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Abstract—In recent years, deep learning has increasingly
gained attention in the field of traffic prediction. Existing traffic
prediction models often rely on GCNs or attention mecha-
nisms with O(N2) complexity to dynamically extract traffic
node features, which lack efficiency and are not lightweight.
Additionally, these models typically only utilize historical data
for prediction, without considering the impact of the target
information on the prediction. To address these issues, we
propose a Pattern-Matching Dynamic Memory Network (PM-
DMNet). PM-DMNet employs a novel dynamic memory network
to capture traffic pattern features with only O(N) complexity,
significantly reducing computational overhead while achieving
excellent performance. The PM-DMNet also introduces two
prediction methods: Recursive Multi-step Prediction (RMP) and
Parallel Multi-step Prediction (PMP), which leverage the time
features of the prediction targets to assist in the forecasting
process. Furthermore, a transfer attention mechanism is in-
tegrated into PMP, transforming historical data features to
better align with the predicted target states, thereby capturing
trend changes more accurately and reducing errors. Extensive
experiments demonstrate the superiority of the proposed model
over existing benchmarks. The source codes are available at:
https://github.com/wengwenchao123/PM-DMNet.

Index Terms—Traffic Prediction, Memory Network, Transfer
Attention, Traffic Pattern, Time Embedding

I. INTRODUCTION

W ITH the development of society and technology, there
has been a significant increase in vehicles within

cities, as well as the growing popularity of services like
shared bicycles and ride-hailing platforms such as Uber and
Didi. This expansion has broadened the application of urban
traffic management by governments and heightened public
transportation demands. However, issues such as limited re-
sources and inadequate scheduling systems have increasingly
highlighted challenges in traffic management and the imbal-
ance of transportation demand. As a result, accurate traffic

This work was supported in part by the ”Pioneer” and ”Leading Goose”
R&D Program of Zhejiang under Grant 2024C01214, and in part by the
National Natural Science Foundation of China under Grant 62072409. (cor-
responding author: Xiangjie Kong.)

Wenchao Weng and Xiangjie Kong are with the College of Computer Sci-
ence and Technology, Zhejiang Universityof Technology, Hangzhou 310023,
China (e-mail: 111124120010@zjut.edu.cn; xjkong@ieee.org).

Mei Wu and Hanyu Jiang are with the Hangzhou Dianzi University ITMO
Joint Institute, Hangzhou Dianzi University, Hangzhou 310018, China (e-mail:
222320007@hdu.edu.cn; 22320324@hdu.edu.cn).

Wanzeng Kong is with College of Computer Science, Hangzhou Dianzi
University, Hangzhou 310018, China (e-mail: kongwanzeng@hdu.edu.cn).

Feng Xia is with School of Computing Technologies, RMIT University,
Melbourne, VIC 3000, Australia (e-mail: f.xia@ieee.org).

forecasting has become a crucial issue in fields such as traffic
management, urban planning, and the sharing economy. Pre-
cise traffic prediction enables governments to better allocate
social resources to maintain urban transportation operations. It
also allows companies to distribute resources such as shared
bicycles and taxis to areas with high demand, thereby avoiding
their idle presence in low-demand areas. This approach can
reduce energy consumption and passenger waiting times.

In recent years, researchers have conducted extensive stud-
ies in traffic prediction to promote the development of intel-
ligent transportation systems. Early traffic prediction methods
utilized statistical approaches for prediction. Auto-regressive
(AR), Moving Average (MA), and Auto-Regressive Integrated
Moving Average (ARIMA) models [1], as the most repre-
sentative classical statistical methods, have been extensively
employed in traffic prediction. Additionally, machine learning
techniques represented by Support Vector Regression (SVR)
[2] and Kalman filters [3] have also been applied to traffic
prediction to achieve more accurate predictions and handle
more complex sequences. However, these methods require data
to exhibit stationarity to be effective, which limits their ability
to capture the intricate non-linear spatio-temporal correlations
present in traffic condition.

In recent years, the advancements of deep learning in
domains such as Computer Vision and Natural Language Pro-
cessing have motivated researchers to explore its application in
traffic prediction for improved outcomes. Early deep learning
prediction models conceptualized urban traffic as images and
segmented them into grids. Convolutional Neural Networks
(CNNs) [4] were employed to analyze spatial correlations
within these grids, while Recurrent Neural Networks (RNNs)
[5], [6], [7] or CNNs [8], [9] were utilized to capture temporal
dependencies. However, the structure of the transportation
network can be viewed as a topological graph, containing non-
Euclidean attributes. CNNs only extract features from the sur-
rounding nodes and cannot capture features from other loca-
tions across space. As Graph Convolutional Networks (GCNs)
[10] are effective in handling non-Euclidean structures, it has
been widely applied in the field of transportation [11], [8], [6].
Additionally, attention mechanisms [12], [13], [14] have been
incorporated for spatio-temporal feature modeling.

However, current methods still possess the following limi-
tations:

1) Lack of Effective Traffic Feature Extraction: Traffic data
inherently exhibits complex spatio-temporal correlations. To
capture these spatio-temporal correlations, researchers have
employed GCN to capture spatial relationships between nodes,
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Fig. 1: Comparison between GCN and DMN. As M is
constant, the time complexity of GCN and DMN is O(N2)

and O(N), respectively.

achieving significant success. As shown in Figure 1(a), current
methods require evaluating the correlations between all pairs
of nodes to dynamically generate the graph structure and then
use GCN to extract spatio-temporal correlations [6], [11],
resulting in an O(N2) computational complexity. However,
in practical scenarios, the structure of transportation networks
often exhibits sparsity, meaning that nodes are only correlated
with a subset of other nodes, and most nodes do not have
correlations with each other. As illustrated in Figure 2(a),
Nodes A, B, and C exhibit evident correlations, representing
a specific traffic pattern, while Nodes D and E signify another
traffic pattern. Computing similarities between Nodes A, B, C,
and Nodes D, E would be meaningless and resource-intensive.
Recent studies [15], [16], [17] have focused on reducing com-
putational complexity, but they each come with limitations. For
instance, STWave [17] introduces an MS-ESGAT (Multi-Scale
Edge-based Spatial Graph Attention) mechanism to achieve
linear complexity. However, this method relies heavily on
predefined graph structures, making it unsuitable for scenarios
where no predefined graph is available.

2) Uncertainty in Predicting Trend Changes: Figure 2(b)
illustrates two sets of historical data and their corresponding
prediction targets, where the red segment represents historical
data and the yellow segment represents the prediction target.
As shown, the left side’s historical data and corresponding pre-
diction targets remain within a stable trend channel. However,
on the right side, although the historical data is also within a
stable trend channel, the corresponding prediction target shifts
into a downward trend channel. This indicates that relying
solely on historical data for prediction makes it challenging to
capture such trend shifts. Although current studies [18], [5],
[19] have proposed various methods to extract spatiotemporal
features, they rely exclusively on historical data to model
traffic conditions, leading to limitations in accurately capturing
the trend changes of prediction targets.

