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Abstract—Unit tests represent the most basic level of testing
within the software testing lifecycle and are crucial to ensuring
software correctness. Designing and creating unit tests is a
costly and labor-intensive process that is ripe for automation.
Recently, Large Language Models (LLMs) have been applied
to various aspects of software development, including unit test
generation. Although several empirical studies evaluating LLMs’
capabilities in test code generation exist, they primarily focus
on simple scenarios, such as the straightforward generation of
unit tests for individual methods. These evaluations often involve
independent and small-scale test units, providing a limited view
of LLMs’ performance in real-world software development sce-
narios. Moreover, previous studies do not approach the problem
at a suitable scale for real-life applications. Generated unit tests
are often evaluated via manual integration into the original
projects, a process that limits the number of tests executed
and reduces overall efficiency. To address these gaps, we have
developed an approach for generating and evaluating more real-
life complexity test suites. Our approach focuses on class-level
test code generation and automates the entire process from
test generation to test assessment. In this work, we present
AGONETEST: an automated system for generating test suites for
Java projects and a comprehensive and principled methodology
for evaluating the generated test suites. Starting from a state-of-
the-art dataset (i.e., METHODS2TEST), we built a new dataset for
comparing human-written tests with those generated by LLMs.
Our key contributions include a scalable automated software
system, a new dataset, and a detailed methodology for evaluating
test quality.

Index Terms—Software Testing, Large Language Model, Au-
tomatic Assessment

I. INTRODUCTION

Software testing is a critical step in the software devel-
opment lifecycle, essential for ensuring code correctness and
reliability. Within it, unit testing is the stage concerned with
verifying the proper functioning of individual code units.
Designing and building unit tests is a costly and labor-
intensive process that requires significant time and specialized

skills. Automating this process represents a promising area for
research and development.

Automated tools for generating unit tests can reduce test
engineers’ and software developers’ workload. These tools
typically use static code analysis methods to generate test
suites. For example, EvoSuite [1], a popular tool that com-
bines static code analysis with evolutionary search, has been
demonstrated to achieve adequate coverage.

Large Language Models (LLMs), efficiently exploited in
various aspects of software development, could also handle the
automatic generation of unit tests. Several empirical studies on
LLMs have highlighted their ability to generate tests for simple
scenarios, often limited to single methods [2]–[5]. Though
directionally useful, these explorations focus on independent
and small-scale test units, providing a limited view of LLMs’
performance in real-world software development scenarios [6].
Moreover, previous studies do not approach the problem at
a suitable scale for real-life examples. Generated unit tests
are often evaluated via manual integration into the original
projects, a process that limits the number of tests executed
and reduces overall efficiency.

To address these gaps, we have developed an approach for
generating and evaluating test suites that are more represen-
tative of real-life complex software projects. Our approach
focuses on class-level test code generation and automates the
entire process from test generation to test assessment.

In this work, we introduce AGONETEST, an automated sys-
tem designed to generate test suites for Java projects, accom-
panied by a rigorous and systematic methodology to evaluate
these generated test suites. Leveraging the METHODS2TEST
dataset [7], we developed a new dataset specifically aimed at
comparing human-written tests with those produced by LLMs.
We integrate libraries such as JaCoCo, PITest, and TsDetect
to compute the metrics for test evaluation.

The main contributions of our work are as follows:
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• AGONETEST: we designed and developed a closed-loop,
highly automated software system supporting the process
of generation and assessment of unit tests, working at
scale. This initial incarnation of the system works on
real-life open-source Java projects integrating essential
libraries like JaCoCo, PITest, and TsDetect;

• A methodology, underpinned and embodied into
AGONETEST, for comprehensive evaluation of a variety
of LLMs and relative prompting techniques and prompt
schemata in the task of developing unit tests, and a set
of metrics and test smells to assess the quality of the
generated test suites;

• CLASSES2TEST1: An annotated open source Java project
dataset extending METHODS2TEST [7], which maps fo-
cal classes to their related test classes. This extended
dataset makes it possible to assess the test performance
of an LLM on the entire class, rather than on a single
method.

The paper is organized as follows. Section II sets the
background and highlights differences between our work and
related work. Section III gives an overview of AGONETEST
and its modules, detailing their functional scope. Then, Section
IV showcases how AGONETEST is applied in practice through
an end-to-end example. Section V addresses key research
questions, presenting a first evaluation of the framework,
while Section VI highlights insights and lessons learned from
our experiments. Section VII discusses the limitations of our
approach and Section VIII concludes the paper, outlining
potential directions for future work.

II. BACKGROUND AND RELATED WORK

A. Unit Test Generation

Unit test generation is the automated process of creating test
cases for individual software components, such as functions,
methods, or modules. These test cases are used to indepen-
dently verify the correct functioning of each unit.

Present techniques employ randomness-based [8], [9],
constraint-based [10], [11], or search-based approaches [12],
[13]. The core idea behind these methods is to transform
the problem into one that can be solved mathematically.
For example, search-based techniques convert testing into
an optimization problem, to generate unit test cases [14].
Consequently, the objective of these techniques is to generate
all potential solutions and then select those that achieve better
code coverage. EvoSuite [1] works by accepting a Java class
or method as input and applying search-based algorithms to
generate a test suite that meets coverage criteria such as
code or branch coverage. EvoSuite assesses test fitness using
iterative processes of variation, selection, and optimization.
Not only does it generate JUnit test cases, but it also provides
a comprehensive report produced by inspecting the efficiency
of the created test suite, based on metrics such as code
coverage and mutation score. One limitation of EvoSuite is
that it often produces tests that lack clarity and readability

1https://anonymous.4open.science/r/classes2test

[15]. Additionally, EvoSuite can only be used on projects
using Java 9 or lower, which limits its applicability to more
modern Java projects (the last Java version, at the present time,
is 22). Unlike EvoSuite, AGONETEST incorporates advanced
evaluation metrics and test-smell recognition, providing a
more comprehensive assessment of the quality of generated
test suites and ensuring readability by leveraging human-like
LLM-generated code. Moreover, AGONETEST supports all
Java LTS versions, allowing projects built on newer versions
to be tested as well, overcoming the compatibility limitations
of EvoSuite.

