
Multi-Level Explanations for Generative Language Models

Lucas Monteiro Paes*1, Dennis Wei*2, Hyo Jin Do2, Hendrik Strobelt2, Ronny Luss2,
Amit Dhurandhar2, Manish Nagireddy2, Karthikeyan Natesan Ramamurthy2,

Prasanna Sattigeri2, Werner Geyer2, Soumya Ghosh†3

1Harvard University 2IBM Research 3Merck Research Labs
lucaspaes@g.harvard.edu, dwei@us.ibm.com

Abstract

Despite the increasing use of large language
models (LLMs) for context-grounded tasks like
summarization and question-answering, under-
standing what makes an LLM produce a certain
response is challenging. We propose Multi-
Level Explanations for Generative Language
Models (MExGen), a technique to provide expla-
nations for context-grounded text generation.
MExGen assigns scores to parts of the context
to quantify their influence on the model’s out-
put. It extends attribution methods like LIME
and SHAP to LLMs used in context-grounded
tasks where (1) inference cost is high, (2) input
text is long, and (3) the output is text. We con-
duct a systematic evaluation, both automated
and human, of perturbation-based attribution
methods for summarization and question an-
swering. The results show that our framework
can provide more faithful explanations of gen-
erated output than available alternatives, includ-
ing LLM self-explanations. We open-source
code for MExGen as part of the ICX360 toolkit:
https://github.com/IBM/ICX360.

1 Introduction

Large language models (LLMs) are being deployed
to generate text used for decision-making, e.g.,
summarizing meetings (Laskar et al., 2023), ex-
tracting key points from legal documents (Kana-
pala et al., 2017), and answering doctors’ ques-
tions (Xiong et al., 2024). In these applications,
the LLM is grounded in context (e.g., legal doc-
uments) provided as part of the input. Given an
LLM response, users may wish to know which
parts of the context were responsible for the re-
sponse, or whether the response is grounded at all
(Huang et al., 2023a). We propose Multi-level
Explanations for Generative Language Models
(MExGen) to fulfill this user necessity by providing
explanations for context-grounded text generation.

*Denotes equal contribution in alphabetical order.
†Work done while at IBM Research.

Figure 1: Explanation generated using MExGen C-LIME
(with BERT scalarizer) for a summarization example.
The most important phrases found by MExGen (darker
blue) suggest that the LLM closely paraphrases text
(further skeletal remains) and also abstracts concepts
(M54→ motorway).

MExGen computes explanations by comparing
multiple model predictions given perturbed ver-
sions of the input context. The explanations take
the form of attribution scores assigned to parts of
the input, quantifying the effect of each part on the
model output. Accordingly, we also refer to this
type of explanation as input attribution. MExGen
generalizes popular perturbation-based explanation
methods such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) to generative
LLMs. Such methods are widely used for text
classification (Chen et al., 2020; Kim et al., 2020;
Mosca et al., 2022; Ju et al., 2023), but their applica-
tion to generative LLMs is still limited (Section 2).

Perturbation-based input attribution for genera-
tive LLMs presents challenges related to having
(1) text outputs, (2) high inference cost, and (3)
long text inputs. MExGen provides a framework to
address these challenges. The framework can be in-
stantiated with different attribution algorithms, and
we do so using LIME- and SHAP-like algorithms.

Challenge of output text The first challenge is
that LLMs output text rather than a real number

ar
X

iv
:2

40
3.

14
45

9v
2

 [
cs

.C
L

]
 2

3
Ju

l 2
02

5

https://github.com/IBM/ICX360
https://arxiv.org/abs/2403.14459v2

(e.g., the predicted log probability of a class). At-
tribution algorithms require a real-valued function
to quantify that function’s sensitivity to different
inputs. We address this through the concept of
scalarizers, functions that map output text to real
numbers. We investigate and compare multiple
scalarizers to provide guidance on this choice.

Importantly, most scalarizers that we consider
address the truly “black-box” setting in which we
receive only text as output from the model. This is
common with LLMs that only provide API access
or are proprietary.

Challenge of input length and LLM inference
The input text can be long for context-grounded
generative tasks, e.g., whole papers or news articles.
Generating explanations for long inputs requires
more model inferences, imposing higher computa-
tional and financial costs. Long inputs also pose
interpretation issues, since attributions that are too
fine-grained may be less interpretable to a user.

We address this challenge in three ways: (1) Lin-
guistic segmentation: We segment the input text
into linguistic units at multiple levels, for exam-
ple sentences, phrases, and words. (2) Multi-level
attribution: We use a refinement strategy that pro-
ceeds from attributing at a coarser level like para-
graphs to a finer level like words, only refining the
most important parts of the context. This controls
the number of model inferences and resembles a
binary search. (3) Linear-complexity algorithms:
We instantiate our framework with attribution algo-
rithms whose numbers of model inferences scale
linearly with the number of units (e.g., number of
sentences). We also propose a linear-complexity
variant of LIME called C-LIME that limits the num-
ber of units perturbed at one time.

Evaluation We evaluate instantiations of MExGen
on summarization and context-grounded QA tasks.
We show that MExGen provides more faithful ex-
planations compared to baselines (including LLM
self-explanation), assigning higher importance to
input parts that have the greatest effect on the model
output. We also find that certain scalarizers yield
similar explanations to each other. Some scalariz-
ers that only use text generate explanations close
to those that depend on log probabilities. Human
evaluation corroborates the automated evaluation
findings and also indicates that certain scalariz-
ers and attribution methods, previously considered
similar to others in the automated evaluation, were
perceived as more faithful by users.

Our main contributions are:
• We propose the MExGen framework to extend

perturbation-based input attribution to genera-
tive language models, with a multi-level strategy
to combat the challenges of long inputs.

• We compare several scalarizers for mapping out-
put text to real numbers, notably handling the
case of text-only output from the model.

• We conduct a systematic evaluation, both auto-
mated and human, of input attribution methods
for summarization and QA, showing that MExGen
can provide more faithful explanations of gener-
ated output than the available alternatives. This
advantage extends to self-explanations of LLMs
(Huang et al., 2023b; Madsen et al., 2024), even
from powerful LLMs such as DeepSeek-V3.

2 Related Work

We discuss works on perturbation-based explana-
tions and self-explanations for generative LMs1.
The literature on the former for generative LMs is
limited, as corroborated by Mosca et al. (2022).

Perturbation-based methods PartitionSHAP
in the SHAP library handles long inputs by divid-
ing them into token spans and assigning the same
score to each token in a span. PartitionSHAP
produces separate attributions for each output to-
ken. This approach is less interpretable because
it requires the selection of an output token and as-
signs multiple attribution scores to each input span.
Although PartitionSHAP supports API-only ac-
cess (SHAP, 2024b), understanding its operation
required substantial effort (see Appendix B.1).
CaptumLIME is a modification of LIME (Ribeiro

et al., 2016) tailored for text generation tasks
in the Captum library (Miglani et al., 2023).2

CaptumLIME allows the user to manually define
units for attribution within the input. It handles
text outputs by computing the log probability of
the output. This does, however, require access to
output probabilities, so CaptumLIME is not suitable
for the text-only setting.
TextGenSHAP (Enouen et al., 2023) offers a

more efficient sampling strategy for Shapley
value estimation based on speculative decoding
(Leviathan et al., 2023). As with CaptumLIME, such
computations also require access to output proba-
bilities. Also, TextGenSHAP is tailored to SHAP.

1Please see Appendix A for other forms of explanation.
2Captum also has variants of SHAP but we found them

slow to run and obviated by PartitionSHAP.

“Beyoncé Knowles-
Carter is an American singer,
songwriter, and actress. Born
and raised in Houston she rose
to fame in the late 1990s”

Text Input

[Beyoncé Knowles-
Carter is an American
singer, songwriter, and
actress.]

[Born]
[and]
[raised]
[in Houston]
[she rose to fame in

the late 1990s]

“Beyoncé Knowles-
Carter is an American singer,
songwriter, and actress.”

“Beyoncé Knowles-
Carter is an American singer,
songwriter, and actress. Born
and raised in Houston”

“Beyoncé Knowles-
Carter is an American
singer, songwriter, and
actress. Born in Houston”

Question: Where was
Beyoncé born?

Not in the
context

She was born
and raised in
Houston

She was born in
Houston

Scalarizer 0.01

Scalarizer 1.0

Scalarizer 0.4

<latexit sha1_base64="RN0QOuqgLtUgRkyRqPDjGa7mc1Y=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mVUr0IRS8eK9gPaJeSTbNtaJJdkqxYlv4FLx4U8eof8ua/MdvuQVsfDDzem2FmXhBzpo3rfjuFtfWNza3idmlnd2//oHx41NZRoghtkYhHqhtgTTmTtGWY4bQbK4pFwGknmNxmfueRKs0i+WCmMfUFHkkWMoJNJj2hazQoV9yqOwdaJV5OKpCjOSh/9YcRSQSVhnCsdc9zY+OnWBlGOJ2V+ommMSYTPKI9SyUWVPvp/NYZOrPKEIWRsiUNmqu/J1IstJ6KwHYKbMZ62cvE/7xeYsIrP2UyTgyVZLEoTDgyEcoeR0OmKDF8agkmitlbERljhYmx8ZRsCN7yy6ukfVH16tXafa3SuMnjKMIJnMI5eHAJDbiDJrSAwBie4RXeHOG8OO/Ox6K14OQzx/AHzucPF1CNoA==</latexit>x =

<latexit sha1_base64="hhbIyuYjpOb3SQHwPcFDh4ZgwT8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVol6EohePFey20C4lm2bb2GyyJFmxLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/4GuZKkKbRHKp2iHWlDNBm4YZTtuJojgOOW2Fo5up33qkSjMp7s04oUGMB4JFjGBjJf+p56Er1CtX3Ko7A1omXk4qkKPRK391+5KkMRWGcKx1x3MTE2RYGUY4nZS6qaYJJiM8oB1LBY6pDrLZtRN0YpU+iqSyJQyaqb8nMhxrPY5D2xljM9SL3lT8z+ukJroMMiaS1FBB5ouilCMj0fR11GeKEsPHlmCimL0VkSFWmBgbUMmG4C2+vEz8s6p3Xq3d1Sr16zyOIhzBMZyCBxdQh1toQBMIPMAzvMKbI50X5935mLcWnHzmEP7A+fwBPnSORA==</latexit>x1 =

<latexit sha1_base64="iqM2/cgz0XZj7Y59XPKrsRltQv0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktpXoRil48VrAf0C4lm2bb2GyyJFmxLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxjczv/1IlWZS3JtJTP0IDwULGcHGSq2nfgVdoX6x5JbdOdAq8TJSggyNfvGrN5AkiagwhGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKnBEtZ/Or52iM6sMUCiVLWHQXP09keJI60kU2M4Im5Fe9mbif143MeGlnzIRJ4YKslgUJhwZiWavowFTlBg+sQQTxeytiIywwsTYgAo2BG/55VXSqpS9Wrl6Vy3Vr7M48nACp3AOHlxAHW6hAU0g8ADP8ApvjnRenHfnY9Gac7KZY/gD5/MHP/uORQ==</latexit>x2 =
<latexit sha1_base64="eAO230lE5cpB9Us3EQMVJm0LOio=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9nVUr0IRS8eK9gPaJeSTbNtbDZZkqxYlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aGqZKEIbRHKp2gHWlDNBG4YZTtuxojgKOG0Fo5up33qkSjMp7s04pn6EB4KFjGBjpeZT7xxdoV6x5JbdGdAy8TJSggz1XvGr25ckiagwhGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKnBEtZ/Orp2gE6v0USiVLWHQTP09keJI63EU2M4Im6Fe9Kbif14nMeGlnzIRJ4YKMl8UJhwZiaavoz5TlBg+tgQTxeytiAyxwsTYgAo2BG/x5WXSPCt71XLlrlKqXWdx5OEIjuEUPLiAGtxCHRpA4AGe4RXeHOm8OO/Ox7w152Qzh/AHzucPQYKORg==</latexit>x3 =
<latexit sha1_base64="OpqsLRxJW30k5X171ryUWTzU7vw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVol6EohePFey20C4lm2bb2GyyJFmxLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXphwpo3rfjuFldW19Y3iZmlre2d3r7x/4GuZKkKbRHKp2iHWlDNBm4YZTtuJojgOOW2Fo5up33qkSjMp7s04oUGMB4JFjGBjJf+pV0NXqFeuuFV3BrRMvJxUIEejV/7q9iVJYyoM4VjrjucmJsiwMoxwOil1U00TTEZ4QDuWChxTHWSzayfoxCp9FEllSxg0U39PZDjWehyHtjPGZqgXvan4n9dJTXQZZEwkqaGCzBdFKUdGounrqM8UJYaPLcFEMXsrIkOsMDE2oJINwVt8eZn4Z1XvvFq7q1Xq13kcRTiCYzgFDy6gDrfQgCYQeIBneIU3RzovzrvzMW8tOPnMIfyB8/kDQwmORw==</latexit>x4 =
<latexit sha1_base64="Bnh1jIGwQso3SYJnN00CNKqF/ck=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVVr0IRS8eK9gPaJeSTbNtbDZZkqxYlv4HLx4U8er/8ea/MW33oK0PBh7vzTAzL4g508Z1v53cyura+kZ+s7C1vbO7V9w/aGqZKEIbRHKp2gHWlDNBG4YZTtuxojgKOG0Fo5up33qkSjMp7s04pn6EB4KFjGBjpeZTr4quUK9YcsvuDGiZeBkpQYZ6r/jV7UuSRFQYwrHWHc+NjZ9iZRjhdFLoJprGmIzwgHYsFTii2k9n107QiVX6KJTKljBopv6eSHGk9TgKbGeEzVAvelPxP6+TmPDST5mIE0MFmS8KE46MRNPXUZ8pSgwfW4KJYvZWRIZYYWJsQAUbgrf48jJpnpW983LlrlKqXWdx5OEIjuEUPLiAGtxCHRpA4AGe4RXeHOm8OO/Ox7w152Qzh/AHzucPRJCOSA==</latexit>x5 =
<latexit sha1_base64="2m2Q/f6YfQe7f2Frwz4rr9os7xw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mV0noRil48VrAf0C4lm2bb2GyyJFmxLP0PXjwo4tX/481/Y9ruQVsfDDzem2FmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoOxjczv/1IlWZS3JtJTP0IDwULGcHGSq2nfhVdoX6x5JbdOdAq8TJSggyNfvGrN5AkiagwhGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKnBEtZ/Or52iM6sMUCiVLWHQXP09keJI60kU2M4Im5Fe9mbif143MeGlnzIRJ4YKslgUJhwZiWavowFTlBg+sQQTxeytiIywwsTYgAo2BG/55VXSuih71XLlrlKqX2dx5OEETuEcPKhBHW6hAU0g8ADP8ApvjnRenHfnY9Gac7KZY/gD5/MHRheOSQ==</latexit>x6 =