To address the above issues, a novel Pattern-Matching
Dynamic Memory Network (PM-DMNet) model for traffic
prediction is proposed in this paper. For the first challenge,
a Dynamic Memory Network (DMN) is designed to extract
pattern features from nodes. Specifically, a learnable memory
matrix is defined to learn representative traffic patterns within

(a) Nodes with different traffic patterns.

(b) Similar historical traffic conditions, different future traffic condi-
tions.

Fig. 2: The findings about traffic data.

the traffic conditions. The traffic features input to the model are
then used in conjunction with these embeddings to compute
a pattern attention matrix, which facilitates the extraction of
features from the most similar traffic patterns. Simultane-
ously, the DMN dynamically adjusts the representative traffic
patterns at each time point by combining time embeddings
with memory embeddings, thus avoiding issues related to
traffic pattern homogenization. Moreover, as illustrated in
Figure 1, compared to the high computational complexity of
GCN, which is O(N2), this method reduces the computational
complexity to O(N), significantly enhancing computational
efficiency.

To address the second challenge, two prediction methods are
designed: Recurrent Multi-step Prediction (RMP) and Parallel
Multi-step Prediction (PMP). RMP uses the traditional recur-
sive approach, where predictions are made during the decoding
phase by recursively utilizing the time features and extracted
hidden features for the target time points. PMP directly uses
the time features for the target time points and the hidden
features extracted from historical data for prediction. To miti-
gate the errors caused by discrepancies between historical data
and prediction targets, a novel Transition Attention Mechanism
is introduced in PMP. Specifically, this attention mechanism
leverages the inherent periodicity in traffic data by integrating
the input data, its time features, and the time features of the
prediction targets. This transforms the hidden states to better
align with the conditions of the target time points. This method
enhances the adaptability of the extracted latent features to
the prediction target states, improving accuracy. Furthermore,
PMP reduces the required computation time compared to RMP,
as it does not involve recursion, and it also enhances prediction
performance.

In summary, the contributions of this paper can be summa-
rized as follows:

• We present a new traffic prediction model, named Pattern
Matching Dynamic Memory Network (PM-DMNet). This
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model can achieve both Parallel Multi-step Prediction
(PMP) and Recurrent Multi-step Prediction (RMP) in the
decoder stage depending on the requirements. Compared
to RMP, PMP avoids the cyclic recursion process, thereby
enhancing computational efficiency.

• We propose a novel Dynamic Memory Network (DMN)
module designed to learn inherent representative traffic
patterns within the data associated with each node. By
employing a pattern matching approach, this module
identifies and extracts traffic pattern features most similar
to the input data while effectively reducing computational
overhead.

• We introduce a new Transfer Attention Mechanism
(TAM). TAM transforms the existing historical hidden
states into latent states aligned with the prediction target
features, mitigating the error caused by the discrepancy
between historical data and prediction targets.

• Experimental results on ten authentic datasets substantiate
that our proposed framework significantly outperforms
state-of-the-art methods across all datasets.

II. RELATED WORK

A. Spatio-Temporal Prediction

As one of the most representative tasks in spatio-temporal
prediction, researchers employed a myriad of methodologies
to model the spatio-temporal characteristics within traffic
condition. STGCN [20] leveraged GCN and predefined matri-
ces to capture spatial correlations between nodes, employing
Gate CNNs to model such spatial dependencies. DCRNN [7]
integrated diffusion convolution with GRU to model the spatio-
temporal relationships inherent in traffic condition. MTGNN
[21] utilized adaptive embeddings to generate an adaptive
graph structure, capturing spatial correlations among diverse
nodes. CCRNN [22] introduced a novel graph convolutional
structure termed as CGC and employed a hierarchical cou-
pling mechanism, linking upper-layer graph structures with
underlying ones to extract temporal-spatial features. GMAN
[13] harnessed three distinct attention mechanisms to capture
the spatio-temporal characteristics present in traffic condition.
MPGCN [15] utilized GCN to identify mobility patterns at bus
stops through clustering and employed GCN2Flow to predict
passenger flow based on various mobility patterns. Building on
the foundation of MPGCN, MPGNNFormer [16] designed a
STGNNFormer to extract both temporal and spatial dependen-
cies. Although these spatiotemporal prediction models have
achieved notable success, the GCNs and attention mechanisms
they use often require O(N2) or even higher complexity,
resulting in substantial computational costs.

B. Neural Memory Network

The Memory Network [23] introduced an external memory
mechanism, enabling it to better handle and utilize long-
term information. Memory networks have found extensive
applications in the domains of natural language processing and
machine translation. MemN2N [24] introduced a novel end-
to-end memory network framework that facilitates its straight-
forward application in real-world environments. Kaiser et al.

[25] proposed memory networks with the capability to adapt to
various zero-shot scenarios. Mem2seq [26] integrated multi-
hop attention mechanisms with memory networks, enabling
their deployment in dialog systems. MemAE [27] explored
the application of memory networks in video anomaly detec-
tion tasks, subsequent studies [28] validating the feasibility
of this approach. MTNet [29] endeavored to apply mem-
ory networks in multi-variate time series prediction, yielding
promising results. In the most recent advancements, PM-
MemNet [30] devised a novel Graph Convolutional Memory
Network (GCMem) to model the spatio-temporal correlations
inherent in given traffic condition. Additionally, MegaCRN
[31], inspired by memory network principles, designed a
Meta-Graph Learner to construct dynamic graphs, addressing
temporal-spatial heterogeneities. Although memory networks
have been applied in traffic prediction, they still require
integration with other feature extraction methods (e.g., GCN)
to perform effectively.

Unlike previous spatio-temporal prediction models, PM-
DMNet uses a dynamic memory network to extract traffic pat-
tern features, achieving superior performance while reducing
complexity to O(N), which significantly lowers computational
costs. Additionally, prior research overlooks the impact of time
features corresponding to the prediction targets on the targets
themselves. PM-DMNet fully considers this characteristic and
designs two prediction methods to utilize these time features,
leading to successful outcomes.

III. PRELIMINARIES
A. Temporal Indexing Function

TABLE I: Example of time index transformation

Time d(t) w(t)

Monday,00:05 0:05:00 Monday
Monday,01:00 1:00:00 Monday
Thursday,01:00 1:00:00 Thursday

Given that traffic condition is collected at regular time
intervals, each set of traffic condition possesses unique and
systematic temporal information. To harness these temporal
characteristics effectively, we employ a temporal indexing
function to extract time-related information. Let d(t) and
w(t) represent the intra-daily and weekly indexing functions,
respectively. These functions transform the temporal informa-
tion of the traffic condition into corresponding intra-daily and
weekly time-related attributes. For specific examples, refer to
Table I.

B. Traffic Prediction

The objective of traffic prediction is to utilize historical
traffic condition to forecast future traffic condition.

We represent the traffic condition Xt ∈ RN×C for N nodes
in the road network at time t, where C is the dimensionality
of traffic condition, signifying C types of traffic condition. We
model the historical traffic condition X = [X1, X2, ..., Xn] ∈
Rn×N×C over the past n time steps using the model f to
predict the traffic condition Y = [Yn+1, Yn+2, ..., Yn+m] ∈
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Fig. 3: Overview of PM-DMNet structure.