B. Large Language Models for Test Generation

Since the emergence of LLMs, they have been used for test
suite generation. The first techniques exploiting LLMs were
thought of as solutions to neural machine translation problems
[16], [17]. Such approaches work by translating from the
primary method to the appropriate test prefix or test assertion
while also fine-tuning the LLMs using the test generation
dataset. For instance, AthenaTest [17] optimizes BART [18]
using a test generation dataset in which the source is the
primary method along with its corresponding code context,
and the result is the complete test case. AthenaTest focuses
mainly on generating method-level tests by fine-tuning a single
model, while AGONETEST shifts the focus to the generation
of class-level tests. Our approach makes it possible to use
up-to-date LLMs and not constrain prompt design, thereby
handling more complex, real-world scenarios. In light of the
rapid evolution of instruction-tuned LLMs, the proliferation of
methods for generating tests is on the rise, exploiting guided
LLMs through appropriate prompts, as opposed to model fine-
tuning [19], [20]. Several proposals for evaluating LLMs in test
suite generation have emerged. For example, CHATTESTER [5]
proposes a tool for evaluating and improving LLM-generated
tests based on ChatGPT. ChatTester focuses on improving and
evaluating tests generated by a specific LLM (ChatGPT), but
requires human intervention to evaluate the generated code and
does not provide an evaluation of class-level tests on multiple
LLMs. AGONETEST provides support instead for a variety
of LLMs and evaluates each LLM’s performance on a wide
range of real-life Java projects. TESTPILOT [3] is also focused
on generating and improving tests using LLMs on JavaScript
code. Although TestPilot performs an automated evaluation,
it lacks wider applicability to projects other than the 25
repositories it considers in the work provided as reference here.
AGONETEST offers far broader applicability by using a dataset
of 9,410 Github repositories, and automatically integrating test
libraries into them. CEDAR [21] instead proposes a prompt
construction strategy based on few-shot learning [22] and
the Codex model2 to generate tests. Cedar uses a specific
prompt construction strategy, but it does not incorporate a
structured mechanism to evaluate multiple LLMs and prompt
techniques in a unified framework. AGONETEST provides
this by allowing the integration and evaluation of various

2https://openai.com/index/openai-codex/
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Fig. 1. Overview of AGONETEST framework

prompt engineering techniques and LLMs, offering a more
holistic approach to test generation. Guilherme and Vincenzi
[2] use gpt-3.5-turbo in analyzing the impact of variation in
model hyperparameters. The study by Guilherme and Vin-
cenzi presents an initial assessment but lacks automation in
evaluating comprehensive test quality metrics like mutation
coverage and test smells. AGONETEST goes a step further
by automating these evaluations, integrating advanced metrics
to provide a deeper analysis of the generated tests. Siddiq
et al. [4] offer a new proposal for evaluating tests generated
using common datasets and experimenting with the use of
new metrics [23]. Although Siddiq et al. use Test Correctness
(but not mutation coverage) on top of all the metrics that
AGONETEST uses, their approach does not fully automate the
test generation-execution-evaluation loop or focus on class-
level tests. AGONETEST fills this gap by providing end-to-
end automation and focusing on generating and evaluating
complex, class-level test suites.

C. Limits of Current Approaches in Applying LLMs to Unit
Test Generation

While promising, current approaches in applying LLMs to
unit test generation exhibit several limitations:

a) Limited Scope: Current methods for evaluating how
useful LLMs are in test code generation are mostly limited
to generating code segments, rather than whole modules or
components (e.g., whole classes in Java). Consequently, the
research community lacks dedicated datasets for evaluating
class-level test generation. To the best of our knowledge,
studies often provide only punctual and anecdotal evaluations
of the generated results [3], [5], [17].

b) Lack of Automation: No work has emerged in the
literature that fully automates the test generation-execution-
assessment loop, which is crucial for comprehensive and
scalable testing [3], [19], [20]

c) Subjective Choice of Prompts: In most cases, the
choice of prompts to get LLMs to generate testing code re-
mains subjective. There is no thorough evaluation of alternate
prompting techniques compared to those initially proposed,
leaving room for further exploration and optimization in
prompt engineering. [4], [20], [21].

III. OVERVIEW OF AGONETEST

The term agone, originating from ancient Greece and
Rome, signified a contest wherein philosophers debated their
ideas, with the audience determining the victor. We adopt
the term agone metaphorically to represent the competitive
evaluation of LLMs and their respective prompting strategies
within an arena aimed at generating optimal unit test suites.
AGONETEST determines the optimal strategies based on stan-
dard test quality metrics, which we elaborate on in subsequent
sections.

AGONETEST is designed to provide software testers with a
system for generating and assessing unit tests. This assessment
focuses on key metrics such as code coverage and the pres-
ence of known test smells, thereby offering a comprehensive
assessment of test suite quality.

AGONETEST operates on the principle that the evaluation
of LLMs in the task of generating high-quality unit tests can
be performed through the collaboration of test engineers and
data scientists (or prompt engineers). However, in practice,
a single experienced test engineer familiar with generative
AI can perform both roles, allowing the focus to be only
on defining new prompt techniques and the comparison of
LLMs. This is the persona that we evoke when we refer to
the AGONETEST user (alternatively ”the test engineer”) in the
remainder of this paper.

The system helps test engineers through the following
phases:

• Strategy Configuration
• Automated Test Generation
• Strategy Evaluation
Figure 1 provides a high-level diagram of the architecture of

AGONETEST, showing the operating modules that streamline
the test generation and evaluation process. These modules are
described as follows:

Sample Projects Selection (Strategy Configuration -
I): As an initial configuration step, the user chooses which
repositories to generate test suites for. This initial phase
leverages a comprehensive dataset of annotated open-source
Java repositories, which we contribute to the community. It
involves preparing, loading, and managing the repositories to
be tested by the system.

Configuration Parameters Elicitation (Strategy Configu-
ration - II): In this phase, configuration parameters are elicited
from the selected repositories (e.g., the project java version,
used testing framework, etc.) and processed to create prompts
templates for the LLMs.

Prompt Creation (Automated Test Generation - I):
During this phase, the prompt templates used in the previous
phases are fully instantiated and then used to generate unit test
suites in the next step.