<latexit sha1_base64="KGHCabIUd9woOgtJzw7a8KAE3yI=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUS9mVol6EohePFewHtmvJptk2NJssSVYsS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npuI7+5tb2zW9jbb2iZKELrRHKpWgHWlDNB64YZTluxojgKOG0Gw+uJ33ykSjMp7swopn6E+4KFjGBjpfunh7TknYzRJeoWim7ZnQItEi8jRchQ6xa+Oj1JkogKQzjWuu25sfFTrAwjnI7znUTTGJMh7tO2pQJHVPvp9OIxOrZKD4VS2RIGTdXfEymOtB5Fge2MsBnoeW8i/ue1ExNe+CkTcWKoILNFYcKRkWjyPuoxRYnhI0swUczeisgAK0yMDSlvQ/DmX14kjdOyd1au3FaK1assjhwcwhGUwINzqMIN1KAOBAQ8wyu8Odp5cd6dj1nrkpPNHMAfOJ8/zZSPtA==</latexit>

x(1) =

<latexit sha1_base64="8Ipy6yQ/9vionEj5dBhpuYOZNLk=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahXkpSinoRil48VrAf2May2W7apZtN2N2IJeRfePGgiFf/jTf/jds2B219MPB4b4aZeV7EmdK2/W3lVlbX1jfym4Wt7Z3dveL+QUuFsSS0SUIeyo6HFeVM0KZmmtNOJCkOPE7b3vh66rcfqVQsFHd6ElE3wEPBfEawNtL900NSrp6m6BL1iyW7Ys+AlomTkRJkaPSLX71BSOKACk04Vqrr2JF2Eyw1I5ymhV6saITJGA9p11CBA6rcZHZxik6MMkB+KE0JjWbq74kEB0pNAs90BliP1KI3Ff/zurH2L9yEiSjWVJD5Ij/mSIdo+j4aMEmJ5hNDMJHM3IrICEtMtAmpYEJwFl9eJq1qxTmr1G5rpfpVFkcejuAYyuDAOdThBhrQBAICnuEV3ixlvVjv1se8NWdlM4fwB9bnD88dj7U=</latexit>

x(2) =

<latexit sha1_base64="892T2BG8l1G7YsfdSYLNi8DtXXE=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSLUS9mVol6EohePFewHtmvJptk2NJssSVYsS/+FFw+KePXfePPfmLZ70NYHA4/3ZpiZF8ScaeO6387S8srq2npuI7+5tb2zW9jbb2iZKELrRHKpWgHWlDNB64YZTluxojgKOG0Gw+uJ33ykSjMp7swopn6E+4KFjGBjpfunh7QkTsboEnULRbfsToEWiZeRImSodQtfnZ4kSUSFIRxr3fbc2PgpVoYRTsf5TqJpjMkQ92nbUoEjqv10evEYHVulh0KpbAmDpurviRRHWo+iwHZG2Az0vDcR//PaiQkv/JSJODFUkNmiMOHISDR5H/WYosTwkSWYKGZvRWSAFSbGhpS3IXjzLy+SxmnZOytXbivF6lUWRw4O4QhK4ME5VOEGalAHAgKe4RXeHO28OO/Ox6x1yclmDuAPnM8fK0iP8Q==</latexit>

x(n) =

LLM for QA

“Beyoncé Knowles-Carter is an
American singer, songwriter, and
actress. Born and raised in Houston
she rose to fame in the late 1990s”

Select Units Generate Perturbations
(According to explainer)

Generate natural language
output for perturbed inputs

Compute
Scalarization

Aggregate scores

She was born
and raised in
Houston

Refine Units

Post Hoc
Explainer

Figure 2: Diagram showing the workflow of MExGen.

Table 3 shows that the above methods each lack
capabilities that are offered by MExGen.

Self-explanation methods These methods
prompt the model to explain its predictions
(e.g., by ranking the most important parts of its
context) (Camburu et al., 2018; Huang et al.,
2023b; Kroeger et al., 2024; Madsen et al., 2024).
However, prior work has found that these self-
explanations may be less faithful when used for
in-context classification tasks (Madsen et al., 2024;
Huang et al., 2023b). Fragkathoulas and Chlapanis
(2024) demonstrated that self-explanations are not
as faithful as numerical attributions (like MExGen)
in identifying keywords for a QA task. We
generalize their work to additional generative tasks
and to self-explanations in the form of rankings.

3 Multi-Level Explanations for
Generative Language Models

This section describes the proposed MExGen frame-
work. Figure 2 provides an overview of MExGen.

In the setting of perturbation-based input attribu-
tion, we are given a generative LM f , an input text
sequence of interest xo (left side of Figure 2, su-
perscript o for “original”), and a generated output
yo = f(xo) that is also a text sequence (top center
of Figure 2). Our goal is to explain yo (the target
output for explanation) by attributing to parts of
the input xo. Each part of the input, denoted xs,
s = 1, . . . , d, is to be assigned an attribution score
ξs (represented by color on the right of Figure 2)
quantifying the importance of xs in generating the
output, in the sense that if important parts are per-
turbed, then the output will change significantly.
As the second through fourth paths in Figure 2 in-
dicate, model f can be queried on perturbations x
of xo, with no further access to f .

Generative language tasks pose two main chal-
lenges: having text as output, and potentially long
text as input. The following two subsections dis-
cuss our solutions to these challenges.

3.1 Handling Text Outputs
Input attribution algorithms such as SHAP and
LIME require a real-valued function as the object to
explain (see Section 3.2, “Linear-complexity algo-
rithms” for examples of how this function is used).
Since the LM f may only output text, we introduce
scalarizers, which are functions S (shown as blue
boxes in Figure 2) that map output text back to real
numbers. We consider two types of access to f : (a)
full logit access, where f can provide predicted log-
its for all tokens in its vocabulary, at each position
in the output sequence; (b) text-only access, where
we are limited to text outputs. See Appendix B.1
for why we assume vocabulary-wide logits for (a).

Full logit access When all logits are available,
we use the probability of generating the target out-
put yo as the function to explain. We refer to this as
the Log Prob scalarizer. Given output sequence yo

of length ℓ and an arbitrary input sequence x, we
compute the model’s log probability of generating
each target output token yot conditioned on x and
previous output tokens yo<t. We then average over
output tokens to obtain the scalarized output for x,

S(x; yo, f) =
1

ℓ

ℓ∑
t=1

log p (yot | yo<t, x; f) . (1)

Here the scalarizer S is parameterized by yo and f
since the latter is providing predicted probabilities.

The Log Prob scalarizer generalizes the log prob-
ability used in explaining text classification. This
is seen from (1) by setting ℓ = 1 (single prediction)
and identifying yo1 with the predicted class.

Text-only access Given only the output text y =
f(x) generated from the perturbed input x, we con-
sider similarity measures S(y; yo) between y and
the target output yo as scalarizers. These now de-
pend on f only via composition, i.e., S(f(x); yo),
and are not parameterized by f as in (1). Ap-
pendix B.1 has further details on these scalarizers.
• Sim: Cosine similarity between embeddings of y

and yo (e.g., SentenceTransformers embeddings).
• BERT: BERTScore (Zhang et al., 2020) between
y and yo.

• BART: BARTScore (“faithfulness” version) be-
tween y and yo (Yuan et al., 2021). Measures the
probability of an auxiliary LM fBART generating
yo given y as input.

• SUMM: Similar to the BART scalarizer with a
summarization model as fBART (SHAP, 2024b).

• Log NLI: Log-odds of entailment given yo as
premise and y as hypothesis, computed using a
natural language inference (NLI) model.

3.2 Handling Long Text Inputs

Some generative language tasks require long in-
put texts, such as in summarization and context-
grounded QA. We address this challenge through a
combination of three techniques: segmenting the
input into linguistic units at multiple levels, using
attribution algorithms with linear complexity in the
number of input units, and obtaining attributions in
a coarse-to-fine manner.

Linguistic segmentation We segment the input
into linguistic units at multiple granularities: para-
graphs, sentences, phrases, and words (“Select
Units” box in Figure 2). This approach takes advan-
tage of linguistic and other structure present in the
input. For example, the input may already be bro-
ken into paragraphs or contain multiple distinct re-
trieved documents, in which case these paragraphs
or documents can form the units at the highest level.
In contrast, existing methods rely on the model’s
tokenizer, which can yield units (tokens) that are
too fine, or treat the text as a flat sequence of to-
kens and let the algorithm decide how to segment
it (Chen et al., 2020; SHAP, 2024a).

We use tokenization and dependency parsing
from spaCy v3.6 (Honnibal et al., 2020) to seg-
ment paragraphs into sentences and words. To seg-
ment sentences into phrases, we implemented an
algorithm that uses the dependency parse tree from
spaCy. In the first pass, the algorithm recursively
segments the tree and its subtrees into phrases that

are no longer than a maximum phrase length. In
the second pass, some short phrases are re-merged.
More details are in Appendix B.2.

Our framework also allows for units at any level
to be marked as not of interest for attribution. Tex-
tual elements like punctuation, prompt templates,
and system prompts are usually not relevant for
attribution and, therefore, marked as not of interest.
Ultimately, the user may choose which parts of the
input context are not of interest. Appendix C.3
gives more details on the choice of ignored units.

Linear-complexity algorithms Given a seg-
mented input with possibly mixed units as in Fig-
ure 2, we have the task of attributing to units
x1, . . . , xd (the “Post Hoc Explainer” block in Fig-
ure 2). Here, we consider only perturbation-based
attribution algorithms that scale linearly with the
number of units d in terms of model queries, to
control this cost. We instantiate MExGen with three
such methods: leave-one-out (LOO), a LIME-like
algorithm with further constraints (C-LIME), and
Local Shapley (L-SHAP). In this work, perturbing a
unit means simply dropping it; see Appendix F for
further discussion.
LOO: Units x1, . . . , xd are perturbed one at

a time, yielding corresponding perturbed inputs
x(1), . . . , x(d). The attribution score for xs is the
decrease in scalarizer score due to leaving xs out:
ξs = S(xo; yo, f)− S(x(s); yo, f).
C-LIME: We use a linear model that operates

on interpretable features z and approximates the
model f in the vicinity of original input xo. In
our case, the interpretable features z ∈ {0, 1}d cor-
respond to units x1, . . . , xd, with zs = 0 if unit
s is perturbed and zs = 1 otherwise. The linear
model is fit using n perturbations x(1), . . . , x(n)

of xo, with corresponding interpretable representa-
tions z(1), . . . , z(n), and scalarized model outputs
S(x(1); yo, f), . . . , S(x(n); yo, f):

ξ = argmin
w

n∑
i=1

π
(
z(i)

)(
wT z(i)−S(x(i); yo, f)

)2
+ λR(w), (2)

where π(z) is a sample weighting function andR is
a regularizer. The best-fit linear model coefficients
yield the attribution scores ξ.

We make two main departures from LIME, in
addition to the use of a general scalarizer S as seen
in (2). Firstly, we limit the number of perturbations
n to a multiple of the number of units d. Since n

is the number of samples in the linear regression
problem (2) while d is the number of parameters
to fit, a ratio n/d of 5 or 10 can yield good results.
LIME by default sets n to be in the thousands inde-
pendently of d, which can be prohibitive for LLMs.
Secondly, we limit the number of units K that can
be perturbed simultaneously to a small integer. This
concentrates the smaller number of perturbations
on inputs that are closer to xo, which aligns with
work showing that doing so improves the fidelity
of attributions (Tan et al., 2023). LIME by contrast
samples the number of units to perturb uniformly
from {1, . . . , d} (Mardaoui and Garreau, 2021).