Rm×N×C for the future m time steps, which can be expressed
as:

[X1, X2, ..., Xn]
f−→ [Yn+1, Yn+2, ..., Yn+m] (1)

In addition, The corresponding actual values are represented
by Ŷ = [Ŷn+1, Ŷn+2, ..., Ŷn+m] ∈ Rm×N×C ,

time step: t
Tt

Fig. 4: The construction of TE generator.

IV. MODEL ARCHITHECTURE

Figure 3 illustrates the comprehensive architecture of PM-
DMNet, which comprises a Time Embedding Generator (TE
Generator), Dynamic Pattern Matching Gated Recurrent Unit
(DPMGRU), and Transfer Attention Mechanism (TAM). In the
subsequent sections, we will provide a detailed exposition of
each module.

A. Time Embedding Generator

Traffic condition is influenced by people’s travel habits
and lifestyles, exhibiting clear temporal such as rush hours
during mornings and evenings. To fully leverage temporal
features, we introduce two independent embedding pools
TD ∈ RNd×p, TW ∈ RNw×p to learn features for intra-
daily and weekly patterns. Here, Nd represents the number
of time slots in a day, and Nw = 7 represents the number
of days in a week. As depicted in Figure 4, based on the
time information t, we derive the intra-daily index d(t) and
the weekly index w(t). Utilizing d(t) and w(t), we obtain

the intra-daily time feature embedding TD
d(t) and the weekly

time feature embedding TW
w(t) corresponding to the specific

time point. Ultimately, these TD
d(t) ∈ Rp and TW

w(t) ∈ Rp are
integrated to yield a combined time embedding, which can be
expressed as follows:

Tt = TD
d(t) ⊙ TW

w(t) (2)

where ⊙ denotes the hadamard product.

B. Dynamic Memory Network

The memory module incorporates a learnable memory
matrix P = [P 1, P 2, ..., PM ] ∈ RM×p, where symbolizes
a unique traffic pattern. To dynamically adjust the memory
matrix, thereby avoiding pattern singularization and adapting
to the prevailing traffic conditions at time t, we integrate
the current time embedding Tt with P . This fusion can be
represented as:

Pt = P ⊙ Tt (3)

where Pt ∈ RM×p represents the memory network module at
time t. Through training, Pt can learn the most representative
traffic patterns at time t. By integrating the time embedding
Tt dynamically, the model can adjust its memory Pt to better
capture evolving traffic patterns and conditions over time.

As shown in Figure 5, we extract dynamic signals from the
traffic condition, which can be represented as:

F i
t = MLP (xi

t) (4)

where F i
t ∈ Rp represents the dynamic signal extracted from

the traffic condition xi
t at node i. It is used to query the

memory matrix for the traffic pattern most similar to xi
t.

Afterwards, the similarity weight between F i
t and the mem-

ory matrix Pt is computed through a similarity calculation:

wi
t = softmax(F i

tP
T
t ) (5)

where wi
t ∈ RM represents the similarity weight vector.
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Subsequently, Pt is linearly transformed to obtain the pat-
tern features corresponding to various traffic patterns. It is then
multiplied with the similarity weight vector wi

t to extract the
pattern features most similar to xi

t, as follows:

hi
t = wi

tPt (6)

where ht ∈ RM×Fout represents the pattern features in the
memory matrix Pt, and hi

t represents the extracted traffic
pattern features.

Finally, the residual connection is employed to concatenate
hi
t and xi

t for extracting hidden features:

Hi
t = (hi

t||xi
t)Θ (7)

where Θ ∈ RFin×Fout represents learnable parameters.
All node hidden states Hi

t are aggregated into Ht =
(H1

t , H
2
t , ...,H

N
t ), serving as the final output of the dynamic

memory network.

C. Node Adaptive Parameter Learning

To enable each node to learn its unique traffic pattern,
enhancing the model’s robustness and effectiveness, we utilize
two parameter matrices to optimize the learnable parameters
Θ. Specifically, we use the node embedding matrix E ∈ RN×d

and the weight pool W ∈ Rd×Fin×Fout to generate Θ ∈
RN×Fin×Fout , which can be expressed as:

Hi
t = (hi

t||xi
t)Θ

= (hi
t||xi

t)E ·W
(8)

where · represents the multiplication of matrices in different
dimensions. From the perspective of an individual node, E
provides d independent traffic patterns, and the node adjusts
W in a data-driven way to assign appropriate weights to
each pattern. These weights are combined to create the node’s
unique traffic pattern.

D. Dynamic Pattern Matching Gated Recurrent Unit

To capture the spatio-temporal features inherent in traffic
condition, we integrate the gated recurrent unit (GRU) with
a dynamic memory network to construct a framework that
encapsulates both temporal dynamics and spatial correlations.

Specifically, we replace the MLP layer in the GRU with a
dynamic memory network, resulting in the Dynamic Pattern
Matching Gated Recurrent Unit (DPMGRU). Mathematically,
DPMGRU can be formulated as:

rt = σ(ϑr∗G(xt||Ht−1))

ut = σ(ϑu∗G(xt||Ht−1))

ht = tanh(ϑh∗G(xt||ut ⊙Ht−1))

Ht = rt ⊙Ht−1 + (1− rt)⊙ ht

(9)

where Xt and Ht denote the input and output at time step
t, respectively. σ represents the sigmoid activation function.
r and u correspond to the reset gate and update gate, re-
spectively. ∗G denotes the dynamic memory network module,
while ϑr, ϑu, ϑh are the learnable parameters associated with
the relevant memory network module.

E. Transfer Attention Mechanism

To mitigate the discrepancy between historical data and the
prediction target leading to errors, we employ a transfer atten-
tion mechanism to transform the learned hidden features from
historical data. Specifically, we first linearly transform the en-
coder’s output Hn ∈ RN×D, historical time embedding Tn ∈
Rp, and future embeddings TF = (Tn+1, Tn+2, ..., Tn+m) ∈
Rm×p into queries, keys, and values, represented as:

Q = ∀(Hn, TF )W
Q,K = ∀(Hn, Tn)W

K , V = ∀(Hn, Tn)W
V

(10)
where WQ,WK ,WV ∈ R(D+p)×dk serve as learnable param-
eters, and ∀() denotes a broadcasting operation. Subsequently,
the transfer attention can be expressed as:

HTA = attention(H,TF , Tn)

= softmax(
QKT

√
dK

V )
(11)

Finally, the feature fusion between Hn and HTA ∈
Rm×N×D is achieved using residual connections to obtain the
input for the decoder:

Hout = MLP (∀(Hn, HTA)) (12)

where Hout = (Hn+1, Hn+2, ...,Hn+m) ∈ Rm×N×D corre-
spond to the hidden features from time points n+1 to n+m for
the prediction target. By employing TN and TF , these features
undergo transfer learning to adapt more effectively to the state
of the prediction target time points.