Test Suite Generation (Automated Test Generation -
II): Here, AGONETEST orchestrates the interaction with the
selected LLMs, feeding them the instantiated prompts to
produce the unit test code. Each LLM generates test classes
that are then integrated into the project structure.



TABLE I
CHARACTERISTICS OF THE CLASSES2TEST DATASET

Characteristic Value

Total Test Classes 147,473
Total Unique Repositories 9,410
Total Lines of Code 173,736,517
Total Cyclomatic Complexity 81,566,509

Test Suite Assessment (Strategy Evaluation): This phase
assesses the quality of the test suites computing various
metrics and identifying test smells.

This assessment enables a detailed analysis of the effective-
ness and quality of the automated test generation strategies.

In the following, we describe each phase of the process in
detail.

A. Sample Repositories Selection

We contribute a comprehensive, annotated dataset of open-
source Java repositories from GitHub3, which we leverage
in this phase. Unlike popular datasets in the literature, our
dataset enables the generation and validation of unit tests at the
Java class level, rather than at the individual method level. To
collate and annotate our dataset, we built on METHODS2TEST
[7]. METHODS2TEST is a supervised dataset consisting of
several Java methods, called focal methods, univocally mapped
to their respective test methods. It is a real-world dataset built
using data from 9,410 open-source git repositories selected
from an initial analysis of 91,385 repositories 4. The dataset
comprises 780,944 instances. We chose METHODS2TEST as
the starting point, as it contains not only the test methods
to be tested, but also the corresponding test methods written
and validated by humans. Human-written tests are a valid
evaluation benchmark to evaluate the effectiveness of different
LLMs in building a test suite.

We developed CLASSES2TEST to enable automatic per-
formance evaluation of LLMs in generating unit tests for
entire Java classes, rather than individual methods, since this
scenario is more representative of real-world applications. To
accomplish this, we extracted all references to the open-source
repositories present in METHODS2TEST in order to map the
Java classes, referred to as focal classes, to their corresponding
test classes.

Here is the process we followed to create CLASSES2TEST:
1) Extract the repository reference, Github URL and se-

lected branch;
2) Select the classes considered in METHODS2TEST;
3) Clone the repository and save the commit hash;
4) Map and save the focal classes along with their respec-

tive test classes.
The resulting dataset contains 147,473 test classes extracted

from 9,410 unique repositories. A summary of the dataset’s
characteristics is shown in Table I.

3https://github.com
4We point out that the repositories have received updates in the last five

years and are not forks, ensuring that they are actively maintained and
representative of real-world software development practices.

B. Configuration Parameters Elicitation

Before unit test generation can begin, the system extracts
some parameters from the projects selected in the previous
step. These parameters are then fed into the module that selects
prompts and LLMs. To query the model under examination,
various prompting techniques are available and can be chosen
[24].

The configuration parameters include:
• focal class: This variable contains the Java class for

which the test suite must be generated;
• testing framework: This variable provides the name and

version of the project’s testing framework (e.g., JUnit 4),
directly extracted from the project during execution;

• java version: This variable allows you to retrieve the
version of Java that the project uses.

• example focal class & example test class: These vari-
ables contain an example focal class and the correspond-
ing test class extracted from a reference repository, useful
to provide an example to the LLM if one wants to use
the few-shot prompting technique;

• example testing framework & example java version:
These variables provide the information about the exam-
ple repo.

See Section IV-A for an example of a real implementation.

C. Prompt Creation

In this phase, the prompt templates described in the previous
phases are fully instantiated to create viable prompts to guide
the LLM in generating unit tests. We populate the user-
supplied prompt structures by replacing the variables outlined
in Section III-B.

It has to be noted that, in order to make sure our experiments
and findings are reproducible, we prepared CLASSES2TEST by
saving the commit hashes of the repositories used as sources.
This allows AGONETEST to consistently extract information
such as the Java version used, the type of test framework (e.g.,
jUnit), and its version.

Unlike previous approaches to creating unit testing with
LLMs that require human intervention to input context infor-
mation [2], [5], AGONETEST automates the process to a far
greater degree. AGONETEST employs ElementTree [25] and
a parser to read and modify the Maven and Gradle build (see
Section III-E3). It analyzes the libraries present and the Java
version used in each build system. This method, along with
the ability to use examples, offers users a versatile system for
generating prompts.

D. Test Suite Generation

At this point in the process, we have everything we need
for the selected LLMs to generate test suites for each focal
class of the project. To ensure each model has an appropriate
number of tokens, we use tiktoken5, a BPE tokenizer [26],
to evaluate the token count in the prompt. If the limit is

5https://github.com/openai/tiktoken
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exceeded, AGONETEST returns an error to the user, specifying
the number of tokens exceeded.

We remark that AGONETEST allows users to evaluate a wide
range of LLMs automatically. This capability is provided by
the open-source LiteLLM library6, which facilitates communi-
cation with more than 100 models7 using a standard interaction
based on the OpenAI API format8. Integration is made easier
by LiteLLM, which translates inputs to satisfy the unique
endpoint needs of each provider. This is crucial in today’s
environment, where the absence of standard API specifications
for LLM providers makes it challenging to incorporate several
LLMs into projects.

After invoking the LLM, AGONETEST selects relevant
information from the LLM’s answer (i.e., the generated test
class). This step is crucial for automating the entire process,
since LLMs can provide detailed descriptions or explain how
the code should be structured without actually generating it.
[27]. In this component, AGONETEST removes unnecessary
parts (like outline descriptions) and creates a new file to
integrate the test class into the project.

E. Test Suite Assessment

Here we evaluate the quality of the test suite according to the
quality metrics and the test smells described below. The actual
determination of metrics and test smells is done via library
integration, allowing for fully automated test suite assessment.
It is important to note that this component is separate from the
experimental evaluation discussed later. Instead, it serves as an
additional tool provided by AGONETEST to assist engineers
in assessing the quality of the generated tests.

1) Coverage Metrics:
• Line coverage [28]: This metric measures the percentage

of lines of code executed during the testing process. A
100% line coverage means that every line of code in the
software has been run at least once during testing. We
selected it because it provides direct visibility over the
portion of the source code that is being tested.