L-SHAP: This variation of SHAP by Chen et al.
(2019) limits perturbations to a local neighborhood
around a unit of interest, overcoming SHAP’s ex-
ponential complexity. We further extend L-SHAP
by also limiting the number of simultaneously per-
turbed units (as in C-LIME). The equation for the
SHAP score computation is given in (3). Please
see Appendix B.3 for further details.

Multi-level explanations The multi-level ap-
proach is essential for obtaining fine-grained at-
tributions to the most important units in the context
without a drastic increase in the computational cost.
Once we have computed attribution scores at a
given level, we refine the input units and repeat the
process (feedback path at the bottom of Figure 2),
generating multi-level explanations. For example,
given sentence-level attributions, we obtain word-
level attributions for a few sentences and keep at-
tributions at the sentence level for the remainder to
avoid introducing too many new units.

The few units to be refined are selected by Al-
gorithm 1,3 which refines units with scores larger
than a predefined threshold ϕ and that are among
the k units with the highest scores. Our multi-level
approach decreases explanation cost by avoiding
attribution of scores to less relevant finer units. See
Appendix C.3 for the used hyperparameters.

4 Automated Evaluation

We evaluate MExGen on two text generation tasks,
summarization and context-grounded QA. Sec-
tion 4.2 compares the scalarizers that we have con-
sidered and provides guidance on the choice of
scalarizer. Sections 4.3 and 4.4 compare MExGen
to other attribution algorithms and to LLM self-
explanations respectively, showing that MExGen has

3Users can also manually select the units to be refined.

Algorithm 1 Unit Refinement
Require: x1, . . . , xd ▷ Current units

k ≤ d ▷ Maximum # units to refine
ϕ ∈ [−1, 1] ▷ Significance threshold

1: Compute attribution scores ξ using (2) or (3).
2: ψ ← 2 ξ−mins ξs

maxs ξs−mins ξs
− 1 ▷ Normalize scores

3: Compute Top-k(ψ) ▷ k largest ψs

4: units_to_be_refined← {}
5: for s ∈ [d] do
6: if ψs ≥ ϕ and ψs ∈ Top-k(ψ) then
7: units_to_be_refined.add(xs)
8: return units_to_be_refined

higher fidelity in terms of identifying input units
that are most important to the explained model.

4.1 Setup

Datasets and LMs For summarization, we eval-
uate on the Extreme Summarization (XSUM)
(Narayan et al., 2018) and CNN/Daily Mail
(CNN/DM) (See et al., 2017; Hermann et al., 2015)
datasets. In Sections 4.2 and 4.3, we use three
LMs: the 306M-parameter DistilBART 4, the 20B-
parameter Flan-UL2 (Tay et al., 2023), and the
Llama-3-8B-Instruct (“Llama-3”) (Dubey et al.,
2024) models. We treat the DistilBART model as
one with full logit access, enabling use of the Log
Prob scalarizer. We call Flan-UL2 and Llama-3
through an IBM API (IBM, 2024) that only returns
text, thus representing the text-only setting preclud-
ing the use of Log Prob. We evaluate on the first
1000 test set examples of each dataset for Distil-
BART and the first 500 for Flan-UL2 and Llama-3.

For QA, we use the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016)
(1000 validation set examples, see Appendix C.1).
We consider two LMs, Llama-3 through the
above API, and the 770M-parameter Flan-T5-
Large model5 (Chung et al., 2022), which we treat
as providing output logits.

Attribution algorithms We instantiate MExGen
with the attribution algorithms discussed in Sec-
tion 3.2: LOO, C-LIME, and L-SHAP. For summa-
rization, we obtain mixed sentence- and phrase-
level attributions while for QA, we obtain mixed
sentence and word attributions, which are appropri-
ate for SQuAD’s shorter, paragraph-long contexts.

4https://huggingface.co/sshleifer/
distilbart-xsum-12-6

5https://huggingface.co/google/flan-t5-large

https://huggingface.co/sshleifer/distilbart-xsum-12-6
https://huggingface.co/sshleifer/distilbart-xsum-12-6
https://huggingface.co/google/flan-t5-large

Choices for scalarizers, segmentation, and algo-
rithm parameters are described in Appendix C.3.

We compare against PartitionSHAP (P-SHAP)
(SHAP, 2024a) and CaptumLIME (Miglani et al.,
2023). For PartitionSHAP, recall from Section 2
that it requires the selection of an output token to
explain, whereas we are interested in the output
sequence as a whole. For this reason, we modify
PartitionSHAP by summing across all attribution
scores, corresponding to different output tokens,
that it gives to each input span. This is equivalent
to explaining the sum of the log probabilities of out-
put tokens because of the linearity of Shapley val-
ues, and it corresponds to our Log Prob scalarizer.
For CaptumLIME, since it accepts user-defined units
for attribution, we provide it with the same units
used by MExGen. Thus we can directly compare
Captum’s attribution algorithm (i.e., LIME) with
ours, controlling for input segmentation. Captum’s
default for the target function to explain also cor-
responds to the Log Prob scalarizer. Additionally,
PartitionSHAP and CaptumLIME take the number
of model queries as an input; for a fair comparison,
we allow them the greater of the numbers of model
calls used by MExGen L-SHAP and C-LIME.

Metrics To measure local fidelity of explanations,
we use perturbation curves as in Chen et al. (2020);
Ju et al. (2023). Given a set of attribution scores,
perturbation curves rank input units in decreasing
importance according to their scores, perturb the
top k units with k increasing, and plot the result-
ing change in some output scalarization measur-
ing how much the perturbed output deviates from
the target output. For the output scalarization, we
select an evaluation scalarizer from those in Sec-
tion 3.1. To accommodate PartitionSHAP and
CaptumLIME (and slightly favor them), we choose
an evaluation scalarizer corresponding to the target
function that they use for explanation. For Distil-
BART and Flan-T5-Large, this means the Log Prob
scalarizer, while for Flan-UL2 and Llama-3, we
choose SUMM in keeping with PartitionSHAP.
Please see Appendix C.5 for further details.

4.2 Scalarizer Evaluation

Ranking Similarity Across Scalarizers We first
compare scalarizers by measuring the Spearman
rank correlation between attribution score vectors
ξS and ξS′ at the same granularity for all scalarizer
pairs S, S′. Results with cosine similarity instead
of Spearman are in Appendix D.1, Figure 7.

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.870.840.710.680.55

0.871.000.910.750.720.58

0.840.911.000.750.710.58

0.710.750.751.000.950.46

0.680.720.710.951.000.43

0.550.580.580.460.431.00

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
lat

ion

(a) MExGen C-LIME

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.780.790.800.770.44

0.781.000.880.830.800.47

0.790.881.000.830.790.46

0.800.830.831.000.890.47

0.770.800.790.891.000.46

0.440.470.460.470.461.00

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
lat

ion

(b) MExGen L-SHAP

Figure 3: Spearman’s rank correlation between attri-
bution scores using different scalarizers. Attributions
were computed using multi-level (a) MExGen C-LIME
for the DistilBART model on the XSUM dataset and (b)
MExGen L-SHAP for Flan-T5-Large on SQuAD.

Figure 3 shows Spearman correlation matri-
ces, averaged across examples from the respective
dataset. Certain scalarizer pairs are highly simi-
lar, for example BART and SUMM as mentioned
in Section 3.1, as well as Sim and BERT. Thus, it
may suffice to consider only one from each pair.
Log Prob, the only one that uses logits from the
model being explained, clearly differs from the oth-
ers. Additional results in Figure 7 show the same
patterns. There are also noticeable differences be-
tween Figures 3a and 3b, which feature different
tasks, datasets, and models. For example, Spear-
man correlation between BERT and SUMM is 0.75
in (a) and 0.83 in (b). This suggests the necessity
of exploring different scalarizers for different tasks.

Perturbation Curves Across Scalarizers Fig-
ures 4a–4c show perturbation curves with different
evaluation scalarizers, using MExGen C-LIME with
all proposed scalarizers (i.e., a cross-evaluation of
scalarizers). The curves are averaged over 1000
samples from XSUM (see Appendix C.5 for how)
and the shading shows one standard error above and
below. The case where the attribution scalarizer is
matched with the evaluation scalarizer is generally
the best. The Log Prob scalarizer performs well
across evaluation scalarizers, implying that it gives

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Lo
g

Pr
ob

. D
ec

re
as

e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(a) Log Prob as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

BE
RT

 D
ec

re
as

e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(b) BERT Score as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(c) SUMM Score as Evaluation

Figure 4: Perturbation curves (higher is better) for MExGen C-LIME with different scalarizers, used to explain the
DistilBART model on the XSUM dataset. The curves show the decrease in (a) log probability, (b) BERTScore, (c)
SUMM score when removing the most important p% of tokens according to each explanation scalarizer. Shading
shows standard error in the mean.

a more universal explanation (least dependent on
the evaluation scalarizer). Hence, we suggest using
the log probabilities when they are available.

When model logits are not available, the choice
of scalarizer is not as clear. However, if (hypotheti-
cally) one were to use Log Prob as the evaluation
scalarizer, Figures 3 and 4a indicate that the BERT
scalarizer best approximates the Log Prob scalar-
izer (Sim is similar while SUMM, the scalarizer
used by P-SHAP, performs worse in this regard).
Results for MExGen L-SHAP and a second model-
dataset pair in Appendix D.1, Figures 8–10 show
similar trends as above.

The computational cost of different scalarizers
is discussed in Appendix C.3.

4.3 Comparison Between Explainers

Perturbation Curves Figure 5 compares the
perturbation curves of MExGen instantiations with
P-SHAP and CaptumLIME. Mean curves and stan-
dard errors are again computed over the number of
examples taken from each dataset (see Section 4.1).

Regarding CaptumLIME, we were only able to
obtain results for it in Figure 5a because (i) we had
API access to Llama-3 and CaptumLIME needs out-
put logits, and (ii) CaptumLIME does not support
Flan-T5-Large. Figure 5a is a direct comparison
between LIME (represented by CaptumLIME) and
our modification C-LIME, using the same number
of model queries and input segmentation as men-
tioned earlier. C-LIME is clearly more effective.

In comparison with P-SHAP, Figure 5 shows
that the perturbation curves for MExGen rise more
quickly from zero and are higher for the top x% of

tokens, where x > 20% in Figures 5a and 5b, and
x varies between 8% and 13% in Figure 5c. This
pattern indicates that MExGen is better able to iden-
tify units that are most important to the model, as
measured by the change in the evaluation scalarizer
in the leftmost region of each plot. Figure 11 has
results on additional model-dataset pairs. Across
the tested models and datasets, MExGen C-LIME and
L-SHAP are the top performers, while MExGen LOO,
the simplest attribution algorithm, is close behind.

We also show in Figure 5 perturbation curves
for MExGen C-LIME using different scalarizers than
used for evaluation. Surprisingly, we find that even
when using a mismatched scalarizer (notably BERT
in Figures 5a, 5c, which does not even use logits),
MExGen C-LIME can outperform P-SHAP in fidelity.

Area Under the Perturbation Curve Table
1 shows the area under the perturbation curve
(AUPC) to summarize performance over all dataset-
model pairs that we tested, including the ones in
Figure 11. We evaluate AUPC up to 20% of to-
kens as done in (Chen et al., 2020). Across all
dataset-model pairs, MExGen instantiations (includ-
ing LOO) performed better (i.e., higher AUPC) than
P-SHAP. The one exception is the (CNN/DM, Flan-
UL2) pair, but even in this case, Figure 11b in
Appendix D.2 shows that the MExGen curves are
higher for the top 5% of tokens. The second highest
AUPC is always from MExGen C-LIME or L-SHAP.

Computational Cost The computational cost of
the compared explanation methods — measured by
time and memory use — is primarily determined
by the number of LLM inferences performed. As

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Lo
g

Pr
ob

. D
ec

re
as

e

(a) DistilBART on XSUM

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

(b) Llama-3 on CNN/DM

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Lo
g

Pr
ob

. D
ec

re
as

e

MExGen C-LIME
MExGen L-SHAP
MExGen LOO
P-SHAP
CaptumLIME
MExGen C-LIME
(mismatched)

(c) Flan-T5-Large on SQuAD

Figure 5: Perturbation curves (higher is better) for different explanation methods, using the same scalarizer as the
evaluation scalarizer in the y-axis label. Models and datasets: (a) DistilBART on XSUM, (b) Llama-3 on CNN/DM,
(c) Flan-T5-Large on SQuAD. The legend in (c) applies to all panels, but we could run CaptumLIME only for (a).
“MExGen C-LIME (mismatched)” refers to the use of mismatched scalarizers: BERTScore (a)(c) and BARTScore (b).