F. Encoder-Decoder Architecture

The traditional encoder-decoder architecture typically em-
ploys the Recurrent Multi-step Prediction (RMP) method for
forecasting. However, recurrent decoding has inherent lim-
itations, including: (i) error accumulation due to recurrent
predictions, and (ii) the sequential nature of recursion, which
restricts the model’s ability for parallel computation, thus lim-
iting the improvement of inference speed. [32] demonstrates
that Parallel Multi-step Prediction (PMP) methods can achieve
comparable or even better results than RMP when appropriate
techniques are applied. Therefore, two variants are designed
to implement and investigate these prediction methods:
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Fig. 6: Comparison of Recurrent Multi-step Prediction
(RMP) and Parallel Multi-step Prediction (PMP).

PM-DMNet(R) As illustrated in Figure 6(a), PM-
DMNet(R) employs the classic Recurrent Multi-step Predic-
tion (RMP) method, where Yt is derived through single-step
prediction. Subsequently, the predicted Yt serves as the input
for predicting Yt+1, iterating this process until the complete
prediction output is obtained.

PM-DMNet(P) Inspired by [32], PM-DMNet(P) adopts the
Parallel Multi-step Prediction (PMP) method. As shown in
Figures 6(b), during the decoding phase, the encoder’s output
Hn is first processed through TAM to obtain Hout, which al-
leviates the discrepancy between historical data and prediction
targets, aligning it more closely with the state of the prediction
targets. Subsequently, Hout = (Hn+1, Hn+2, . . . ,Hn+m) and
TF = (Tn+1, Tn+2, . . . , Tn+m) are segmented and input
into PDMGRU to predict the corresponding targets Y =
(Yn+1, Yn+2, . . . , Yn+m). Since recursive compilation is not
required, the prediction targets Y can be predicted in parallel,
avoiding the issue of accumulating prediction errors with
recursion steps.

The details of model training and prediction are presented
in Algorithm 1.

V. EXPERIMENTAL SETUP

A. Datasets & Settings

In this section, experiments are conducted on ten real-world
datasets to validate the effectiveness of the proposed PM-
DMNet. The datasets used are categorized into four types:
bike demand datasets include NYC-Bike14 [4], NYC-Bike15
[33], and NYC-Bike16 [22]; taxi demand datasets include
NYC-Taxi15 [33] and NYC-Taxi16 [22]; traffic flow datasets
include PEMSD4 [34], PEMSD7 [20], and PEMSD8 [34]; and
traffic speed datasets include PEMSD7(M) and PEMSD7(L)
[9]. Detailed information about the datasets and the training
set divisions can be found in Table II. Moreover, Unlike traffic
flow and traffic speed datasets, the traffic demand datasets have
two dimensions: ’Pick-up’ and ’Drop-off’. We set n = 12
historical time steps to predict m = 12 future time steps.

All experiments are conducted on a server equipped with
an NVIDIA GeForce GTX 4090 GPU. The Adam optimizer
is used for model optimization, and the Mean Absolute Error
(MAE) is adopted as the loss function. The hyper-parameter

Algorithm 1 Training algorithm of PM-DMNet.

Input: The traffic dataset O, encoder’s function fen(·), de-
coder’s function fde(·), TAM’s function ftam(·), predic-
tion type T , scheduled sampling function fss(·)

1: repeat
2: select a input X ∈ Rn×N×C , label Ŷ ∈ Rm×N×C ,

time information t, initialize hidden state H0.
3: compute Tt = TD

d(t) ⊙ TW
w(t)

4: for i in 1, 2, ..., n do
5: compute Hi = fen(X[i, ...], Hi−1, Ti)
6: end for
7: if T= PM-DMNet(P) then
8: Initialize a zero tensor Yin ∈ Rm×N×C as the input

to the decoder.
9: compute Hout = ftam(Hn, TN , TF )

10: compute Y = fde(Yin, Hout, TF )
11: end if
12: if T= PM-DMNet(R) then
13: set iter = 1;
14: Initialize a zero tensor Yin ∈ RN×C as the input to

the decoder.
15: for q in 1, 2, ...,m do
16: compute Y [q, :] = fde(Yin, Hm+q−1, Tn+q)
17: compute εi = fss(iter)
18: generate a random number µ ∼ N(0, 1).
19: if µ < εi then
20: Yin = Ŷ [q, ...].
21: else
22: Yin = Y [q, ...]
23: end if
24: end for
25: end if
26: Calculate loss L by using MAE.
27: Update model parameters according to loss L.
28: until convergence of the model is achieved
Output: learned model.

TABLE II: Statistics of datasets.

Data type Datasets Nodes Time steps Time Range Time interval Train/Val/Test

Bike Demand
NYC-Bike14 128 4392 04/2014 - 09/2014 1 hour 7/1/2
NYC-Bike15 200 2880 01/2015 - 03/2015 30 min 7/1/2
NYC-Bike16 250 4368 04/2016 - 06/2016 30 min 7/1.5/1.5

Taxi Demand NYC-Taxi15 200 2880 01/2015 - 03/2015 30 min 7/1/2
NYC-Taxi16 266 4368 04/2016 - 06/2016 30 min 7/1.5/1.5

Traffic Flow
PEMSD4 307 16992 01/2018 - 02/2018 5min 6/2/2
PEMSD7 883 28224 05/2017 - 08/2017 5min 6/2/2
PEMSD8 170 17856 07/2016 - 08/2016 5min 6/2/2

Traffic Speed PEMSD7(M) 228 12672 05/2012 - 06/2012 5min 6/2/2
PEMSD7(L) 1026 12672 05/2012 - 06/2012 5min 6/2/2

settings for the model under the two different prediction
methods, such as the temporal embedding dimension p, node
embedding dimension d, memory network matrix dimension
M , batch size, and learning rate , are detailed in Table III.
During training, an early stopping strategy is employed to
terminate training and prevent over-fitting. Additionally, a
scheduled sampling strategy [35] is applied to PM-DMNet(R)
to enhance its robustness.
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TABLE III: Model hyper-parameter settings.

Datasets PM-DMNet(P) PM-DMNet(R)
M batchsize learning rate

p d p d

NYC-Bike14 20 10 20 10 10 64 0.03
NYC-Bike15 12 6 12 6 10 64 0.03
NYC-Bike16 20 10 20 10 10 64 0.03

NYC-Taxi15 20 10 20 10 10 64 0.03
NYC-Taxi16 20 10 20 10 10 64 0.03

PEMSD4 24 12 20 10 10 64 0.03
PEMSD7 24 12 24 12 10 64 0.03
PEMSD8 20 10 12 6 10 64 0.03

PEMSD7(M) 8 4 10 5 10 64 0.03
PEMSD7(L) 16 8 20 10 10 64 0.03

B. Baselines

To compare performance, the following 24 baselines with
official code are compared with PM-DMNet:

1) Traditional Models:
• HA [36]: It utilizes historical averages to iteratively

predict the future.
• ARIMA [1]: It integrates moving averages into an auto-

regressive model.
• VAR [37]: It is a statistical model capable of capturing

spatial dependencies.
2) Machine Learning Models:
• SVR [2]: It uses support vector machines for prediction.
• XGBoost [38]: It is a classical and widely adopted

machine learning model.
3) Deep Learning Models:
• LSTM [39]: It makes predictions through iterations.
• TCN [40]: It employs causal convolutions and dilated

convolutions to capture temporal correlations.
• STGCN [4]: It uses graph convolution and one-

dimensional convolutional neural networks to separately
extract spatial and temporal correlations.