• Method coverage [28]: Similar to line coverage, this
metric focuses on the specific methods or functions in
the code. A 100% method coverage score means that all
methods have been run at least once during testing. This
metric is useful to identify methods that may not have
been adequately tested.

• Branch coverage [28]: This metric calculates the per-
centage of decision points (such as if or switch
statements) that have been executed in tests. It ensures
that all possible paths in the code are tested, which can
uncover defects that might be missed by line or method
coverage alone.

• Instruction coverage 9: This metric calculates the num-
ber of Java bytecode instructions executed during test-

6https://github.com/BerriAI/litellm
7https://docs.litellm.ai/docs/providers
8https://platform.openai.com/docs/guides/text-generation/chat-completions-

api
9https://www.eclemma.org/jacoco/trunk/doc/counters.html

ing. It is a detailed metric, unaffected by source code
formatting, and can be determined even without debug
information in the class files. This helps in pinpointing
the smallest code fragments not covered by tests.

• Mutation coverage [28]: This metric evaluates the ef-
fectiveness of tests in identifying deliberately introduced
changes (mutations) in the code, such as modifying
an arithmetic operation or reversing a condition. If the
tests detect all mutations (i.e., identify all changes), the
mutation coverage score is 100%. This metric was chosen
because it measures the robustness of the test suite.

2) Test Smells [23]: These are indicators of inefficient or
problem patterns that could negatively affect the maintainabil-
ity and effectiveness of the test code. Identifying test smells
helps improve the quality of the test code over time and raises
awareness of potential issues in test design. AGONETEST
determines whether the following test smells are present in
the code:

• Assertion Roulette (AR) [29]: indicate the number of test
methods containing more than one assertion statement
without an explanation/message (parameter in the asser-
tion method);

• Conditional Test Logic (CTL) [30]: indicate the number
of test methods that contain one or more control state-
ments (i.e., if, switch, conditional expression, for,
foreach and while statement);

• Constructor Initialization (CI) [31]: indicate if the test
class contains a constructor declaration;

• Default Test: indicate if the test class is named either
‘ExampleUnitTest’ or ‘ExampleInstrumentedTest’;

• Duplicate Assert (DA) [31]: indicate the number of test
methods that contain more than one assertion statement
with the same parameters;

• Eager Test (EA) [29]: indicate the number of test methods
containing multiple calls to multiple production methods;

• Empty Test (EM) [31]: indicate the number of test
methods that do not contain a single executable statement;

• Exception Handling (EH) [31]: indicate the number of
test methods that contain either a throw statement or a
catch clause;

• General Fixture: is 1 if not all fields instantiated within
the setUp method of a test class are utilized by all test
methods in the same test class;

• Ignored Test (IT) [31]: indicate the number of tests
methods that contains the @Ignore annotation;

• Lazy Test (LT) [29]: indicate the number of test methods
calling the same production method;

• Magic Number Test (MNT) [30]: indicate the number of
test methods that contain a numeric literal as an argument;

• Mystery Guest: indicate the number of test methods
containing object instances of files and databases classes;

• Redundant Print (RP) [31]: indicate the number of tests
methods that invokes either the print, println,
printf or write method of the System class;

• Redundant Assertion (RA) [31]: indicate the number of

https://github.com/BerriAI/litellm
https://docs.litellm.ai/docs/providers
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://www.eclemma.org/jacoco/trunk/doc/counters.html


test methods that contain an assertion statement in which
the expected and actual parameters are the same;

• Resource Optimism (RO) [31]: indicate the number of
tests methods utilize an instance of a File class without
calling the exists(), isFile() or notExists()
methods of the object;

• Sensitive Equality (SE) [29]: indicate the number of tests
methods that invokes the toString() method of an
object;

• Sleepy Test: indicate the number of tests methods that
invokes the Thread.sleep() method;

• Unknown Test (UT) [31]: indicates the number of test
methods that do not contain a single assertion statement
and @Test(expected) annotation parameter.

3) Library integration: We utilized the following libraries
to compute the metrics:

• JaCoCo10: JaCoCo is a free Java library used to measure
code coverage in test suite execution. It helps developers
identify which parts of their code base have been thor-
oughly tested and which have not, facilitating a better
understanding of the test coverage within the project.
We selected JaCoCo because of its widespread adoption,
ease of integration with build tools, and report-generation
features, which are essential for metric evaluation.

• PiTest [32]: PiTest is a mutation testing system for Java
and JVM-based systems. It goes beyond traditional line
and statement coverage metrics in that it offers more
concrete insights into the robustness of a test suite. PiTest
introduces minor changes, or mutations, into the source
code and then re-runs the tests to determine whether
these changes are detected. We chose PiTest because it
provides a more granular and realistic view of the actual
behavior and response of the system under test compared
to traditional coverage tools.

• TSDETECT [33]: TSDETECT is a library that focuses
on the automatic detection of test smells in software
projects. Test smells refer to patterns in test code that
may indicate design or implementation issues, leading
to less maintainable tests and potentially hindering code
comprehension. TSDETECT was chosen for its capability
to identify these smells and provide actionable guidelines
for code improvement.

In this phase, AGONETEST automatically includes these
libraries into the project. For each run, AGONETEST checks
the configuration files of the supported build systems (Maven
and Gradle, Section III-C) to determine if the necessary
libraries are already present. If they are not, it modifies the
configuration to add the required dependencies.

AGONETEST demonstrates a high degree of automation, as
illustrated by its handling of the PiTest library. Specifically,
if the repo uses the JUnit 5 test framework, an additional
library, ”pitest-junit5-plugin”, is required. Utilizing informa-
tion extracted from the repo in the Prompt Creation module
(Section III-C), AGONETEST automatically identifies the test

10https://www.jacoco.org/jacoco/index.html

framework in use and adds this dependency without any
human intervention.

4) Automate Test Suite assessment: After adding the nec-
essary libraries, AGONETEST runs a build and test to ensure
there are no compilation errors. The test suite assessment
phase of our process presents a high degree of automation,
as we describe below.

AGONETEST generates a report with the results of the test
smells and metrics computed for the LLM-generated tests. To
achieve this, the tool automatically retrieves detailed infor-
mation from the reports produced by the libraries, compiling
these data for each class within each project.