Datasets Models MExGen C-LIME MExGen L-SHAP MExGen LOO P-SHAP
XSUM DistilBART 13.6 13.8 13.1 9.4

Flan-UL2 17.2 17.4 16.7 13.7
Llama-3-8B-Instruct 22.4 22.2 22.1 20.2

CNN/DM DistilBART 13.5 14.7 13.2 9.7
Flan-UL2 32.1 32.0 32.1 33.2

Llama-3-8B-Instruct 26.4 26.3 26.1 22.1
SQuAD Flan-T5-Large 62.7 61.1 60.2 58.8

Llama-3-8B-Instruct 56.4 57.0 54.9 38.5

Table 1: Areas under the perturbation curve (AUPC) up to 20% of tokens. For DistilBART and Flan-T5-Large, log
probability is used as both the explanation and evaluation scalarizer. For Flan-UL2 and Llama-3-8B-Instruct, which
do not provide access to log probabilites, SUMM is used as the explanation and evaluation scalarizer.

noted in Section 4.1, P-SHAP and CaptumLIME
were allocated the same or slightly more inferences
than MExGen in our experiments. Even so, MExGen
consistently delivered more faithful explanations.

4.4 Comparison with LLM Self-Explanation

LLMs are capable of explaining their own outputs,
including by providing numerical attributions to
their inputs (Huang et al., 2023b; Madsen et al.,
2024). In this experiment, we compare the fidelity
of these self-explanations to that of MExGen. Specif-
ically, since the perturbation curves that we use to
evaluate fidelity depend only on the ranking of in-
put units, we prompt the LLM to rank units in order
of importance to the output that it generated.

LLMs and Datasets As a test of current LLMs’
ability to self-explain, we chose a large and power-
ful open-weights LM, DeepSeek-V3. At the time of
writing, we could not reliably obtain log probabili-
ties from DeepSeek-V3, so we were unable to ap-
ply MExGen with the Log Prob scalarizer and could
only use a text-only scalarizer. For this reason,

we tested a second LLM, Granite-3.3-8B-Instruct,
for which both Log Prob and text-only scalarizers
were possible. We used the summarization datasets
XSUM and CNN/DM.

Explanation Methods For self-explanation, we
describe in Appendix C.4 the prompt that we used
and other details. The most important point is
that we made the ranking task easier by following
Zhang et al. (2024) in numbering input units with
tags and only asking for a list of tags. MExGen was
run in the same way as before (see Appendix C.3).

Results Table 2 shows the AUPC values for this
self-explanation experiment. The corresponding
perturbation curves are in Figure 12. In all cases,
MExGen is more faithful to the LLM’s behavior (as
measured by higher AUPC) than the LLM’s self-
explanations. Considering Granite-3.3, the advan-
tage of MExGen is especially large (AUPC is double
or more) when it uses the Log Prob scalarizer, and
less so with the text-only BART scalarizer. The
larger DeepSeek-V3 model narrows the gap further
on the CNN/DM dataset. Overall, our results indi-

Dataset Model Scalarizer MExGen C-LIME MExGen L-SHAP MExGen LOO Self
XSUM Granite-3.3 Prob 18.9 19.0 18.9 9.5

BART 15.4 14.4 14.2 12.4
DeepSeek-V3 BART 12.7 12.3 12.3 10.5

CNN/DM Granite-3.3 Prob 17.3 17.4 16.9 7.1
BART 11.9 11.0 11.0 8.9

DeepSeek-V3 BART 14.1 14.0 13.5 13.5

Table 2: Areas under the perturbation curve (AUPC) up to 20% of tokens for the comparison with LLM self-
explanation. The scalarizer in the “Scalarizer” column is used for both explanation and evaluation.

cate that while LLM self-explanations can be good,
they are outperformed by algorithms that system-
atically quantify importance. It is also important
to note that this experiment only assesses ranking
ability, whereas MExGen also provides real-valued
scores, a task that would be harder for an LLM.

5 User Study

We conducted a user study to understand how hu-
mans perceive explanations provided by different
scalarizers and attribution methods, and whether
they can discern performance differences akin to
the quantitative evaluations in Section 4. To ease in-
terpretation, we developed a visualization tool that
highlights input text spans based on a color-coded
scale for the attribution scores. In this section, we
focus on the following research questions:
1. Fidelity: Which method is perceived to be better

at explaining how the language model generated
the summary?

2. Preference: Which method do people prefer?
We discuss additional research questions on con-
centration and granularity of attribution scores in
Appendix E.

We selected ten examples from the XSUM
dataset for the user study with diversity in topics,
while ensuring that they do not contain sensitive
issues or obvious errors. We designed an online
survey consisting of three parts. Each part showed
an input text, randomly drawn from the ten exam-
ples, and its summary, generated by the DistilBART
model. This user study focused on algorithms and
scalarizers that are of most interest based on the
automated evaluation in Section 4. Specifically,
we compared two scalarizers (Log Prob, BERT)
and three attribution algorithms (C-LIME, L-SHAP,
PartitionSHAP). The presentation order of the at-
tribution algorithms was randomized to mitigate
order effects. The survey consisted of seven pair-
wise comparisons in total followed by questions
for the participants.

We recruited participants from a large technol-

ogy company who self-identify as machine learn-
ing practitioners using language models and col-
lected data from 88 of them after filtering. Here,
we report a summary of key results only. See Ap-
pendix E for details including survey questions,
analysis, and statistical results.

Scalarizers. Significantly more participants per-
ceived BERT to be higher in fidelity than Log Prob
(57% to 35%). They also preferred BERT over Log
Prob (64% to 31%). This result is notable because
BERT uses only text output from the LM while Log
Prob depends on output logits.

Attribution methods. Significantly more par-
ticipants perceived C-LIME to be higher in fidelity
than L-SHAP (p-value = 0.011). They also pre-
ferred C-LIME over L-SHAP (p = 0.007). This
result is notable because C-LIME and L-SHAP per-
formed very similarly in the automated evaluation
in Section 4.3.

6 Concluding Remarks

We proposed MExGen, a framework to provide ex-
planations for LLMs used in context-grounded
tasks like summarization and question answering.
MExGen uses a multi-level strategy to efficiently
explain model predictions in the case of long in-
puts. MExGen can produce explanations even when
only text outputs are available (API access), thanks
to scalarizers that map text to numerical values.
Our experiments offer guidance on the choice of
scalarizer and show that instances of MExGen pro-
vide more faithful explanations, outperforming the
baselines PartitionSHAP and CaptumLIME as well
as self-explanations by powerful LLMs. The user
study results align with the automated evaluation,
and reveal that people perceive the BERT scalarizer
as more locally faithful than the Log Prob scalar-
izer. This result implies that in some cases, there
may be no loss in having text-only access compared
to full logit access.

Limitations

We see the following limitations and risks:
(1) MExGen is a framework for post hoc explana-

tions. Although such explanations can help prac-
titioners understand model behavior, they do not
fully characterize how models generate output and
only provide local explanations.

(2) Although the findings of our automated eval-
uation are consistent across the tested models and
datasets, the results reported in Section 4 could still
change in other experimental settings.

(3) Our user study analyzes the perception of
participants of how well a method explains the pre-
dictions of a model, and not necessarily the fidelity
of the explanation itself — fidelity is measured
more directly in the automated evaluation. How-
ever, we believe the fact that the participant pool
was composed of people with experience in ML
and LLMs improves the quality of their evaluation.

(4) Post hoc explanations in general come with
the risk of being steered to obfuscate undesirable
behavior from the model. One potential mitigation
is to couple them with additional types of explana-
tion, where possible. Another mitigation is to have
a different party compute explanations, rather than
the model developer. The black-box, perturbation-
based explanations considered in this work lend
themselves to such a two-party scenario, where the
party computing explanations only needs to query
the model to do so. This party would select which
perturbed inputs to query the model on, avoiding
one path to obfuscation where a model developer
uses specially chosen perturbations to conceal un-
desirable behavior. The explaining party should
also be given a large budget of model queries to
better probe model behavior.

Ethics Statement

MExGen is a framework to explain generative lan-
guage models. Hence, its objective is to elucidate
how a model made a specific prediction. Meth-
ods that aim to understand how black-box models
generate their output are essential for guaranteeing
transparency during decision-making. For exam-
ple, a generative language model can be used to
summarize dialog and create minutes of meetings
that can later be used to perform high-stakes deci-
sions. Then, it is necessary to understand how the
model generated the summary and ensure that the
output content is based on the input dialog. There-
fore, for such high-stakes applications, methods

that can provide explanations for text generated by
language models are necessary, highlighting the
importance of MExGen.

Acknowledgements

The authors thank the following people: Inkit Padhi
for suggestions on parsing sentences into phrases,
using language models for perturbing words, and
participation in multiple discussions; Ella Rabi-
novich and Samuel Ackerman for discussions on
and recommendations of similarity measures as
scalarizers, and Ella in particular for also provid-
ing suggestions on parsing sentences into phrases
and using language models for perturbation; Pratap
Kishore Varma Vemulamanda for helping to inves-
tigate the API-only case of SHAP’s summarization
example (SHAP, 2024b); Subhajit Chaudhury for
suggestions of similarity measures as scalarizers;
Keshav Ramji for discussion on related work and
quality evaluation for the explanations; Kush Varsh-
ney and Eitan Farchi for general encouragement
and support. The authors also thank the anonymous
ARR reviewers and action editor for their high-
quality reviews and positive, constructive com-
ments, especially Reviewer GEAE for suggesting
the comparison with LLM self-explanations, and
Yannis Katsis for his advice on the setup for this
experiment. The work of Lucas Monteiro Paes
was supported by the Apple Scholars in AI/ML
Fellowship.

References
Pepa Atanasova, Oana-Maria Camburu, Christina Li-

oma, Thomas Lukasiewicz, Jakob Grue Simonsen,
and Isabelle Augenstein. 2023. Faithfulness tests
for natural language explanations. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 283–294, Toronto, Canada. Association for
Computational Linguistics.

Sebastian Bach, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and Wo-
jciech Samek. 2015. On pixel-wise explanations
for non-linear classifier decisions by layer-wise rele-
vance propagation. PloS one, 10(7):e0130140.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: natu-
ral language inference with natural language expla-
nations. In Proceedings of the 32nd International
Conference on Neural Information Processing Sys-
tems, NIPS’18, page 9560–9572, Red Hook, NY,
USA. Curran Associates Inc.

https://doi.org/10.18653/v1/2023.acl-short.25
https://doi.org/10.18653/v1/2023.acl-short.25

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5578–5593.

Jianbo Chen and Michael Jordan. 2020. LS-Tree:
Model interpretation when the data are linguistic.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):3454–3461.

Jianbo Chen, Le Song, Martin J. Wainwright, and
Michael I. Jordan. 2019. L-Shapley and C-Shapley:
Efficient model interpretation for structured data. In
International Conference on Learning Representa-
tions.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Benjamin Cohen-Wang, Harshay Shah, Kristian
Georgiev, and Aleksander Madry. 2024. Contextcite:
Attributing model generation to context. arXiv
preprint arXiv:2409.00729.

Abhimanyu Dubey et al. 2024. The Llama 3 herd of
models. Preprint, arXiv:2407.21783.

James Enouen, Hootan Nakhost, Sayna Ebrahimi, Ser-
can O. Arik, Yan Liu, and Tomas Pfister. 2023.
TextGenSHAP: Scalable post-hoc explanations in
text generation with long documents. Preprint,
arXiv:2312.01279.

David Firth. 2005. Bradley-Terry models in R. Journal
of Statistical software, 12:1–12.

Christos Fragkathoulas and Odysseas Spyridon Chlapa-
nis. 2024. Local explanations and self-explanations
for assessing faithfulness in black-box llms. In Pro-
ceedings of the 13th Hellenic Conference on Artificial
Intelligence, SETN ’24, New York, NY, USA. Asso-
ciation for Computing Machinery.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS, pages 1693–1701.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength natural language processing in python.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023a. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ArXiv, abs/2311.05232.

Shiyuan Huang, Siddarth Mamidanna, Shreedhar
Jangam, Yilun Zhou, and Leilani H. Gilpin. 2023b.
Can large language models explain themselves? a
study of llm-generated self-explanations. Preprint,
arXiv:2310.11207.

IBM. 2024. IBM Generative AI Python SDK
(Tech Preview). https://github.com/IBM/
ibm-generative-ai. Accessed: 2024-10-01.

Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and
Xiang Ren. 2020. Towards hierarchical importance
attribution: Explaining compositional semantics for
neural sequence models. In International Conference
on Learning Representations.

Yiming Ju, Yuanzhe Zhang, Kang Liu, and Jun Zhao.
2023. A hierarchical explanation generation method
based on feature interaction detection. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 12600–12611.

Ambedkar Kanapala, Sukomal Pal, and Rajendra Pa-
mula. 2017. Text summarization from legal doc-
uments: a survey. Artificial Intelligence Review,
51:371 – 402.

Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon.
2020. Interpretation of NLP models through input
marginalization. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3154–3167.

Nicholas Kroeger, Dan Ley, Satyapriya Krishna, Chi-
rag Agarwal, and Himabindu Lakkaraju. 2024. In-
context explainers: Harnessing llms for explaining
black box models. Preprint, arXiv:2310.05797.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
In The Eleventh International Conference on Learn-
ing Representations.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,
Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-
son Kernion, Kamilė Lukošiūtė, Karina Nguyen,
Newton Cheng, Nicholas Joseph, Nicholas Schiefer,
Oliver Rausch, Robin Larson, Sam McCandlish,
Sandipan Kundu, Saurav Kadavath, Shannon Yang,
Thomas Henighan, Timothy Maxwell, Timothy
Telleen-Lawton, Tristan Hume, Zac Hatfield-Dodds,
Jared Kaplan, Jan Brauner, Samuel R. Bowman, and
Ethan Perez. 2023. Measuring faithfulness in chain-
of-thought reasoning. Preprint, arXiv:2307.13702.