• STGCN [9]: It combines TCN with GCN to extract
spatio-temporal dependencies.

• DCRNN [7]: It combines diffusion convolution and GRU
to extract spatiotemporal correlations.

• STG2Seq [41]: It captures temporal dependencies from
both long-term and short-term perspectives.

• GWN [8]: It integrates gated TCN and adaptive graph
GCN to capture spatiotemporal dependencies.

• ASTGCN [34]: It performs attention mechanism analy-
sis on spatio-temporal convolutions to extract dynamic
spatio-temporal correlations.

• LSGCN [42]: It uses graph convolutional networks and a
novel cosine graph attention network to capture long-term
and short-term spatial dependencies.

• STFGNN [20]: It designs a spatio-temporal fusion graph
to capture local spatio-temporal correlations.

• STSGCN [20]: It constructs a three-dimensional graph for
graph convolution to capture spatio-temporal correlations
between nodes.

• MTGNN [21]: It employs self-learned adjacency matrices
and a time convolution module to capture spatio-temporal
correlations between different variables.

• CCRNN [5]: It designs a Coupled Layer-wise Graph
Convolution for prediction.

• STFGNN [20]: It designs a spatio-temporal fusion graph
to capture local spatio-temporal correlations.

• STGODE [43]: It leverages neural ODE to reconstruct
GCN, alleviating the over-smoothing problem in deep
GCNs.

• GTS [44]: It learns the graph structure among multiple
time series and simultaneously makes predictions using
GNN.

• ESG [19]: It designs an evolving structure learner to con-
struct a series of adjacency matrices. These matrices not
only receive information from the current input but also
maintain the hidden states of historical graph structures.

• MVFN [18]: It uses graph convolution and attention
mechanisms to extract local and global spatial features.
Additionally, it employs multi-channel and separable tem-
poral convolutional networks to extract overall temporal
features.

• STWave [17]: It uses the DWT algorithm to decouple
traffic data for modeling. Additionally, it designs a novel
local graph attention network to efficiently and effectively
model dynamic spatial correlations.

• MegaCRN [31]: It designs a Meta-Graph Learner to
construct dynamic graphs, addressing temporal-spatial
heterogeneities.

C. Metrics

The following three evaluation metrics are chosen to as-
sess model performance: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE) and Empirical Correlation Coefficient (CORR).

MAE =
1

ϕ

ϕ∑
i=1

|Yi − Ŷi| (13)

RMSE =

√√√√ 1

ϕ

ϕ∑
i=1

(Yi − Ŷi)2 (14)

MAPE =
1

ϕ

ϕ∑
i=1

|Yi − Ŷi

Yi
| (15)

CORR =
1

N

N∑
n=1

∑ϕ
i=1(Yn,i − Y n)(Ŷn,i − Ŷ n)√∑ϕ
i=1(Yn,i − Y n)2(Ŷn,i − Ŷ n)2

(16)

where ϕ represents the length of the predicted sequence,
and Y n and Ŷ n denote the mean values of the true and
predicted values at node n, respectively. A smaller value of
these metrics indicates higher prediction accuracy and better
prediction performance.

VI. EXPERIMENTS

A. Performance Comparison

Table IV presents the results of our model and baselines
across different datasets. Clearly, optimal results are achieved
by our model across all five datasets. XGBoost, being a
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TABLE IV: Performance comparison between PM-DMNet and the baselines on five traffic demand datasets. The best results
are highlighted in bold, and the second-best results are underlined.

Method NYC-Bike16 NYC-Taxi16 NYC-Bike14 NYC-Bike15 NYC-Taxi15
RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR RMSE MAE CORR

XGBoost 4.0494 2.4689 0.4107 21.1994 11.6806 0.4416 10.3137 4.8228 0.3322 8.1780 2.7175 0.1289 44.1421 14.8994 0.2195
DCRNN 3.2274 1.8973 0.6601 14.8318 8.4835 0.6671 6.3259 2.7483 0.5184 3.8320 1.2645 0.2844 16.6155 5.6424 0.4909
STGCN 3.7829 2.2076 0.5933 14.6473 7.8435 0.7257 8.5412 3.5833 0.4481 5.6169 1.6101 0.2529 28.1391 9.1844 0.3454

STG2Seq 3.7843 2.2055 0.5413 19.2077 10.4925 0.5389 10.8561 4.4999 0.3751 8.2462 2.3272 0.1855 39.4318 12.8251 0.3764
STSGCN 2.8846 1.7538 0.7126 10.9692 5.8299 0.8242 7.8272 3.2998 0.4656 5.4722 1.6086 0.2373 28.0221 8.9541 0.3695
MTGNN 2.7791 1.6595 0.7353 10.9472 5.9192 0.8249 6.3548 2.8172 0.5154 3.9407 1.2947 0.2640 18.1113 5.9255 0.5284
CCRNN 2.7674 1.7133 0.7333 9.8744 5.6636 0.8416 7.4890 3.5197 0.4861 4.4359 1.5249 0.2681 23.0052 8.5411 0.4049

GTS 2.9258 1.7798 0.6985 12.7511 7.2095 0.7348 6.7053 2.9446 0.5044 4.1698 1.3632 0.2654 17.8672 6.0408 0.4462
ESG 2.6727 1.6129 0.7449 8.9759 5.0344 0.8592 6.3503 2.7972 0.5175 3.8054 1.2293 0.2756 16.7635 5.5279 0.5247

MVFN 2.6981 1.6565 0.7380 8.7953 4.9433 0.5607 6.4116 2.8228 0.5131 3.9282 1.2928 0.2793 16.2687 5.5613 0.5296
MegaCRN 2.7480 1.6321 0.7425 8.7082 4.9082 0.8619 6.3258 2.8005 0.5185 3.9459 1.2681 0.2836 15.4985 5.2107 0.5398

PM-DMNet(P) 2.5631 1.5566 0.7709 8.4699 4.7682 0.8674 5.8790 2.5687 0.5274 3.5302 1.1678 0.2849 14.6360 4.8126 0.5509
PM-DMNet(R) 2.5964 1.5667 0.7638 8.4659 4.7635 0.8675 5.8656 2.5582 0.5246 3.7118 1.1947 0.2700 14.7843 4.8629 0.5429
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Fig. 7: Prediction error at each horizon on five raffic demand datasets.