This extensive computation process enables a detailed anal-
ysis of the generated test suites. By contrasting the results,
the module helps identify specific strengths and weaknesses
associated with each LLM and prompt configuration. It pro-
vides insights into areas where the LLMs excel and highlight
potential gaps where improvements are needed.

Furthermore, this comparison facilitates a clear understand-
ing of the nuances in how different LLMs and prompts impact
the quality of test generation. It supports the identification of
optimal configurations for generating high-quality tests. This
detailed analysis is crucial for refining LLMs and enhancing
their capabilities in automated test generation.

By providing such in-depth evaluations, AGONETEST
serves as a valuable tool for researchers and developers. It
aids in the continuous improvement of LLMs and contributes
to advancements in the field of automated testing. Ultimately,
it can ensure that the tests generated are robust and reliable,
improving the effectiveness of automated testing solutions.

IV. AGONETEST IN PRACTICE

In this section, we will demonstrate how AGONETEST
operates in practice by describing an end-to-end run of a
practical example.

We will skip the repository selection phase in our account
and move straight to the configuration phase, which concerns
LLM selection and prompt specification. Then, we will exem-
plify how the results are presented back to the user for further
analysis.

A. Configuration

As described in Section III-B, AgoneTest utilizes a YAML
file as input, where it is possible to specify information
related to two elements: llms and prompts. The YAML file
represented in the Listing 1 declares usage of ‘gpt-4’11 and
‘gpt-3.5 turbo’12 models, both provided by OpenAI13.

Listing 1. Setup of the YAML configuration file: setting of variables for two
different LLMs and two different prompts.
l l m s :
− model : gpt −4−1106− prev iew

t e m p e r a t u r e : 0
− model : gpt −3.5 − t u r b o

t e m p e r a t u r e : 0

11https://openai.com/index/gpt-4/
12https://platform.openai.com/docs/models/gpt-3-5-turbo
13https://openai.com/about/

https://www.jacoco.org/jacoco/index.html
https://openai.com/index/gpt-4/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://openai.com/about/


prompts :
− name : zero − s h o t

v a l u e :
− r o l e : sys tem

c o n t e n t : You a r e p r o v i d e d wi th Java c l a s s .
C r e a t e a t e s t c l a s s t h a t f u l l y t e s t s t h e
p r o p o s e d Java c l a s s u s i n g t h e p r o j e c t
i n f o r m a t i o n f o r i m p o r t s . Reply wi th code
only , do n o t add o t h e r t e x t t h a t i s n o t code
.

− r o l e : u s e r
c o n t e n t : ” The p r o j e c t u s e s {{ t e s t i n g f r a m e w o r k }}

and Java {{ j a v a v e r s i o n }} and Java c l a s s i s
: \n<code>\n {{ f o c a l c l a s s }}\n</ code>”

− name : few − s h o t
v a l u e :
− r o l e : sys tem

c o n t e n t : You a r e p r o v i d e d wi th an example wi th a
Java c l a s s and i t s t e s t c l a s s . You a r e t h e n
p r o v i d e d wi th a new Java c l a s s . Take a cue

from t h e example and c r e a t e a t e s t c l a s s
t h a t f u l l y t e s t s t h e new p r o p o s e d Java c l a s s
. Reply wi th code only , do n o t add o t h e r
t e x t t h a t i s n o t code .

− r o l e : u s e r
c o n t e n t : ”# Example :\ nThe example Java c l a s s i s :\

n<code>\n {{ e x a m p l e j a v a c l a s s }} \n</ code>\
nThe example t e s t c l a s s i s : \n<code>\n {{
e x a m p l e t e s t c l a s s }} \n</ code >.\nThe Java
c l a s s you must c r e a t e t h e t e s t f o r i s : \n<
code>\n{{ f o c a l c l a s s }}\n</ code>”

Prompt specification declaration consists of two sections:
name and value. name is an identifier for labeling the type
of prompt (zero-shot, few-shots, etc.). In contrast, value is an
array of message elements of type OpenAI 14. Each individual
message includes a role and a content.
role can be of the following types:
• system: This is used to instruct the model on the

behavior it should adopt.
• user: This is used to indicate the request for the gener-

ation of the test class.
In the YAML configuration file, two types of prompts are

specified: zero-shot and few-shot.
1) Zero-shot: Zero-shot refers to presenting the model with

a single instance of a request or task without any previous
examples for the model to draw upon [34]. This method
emphasizes the model’s ability to comprehend and accurately
execute the given task.

2) Few-shot: Unlike zero-shot prompting, few-shot prompt-
ing involves providing the model with examples demonstrating
the expected inputs and outputs [22]. This technique aids
in contextual learning by including examples in the prompt,
thereby guiding the model towards improved performance.
These examples serve as a conditioning for the actual request,
helping the model generate more accurate and relevant re-
sponses.

This configuration file will instruct AGONETEST to perform
the steps described in Section III-C: it will fully instantiate
template variables, including focal class, test frameworks used

14https://platform.openai.com/docs/api-reference/chat/create#chat-create-
messages

by the repos (and versions thereof), and version of the JDK
used in the repos.

B. Results presentation

After running the generation phase, AGONETEST generates
a CSV file including, for each LLM selected and each prompt-
ing technique, the metrics computed for the focal classes as
well as the results about test smells. As a way of example,
Table II displays an extract of this file containing as well the
results for the human-written tests, as they were present in the
CLASSES2TEST dataset.

By examining this file, users can gain valuable insight into
the strengths and weaknesses of each LLM and the prompt
combination. Plus, software testers can accurately assess the
effectiveness of the LLM in creating usable and effective
class-level tests. How this is done is made clear in the
following section, where we describe our experimental setup
for validation of AGONETEST and discuss some results.

V. EVALUATION

In this experimental evaluation, we aim to address the
following research questions:

• RQ1:To what extent is it possible to implement an au-
tomated end-to-end process for generating test suites?
We analyze the degree of automation of the framework
and the points (if any) where we need the human-in-the-
loop.

• RQ2: Can the quality of test suites automatically
generated by different LLMs and prompt strategies
be effectively assessed? We investigate whether the
framework can provide information about the quality
of the test suite in terms of efficiency and robustness
and help identify strengths, weaknesses, and potential
improvements.