Md Tahmid Rahman Laskar, Xue-Yong Fu, Cheng Chen,
and TN ShashiBhushan. 2023. Building real-world

https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.1609/aaai.v34i04.5749
https://doi.org/10.1609/aaai.v34i04.5749
https://openreview.net/forum?id=S1E3Ko09F7
https://openreview.net/forum?id=S1E3Ko09F7
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2312.01279
https://arxiv.org/abs/2312.01279
https://doi.org/10.1145/3688671.3688775
https://doi.org/10.1145/3688671.3688775
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:265067168
https://arxiv.org/abs/2310.11207
https://arxiv.org/abs/2310.11207
https://github.com/IBM/ibm-generative-ai
https://github.com/IBM/ibm-generative-ai
https://openreview.net/forum?id=BkxRRkSKwr
https://openreview.net/forum?id=BkxRRkSKwr
https://openreview.net/forum?id=BkxRRkSKwr
https://doi.org/10.18653/v1/2023.findings-acl.798
https://doi.org/10.18653/v1/2023.findings-acl.798
https://api.semanticscholar.org/CorpusID:26448969
https://api.semanticscholar.org/CorpusID:26448969
https://doi.org/10.18653/v1/2020.emnlp-main.255
https://doi.org/10.18653/v1/2020.emnlp-main.255
https://arxiv.org/abs/2310.05797
https://arxiv.org/abs/2310.05797
https://arxiv.org/abs/2310.05797
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://arxiv.org/abs/2307.13702
https://arxiv.org/abs/2307.13702
https://api.semanticscholar.org/CorpusID:264814425

meeting summarization systems using large language
models: A practical perspective. In Conference on
Empirical Methods in Natural Language Processing.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationaling neural predictions. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Learning Representations.

Xuhong Li, Jiamin Chen, Yekun Chai, and Haoyi Xiong.
2024. Gilot: interpreting generative language mod-
els via optimal transport. In Proceedings of the
41st International Conference on Machine Learning,
ICML’24. JMLR.org.

Wei Liu, , Haozhao Wang, Jun Wang, Ruixuan Li,
Zinyang Li, Yuankai Zhang, and Yang Qiu. 2023a.
Mgr: Multi-generator based rationalization. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics.

Wei Liu, , Jun Wang, Haozhao Wang, Ruixuan Li, Zhiy-
ing Deng, Yuankai Zhang, and Yang Qiu. 2023b. D-
separation for causal self-explanation. In NeurIPS.

Wei Liu, , Jun Wang, Haozhao Wang, Ruixuan Li,
Yang Qiu, Yuankai Zhang, Jie Han, and Yixiong Zou.
2023c. Decoupled rationalization with asymmetric
learning rates: A flexible lipschitz restraint. In Pro-
ceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining.

Wei Liu, Zhiying Deng, Zhongyu Niui, Jun Wang,
Haozhao Wang, Yuankai Zhang, and Ruixuan Li.
2024a. Is the mmi criterion necessary for inter-
pretability? degenerating non-causal features to plain
noise for self-rationalization. In NeurIPS.

Wei Liu, Haozhao Wang, Jun Wang, Zhiying Deng,
YuanKai Zhang, Cheng Wang, and Ruixuan Li.
2024b. Enhancing the rationale-input alignment for
self-explaining rationalization. In Proceedings of the
IEEE 40th International Conference on Data Engi-
neering.

Wei Liu, Haozhao Wang, Jun Wang, Ruixuan Li, Chao
Yue, and Yuankai Zhang. 2022. Fr: Folded rational-
ization with a unified encoder. In NeurIPS.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc.

Andreas Madsen, Sarath Chandar, and Siva Reddy. 2024.
Are self-explanations from large language models
faithful? In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 295–337,
Bangkok, Thailand. Association for Computational
Linguistics.

Dina Mardaoui and Damien Garreau. 2021. An analysis
of LIME for text data. In Proceedings of The 24th In-
ternational Conference on Artificial Intelligence and
Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 3493–3501. PMLR.

Vivek Miglani, Aobo Yang, Aram Markosyan, Diego
Garcia-Olano, and Narine Kokhlikyan. 2023. Using
Captum to explain generative language models. In
Proceedings of the 3rd Workshop for Natural Lan-
guage Processing Open Source Software (NLP-OSS
2023), pages 165–173, Singapore.

Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel
Gallagher, and Georg Groh. 2022. SHAP-based ex-
planation methods: A review for NLP interpretabil-
ity. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4593–
4603, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Manish Nagireddy, Lamogha Chiazor, Moninder Singh,
and Ioana Baldini. 2024. SocialStigmaQA: A bench-
mark to uncover stigma amplification in generative
language models. In Proceedings of the 2024 AAAI
Conference on Artificial Intelligence.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Letitia Parcalabescu and Anette Frank. 2024. On mea-
suring faithfulness or self-consistency of natural lan-
guage explanations. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6048–
6089, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Thang Pham, Trung Bui, Long Mai, and Anh Nguyen.
2022. Double trouble: How to not explain a text clas-
sifier’s decisions using counterfactuals synthesized
by masked language models? In Proceedings of the
2nd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
12th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
12–31, Online only. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

https://api.semanticscholar.org/CorpusID:264814425
https://api.semanticscholar.org/CorpusID:264814425
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.18653/v1/2024.findings-acl.19
https://doi.org/10.18653/v1/2024.findings-acl.19
https://proceedings.mlr.press/v130/mardaoui21a.html
https://proceedings.mlr.press/v130/mardaoui21a.html
https://doi.org/10.18653/v1/2023.nlposs-1.19
https://doi.org/10.18653/v1/2023.nlposs-1.19
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406
https://aclanthology.org/2022.coling-1.406
https://arxiv.org/abs/2312.07492
https://arxiv.org/abs/2312.07492
https://arxiv.org/abs/2312.07492
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/2024.acl-long.329
https://doi.org/10.18653/v1/2024.acl-long.329
https://doi.org/10.18653/v1/2024.acl-long.329
https://aclanthology.org/2022.aacl-main.2
https://aclanthology.org/2022.aacl-main.2
https://aclanthology.org/2022.aacl-main.2
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "Why should I trust you?" Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135–1144.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, Oskar
van der Wal, Malvina Nissim, and Arianna Bisazza.
2023. Inseq: An interpretability toolkit for se-
quence generation models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), pages 421–435, Toronto, Canada. Association
for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

SHAP. 2024a. Text examples. https:
//shap.readthedocs.io/en/latest/text_
examples.html. Accessed February 2024.

SHAP. 2024b. Text to text explana-
tion: Abstractive summarization exam-
ple. https://shap.readthedocs.io/
en/latest/example_notebooks/text_
examples/summarization/Abstractive%
20Summarization%20Explanation%20Demo.html.
Accessed February 2024.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017. Learning important features through
propagating activation differences. In International
conference on machine learning, pages 3145–3153.
PMLR.

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-
serman. 2013. Deep inside convolutional networks:
Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034.

Chandan Singh, W. James Murdoch, and Bin Yu. 2019.
Hierarchical interpretations for neural network pre-
dictions. In International Conference on Learning
Representations.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319–
3328. PMLR.

Zeren Tan, Yang Tian, and Jian Li. 2023. GLIME: Gen-
eral, stable and local LIME explanation. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Gar-
cia, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Dara Bahri, Tal Schuster, Huaixiu Steven Zheng,
Denny Zhou, Neil Houlsby, and Donald Metzler.

2023. UL2: unifying language learning paradigms.
In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong
Zhang. 2024. Benchmarking retrieval-augmented
generation for medicine. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
6233–6251, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
BARTScore: Evaluating generated text as text gener-
ation. In Advances in Neural Information Processing
Systems.

Jiajie Zhang, Yushi Bai, Xin Lv, Wanjun Gu, Danqing
Liu, Minhao Zou, Shulin Cao, Lei Hou, Yuxiao Dong,
Ling Feng, and Juanzi Li. 2024. LongCite: En-
abling LLMs to generate fine-grained citations in
long-context QA. arXiv preprint arXiv:2409.02897.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Interna-
tional Conference on Learning Representations.

https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://shap.readthedocs.io/en/latest/text_examples.html
https://shap.readthedocs.io/en/latest/text_examples.html
https://shap.readthedocs.io/en/latest/text_examples.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/summarization/Abstractive%20Summarization%20Explanation%20Demo.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/summarization/Abstractive%20Summarization%20Explanation%20Demo.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/summarization/Abstractive%20Summarization%20Explanation%20Demo.html
https://shap.readthedocs.io/en/latest/example_notebooks/text_examples/summarization/Abstractive%20Summarization%20Explanation%20Demo.html
https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=SkEqro0ctQ
https://openreview.net/forum?id=3FJaFElIVN
https://openreview.net/forum?id=3FJaFElIVN
https://openreview.net/pdf?id=6ruVLB727MC
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=bzs4uPLXvi
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2024.findings-acl.372
https://doi.org/10.18653/v1/2024.findings-acl.372
https://openreview.net/forum?id=5Ya8PbvpZ9
https://openreview.net/forum?id=5Ya8PbvpZ9
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

A More on Related Work

Table 3 compares the features of the proposed
MExGen framework to alternative perturbation-
based explanation methods. The remainder of this
appendix discusses other categories of explanation
methods.

Hierarchical Explanations A line of work
(Singh et al., 2019; Jin et al., 2020; Chen et al.,
2020; Ju et al., 2023) has developed hierarchical
explanations for sequence models including LLMs,
which can reveal compositional interactions be-
tween words and phrases. In particular, the HEDGE
algorithm of Chen et al. (2020) was identified by
Mosca et al. (2022) as “arguably the most suitable
choice” for NLP input attribution, in part because it
builds its hierarchy in a top-down, divisive fashion
(as opposed to bottom-up agglomeration (Singh
et al., 2019; Ju et al., 2023)), which is more prac-
tical for long texts. However, HEDGE is specific to
classification because it measures feature impor-
tance based on classification margin.

Gradient-Based Explanations Gradient-based
methods provide input attribution explanations (Si-
monyan et al., 2013; Sundararajan et al., 2017;
Shrikumar et al., 2017; Bach et al., 2015), but they
require access to model gradients with respect to
the input.

Attribution for Generative Language Models.
Concurrently with our work, other studies have ex-
plored attribution techniques for generative LMs
(Li et al., 2024; Cohen-Wang et al., 2024; Sarti
et al., 2023). GiLOT (Li et al., 2024) employs opti-
mal transport to compute explanations. However, it
focuses on the overall distributional changes across
all possible outputs rather than attributing specific
generated outputs to particular inputs, as MExGen
does.
ContextCite (Cohen-Wang et al., 2024) ex-

tends LIME (Ribeiro et al., 2016) to generative
models by considering parts of the context as fea-
tures. While effective, ContextCite operates at a
single predefined granularity level (e.g., sentence
level), lacking the multi-level nature of MExGen,
which improves explanation performance.

Inseq (Sarti et al., 2023) is a toolkit for attribu-
tion of generative LMs, offering methods and vi-
sualization tools for context attributions. Its meth-
ods focus on computing the importance of each
input token for every token in the generated output.
However, this approach may not fully capture the

influence of larger units in the input, and it also
does not explain the entire output.

A key distinction of MExGen is its ability to
function without access to the model’s logits
by utilizing text-only scalarizers, whereas GiLOT,
ContextCite, and Inseq all assume access to
these logits.

Self-Explanations & Numerical Attributions
Other works have used the generative LM itself
to provide explanations in line with subsequent
outputs.

An example of self-explanation is the chain-of-
thought (CoT) (Wei et al., 2022), where the model
explicitly generates the reasoning in natural lan-
guage used to produce its output. However, CoT
has issues with stability (Turpin et al., 2023) and
faithfulness (Atanasova et al., 2023; Lanham et al.,
2023) in addition to significant variation in qual-
ity (Nagireddy et al., 2024). Moreover, evaluat-
ing the faithfulness of CoT is challenging, and
Parcalabescu and Frank (2024) argued that exist-
ing faithfulness evaluations actually measure self-
consistency. Parcalabescu and Frank (2024) pro-
posed their own measure of self-consistency called
CC-SHAP, which adapts SHAP in a way similar
to how we adapt P-SHAP. CoT is less relevant to
our work since it provides explanations in natural
language rather than numerical attributions.

Another approach to self-explanation is prompt-
ing the model to explain its predictions (e.g., by
ranking the most important parts of its context)
(Camburu et al., 2018; Huang et al., 2023b; Kroeger
et al., 2024; Madsen et al., 2024). However, prior
work has found that these self-explanations may be
less faithful when used for in-context classification
tasks (Madsen et al., 2024; Huang et al., 2023b).

Recently, Fragkathoulas and Chlapanis (2024)
employed a modified version of MExGen to iden-
tify words in the input context that were essential
for the model’s prediction in a question-answering
task. Then, Fragkathoulas and Chlapanis (2024)
compared the keywords they identified with the
keywords extracted using self-explanation, show-
ing that self-explanations are not as faithful as their
method. This is a first step in demonstrating that
self-explanations are not as faithful as numerical
attributions, as provided by MExGen. Our work gen-
eralizes theirs to additional generative tasks and to
self-explanations in the form of rankings.