machine learning model, fails to capture the nonlinear rela-
tionships within traffic condition, resulting in its inferior per-
formance. DCRNN, STGCN, and STG2Seq utilize predefined
graph structures to capture spatio-temporal correlations within
traffic condition, yielding satisfactory outcomes. However, due
to the fixed weights in these predefined graph structures,
the inability to capture dynamic correlations leaves signifi-
cant room for improvement. MTGNN and GTS demonstrate
commendable progress by learning graph structures adaptively
from the data. Nevertheless, these adaptive graphs remain
static and fail to capture the dynamic relationships between
nodes. MegaCRN employs a meta-graph learner to construct
dynamic graphs for extracting correlations between nodes.
However, it does not consider the influence of temporal infor-
mation on traffic patterns, which limits its performance. PM-
DMNet excels by leveraging a dynamic memory network to
dynamically extract features by identifying the most analogous
traffic patterns based on historical data. Figure 7 illustrates the
prediction errors of PM-DMNet compared to three baseline
models across different prediction horizons. It is observed
that, except for the initial three prediction steps, PM-DMNet
consistently achieves lower prediction errors than the baseline
models. Additionally, the error growth rate of PM-DMNet
across all time horizons is slower than that of the baseline

models. Benefiting from the functionality of the evolving
graph, ESG achieves comparable short-term prediction per-
formance to PM-DMNet. However, as the prediction horizon
expands, the error growth rate of ESG becomes significantly
faster than that of PM-DMNet, resulting in an overall per-
formance inferior to PM-DMNet. By leveraging temporal in-
formation corresponding to the prediction targets, PM-DMNet
substantially reduces prediction uncertainty, thereby enhancing
performance.

Table V presents the results of our model and baseline
models on traffic flow/speed datasets. It is observed that,
except for PEMSD8 where STWave slightly outperforms PM-
DMNet (P) and is comparable to PM-DMNet (R), our model
achieves the best performance across all datasets. Figure
8 shows the prediction errors of PM-DMNet and the two
other best baseline models at different prediction horizons.
From Figure 8, it is evident that the error gaps between
models are more pronounced in the flow datasets compared
to the speed datasets, indicating that predicting traffic speed
is more challenging than predicting traffic flow. STWave
utilizes the DWT algorithm to decompose traffic data into
two separate low-frequency and high-frequency sequences,
modeling them independently while considering the impact
of temporal information, resulting in good performance on
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TABLE V: Performance comparison between PM-DMNet and the baselines on five traffic flow/speed datasets. The best
results are highlighted in bold, and the second-best results are underlined.

Methods PEMSD4 PEMSD7 PEMSD8 PEMSD7(M) PEMSD7(L)
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HA 59.24 38.03 27.88% 65.64 45.12 24.51% 59.24 34.86 27.88% 8.63 4.59 14.35% 9.03 4.84 14.90%
ARIMA 48.80 33.73 24.18% 59.27 38.17 19.46% 44.32 31.09 22.73% 13.20 7.27 15.38% 12.39 7.51 15.83%

VAR 38.61 24.54 17.24% 75.63 50.22 32.22% 29.81 19.19 13.10% 7.61 4.25 10.28% 8.09 4.45 11.62%
SVR 44.56 28.70 19.20% 50.22 32.49 14.26% 36.16 23.25 14.64% 7.47 4.09 10.03% 8.11 4.41 11.58%

LSTM 40.65 26.77 18.23% 45.94 29.98 13.20% 35.17 23.09 14.99% 7.51 4.16 10.10% 8.20 4.66 11.69%
TCN 37.26 23.22 15.59% 42.23 32.72 14.26% 35.79 22.72 14.03% 7.20 4.36 9.71% 7.29 4.05 10.43%

STGCN 34.89 21.16 13.83% 39.34 25.33 11.21% 27.09 17.50 11.29% 6.79 3.86 10.06% 6.83 3.89 10.09%
DCRNN 33.44 21.22 14.17% 38.61 25.22 11.82% 26.36 16.82 10.92% 7.18 3.83 9.81% 8.33 4.33 11.41%

GWN 39.66 24.89 17.29% 41.50 26.39 11.97% 30.05 18.28 12.15% 6.24 3.19 8.02% 7.09 3.75 9.41%
ASTGCN(r) 35.22 22.93 16.56% 37.87 24.01 10.73% 28.06 18.25 11.64% 6.18 3.14 8.12% 6.81 3.51 9.24%

LSGCN 33.86 21.53 13.18% 41.46 27.31 11.98% 26.76 17.73 11.20% 5.98 3.05 7.62% 6.55 3.49 8.77%
STSGCN 33.65 21.19 13.90% 39.03 24.26 10.21% 26.80 17.13 10.96% 5.93 3.01 7.55% 6.88 3.61 9.13%
AGCRN 32.26 19.83 12.97% 36.55 22.37 9.12% 25.22 15.95 10.09% 5.84 2.99 7.42% 6.04 3.13 7.75%
STFGNN 32.51 20.48 16.77% 36.60 23.46 9.21% 26.25 16.94 10.60% 5.74 2.93 7.28% 5.96 3.07 7.71%
STGODE 32.82 20.84 13.77% 37.54 22.59 10.14% 25.97 16.81 10.62% 5.66 2.97 7.36% 5.98 3.22 7.94%
STWave 30.39 18.50 12.43% 33.88 19.94 8.38% 23.40 13.42 8.90% 5.39 2.66 6.76% 5.87 2.88 7.25%

MegaCRN 31.03 19.07 12.71 33.83 20.42 8.68% 24.15 15.19 9.88% 5.40 2.67 6.73% 5.84 2.88 7.19%

PM-DMNet(P) 30.36 18.34 12.05% 33.33 19.35 8.05% 23.35 13.55 9.04% 5.33 2.61 6.55% 5.79 2.81 7.13%
PM-DMNet(R) 30.68 18.37 12.01% 33.15 19.18 7.95% 23.22 13.40 8.87% 5.36 2.60 6.57% 5.81 2.79 6.99%
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Fig. 8: Prediction error at each horizon on five flow/speed datasets.

traffic flow datasets. However, on speed datasets, due to the
inherent differences between traffic speed and traffic flow, the
DWT algorithm struggles to decompose useful high and low-
frequency sequences, causing STWave’s performance to be on
par with MegaCRN. PM-DMNet does not rely on sequence
decomposition for modeling, thus avoiding the difficulties
associated with ineffective decomposition, leading to excellent
performance on both flow and speed datasets.

B. Computation Cost

To compare and demonstrate the computational efficiency of
our model, we evaluate the training time, inference time, and
GPU cost of selected models. The batch size for all models
is set to 32. Table VI shows the computational costs of PM-
DMNet compared to baseline models. As observed in Table
VI, the training and inference times of PM-DMNet(P) are
significantly lower than those of other baselines, and it also
outperforms PM-DMNet(R), demonstrating the advantages of
the dynamic memory network and PMP in terms of computa-

TABLE VI: The computation cost on four datasets.