A. Dataset

In our experiment, we randomly selected 10 repositories
from our dataset CLASSES2TEST. These repositories contain
a total of 94 focal classes of various lengths and complexity,
as shown in Table III. The size of the sample of randomly
selected repositories is chosen to be representative enough
of the variability encountered in real-world projects (usually
comprising of one to a handful of co-dependent repositories),
while ensuring that is tractable by our system in terms of scale.

B. LLMs and prompts configuration

For our experiment, we selected two LLMs from the models
supported by LiteLLM15. We have chosen the ‘gpt-4’16

and ‘gpt-3.5 turbo’17 models. The ‘gpt-4’ model was
selected for its outstanding performance on the HumanEval
benchmark [35], while ‘gpt-3.5 turbo’ was chosen as an
earlier generation model, allowing a meaningful comparison.

15https://docs.litellm.ai/docs/providers
16https://openai.com/index/gpt-4/
17https://platform.openai.com/docs/models/gpt-3-5-turbo

https://platform.openai.com/docs/api-reference/chat/create#chat-create-messages
https://platform.openai.com/docs/api-reference/chat/create#chat-create-messages
https://docs.litellm.ai/docs/providers
https://openai.com/index/gpt-4/
https://platform.openai.com/docs/models/gpt-3-5-turbo


TABLE II
CSV FILE EXTRACT OF AGONETEST RESULTS. THE TEST SMELLS ARE FROM COLUMN 10 ONWARDS. PLEASE REFER TO SECTION III-E FOR ACRONYMS

model prompt
name Project Focal Class instruction

coverage
branch

coverage
line

coverage
method

coverage
mutation
coverage AR CTL CI DA EA EM EH IT LT MNT RP RA RO SE UT

gpt-3.5-turbo zero-shot 8313187 LDMLPredicateParser 0,72 0,5 0,67 0,5 0,5 6 1 0 0 0 0 1 0 11 11 10 0 0 0 0
gpt-3.5-turbo few-shot 8313187 ConfigResourceBundleParser 0,53 1 0,67 0,5 0 8 0 0 0 0 1 1 0 10 10 13 0 0 0 0
gpt-3.5-turbo few-shot 8313187 LDMLPredicateParser 0,72 0,5 0,67 0,5 0,5 5 1 0 0 0 1 0 0 11 12 1 0 0 0 0
gpt-4 zero-shot 8313187 ResourceResolutionContext 0,85 0,66 0,83 1 0,66 2 0 0 0 0 0 0 0 9 9 5 0 0 0 0
gpt-4 zero-shot 8313187 LDMLPredicateParser 0,88 1 0,83 0,5 1 3 0 0 0 0 0 0 0 9 9 1 0 0 0 0
gpt-4 few-shot 8313187 ResourceResolutionContext 0,79 0,64 0,78 0,96 0,6 1 0 0 0 0 0 0 0 9 9 5 0 0 0 0
gpt-4 few-shot 8313187 LDMLPredicateParser 0,72 0,5 0,67 0,5 0,5 2 1 0 0 0 0 0 0 9 9 1 0 0 0 0
human - 8313187 ConfigResourceBundleParser 1 1 1 1 1 8 0 0 0 0 0 0 0 15 10 0 0 0 0 0
human - 8313187 RefreshableResources 0,87 0,68 0,87 0,93 0,66 1 0 0 0 0 0 0 0 4 4 0 0 0 4 0
human - 8313187 ResourceResolutionContext 0,8 0,72 0,81 0,87 0,69 6 0 0 0 0 0 0 0 15 11 0 0 0 1 0
human - 8313187 LDMLPredicateParser 0,88 1 0,83 0,5 1 5 0 0 0 0 0 0 0 4 4 0 0 0 1 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

TABLE III
CODE CHARACTERISTICS OF THE REPOSITORIES SELECTED FOR THE

EXPERIMENT

Characteristics Value

Java Repositories 10
Total Focal Classes 94
Total Lines of Code 189,703
Total Cyclomatic Complexity 85,811

In addition to choosing LLMs, adjusting their temperature
parameter is crucial. This feature allows users to control the
level of randomness and creativity in the generated text. By
varying the temperature, users can influence the breadth and
exploration of the results. High-temperature settings, such as
1.0, introduce greater randomness, resulting in more creative
and diverse outcomes. Conversely, a lower temperature setting,
like 0.2, produces more focused and deterministic results,
leading to predictable and cautious outcomes [2]. By carefully
adjusting the temperature parameter, users can balance inno-
vation and coherence in text generation, ensuring the output
aligns with their specific task or application requirements.
As shown in Listing 1, we set the temperature to 0 in our
experiment to increase the level of coherence in text generation
(and to decrease the level of randomness) and make the
diverse test suite generated comparable. Regarding prompt
types, we decided to experiment with two of the most popular
techniques: zero-shot and few-shot. This allows us to show the
flexibility of AGONETEST and further explore the use of the
contextual variables seen in Section III-B. In our experiment,
the example provided in the few-shot prompt is always the
same across all LLMs to ensure uniformity. The example
consists of a focal class and a test class extracted from an
open sample repository18.

C. Data collection and analysis

Not all test suites generated from our sample repositories
were valid (i.e. tests did not pass, and in some cases, the
code did not even compile). Similarly to [2], we encountered
some issues: some tests failed to build due to syntax errors or
incorrect or non-existent imports. To move to the assessment
phase, the system automatically removes test classes with
errors in order to proceed with the compilation. Once all errors

18https://github.com/junit-team/junit5-samples

are removed, the system conducts a compile-and-run test to
eliminate all classes that are not green suite, i.e. where all
methods are executed without failures.

This is done for two reasons: first, because after performing
root cause analysis, we found that the failing test classes did
so because they were incorrectly specified, rather than for
the presence of bugs. For example, tests failed because they
invoked private or outdated methods of libraries. Or they failed
because they made calls to non-existent APIs. The second
reason is that having a green suite is a necessary condition
for PiTest to calculate mutation coverage 19. After completing
this clean-up phase, the system performs a final compilation
with the execution of the tests and the library to collect data
for evaluation.