Rationalization Yet another line of self-
explanation methods falls under the class of

Method Long Text Output Long Text Input API Access
LIME ✗ ✗ ✗

SHAP ✗ ✗ ✗

HEDGE ✗ ✓ ✗

P-SHAP ● ✓ ✓

TextGenSHAP ✗ ✓ ✗

Captum ✓ ✗ ✗

MExGen ✓ ✓ ✓

Table 3: Comparing the features of our MExGen framework with existing perturbation-based explanation methods.

rationalization methods. Lei et al. (2016) propose
to simultaneously train a rationale extractor with
a predictor. The rationale extractor essentially
selects parts of the text to use for prediction that
fulfill two criteria: they are interpretable and
maintain nearly the same prediction as using the
full text. As these parts of the text are interpretable,
they offer an explanation for the final prediction.
Lei et al. (2016) employed regularizations to keep
the rationales short while encouraging contiguous
text, and a sequence of recent literature has focused
on improving these rationales.

Liu et al. (2022) propose to share the encoder
parameters of the extractor and predictor, with the
intuition that the extractor and predictor are both
seeking to find the most informative part of the
input text. Liu et al. (2023b) takes a different ap-
proach and considers removing what is unimpor-
tant rather than selecting what is important; they
minimize a criterion for dependence of the pre-
diction on the text which essentially detects what
parts of the text is not required for prediction. Liu
et al. (2023c) use a theoretical analysis of how the
Lipschitz constant of the predictor affects the ex-
tractor to propose how to control the learning rate
for obtaining better rationales. Liu et al. (2023a)
introduce an ensemble of extractors (multiple ex-
tractors with different initializations) into the ratio-
nalization training framework and find improved
prediction performance. At inference time, only
the first extractor of the ensemble is used for in-
terpretability. Liu et al. (2024b) further include a
predictor on the full text into a regularization term
in order to better align predictions on extracted
text with those of the full text. Most recently, Liu
et al. (2024a) build on Liu et al. (2023b) and pro-
pose a loss criterion that attempts to treat spurious
correlations in the text as if it were noise.

B Further Details on MExGen

This appendix provides more details on the MExGen
framework that are of a more general nature. For
parameter settings and other details specific to our
experiments, please refer to Appendix C.

B.1 Scalarizers
Vocabulary-wide logits The inputs x in our case
are perturbed versions of the original input xo.
Some of these perturbations however may be signif-
icantly different semantically and cause the proba-
bility of generating the target output yo to decrease
dramatically. For this reason, the Log Prob scalar-
izer may require access to logits for improbable
tokens conditioned on x, which can be ensured if
logits are available for the entire vocabulary, but
not if only the top k logits are provided.

Aggregation for Log Prob scalarizer As alter-
natives to the average over the output sequence in
(1), other ways of aggregating include using the
sum or taking the product or geometric mean of the
probabilities. We choose the average to normalize
for sequence length and because log probabilities
tend to be a more “linear” function of inputs than
probabilities.

BERTScore BERTScore uses an LM to obtain
contextual embeddings for the tokens in y and yo,
matches the two sets of embeddings based on co-
sine similarity, and computes a score to quantify
the degree of match.

BARTScore BARTScore is the same as (1) ex-
cept with y in place of x and an auxiliary LM fBART

(not necessarily a BART model) in place of the LM
f being explained. It thus measures the probability
of fBART generating yo given y as input.

SUMM scalarizer We included this scalarizer
to represent our understanding of how the abstrac-
tive summarization example (SHAP, 2024b) in the

SHAP library handles the text-only API case. We
investigated the code behind this SHAP example,
and specifically the TeacherForcing class that it
uses. Our understanding of the code is that it ob-
tains proxy log-odds for tokens in the target output
yo by taking log-odds from an auxiliary summariza-
tion model fSUMM, with input y and output set to yo.
If we then average the log-odds over the tokens in
yo (similar to (1)), the result is similar to the BART
scalarizer with fBART = fSUMM (with a possible
discrepancy between log-odds versus log probabil-
ities). Our experiments show that the BART and
SUMM scalarizers are indeed very similar.

Log NLI scalarizer This scalarizer is based on
the intuition that Log NLI entailment is a kind of
similarity. We use the NLI model to predict the
log-odds of entailment given yo as premise and y
as hypothesis, and optionally in the other direction
as well. If both directions are used, we take the
geometric mean of the two entailment probabilities
and then convert back to log-odds. We note that
bi-directional entailment has been used to approxi-
mate semantic equivalence, for example in Kuhn
et al. (2023), but here we use the log-odds scores
and not just the predicted labels.

B.2 Phrase Segmentation

Here we describe the phrase segmentation algo-
rithm mentioned in Section 3.2. The algorithm
starts with the root token of the tree and checks
whether each child subtree of the root is shorter
(in terms of tokens) than a maximum phrase length
parameter. If it is shorter, then the subtree con-
stitutes a phrase, and if it is not, the algorithm is
recursively applied to the subtree. The root token
of each (sub)tree is also taken to be a phrase. Once
the sentence has been recursively segmented into
phrases in this manner, a second pass is performed
to re-merge some phrases that have become too
fragmented, thus controlling the number of phrases
which is desirable for computation and interpre-
tation. Specifically, phrases that constitute noun
chunks (as identified by spaCy) are merged, and
certain single-token phrases are merged with their
neighbors. Further notes:

• Subtrees of the dependency parse tree are usu-
ally contiguous spans of text (in English), but
sometimes they correspond to multiple spans.
In this case, we treat each span as its own sub-
tree since we wish to have contiguous phrases.

• In measuring the token length of a span, we

do not count punctuation or spaces.
• In merging phrases that fall within a noun

chunk, we check conditions that are consistent
with noun chunks, for example that there is a
root phrase that is a single token (the noun),
and that the other phrases are children of the
root phrase.

• For merging single-token phrases with their
neighbors, we use the following criteria:

– The single-token phrase (singleton) is a
non-leaf phrase (is the parent of other
phrases) or a coordinating conjunction.

– If the singleton is a coordinating conjunc-
tion (e.g. “and”), the neighbor is a corre-
sponding conjunct (e.g. “Bob” in “Alice
and Bob”).

– If the singleton is a preposition
(e.g. “to”), the neighbor is a child of the
preposition (e.g. “the store” in “to the
store”).

– If the singleton is of some other type, the
neighbor is a leaf phrase and is either
adjacent to the singleton or a singleton
itself.

– The merged phrases do not exceed the
maximum phrase length parameter.

B.3 L-SHAP

This local variation of SHAP was proposed by
Chen et al. (2019) to decrease the number of model
inferences relative to SHAP, which requires expo-
nentially many inferences. In our context, L-SHAP
does so by only perturbing units that are within
a constant-size neighborhood of the current unit
being attributed to. This makes the number of in-
ferences scale linearly with the number of units.
More precisely, for unit of interest s ∈ [d], we
consider only the radius-M neighborhood NM

s =
{s−M, . . . , s− 1, s+ 1, . . . , s+M} (truncated
to 1, . . . , d if necessary) and subsets of NM

s with
cardinality up to K. Then the attribution score ξs
for unit s is given by

ξs =
1

K + 1

∑
A⊆NM

s :|A|≤K

(
|NM

s |
|A|

)−1

×
(
S(x(A); yo, f)− S(x(A∪{s}); yo, f)

)
, (3)

where x(A) is a perturbation of xo in which units
j ∈ A are perturbed (just dropped in our work).

C Automated Evaluation Details

This appendix documents choices and parameter
settings used in the experiments in Section 4. We
follow the order of presentation in Section 4.1:
datasets and LM inference, choices for the MExGen
framework (Appendix C.3), baseline attribution
methods (Appendix C.4), perturbation curve de-
tails, and computing environment.

C.1 Datasets

The GitHub repository6 that enables the XSUM
dataset (Narayan et al., 2018) to be rebuilt is made
available under the MIT license. The CNN/DM
dataset (See et al., 2017) is made available by Hug-
gingFace7 under the Apache-2.0 license. Both
datasets are intended for abstractive summariza-
tion, which is how we use them. Both datasets
consist of news articles and thus contain the names
of individuals. Since these names were reported by
the media in the original articles, they are already
in the public domain and there is no further issue.

SQuAD is distributed under the CC BY-SA 4.0
license. The dataset is intended for evaluating read-
ing comprehension by answering questions on the
contexts in the dataset, which is how we use it as
well. Since the contexts are taken from Wikipedia
articles, some of them name individuals, but again
these articles are already in the public domain. We
selected 1000 validation set examples at random
from SQuAD because selecting the first 1000 ex-
amples yielded insufficient diversity.

C.2 Language model inference

DistilBART and Flan-T5-Large The two mod-
els that we treated as providing full logit access,
DistilBART and Flan-T5-Large, were downloaded
from HuggingFace under the Apache-2.0 license.
The DistilBART model was trained on the summa-
rization datasets XSUM and CNN/DM, and we use
it for summarization. Flan-T5-Large is a general-
purpose LM intended for research on LMs, consis-
tent with our use.

The models were called through their
.generate method. For generating the orig-
inal (target) output (corresponding to the original
input), max_new_tokens was set to None (i.e.,
the default). When using the text-only scalar-
izers, perturbed output texts (corresponding to

6https://github.com/EdinburghNLP/XSum
7https://huggingface.co/datasets/abisee/cnn_

dailymail

perturbed inputs) are also generated, and for these,
max_new_tokens was set to 1.5 times the number
of tokens in the target output. The Log Prob scalar-
izer computes the log probability of generating the
target output, so max_new_tokens is not needed in
this case. All other hyperparameters were left at
default settings (for example greedy decoding was
used).

Flan-UL2 and Llama-3 Flan-UL2 and Llama-3-
8B-Instruct are general-purpose LMs. Flan-UL2 is
distributed by HuggingFace under the Apache-2.0
license while Llama-3 is distributed under its own
Meta Llama 3 Community License.8 We however
accessed Flan-UL2 and Llama-3 using an LLM
API service provided by IBM (IBM, 2024) (no
longer in existence).

For these API calls to Flan-UL2 and Llama-
3-8B-Instruct, we used greedy decoding and
max_new_tokens = 100. In the case of Llama-
3, we used its chat template and provided the fol-
lowing system prompts for summarization and QA
respectively: (summarization) “Summarize the fol-
lowing article in one sentence. Do not preface the
summary with anything.” (QA) “Please answer the
question based on the provided context. Answer
with a short phrase or sentence.” No chat template
or system prompt was necessary to prompt Flan-
UL2 to summarize.

DeepSeek-V3 and Granite-3.3 The DeepSeek-
V3 and Granite-3.3-8B-Instruct models used in the
self-explanation experiment of Section 4.4 were
called using a different LLM API service provided
by IBM. Similar to Llama-3, we used greedy decod-
ing, max_tokens= 100, the model’s chat template,
and the same system prompt for summarization
above. We also fixed the LLM’s random seed so
that it would generate the same output given the
same input. For generating self-explanations in the
form of a list of tags, max_tokens was increased
to 500 to accommodate long lists. For Granite-3.3,
we were able to obtain log probabilities by setting
max_tokens = 0 and logprobs = 0, which re-
turns log probabilities of tokens in the input given
to the LLM.

C.3 MExGen

Scalarizer models The text-only scalarizers pre-
sented in Section 3.1 can be instantiated with dif-
ferent models. The ones used in our experiments

8https://www.llama.com/llama3/license/

https://github.com/EdinburghNLP/XSum
https://huggingface.co/datasets/abisee/cnn_dailymail
https://huggingface.co/datasets/abisee/cnn_dailymail
https://www.llama.com/llama3/license/

are as follows:
• “Sim”: We use the all-MiniLM-L6-v2 embed-

ding model from the SentenceTransformers
package (Reimers and Gurevych, 2019).9

• “BERT”: We use the model deberta-v2-
xxlarge-mnli10 (He et al., 2021) to compute
BERTScore (Zhang et al., 2020) (MIT li-
cense). This is the same model that we use for
the Log NLI scalarizer. Our initial reason for
doing so was to see whether the two scalar-
izers would be very similar because of this
choice (they are not as they operate on differ-
ent principles). We take the “F1-score” output
as the BERTScore.

• “BART” and “SUMM”: For “SUMM”, we
follow SHAP (2024b) in using the same
distilbart-xsum-12-6 model as both the scalar-
izing summarization model as well as the pri-
mary summarization model to explain. For
“BART”, i.e., BARTScore (Yuan et al., 2021),
we use the code11 from the authors and also
instantiate it with the distilbart-xsum-12-6
model. The purpose was to determine whether
the “BART” and “SUMM” scalarizers are
very similar when instantiated with the same
model, which is indeed the case.

• “Log NLI”: As mentioned above, we use
deberta-v2-xxlarge-mnli as the Log NLI
model. We also choose to compute the Log
NLI entailment probability in both directions
and take the geometric mean of the two before
taking the logit.

All other parameters of these scalarizers are kept at
default values.