Dataset Model Tainning Time
(s/epoch)

Inference Time
(s)

GPU Cost
(GB)

NYC-Bike16

PM-DMNet(P) 4.17 0.29 1.44
PM-DMNet(R) 7.26 0.47 1.46

ESG 20.83 1.65 15.60
MegaCRN 7.04 0.68 2.00

NYC-Taxi16

PM-DMNet(P) 4.43 0.29 1.50
PM-DMNet(R) 7.53 0.46 1.50

ESG 22.93 1.91 16.50
MegaCRN 6.60 0.66 2.23

PEMSD4

PM-DMNet(P) 14.87 1.53 1.73
PM-DMNet(R) 25.21 2.35 1.70

STWave 56.32 7.46 5.79
MegaCRN 24.60 3.71 2.44

PEMSD7

PM-DMNet(P) 33.77 4.08 4.79
PM-DMNet(R) 41.68 4.09 4.75

STWave 272.95 36.53 16.76
MegaCRN 104.12 16.91 7.57

tional speed and memory usage. Despite ESG’s strong perfor-
mance, its high GPU cost and relatively slow processing speed
present challenges in deployment. Although STWave employs
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a novel graph attention mechanism to optimize modeling
speed, its complex network structure still demands substantial
GPU resources and long training times. MegaCRN uses RMP
methods while adopting a simple adaptive graph convolution
method to extract spatial correlations between nodes, resulting
in lower training time and GPU cost. Therefore, on datasets
with fewer nodes, MegaCRN’s training time is comparable
to that of PM-DMNet(P), which also uses RMP methods.
However, on large-scale node datasets, the O(N2) complexity
of GCN still requires higher training time and GPU cost.
In contrast, the dynamic memory network used by PM-
DMNet(P) has a time complexity of O(N), significantly lower
than the O(N2) complexity of graph convolution networks
(GCNs). Consequently, on PEMSD7, PM-DMNet(P) exhibits
faster training speed and lower GPU cost than MegaCRN,
showcasing the computational speed advantages of our model.

C. Complexity Analysis

The computation complexity for feature aggregation in GCN
is O(N2), and both the computation of attention matrices
and feature aggregation in attention mechanisms are also
O(N2). For DMN, the computation complexity for calculating
similarity weights and feature aggregation is O(NM), where
M is a constant value significantly smaller than N . When M
is much smaller than N , the time complexity of DMN can
be considered as O(N). Therefore, compared to GCN and
attention mechanisms, DMN exhibits notable advantages in
terms of time and memory complexity.

D. Recurrent Multi-step Prediction vs. Parallel Multi-step
Prediction

In this subsection, the performance of PMP and RMP
prediction methods is compared. Tables IV and V present
the results of PM-DMNet(P) and PM-DMNet(R) on traffic
demand and traffic flow/speed datasets, respectively. As shown
in Table IV, PM-DMNet(P) outperforms PM-DMNet(R) on
three datasets for traffic demand prediction tasks and matches
PM-DMNet(R) on two datasets, indicating that PM-DMNet(P)
has certain advantages over PM-DMNet(R) in traffic demand
prediction tasks. This is further evidenced by the per-step
prediction errors shown in Figure 7.

However, as seen in Table V, PM-DMNet(R) exhibits a per-
formance advantage over PM-DMNet(P) in traffic flow/speed
tasks. In Figure 8, it is shown that PM-DMNet(P) has sig-
nificantly larger prediction errors in the initial time steps
compared to PM-DMNet(R), but the errors of both methods
are comparable in the later time steps. This phenomenon
might be attributed to the different time intervals of the
datasets. The traffic demand datasets are collected at 30-minute
intervals, resulting in more pronounced differences between
historical data and prediction targets, where the PMP method
performs better than the RMP method. In contrast, traffic
flow/speed datasets are collected at 5-minute intervals, creating
more continuity between historical data and prediction targets,
thereby giving the RMP method an edge over the PMP method
in performance.

VII. ABLATION STUDY

A. Effectiveness Analysis of model components

In this section, ablation experiments are conducted on the
key components of PM-DMNet to validate their effectiveness.
To investigate the impact of different modules, the following
variants are designed:

W/O Decoder: This variant removes the decoder compo-
nent and predicts using an MLP layer directly applied to
the encoder’s output. Since the decoding process is omitted,
this variant is identical for both PM-DMNet(P) and PM-
DMNet(R).

W/O TAM: In this variant, the Transfer Attention Module
(TAM) is excluded. Instead, the prediction is made using the
output Hn from the encoder, replacing the output Hn+1 from
the transfer attention mechanism.

W/O DMN: This variant substitutes the Dynamic Memory
Network (DMN) module with an MLP layer for making
predictions.

W/O NAPL: This variant removes the Node Adaptive
Parameter learning (NAPL) module and uses a linear layer
instead.

TABLE VII: Ablation experiments for each module.

dataset variants PM-DMNet(P) PM-DMNet(R)
RMSE MAE CORR RMSE MAE CORR

NYC-Bike16

PM-DMNet 2.5631 1.5566 0.7709 2.5964 1.5667 0.7638
W/O Decoder 2.6308 1.5949 0.7602 2.6308 1.5949 0.7602

W/O TAM 2.6341 1.5859 0.7599 / / /
W/O DMN 3.1756 1.8078 0.6728 3.9676 2.2438 0.4815
W/O NAPL 3.1800 1.8057 0.6726 3.2525 18.265 0.6689

dataset variants PM-DMNet(P) PM-DMNet(R)
RMSE MAE MAPE RMSE MAE MAPE

PEMSD4

PM-DMNet 30.36 18.34 12.05% 30.68 18.37 12.01%
W/O Decoder 33.31 20.15 13.28% 33.31 20.15 13.28%

W/O TAM 30.75 18.42 12.10% / / /
W/O DMN 35.03 21.40 14.29% 39.74 25.32 17.22%
W/O NAPL 34.84 21.19 14.31% 34.98 21.3 14.29%

Table VII presents the performance of PM-DMNet(P) and
PM-DMNet(R) alongside their variants. It is evident from
the table that PM-DMNet(P) and PM-DMNet(R) outperform
all other variants, demonstrating the effectiveness of each
component.

For the W/O Decoder variant, the pattern matching process
is omitted during the decoding stage, and predictions are made
directly using an MLP layer. As a result, this variant can
only utilize historical data information and lacks the ability to
leverage the time point information of the prediction target.
Consequently, its performance is inferior to PM-DMNet(P)
and PM-DMNet(R).

The performance of the W/O TAM variant also falls short
of PM-DMNet(P). This indicates that the discrepancy between
historical data and the prediction target leads to a performance
decline, validating our proposed solution. This shows that
using a suitable method for parallel prediction can achieve
results comparable to or better than serial prediction.

The W/O DMN variant’s performance is significantly infe-
rior to both PM-DMNet models, highlighting the feasibility of
our approach to use a memory network to match and extract
the most representative traffic patterns.

Similarly, the performance of the W/O NAPL variant is
lower than that of the two PM-DMNet models, underscoring
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Fig. 9: Ablation experiment of time embedding.

the necessity for the model to learn the unique traffic patterns
of each node.