TABLE IV
NUMBER OF CLASSES PER EXPERIMENT THAT COMPILE AND FOR WHICH

ALL TESTS ARE PASSED

model prompt
name Build Pass Total

Rejected

gpt-3.5-turbo zero-shot 64 (68.08%) 36 (38.29%) 58 (61.70%)
gpt-3.5-turbo few-shot 65 (69.14%) 35 (37.23%) 59 (62.76%)
gpt-4 zero-shot 76 (80.85%) 29 (30.85%) 65 (69.14%)
gpt-4 few-shot 76 (80.85%) 28 (29.78%) 66 (70.21%)
human - 94 (100%) 94 (100%) 94 (100%)

Table IV shows the percentage of classes that compile and
for which all tests are passed. On average, we have seen in
our experiment that:

• 75% of the generated test classes compile successfully;
• 34% of generated test classes are green suite and have

calculable mutation coverage.
Table V shows a comparative analysis of the performance

of the different combinations of LLMs and prompt techniques
with respect to the metrics computed by AGONETEST. We
also report the metrics computed for the human-written tests,
to have a benchmark.

VI. DISCUSSION AND LESSONS LEARNED

In this section, we will answer the research questions
previously defined and discuss the lesson learned together with
possible future research directions.

RQ1: To what extent is it possible to implement an
automated end-to-end process for generating test suites?

19https://pitest.org/faq/

https://github.com/junit-team/junit5-samples/blob/main/junit5-jupiter-starter-maven/src/test/java/com/example/project/CalculatorTests.java
https://pitest.org/faq/


TABLE V
METRICS COMPUTED FOR EACH MODEL AND PROMPT TECHNIQUES USED AND FOR HUMAN-WRITTEN TESTS. IN BOLD, THE BEST RESULTS FOR EACH

METRIC.

model prompt name instruction coverage branch coverage line coverage method coverage mutation coverage

gpt-3.5-turbo zero-shot 0,756923077 0,706363636 0,776923077 0,848217345 0,546923077
gpt-3.5-turbo few-shot 0,813333333 0,681111111 0,775555556 0,832222222 0,455555556
gpt-4 zero-shot 0,879090909 0,776923077 0,866363636 0,854545455 0,546363636
gpt-4 few-shot 0,753333333 0,775555556 0,781666667 0,836923077 0,461666667
human - 0,783611111 0,808947368 0,766388889 0,698055556 0,690555556

AGONETEST provides an end-to-end automated process to
generate and evaluate test suites without human intervention.
However, there are two points requiring attention that our
experiments underline:

• The compilation success rate of the generated test classes
shows room for improvement (in our experiment ranged
between 64% and 76%);

• The percentage of tests passed was relatively low (be-
tween 30% and 38%).

Further analysis revealed that many generated tests failed
due to incorrect imports or syntax errors and not because
they discovered previously undetected bugs. To improve on
these results and increase such percentages, there are different
paths to explore. One is human-in-the-loop: where human
intervention might include manually fixing code errors, ad-
justing settings, or installing required libraries for successful
execution.

On the other hand, a good result, in light of automation,
is having automated the process of extracting contextual
information from project configuration files (such as Maven
or Gradle). This minimizes the need for manual intervention
and enhances the accuracy of the generated prompts and tests.

RQ2: Can the quality of test suites automatically
generated by different LLMs and prompt strategies be
effectively assessed? AGONETEST gives relevant information
about the quality of the test suite generated, in terms of code
coverage, robustness of the test suite to artificially injected
bugs (i.e., mutation coverage), and test smells. Indeed, the
presence of test smells indicates potential issues with test
design and maintainability.

In Table V we can see that LLMs-written test suites
already have good quality in terms of coverage, but should
improve in terms of robustness. The benchmark of human-
written tests shows always better results for mutation coverage.
Comparing the output of our LLMs-powered system against
tests written by actual test engineers gave us valuable insight
into each model-setup pair’s capabilities and limitations. Our
experiment (Table V) demonstrates that the performance of
various LLMs varied significantly depending on the prompting
technique used. Surprisingly, we found better results for zero-
shot prompts for ‘gpt-4’ than for the few-shot one. However,
it is important to note that this does not mean that ‘gpt-4’
is the best model for all scenarios, and this is neither the
objective of our experiment (i.e., to find the best model). Since
the performance of a model can vary significantly depending

on the specifics of the context or the structure of the prompts.
For this reason, we created AGONETEST: to provide users with
a system that lets them experiment with various combinations
to find the LLM and prompt configuration that best fits their
specific requirements.

A. Lessons Learned

Throughout the development and evaluation of
AGONETEST, we gathered several key insights that will
guide future improvements in the framework. These lessons
are crucial for refining the system and improving the efficacy
of LLM-generated tests. Each subsection below highlights
a specific challenge encountered and outlines a potential
solution.

1) Compilation and Test Pass Rate: Our experiments show
compilation and test pass rates that could be improved in light
of the pursuit of full automation. The causes of these are
diverse (e.g., import classes that do not exist or are missing).
Automating the correction of these recurring problems is
possible [36] and will increase the success rate of the generated
tests. One promising approach involves asking the LLM itself
to analyze errors in the generated test code and provide fixes.
By supplying the identified errors as feedback, the LLM can
generate corrected and functional code, thereby enhancing
the initial output. Additionally, enhancing the robustness of
the generated tests by incorporating context-aware validation
and fixing mechanisms will ensure that the test suites align
closely with the project’s specific structures. This integrated
approach not only automates error correction but also enhances
the overall reliability and effectiveness of the test generation
process, moving closer to the goal of fully automated, high-
quality test suite production.

2) Performance in Mutation Testing: Human-written tests
consistently outperformed LLM-generated tests in terms of
mutation coverage, indicating that manually written tests are
more effective at identifying code changes introduced through
mutation. To address this, we should focus on improving
the robustness of the generated test suites by refining the
prompting algorithms and incorporating mutation-aware test
generation techniques.

3) Scalability and Resource Management: Automating the
entire pipeline-downloading projects, generating test suites,
integrating libraries, and performing evaluations proved to
be resource intensive. Efficiently managing and parallelizing
these tasks can alleviate computational overhead and improve



scalability, allowing AGONETEST to handle larger datasets and
codebases more effectively.

