The significant mar-
gin between DCDA[PRG] and DCDA[RD] on all
datasets validates our primitive-relevance guided
sampling strategy. Especially, the improvement on
MIT-States is promising, since the number of com-
positions surrounding its each primitive is more
imbalanced than that of UT-Zappos. Moreover,

in contrast to the slight performance gap between
DCDA[PRG+N] and DCDA[PRG] on MIT-States
and C-GQA, DCDA[PRG+N] shows great superior-
ity on UT-Zappos, demonstrating superior handling
of class imbalance (sample size std: UT-Zappos’s
465 vs. MIT-States’ 12 vs. C-GQA’s 22).

Cross-method Insights. Among CLIP-based
methods, CAILA, Troika, and DCDA form the top
tier by injecting adapters for visual disentangle-
ment. Our approach outperforms both competi-
tors on both the general dataset MIT-States and
the domain-specific dataset UT-Zappos with fewer
trainable parameters through partial-layer adapter
insertion (our last-3 layers vs. full layers in CAILA
and Troika), demonstrating superior cross-domain
adaptability, and preserving CLIP’s generalization
as evidenced by open-world results (Table 1, bot-
tom). The comparable results on C-GQA also
motivate us to develop more advanced learning
paradigms in the future.

4.3 Effectiveness of Adapters

The whole Adapters. We evaluate the contribu-
tion of L-Adapter and V-Adapter by analyzing the
performance drop when one of them is removed.
Notably, when all L-Adapters (reps. V-Adapters)
are removed, the text (resp. image) encoder will
act like CLIP’s default frozen encoders to output
an entangled representation for each input prompt



Models

S 8] H AUC

Full Model (e.g., DCDA[PRG])

573 551 432 269

w/o L-Adapters
w/o V-Adapters

559 547 422 26.1
449 469 338 17.1

L-Adapter w/o other compositions
V-Adapter w/o other compositions

575 546 430 267
445 462 337 17.0

L&V-Adapter w/o other compositions | 44.2 46.1 33.6 16.7

Table 2: Adapter Analysis on MIT-States in closed world.

(resp. image). We conduct experiments on MIT-
States dataset under the closed world setting, the
results are shown in the second and third lines of
Table 2. We can see that the performance both
declines when L-Adapters or V-Adapters are re-
moved, indicating that they two both have a positive
contribution to the DCDA model and are comple-
mentary to each other. We also observe that the
performance decrease of removing V-Adapters is
greater than that of removing L-Adapters, which
is consistent with our statement: textual primitive
features are less entangled than visual ones, and the
independent textual primitive features can still be
captured by setting individual primitive prompts.

Cross-composition Information in Adapters. We
further validate the effectiveness of introducing
primitive-sharing compositions for each target com-
position by deleting the compositional graph in
L-Adapters and/or auxiliary compositions in V-
Adapters. Concretely, we merely keep the prompts’
token embeddings trainable in L-Adapters; and/or
replace the two auxiliary images with the target im-
age itself in V-Adapters, which thus turns into the
self-attention on the input image, but still projects
the primitive features into different subspaces with
different attention networks. The results on MIT-
States are shown in the last three lines of Table 2.
The performance drop indicates the superiority of
introducing primitive-sharing compositions in both
text and image encoders. In particular, we find that
V-Adapters without primitive-sharing compositions
even perform worse than removing the whole V-
Adapters, illustrating that these compositions play
a considerable role in constraining the learning of
primitive features in different subspaces. In con-
trast, L-Adapters without neighboring (primitive-
sharing) compositions perform better than remov-
ing the whole L-Adapters. However, the perfor-
mance gap is slight, which may be attributed to
that we also set the embeddings of tokens in the
prompts tunable, the cross-composition primitive
features can be implicitly captured by optimizing
the token embeddings with multiple samples.

L-Adapters | V-Adapters MIT-States

I (¢} I (¢} S U H AUC

v v 535 534 406 240

v v 57.3 551 432 269
v v 53.1 53.0 41.0 240
v v 56.0 555 432 267

Table 3: Ablation Study on Adapters’ Insertion Loca-
tions — inside (I) or outside (O) one transformer block.