B. Effectiveness Analysis of GCN and DMN

To validate the differences in performance and computa-
tional cost between GCN and DMN, a variant named DGCNet
is designed. This variant uses dynamic graph convolution
instead of DMN. The formula for dynamic graph convolution
is expressed as follows:

Ed
t = Ft ⊙ Tt (17)

Ad
t = ReLU(Ed

t E
d
t

T
) (18)

Ht = (IN +D− 1
2Ad

tD
− 1

2 )XΘ (19)

where Ad
t ∈ RN×N represents the dynamic graph at time point

t, D is the degree matrix of Ad
t , and IN represents the identity

matrix. Similar to PM-DMNet, DGCNet can be divided into
two variants based on the prediction method: DGCNet(P) and
DGCNet(R).

TABLE VIII: Ablation experiment of GCN and DMN

Dataset model RMSE MAE MPAE Train Time
(s/epoch)

Inference Time
(s)

GPU Cost
(GB)

PEMSD7
(16)

DGCNet(P) 33.81 19.60 8.28% 231.10 23.62 13.04
PM-DMNet(P) 23.35 13.55 9.04% 49.16 5.68 2.96

DGCNet(R) 33.38 19.39 8.06% 237.98 24.00 12.58
PM-DMNet(R) 23.22 13.40 8.87% 81.43 7.67 3.45

PEMSD8
(64)

DGCNet(P) 23.99 13.95 9.29% 7.99 1.00 3.20
PM-DMNet(P) 33.33 19.35 8.05% 7.82 0.84 1.64

DGCNet(R) 23.55 13.70 8.92% 13.56 1.32 2.87
PM-DMNet(R) 33.15 19.18 7.95% 13.48 1.26 1.49

Experiments are conducted on PEMSD7 and PEMSD8,
with a batch size of 16 for PEMSD7 and 64 for PEMSD8.
Table VIII presents the results of GCN and DMN on these
two datasets. It can be observed that PM-DMNet outper-
forms DGCNet, indicating that DMN can achieve excellent
performance without relying on GCN. Additionally, while
PM-DMNet’s computational metrics are slightly better than
DGCNet on the smaller PEMSD8 dataset, the difference is

not significant. However, on the larger PEMSD7 dataset, PM-
DMNet’s computational metrics are significantly superior to
those of DGCNet, demonstrating the advantage of DMN’s
O(N) complexity over GCN’s O(N2) complexity in large-
scale node scenarios.

C. Effectiveness Analysis of time embedding

To validate the impact of intra-daily time features and
weekly time features on the model, two variants are designed
for this subsection:

use day: The dynamic memory network is updated using
only intra-daily time feature embeddings in this variant.

use week: The dynamic memory network is updated using
only weekly time feature embeddings in this variant.

Experiments are conducted on four datasets to observe the
influence of time information on model performance across
different types of data.

Figure 9 presents the performance of PM-DMNet(P) and
PM-DMNet(R) along with their variants. It can be observed
that when only one type of time feature embedding is used,
the model’s performance generally decreases. Except for the
NYC-Taxi16 dataset, where use week outperforms use day in
PM-DMNet(P), the performance of use day is superior to use
week in all other cases. This indicates that intra-daily informa-
tion typically has a greater impact on model performance than
weekly information. Additionally, in the PEMSD7(M) dataset,
the performance of use day is comparable to that of their
original models, while the performance of use week varies
significantly. This suggests that, unlike other types of data,
traffic speed data shows less pronounced differences between
weekdays and weekends, exhibiting high similarity.

VIII. HYPER-PARAMETER ANALYSIS

To validate the impact of hyperparameters on model per-
formance, hyperparameter experiments are conducted on the
PEMSD8 dataset. Specifically, in this section, we investigate



12

the effects of the temporal embedding dimension p, the dimen-
sion d of the node embedding matrix E in the node adaptive
module, and the dimension M of the memory network matrix.
In these experiments, other parameters are kept constant while
only the parameter under study is changed.
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Fig. 10: Sensitivity analysis of parameter p on PEMSD8.

A. Sensitivity to p

The parameter p is set to {5, 10, 15, 20, 25, 30} to
evaluate its sensitivity on model performance. In Figure 10, the
performance of the model under different values of p is shown.
It can be seen that the model performs relatively stable when
p is between 10 and 25. Additionally, across various settings,
PM-DMNet(R) consistently exhibits lower errors compared to
PM-DMNet(P).
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Fig. 11: Sensitivity analysis of parameter d on PEMSD8.

B. Sensitivity to d

The parameter d is set to {2, 5, 10, 20} to evaluate its
sensitivity to model performance. The performance of the
model with different values of d is shown in Figure 11.
It is observed that d does not significantly affect model
performance; however, it greatly impacts the training speed.
When d is set between 5 and 10, the model trains quickly
while maintaining performance. Therefore, d is recommended
to be set around 5 to 10.

C. Sensitivity to M

The parameter M is set to {5, 10, 15, 20} to evaluate
its sensitivity to model performance. The performance of the
model with different values of M is shown in Figure 12.
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Fig. 12: Sensitivity analysis of parameter M on PEMSD8.

It is observed that the model achieves stable and excellent
performance when M is between 5 and 20. Therefore, M is
set to 10.

IX. VISUALIZATION

To explore whether the Node Adaptive Parameter module
captures the unique traffic patterns of each node, we utilize
T-SNE [45] to visualize the node embedding matrix E used
in the module trained on NYC-Taxi16 dataset.

Fig. 13: Visualization of node embeddings E. The nodes in
the red-bordered area are nodes 215 and 222, the node in the

blue-bordered area is node 26.

Figure 13 illustrates the visualization results of the node
embeddings E. From the figure, it can be observed that certain
nodes exhibit a clustering phenomenon, while a few nodes
overlap, indicating high similarity in traffic patterns among
them. Moreover, there are nodes that are far apart, suggesting
significant differences in their traffic patterns.

To further verify the high similarity in traffic patterns
among nearby nodes and the differences in traffic patterns
among distant nodes, we select adjacent nodes within the red-
bordered area, specifically Node 215 and Node 222, as well
as a distant node within the blue-bordered area, Node 26, for
visualization of their traffic demand data. Figures 14(a) and
14(b) respectively illustrate the trend changes in the ’Pick-up’
and ’Drop-off’ features of the traffic demand for these three
nodes. It is evident that the trends for Node 215 and Node
222 are highly similar, indicating a strong correlation between
them. Meanwhile, the trend for Node 26 is notably different
from the other two nodes, suggesting a significant difference
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Fig. 14: Visualization of real traffic demand on NYC-Taxi16.

in their traffic patterns. The visualization results above confirm
that the Node Adaptive Parameter module can learn the traffic
patterns of individual nodes effectively.

X. CONCLUSION

This paper proposes a novel traffic prediction model, PM-
DMNet. PM-DMNet employs a new dynamic memory net-
work module that learns the most representative traffic patterns
into a memory network matrix. During prediction, the model
extracts pattern features by matching the current traffic pattern
with the memory network matrix. Additionally, PM-DMNet
supports both parallel and sequential Multi-step prediction
methods to meet different needs. To further enhance the
accuracy of parallel Multi-step prediction, a transfer attention
mechanism is introduced to mitigate the disparity between
historical data and prediction targets. Extensive experiments
validate the effectiveness of PM-DMNet. In future work, fur-
ther methods for extracting features from patterns are planned
to be explored.
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