In the case where log probabilities are not avail-
able from the LLM being explained, the above
text-only scalarizers contribute to the overall com-
putational cost of MExGen, but only in a secondary
way. This is because our choices of scalarizers are
small LMs (at most 1.5B parameters for deberta-
v2-xxlarge-mnli). The Sim scalarizer was the most
computationally efficient because it uses a Sen-
tenceTransformer model. The other scalarizers
were more comparable to each other, with the Log
NLI scalarizer being the most costly because of our

9This model can be found at https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2 and is dis-
tributed under the Apache-2.0 license.

10This model can be found at https://huggingface.co/
microsoft/deberta-v2-xxlarge-mnli under the MIT li-
cense.

11https://github.com/neulab/BARTScore, Apache-2.0
license

choice to compute bi-directional entailment (two
inferences versus one).

Linguistic segmentation As mentioned in Sec-
tion 3.2, we use spaCy v3.6 (Honnibal et al., 2020)
(distributed under the MIT license) for sentence
and word segmentation. Our custom phrase seg-
mentation algorithm has one main parameter, the
maximum phrase length, which we set to 10 spaCy
tokens (not counting spaces and punctuation).

In terms of units that are not of interest
for attribution, we exclude non-alphanumeric
units (generally punctuation and newlines) and
prompt template elements, for example start-
of-message and end-of-message tokens like
“<|start_header_id|>user<|end_header_id|>”, pre-
fixes such as “Context: ”, and system prompts.
For QA, we exclude the question and allow only
the context to be attributed to.

Multi-level explanations The decision here is
how many top sentences are refined into phrases
in the summarization experiments and into words
in the QA experiments. For this we follow Al-
gorithm 1 with the following parameter settings:
For summarization with the DistilBART model,
the number of top sentences is set to k = 3 and
the significance threshold is set to ϕ = 1/3 for
sentence-level scores from C-LIME and LOO and
ϕ = 0.3 for L-SHAP. For summarization with Flan-
UL2, Llama-3, DeepSeek-V3, and Granite-3.3, we
set k to correspond to the top 25% of sentences,
rounding to the nearest integer and ensuring k ≥ 1.
A significance threshold is not used, i.e., ϕ = −1.
For QA, we simply take the top k = 1 sentence
as the context paragraphs in SQuAD tend to have
only a handful of sentences, and again do not use a
significance threshold (ϕ = −1).

C-LIME For C-LIME, the parameters controlling
the perturbations are the constant of proportionality
between the number of perturbations n and number
of units d, and the maximum number of units K
perturbed at one time. For the smaller DistilBART
and Flan-T5-Large models, n/d is set to 10 and
K to 3, except for sentence-level attributions on
SQuAD where K = 2.

For Flan-UL2, Llama-3-8B-Instruct, DeepSeek-
V3, and Granite-3.3-8B-Instruct, since inference
is more costly for these larger models, we take the
following approach. First, at the sentence level of
attribution, we only use LOO to identify the top sen-
tences and do not use C-LIME. At the phrase level

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli
https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli
https://github.com/neulab/BARTScore

You provided the summary below of an article, also below. The article is divided into units (sentences or
phrases), which are numbered in the format: <u0> unit 0 <u1> unit 1 ... Please list the {top_k} units that
were most important for you to produce this summary. List them in order from most important to least
important. List only the unit numbers, for example “<u3>, <u1>, <u4>”.

Summary:
{summary}

Article:
<u0> {units[0]} <u1> {units[1]} . . .

Figure 6: Prompt for LLM self-explanation

for the summarization datasets, we use C-LIME
with K = 2 and n equal to the total number of
phrases (in the entire document, not just in the sen-
tences selected for refinement). Similarly, at the
word level for SQuAD, we set K = 2 and n equal
to the total number of words. In both cases this
corresponds to a ratio n/d ≈ 5.
C-LIME has two additional aspects to consider:
Sample weighting: (π(z) in (2)) Since we limit

the number of units K that are simultaneously per-
turbed to a small integer, we also no longer use
LIME’s sample weighting scheme. Instead, we
give each subset cardinality k = 0, . . . ,K the same
total weight (say 1 without loss of generality), and
then distribute this weight uniformly over the sub-
sets of that cardinality.

Regularization: Different regularizers R(w) can
be used in (2), e.g. ℓ2 or ℓ1. In our experiments
however, we do not regularize (i.e., R(w) ≡ 0)
and compute a fully dense solution. This allows
all units to be ranked to facilitate evaluation of
perturbation curves.

L-SHAP For L-SHAP, the two main parameters are
the local neighborhood radius M and the maxi-
mum number of neighborsK perturbed at one time.
(Note that K does not include the unit of interest,
so altogether the maximum number of perturbed
units is K + 1.) For the DistilBART and Flan-T5-
Large models, we take M = 2 and K = 2. For
Flan-UL2, Llama-3, DeepSeek-V3, and Granite-
3.3, we again use only LOO at the sentence level and
do not use L-SHAP. For phrase-level or word-level
L-SHAP, we set M = 1 and K = 2.

C.4 Baseline attribution methods

PartitionSHAP We set the number of model
queries (parameter max_evals) to be approxi-

mately equal to the number used by our L-SHAP and
C-LIME algorithms. More specifically, since obtain-
ing mixed-level attributions with MExGen requires
first performing sentence-level attribution, we add
the numbers of queries used during sentence-level
and mixed-level attribution. We then take the larger
of these two sums for L-SHAP and C-LIME as the
number of queries allowed for PartitionSHAP. All
other parameters were kept at their default values
in the SHAP library.12

CaptumLIME The number of model queries was
also set as described above for PartitionSHAP. As
discussed in Section 4.1, the units for attribution
are the same as used by MExGen C-LIME. All other
parameters were kept at their default values in the
Captum library.13

LLM Self-Explanation Figure 6 shows the
prompt used to produce LLM self-explanations for
the experiment in Section 4.4, where the task is
summarization. We first repeat the LLM’s sum-
mary back to it. We then segment the input arti-
cle into the same units units[0], units[1], ...,
(sentence-level or mixed-level) used by MExGen.
This controls for input segmentation as done in
the comparison with CaptumLIME. To make the
ranking task easier, we followed LongBench-Cite
(Zhang et al., 2024) in prepending a numbered tag
(<u0>, <u1>, ...) to each unit. The LLM is asked to
list only the tags corresponding to units, in order of
decreasing importance for generating the summary.
The number top_k of units to be ranked is set to
30% of the total number of units. Since we evaluate
perturbation curves up to 20% of the total tokens,

12https://github.com/shap/shap, made available un-
der the MIT license

13https://github.com/pytorch/captum, distributed un-
der the BSD 3-Clause license

https://github.com/shap/shap
https://github.com/pytorch/captum

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.920.880.790.760.67

0.921.000.940.820.790.71

0.880.941.000.810.780.72

0.790.820.811.000.980.61

0.760.790.780.981.000.58

0.670.710.720.610.581.00

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(a) (C-LIME, DistilBart, XSUM)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.890.840.770.730.63

0.891.000.930.800.760.68

0.840.931.000.800.750.67

0.770.800.801.000.980.56

0.730.760.750.981.000.53

0.630.680.670.560.531.00

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(b) (L-SHAP, DistilBart, XSUM)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.870.840.710.680.55

0.871.000.910.750.720.58

0.840.911.000.750.710.58

0.710.750.751.000.950.46

0.680.720.710.951.000.43

0.550.580.580.460.431.00

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
lat

ion

(c) (C-LIME, DistilBart, XSUM)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.850.810.690.630.54

0.851.000.900.740.680.57

0.810.901.000.730.680.57

0.690.740.731.000.930.44

0.630.680.680.931.000.40

0.540.570.570.440.401.00

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
lat

ion

(d) (L-SHAP, DistilBart, XSUM)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.950.950.940.930.86

0.951.000.960.960.950.85

0.950.961.000.950.940.82

0.940.960.951.000.990.85

0.930.950.940.991.000.84

0.860.850.820.850.841.00

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(e) (C-LIME, Flan-T5, SQUaD)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.940.940.930.910.81

0.941.000.960.960.940.79

0.940.961.000.940.930.77

0.930.960.941.000.990.79

0.910.940.930.991.000.78

0.810.790.770.790.781.00

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(f) (L-SHAP, Flan-T5, SQUaD)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.720.710.710.700.37

0.721.000.820.830.780.39

0.710.821.000.790.730.37

0.710.830.791.000.900.39

0.700.780.730.901.000.38

0.370.390.370.390.381.00

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
lat

ion

(g) (C-LIME, Flan-T5, SQUaD)

Log
 NLI

BERT
SimSUMM

BART
Log

 Prob
.

Log
 NLI

BERT
Sim

SUMM
BARTLog
 Prob

.

1.000.780.790.800.770.44

0.781.000.880.830.800.47

0.790.881.000.830.790.46

0.800.830.831.000.890.47

0.770.800.790.891.000.46

0.440.470.460.470.461.00

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 C
or

re
lat

ion

(h) (L-SHAP, Flan-T5, SQUaD)

Figure 7: Spearman’s rank correlation and cosine similarity for different explanation methods in varying datasets.

the 30% setting provides some margin while not
requiring the LLM to rank all units.

The comma-separated output from the LLM is
parsed into a list of unit indices. Elements that do
not yield an integer or yield an out-of-range integer
are dropped (this happened rarely however).

C.5 Perturbation curves

MExGen can attribute to mixed units of different
lengths in terms of the number of tokens, and these
units also differ from those produced by P-SHAP.
To account for these differences in computing per-
turbation curves, we consider both the attribution
score and the number of tokens for each unit. We
rank units in decreasing order of the attribution
score divided by the number of tokens (since we
plot perturbation curves as functions of tokens per-
turbed, this ratio can be seen as the slope in the
score-tokens plane). Thus, a shorter unit is ranked
higher than a longer unit if both have the same at-
tribution score. We then perturb (more precisely
remove) the top k units, compute the output score
given by the evaluation scalarizer, and increase k
until at least 20% of the tokens have been removed.

To average perturbation curves over examples,
which have different numbers of tokens, we divide
the numbers of tokens perturbed by the total num-
ber of tokens in each example to obtain percent-
ages of tokens. We then linearly interpolate onto a
common grid of percentages before averaging and
computing standard errors.

C.6 Computing environment

Experiments were run on a computing cluster pro-
viding nodes with 32 GB of CPU memory, V100
GPUs with 32 GB of GPU memory, and occasion-
ally A100 GPUs with 40 or 80 GB of GPU memory.
One CPU and one GPU were used at a time. The
total computation time is estimated to be on the
order of 1000 hours.

D More Automated Evaluation Results

D.1 Scalarizer Evaluation

On the Cosine Similarity of Explanations Fig-
ure 7 shows the cosine similarity between all the
pairs of scalarizers we use. We show the cosine sim-
ilarity between the explanations of each method to
analyze how aligned the explanations are from dif-
ferent scalarizers. Each text input x = x1, ..., xd re-
ceives a multi-level explanation given by ξS(x) =
(ξS(x)1, ..., ξS(x)d) ∈ Rd where each ξS(x)i rep-
resents the contribution of unit i to the model pre-
diction scalarization computed using the scalarizer
S. We define the cosine similarity between scalar-
izers S and S′ as the average of the cosine similari-
ties between the explanations for all available input
texts, i.e.,

CosSim(S, S′) ≜
1

|X|
∑
x∈X

⟨ξS(x), ξS′(x)⟩
||ξS(x)||||ξS′(x)||

.

Figure 7 (a) shows the cosine similarities for the
scalarizers used by MExGen C-Lime to explain the
predictions of the DistilBert model in the XSUM
dataset. Figure 7 (b) shows the cosine similarities

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8
Av

er
ag

e
Lo

g
Pr

ob
. D

ec
re

as
e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(a) Log Prob as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Av
er

ag
e

BE
RT

 D
ec

re
as

e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(b) BERT Score as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(c) SUMM Score as Evaluation

Figure 8: Perturbation curves for MExGen L-SHAP with different scalarizers, used to explain the DistilBART model
on the XSUM dataset. The curves show the decrease in (a) log probability, (b) BERTScore, and (c) SUMM score
when removing the most important p% of tokens according to each explanation scalarizer. Shading shows standard
error.

for the scalarizers used by MExGen L-SHAP to ex-
plain the predictions of the Flan-T5-Large model
on the SQUaD dataset.

Similarity Across Scalarizers. Figure 7 indi-
cates that, although some scalarizers lead to simi-
lar model explanations, there are occasions where
scalarizers are more dissimilar. Moreover, the simi-
larities between scalarizers not only depend on the
scalarizer itself but also on the model and dataset
being explained. For example, Figure 7 (b) shows
that when using MExGen L-SHAP to provide expla-
nations for the predictions in the XSUM dataset
using DistilBrat, the scalarizers BERT and SUMM
are fairly similar (CosSim(SBERT, SSUMM) = 0.96).
On the other hand, looking at the same pair of
scalarizers but for MExGen LIME to provide expla-
nations to the predictions in the SQUaD dataset
using Flan-T5-Large, BERT and SUMM are more
dissimilar (CosSim(SBERT, SSUMM) = 0.82). This
result highlights the necessity of exploring different
scalarizers to explain natural language generation,
taking into account the task being performed and
the main objective of the explanation, i.e., target
scalarization.