4.4 Ablation Studies

Insertion Location of Adapters. There are two
choices for inserting adapters into a transformer
block, i.e., inside or outside. Therefore, we ex-
periment with four configurations where every L-
Adapter and V-Adapter are added inside or outside
a transformer block, as shown in Table 3. No-
tably, the inside insertion includes adding after the
self-attention and feed-forward layers in a block,
i.e., the positions @ and @ in Figure 3(c). From
Table 3, it can be seen that adding V-Adapters out-
side transformer layers often achieves better per-
formance no matter where L-Adapters are located,
while there is no significant difference when shift-
ing L-Adapters at different positions. This may
be because when adding a V-Adapter inside the
transform layer, there is no nonlinear transforma-
tion like Feed-Forward layer between two attention
operations for extracting more informative features.
Regarding the better performance with inside L-
Adapters and outside V-Adapters, we finally apply
this configuration to three benchmarks.

Insertion Depth of Adapters. We further show
the performance change when we increase the num-
ber of transformer blocks with trainable adapters in
Figure 4. As mentioned earlier, we start from the
top transformer layers. It is clear that the best per-
formance is achieved with the last 3 layers, while
the last 6 layers may overfit the training data, with
less generalization knowledge from our adapters.

5 Conclusions and Outlook

We present DCDA, a graph-guided framework that
enhances CLIP for compositional zero-shot learn-
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Figure 4: Performance (AUC, S and U) of increasing the number of transformer layers with adapters on MIT-States.

ing through dual adapters. Our key innovations
include: 1) L-Adapters that aggregate textual prim-
itives via compositional graph propagation, ad-
dressing label-side entanglement; 2) V-Adapters
that extract invariant visual patterns through cross-
attention and primitive-relevance guided sampling,
effectively mitigating image feature entanglement.
Experiments across three benchmarks validate that
DCDA learns more discriminative and generaliz-
able primitive representations. This underscores
the critical role of visual disentanglement in CZSL,
as visual primitives exhibit stronger composition-
dependent entanglement than textual counterparts.
In the future, it is expected to apply our dual
adapters in other vision-language tasks and develop
dynamic graph construction mechanisms to handle
open-vocabulary primitive discovery.

Limitations

While our proposed DCDA demonstrates strong
performance in compositional zero-shot learning
(CZSL), several limitations warrant discussion as
follows: (1) the computational overhead of con-
structing and updating the compositional graph
grows with the scale of attributes and objects,
which may pose challenges for applications re-
quiring real-time inference on large combinatorial
spaces. (2) while our primitive-relevance guided
sampling mitigates data imbalance, extreme long-
tailed distributions of attributes or objects (e.g., rare
primitives with few compositions) may still lead
to suboptimal disentanglement due to insufficient
cross-composition supervision. Addressing these
limitations could further enhance the robustness
and scalability of our framework.
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A Supplementary Methodology Details
A.1 Computing the Sampling Probability

To sample the top-n most and least relevant compo-
sitions according to the top-n maximum and mini-
mum primitive relevance scores, we take two ways
to compute the sampling probabilities. More specif-
ically, the probability for selecting the top-n most
relevant compositions, e.g., (a, 0}), and the proba-
bility for selecting the top-n least relevant compo-
sitions, e.g., (a, 0;-), are computed as, respectively:
thj ,
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where AZT’i , means the relevance score between ob-
jects o} and o, the same applies to the others. The
difference is that the normalized minimum scores
are multiplied by —1 to ensure that the top-1 least
relevant composition has the highest probability
of being sampled among the n least relevant com-
positions. Consider the example in Figure 3(b),
red wine, red rose and red leaf are top-3 least rele-
vant compositions for red tomato, with top-3 nor-
malized minimum object-relevance scores: 0.1, 0.2
and 0.2, respectively, while red wine is the top-1
least relevant composition with the highest sam-
pling probability among these three compositions.

To avoid being confused by the positive and neg-
ative sampling probabilities, we divide the repre-
sentative compositions into two groups and sample
over the top-n most and least relevant compositions
independently. To be more specific, we switch
them batch by batch.

B Supplementary Experiment Details

B.1 Dataset

MIT-States contains 53,753 real-world images, an-
notated by a variety of classes with 245 objects
and their 115 attributes in the general domain. In
closed world, it provides 1,962 compositions in
total, 1,262 of which are seen used for training, and
700 are unseen with 300 for validation and 400
for testing. UT-Zappos is a more domain-specific
dataset, containing 50,025 images of shoes paired
with their material attributes. In total, it has 16 at-
tributes and 12 objects, yielding 83 seen and 33 un-
seen compositions under the closed world setting.
C-GQA, derived from of Stanford GQA dataset
(Hudson and Manning, 2019), is the most extensive
dataset for CZSL, containing 7,767 compositions
(5,592/2,175 as seen/unseen), 413 attribute classes,
674 object classes, and 39,298 images in total. Ta-
ble 4 summarizes the dataset statistics in the closed
world setting, the open world has the same set of
testing images, i.e., Xy, but larger candidate label
set, i.e., all possible compositions C obtained by
the Cartesian product of 4 and O.