4) Impact of Prompting Techniques: The choice of prompt-
ing technique significantly impacts the quality of the generated
tests. Our experiments showed that zero-shot prompting with
gpt-4 yielded the best results, but performance varied across
different combinations of LLMs and prompts. Systematically
exploring and evaluating different prompting strategies will
help identify the most effective configurations for various
scenarios.

5) Automated Context Extraction: Providing the LLMs
with accurate context information, such as the testing frame-
work and the Java version, is essential for generating correct
test classes. Automating the extraction of this context informa-
tion reduces the need for manual intervention and improves the
quality of generated prompts and tests. Enhancing the automa-
tion of context extraction by developing more sophisticated
parsers and context inference algorithms will dynamically
adapt to various project configurations.

6) Real-world Applicability: Building the dataset from ac-
tual open-source Java repositories on GitHub ensured that
AGONETEST operates in real-world scenarios. However, en-
suring that the dataset is representative of real-life situations
across different types of repos and codebases remains an on-
going goal. To maintain and improve real-world applicability,
we should continuously upgrade and update our dataset to
include a broader range of real-world repositories and project
structures, ensuring that the evaluation remains relevant and
comprehensive.

These lessons direct us towards further improvements in
AGONETEST. By implementing these improvements, we aim
to develop a more robust, efficient, and reliable framework for
automated unit test generation.

VII. LIMITATIONS

Although AGONETEST presents an innovative framework
for automating the generation and evaluation of unit test suites
using LLMs, several limitations should be acknowledged re-
garding its current implementation and the first experimental
results.

A. Dataset and Generalization
For our evaluation, we relied on the newly created

CLASSES2TEST dataset, derived from METHODS2TEST. Al-
though this dataset is designed to evaluate class-level test
generation, its scope is limited to Java projects. This
makes our findings hardly generalizable to different pro-
gramming languages. Moreover, the repositories included in
CLASSES2TEST were selected based on their ability to com-
pile without errors, potentially introducing a bias towards well-
structured codebases.

B. Model and Prompt Variability
Limited Number of LLMs and Prompts Tested: Although

AGONETEST supports various LLMs and prompting tech-
niques, our initial experimental setup involved only two mod-
els (gpt-4 and gpt-3.5 turbo) and two prompt types (zero-shot

and few-shot). As LLMs and prompt engineering techniques
continue to evolve, the results might vary significantly with
newer models and advanced prompts. The limited scope of our
initial tests could thus restrict the breadth of our conclusions.

Temperature Setting Restrictions: In our experiment, we
set the temperature parameter to 0 to ensure consistency
and reproducibility. Although this reduces randomness and
increases coherence, it may inadvertently limit the creativity
and diversity of the generated test cases. Different temperature
settings could yield more varied results, which were not
explored in this study.

C. Compilation and Execution Failures

A notable limitation observed during our experiments was
the non-compilation and execution failures of some generated
test classes. Approximately 66% of the test classes generated
were either rejected during the compilation phase or failed to
contribute positively to the metrics due to inherent errors. This
reveals the current inability of some LLMs to consistently gen-
erate syntactically and semantically correct test code, affecting
the overall evaluation.

D. Evaluation Metrics

While we employed a comprehensive set of metrics and
test smell indicators, these metrics alone may not fully
capture the quality of the test suite.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present AGONETEST, a comprehensive
framework for automating the generation and assessment of
unit test suites using LLMs. This framework focuses on
generating complex, class-level test suites while automating
the entire testing process from test generation to integration
and evaluation.

The results of our experiments demonstrate that
AGONETEST can produce and evaluate unit tests across
various real-world projects, offering detailed insights into the
performance of different LLMs and prompting techniques.
While the initial findings are promising, they also highlight
challenges emphasizing the need for further refinement.

The automation of unit test generation using LLMs is a
promising field. While current capabilities do not yet match
those of human engineers for some tasks (such as mutation
coverage), promising results in instruction, line, and method
coverage indicate that further research and refinement can
bridge this gap. Future work should focus on systematic re-
search into the most effective LLMs and prompts, coupled with
continuous improvements in automated correction mechanisms
for recurrent issues.
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problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering, vol. 41, no. 3, pp. 294–313, 2014.

[12] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic algorithms for
randomized unit testing,” Ieee transactions on software engineering,
vol. 37, no. 1, pp. 80–94, 2011.

[13] P. Derakhshanfar, X. Devroey, and A. Zaidman, “Basic block coverage
for search-based unit testing and crash reproduction,” Empirical Software
Engineering, vol. 27, no. 7, p. 192, 2022.

[14] P. Tonella, “Evolutionary testing of classes,” ACM SIGSOFT Software
Engineering Notes, vol. 29, no. 4, pp. 119–128, 2004.

[15] G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical
investigation on the readability of manual and generated test cases,” in
Proceedings of the 26th Conference on Program Comprehension, 2018,
pp. 348–351.

[16] P. Nie, R. Banerjee, J. J. Li, R. J. Mooney, and M. Gligoric, “Learning
deep semantics for test completion,” in 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2023, pp.
2111–2123.

[17] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan,
“Unit test case generation with transformers and focal context,” arXiv
preprint arXiv:2009.05617, 2020.

[18] H. A. Chipman, E. I. George, and R. E. McCulloch, “Bart: Bayesian
additive regression trees,” The Annals of Applied Statistics, 2010.

[19] Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT interna-
tional symposium on software testing and analysis, 2023, pp. 423–435.

[20] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4all:
Universal fuzzing with large language models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[21] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt se-
lection for code-related few-shot learning,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023,
pp. 2450–2462.

[22] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[23] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia,
“On the diffusion of test smells in automatically generated test code:

An empirical study,” in Proceedings of the 9th international workshop
on search-based software testing, 2016, pp. 5–14.

[24] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha,
“A systematic survey of prompt engineering in large language models:
Techniques and applications,” arXiv preprint arXiv:2402.07927, 2024.

[25] R. Garabı́k, “Processing xml text with python and elementtree–a prac-
tical experience,” Bratislava, L’. Štúr Institute of Linguistics, 2005.
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