B.2 Evaluation Metrics

We compute the prediction accuracy for recogniz-
ing seen and unseen compositions, i.e., the general-
ized CZSL, in both closed world and open world
scenarios. Specifically, due to the inherent bias to-
wards seen classes, we follow the current standard
(Purushwalkam et al., 2019; Nayak et al., 2023) to
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Datasets Composition Train ‘ Validation Test
[A[7]0] [Cs| [ [Csl/Cul [ Xoat] | ICs|/|Cul | K]
MIT-States 1157245 1,262 30,338 300 /300 10,420 | 400/400 12,995
UT-Zappos 16/12 83 22998 15/15 3214 18/18 2,914
C-GQA 413/ 674 5,592 26,920 | 1,040/1,252 7,280 | 888/923 5,098

Table 4: Statistics of Datasets for CZSL. |C,,| here is the number of unseen compositions in the closed world setting.

Models

Frozen Encoder + 3 V-Adapters (default)

Extra Adapters + 3 V-Adapters
Full Fine-Tuning + 3 V-Adapters

Full Fine-Tuning + 1 V-Adapters
Full Fine-Tuning + 2 V-Adapters
Full Fine-Tuning + 4 V-Adapters
Full Fine-Tuning + 6 V-Adapters

S U H AUC
348 234 216 69
388 26.6 238 8.7
385 288 253 94
389 264 246 88
39.2 273 249 9.0
388 256 242 85
319 137 141 35

Table 5: Ablation on adding more trainable parameters in the vision encoder on C-GQA in closed world. All results

are tested with the “[PRG+N]” sampling method.

add a scalar bias to the prediction scores of unseen
classes and vary the bias from —oo to 400 to get
a seen-unseen accuracy curve, which indicates the
seen accuracy on the x-axis and unseen accuracy
on the y-axis. As a result, we report the best seen
accuracy (S), where the bias is set to —oo and the
models only predict on the seen labels, and report
the best unseen accuracy (U), where the bias is set
to +oo and the models only predict on the unseen
labels. We also calculate the best harmonic mean
(H), where a harmonic mean value is first com-
puted for each point on the curve to balance the
seen accuracy (accg) and unseen accuracy (accy,)
as (2 X aces X acey,)/(aces + acey,), and then the
highest value across all the selected points is re-
ported. Finally, we compute the Area Under the
accuracy Curve (AUC) as a comprehensive metric.

B.3 Implementation Details

We implement our models with PyTorch and use
Adam as the optimizer, with the learning rate set to
5e-5, 5e-5, 1e-5, and the batch size set to 32, 32, 16
for MIT-States, UT-Zappos, C-GQA, respectively,
the weight decay is set to 5e-5 for all datasets. The
GNN module is implemented as GCN with K = 2.
n is set to 5 for selecting the representative auxil-
iary compositions. The initialized values of «, 3,y
are all set to 1, and then optimized together with
other parameters. The optimal hyperparameter con-
figurations are determined using AUC on the vali-
dation set. All the experiments are run on a single
NVIDIA Tesla A100 GPU with 40GB memory.

B.4 Experiments on C-GQA

To deal with the low-resolution and small-size im-
ages in C-GQA, we tried to add more trainable pa-

rameters, such as inserting more adapters in CLIP’s
image encoder or fully fine-tuning the whole im-
age encoder, to adapt CLIP to this kind of image.
More specifically, we add a downsample-upsample
style adapter, which is similar to the adapter used
in CAILA and Troika, after the self-attention layer
and feed-forward layer in each vision transformer
block (i.e., the positions @ and @ in Figure 3(c)),
except for the last three transformer blocks where
our V-Adapters have already been there. In ad-
dition, we also try to unfreeze the whole image
encoder to fully update its parameters, where our
V-Adapters are added in the last three layers for
feature disentanglement. The results are presented
in the second and third lines of Table 5, respec-
tively. Moreover, since a single A100 GPU with
40GB memory cannot afford these extra adapters
or fully fine-tuned parameters with CLIP-large that
contains 24 vision transformer (ViT) layers, we
instead use CLIP-base with ViT-B/32 as its image
encoder, and re-run baselines for a fair comparison.
Regarding that some baselines with CLIP-large still
perform worse than our methods with CLIP-base,
we omit re-implementing them to save computation
COsts.

From Table 5, we can see that introducing more
trainable parameters indeed achieves superior per-
formance, in comparison with the vanilla models
that only include 3 V-Adapters in the last three lay-
ers of the frozen image encoder. Especially, the
fine-tuning method performs better. As a result, we
implement our DCDA[PRG] and DCDA[PRG+N]
with the whole image encoder fully tunable, the
resulting models together with our V-Adapters
achieve very competitive performance on C-GQA
compared with the SOTA CAILA. Moreover, we



also vary the number of transformer layers with
V-Adapters inserted, starting from the top trans-
former layers, the results are as shown in the last
four lines of Table 5. From Table 5, we have simi-
lar observations as in Figure 4, i.e., too few (e.g.,
only one) V-Adapter is not enough to disentangle
the primitive features, while too many (e.g., 6) V-
Adapters may overfit to disentangle the training
data, resulting in poor generalization. To sum up,
the fine-tuned image encoder and three V-adapters
lead to a balance between adapting CLIP to the C-
GQA dataset and disentangling its image features.

C Supplementary Case Studies

We use examples from MIT-States to analyze the
disentanglement of primitive features learned by
CAILA and our DCDA (e.g., DCDA[PRG])), es-
pecially those visual ones. Specifically, we first
randomly sample a set of seen and unseen com-
positions from the test set of MIT-States whose
annotated attributes or objects have high diversity.
Here, we use the number of associated objects (resp.
attributes) to roughly measure the diversity of an
attribute (resp. object) as a wider range of objects
(resp. attributes) would lead to more diverse appear-
ances of attributes (resp. objects). For example, in
Figure 2, attribute broken describes 40 objects in
the training set ranging from car, drum to furniture
with different damaged states; similar to the object
knife in Figure 5, which is paired with 9 attributes
in the training set. In addition, we also manually
select 2 ~ 3 attributes (resp. objects) whose as-
sociated objects (resp. attributes) are fewer but
look greatly different, e.g., the attribute worn in
Figure 2.

Then, for each sampled composition, we ran-
domly extract at least 3 testing images and visual-
ize their visually disentangled attribute and object
representations learned by our DCDA and CAILA
in Figure 2 and Figure 5, respectively, where dif-
ferent colors indicate different attribute or object
labels. More specifically, for DCDA, we extract
the features learned by our V-Adapters, i.e., H;  ,
and H_, ,; while for CAILA, we save the features
learned by its attribute and object-specific vision
encoding blocks.

From Figure 2 and Figure 5, it can be seen
that the attribute embeddings or object embeddings
learned by our model are clustered into different
groups w.r.t different attributes or objects in each
vector space. For example, in Figure 2, broken car,

CAILA

DCDA(ours)

bag
building
knife
bathroom
bottle
clothes
lightbulb
shoes

o basket

Figure 5: t-SNE visualizations of disentangled object
representations of images in the test set of MIT-States,
learned by CAILA (Zheng et al., 2024) and our DCDA.
Solid and hollow circles represent images of seen and
unseen compositions, respectively. Best viewed in color.

broken drum and broken furniture are in the same
cluster in the attribute space, i.e., their learned at-
tribute features are similar even though they show
different broken state w.r.t different objects, similar
to curved knife and large knife in Figure 5. Also,
broken car is a seen composition, while broken
drum and broken furniture are two unseen compo-
sitions. However, the attribute embeddings as well
as object embeddings learned by CAILA scatter
in the attribute and object space, respectively. All
of these illustrate that our DCDA captured similar
visual features specific to each primitive, which is
discriminative and generalizable.

Moreover, we also find that the attribute and
object embeddings of the same composition are
divided into different clusters with different neigh-
bors in two spaces, for example, large knife and
dull knife are two neighbors from the cluster of
knife in the object space, while they fall into the
clusters of large and dull in the attribute space
with neighbors large building and dull brass, re-
spectively. This indicates that our method indeed
disentangles the attribute and object features into
different representation spaces.
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