Similarity to Logits. In the SHAP library, SUMM
is proposed to provide explanations to LLMs that
do not provide access to the logits — hence, the
main objective of SUMM is to approximate the
explanations for the logit when it is not available.
However, Figure 7 shows that SUMM is not always
the best scalarizer for approximating the explana-
tions that would be given if logits were available.
For example, Figure 7 (a) shows that the similarity
between SUMM and logit is near 0.61. In contrast,

Figure 7 (b) shows that the similarity between the
explanations generated using SUMM as scalarizer
has a similarity of 0.78 with the onex generated
using logits.

We are also aware that only comparing the simi-
larities between explanations might not be enough;
once, many researchers use the scores to compute
the ranking of the importance across all input fea-
tures (input text units here). For this reason, next,
we compare Spearman’s rank correlation to mea-
sure the rank stability across different scalarizers.

Similarity to Log Probability Scalarizer. In the
SHAP library, SUMM is proposed to provide ex-
planations when access to logits is not available.
However, Figure 3 shows that SUMM is not always
the best scalarizer for approximating the explana-
tions that would be given if logits were available.
For example, Figure 3 (a) shows the ranking cor-
relation between the scalarizer and the Log Prob
scalarizer is higher for BERT score. Figure 3 (b)
shows that the rank generated by both the explana-
tions generated using SUMM and BERT scalarizer
are equally similar to the rank of explanations using
the Log Prob scalarizer.

Perturbation curves for different combinations
of scalarizers Figures 8, 9, 10 show the pertur-
bation curve for different scalarizations.

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Av

er
ag

e
Lo

g
Pr

ob
. D

ec
re

as
e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(a) Log Prob as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e

BE
RT

 D
ec

re
as

e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(b) BERT Score as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0

1

2

3

4

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(c) SUMM Score as Evaluation

Figure 9: Perturbation curves for MExGen C-LIME with different scalarizers, used to explain the Flan-T5-Large
model on the SQuAD dataset. The curves show the decrease in (a) log probability, (b) BERTScore, and (c) SUMM
score when removing the most important p% of tokens according to each explanation scalarizer. Shading shows
standard error.

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Lo
g

Pr
ob

. D
ec

re
as

e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(a) Log Prob as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e

BE
RT

 D
ec

re
as

e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(b) BERT Score as Evaluation

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0

1

2

3

4

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

Log Prob.
BERT
Sim
Log NLI
SUMM
BART

(c) SUMM Score as Evaluation

Figure 10: Perturbation curves for MExGen L-SHAP with different scalarizers, used to explain the Flan-T5-Large
model on the SQuAD dataset. The curves show the decrease in (a) log probability, (b) BERTScore, and (c) SUMM
score when removing the most important p% of tokens according to each explanation scalarizer. Shading shows
standard error.

D.2 Comparison Between Explainers

Figure 11 compares the perturbation curves from
MExGen instantiations and P-SHAP for additional
model-dataset pairs. The patterns are similar to
those in Figure 5. The one exception is in Fig-
ure 11b where P-SHAP attains a larger SUMM de-
crease as more tokens are perturbed, but the MExGen
curves are still higher for the top 5% of tokens.

A possible reason for why P-SHAP performs bet-
ter after a certain fraction of tokens in Figures 11b,
11c is as follows: P-SHAP perturbs larger subsets of
the input than MExGen, for which we intentionally
limit the size of perturbed subsets. These larger
subsets may enable P-SHAP to find larger changes
in output (higher perturbation curve) at larger frac-
tions of tokens perturbed.

D.3 Comparison with LLM Self-Explanation

Figure 12 shows the perturbation curves corre-
sponding to the AUPC values reported in Table 2.
We also plot the perturbation curve for the interme-
diate sentence-level attributions (labelled “MExGen
LOO (sent)”) used to obtain the mixed-level MExGen
attributions, as well as the curve for the self-
explanation using the same sentence-level units
(“self (sent)”). The curves closely reflect the AUPC
comparison already seen in Table 2. For example,
MExGen greatly outperforms self-explanation when
using the Log Prob scalarizer in Figure 12a, 12d.
On the other hand, for the text-only BART scalar-
izer and larger DeepSeek-V3 model in Figure 12f,
the gap is closed at higher perturbed fractions, but
a small gap remains at lower fractions.

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
SU

M
M

 D
ec

re
as

e

MExGen C-LIME
MExGen L-SHAP
MExGen LOO
P-SHAP

(a) Flan-UL2 on XSUM

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

MExGen C-LIME
MExGen L-SHAP
MExGen LOO
P-SHAP

(b) Flan-UL2 on CNN/DM

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Lo
g

Pr
ob

. D
ec

re
as

e

MExGen C-LIME
MExGen L-SHAP
MExGen LOO
P-SHAP
CaptumLIME
MExGen C-LIME
(mismatched)

(c) Flan-T5-Large on SQuAD

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

MExGen C-LIME
MExGen L-SHAP
MExGen LOO
P-SHAP

(d) Llama-3 on XSUM

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

(e) Llama-3 on CNN/DM

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

SU
M

M
 D

ec
re

as
e

MExGen C-LIME
MExGen L-SHAP
MExGen LOO
P-SHAP

(f) Llama-3 on SQuAD

Figure 11: Perturbation curves (higher is better) from different explanation methods for additional models and
datasets: (a) Flan-UL2 on XSUM, (b) Flan-UL2 on CNN/DM, (d) Llama-3-8B-Instruct on XSUM, (f) Llama-3-8B-
Instruct on SQuAD, plus (c) Flan-T5-Large on SQuAD and (e) Llama-3-8B-Instruct on CNN/DM repeated from
Figure 5 to facilitate comparison. Shading shows standard error in the mean.

E User Study

In this section, we describe our user study.

E.1 Participants

We recruited 96 participants from a large technol-
ogy company. Those who self-identified as ma-
chine learning practitioners using language models
were eligible for the study. We filtered out 8 par-
ticipants who did not pass eligibility checks or did
not provide valid responses, resulting in data from
88 participants for our analysis.

Participation in this study did not involve any
significant risks beyond those present in daily life,
which we explained in the consent form. At the
beginning of the study, all participants read about
the study procedure, risks, benefits, compensation,
and costs, and provided informed consent. They
voluntarily participated in the study and were free
to withdraw their consent and discontinue partici-
pation at any time. Although a formal IRB process

does not exist in our institution, we went through an
equivalent informal process, including reviewing
the study with our peers, and treated participants
in accordance with ethical guidelines for human
subjects.

The study was expected to take about 30 min-
utes or less. For compensation, each participant re-
ceived 50 points (a digital currency used within the
institution), which was equivalent to $12.5 USD.

E.2 Scalarizers

Participants perceived BERT to be higher in fi-
delity than Log Prob. We ran a binomial test and
found that the selection of BERT was significantly
higher than the random chance (p < .05, 95% CI
[.50, .65]). They also preferred BERT over Log
Prob and the choice was statistically significant
(p < .05, 95% CI [.56, .71]). The type of attribu-
tion methods (e.g., C-LIME, L-SHAP) did not affect
the results. Participants perceived that the attribu-
tion concentration was adequate overall, as the av-

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Lo

g
Pr

ob
. D

ec
re

as
e

(a) Granite-3.3 on XSUM with Prob

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

BA
RT

 S
co

re
 D

ec
re

as
e

MExGen C-LIME (mixed)
MExGen L-SHAP (mixed)
MExGen LOO (mixed)
self (mixed)
MExGen LOO (sent)
self (sent)

(b) Granite-3.3 on XSUM with Prob

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BA
RT

 S
co

re
 D

ec
re

as
e

(c) DeepSeek-V3 on XSUM with BART

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
g

Pr
ob

. D
ec

re
as

e

(d) Granite-3.3 on CNN/DM with Prob

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

BA
RT

 S
co

re
 D

ec
re

as
e

(e) Granite-3.3 on CNN/DM with Prob

0 5 10 15 20
Fraction of Tokens Perturbed (%)

0.0

0.2

0.4

0.6

0.8

BA
RT

 S
co

re
 D

ec
re

as
e

(f) DeepSeek-V3 on CNN/DM with BART

Figure 12: Perturbation curves comparing MExGen variants to LLM self-explanation. LLMs, datasets, and scalarizers
(the latter used for both explanation and evaluation): (a) Granite-3.3-8B-Instruct on XSUM with Prob scalarizer, (b)
Granite-3.3-8B-Instruct on XSUM with BART scalarizer, (c) DeepSeek-V3 on XSUM with BART scalarizer, (d)
Granite-3.3-8B-Instruct on CNN/DM with Prob scalarizer, (e) Granite-3.3-8B-Instruct on CNN/DM with BART
scalarizer, (f) DeepSeek-V3 on CNN/DM with BART scalarizer. The legend in (bow) applies to all panels. Shading
shows standard error in the mean.

erage ratings (Log Prob: M=4.32, SD=1.65; BERT:
M=4.66, SD=1.44) were close to the median of 4
on the 7-point Likert scale. A paired t-test revealed
that the difference in the concentration perceptions
between scalarizers was not statistically significant.

Selected Option C-LIME L-SHAP
Log Prob 35.2% 34.1%
BERT 54.5% 60.2%
Identical 10.2% 5.7%

Table 4: The proportions of participants who selected
one of the three options – Log Prob, BERT, or ‘They
are identical’. Regardless of attribution methods, signif-
icantly more participants chose BERT over Log Prob
when asked to select the one with higher perceived fi-
delity.

E.3 Attribution Methods
We fitted a Bradley-Terry model (Firth, 2005) for
the outcome of pairwise comparisons between at-

Preferred Option C-LIME L-SHAP
Log Prob 29.5% 31.8%
BERT 62.5% 64.8%
Identical 8% 3.4%

Table 5: The proportions of participants who selected
one of the three options – Log Prob, BERT, or ‘They
are identical’ based on their preference. Regardless
of attribution methods, significantly more participants
preferred BERT over Log Prob.

tribution methods. The model computes an ‘abil-
ity’ estimate of each method, yielding a complete
ranking of methods. Regarding the perceived fi-
delity, we found that there is a significant differ-
ence between C-LIME and L-SHAP (p < .05/3 with
Bonferroni adjustment), with C-LIME having the
highest ability and L-SHAP having the lowest abil-
ity. The preference data showed the same pattern
in which there is a significant difference between

C-LIME and L-SHAP (p < .05/3 with Bonferroni
adjustment), with C-LIME having the highest abil-
ity and L-SHAP having the lowest ability. Other
pairs of methods were not significantly different.
Participants perceived that the attribution concen-
tration was adequate overall, as the average rat-
ing was close to the median on the 7-point Likert
scale (M=4.39, SD=1.47). A repeated ANOVA
showed that the differences in perceived concen-
tration among the attribution methods were not
significant.

Selected vs. Rejected Options p-value
C-LIME vs. L-SHAP 0.0107 **

PartitionSHAP vs. L-SHAP 0.0455
C-LIME vs. PartitionSHAP 0.5691

Table 6: There is a significant difference in perceived
fidelity between C-LIME and L-SHAP. Significant p-
values after Bonferroni adjustment are noted with **
(p<0.05/3).

Selected vs. Rejected Options p-value
C-LIME vs. L-SHAP 0.0074 **

PartitionSHAP vs. L-SHAP 0.1758
C-LIME vs. PartitionSHAP 0.1758

Table 7: There is a significant difference in preference
between C-LIME and L-SHAP. Significant p-values after
Bonferroni adjustment are noted with ** (p<0.05/3).

E.4 Granularity Preference
Participants were asked to select their preferred

granularity of attributions (sentence-level vs. multi-
level). While the number of participants who pre-
ferred multi-level granularity (56.2%) was slightly
higher than those who preferred sentence-level
granularity (43.8%), binomial tests indicated that
their granularity choice was not statistically signifi-
cant. The preference for granularity did not signifi-
cantly vary across attribution algorithms (C-LIME,
L-SHAP).

E.5 Survey
The survey was structured as below with the fol-

lowing instructions and questions:
1. Consent

• Select ’I agree’ if you are eligible and
agree to the terms above. By selecting ’I
agree’, you give consent to [Institution
Name] to use your anonymized responses
for research and development purposes.
You also agree not to provide any infor-
mation that is confidential or proprietary.

2. Input document (1): Suppose you wanted to
summarize an input document and used a lan-
guage model to generate a summary. Please
read the text below and answer the following
questions. [A randomly selected input docu-
ment and a summary were inserted here]

• Rate the overall quality of the summary.
A good summary should be coherent,
consistent, fluent, relevant, and accurate.
(1: Poor - 7: Excellent)

3. Scale: Introducing the scale that was used to
annotate the attribution scores. See Fig. 13

4. Scalarizer (2 pairwise comparisons): Using
the selected ‘input document (1)’, same in-
structions and questions were used as shown
in Fig. 14.

5. Input document (2): Suppose you wanted to
summarize an input document and used a lan-
guage model to generate a summary. Please
read the text below and answer the following
questions. [Another randomly selected input
document and a summary were inserted here]

• Rate the overall quality of the summary.
A good summary should be coherent,
consistent, fluent, relevant, and accurate.
(1: Poor - 7: Excellent)

6. Attribution algorithms (3 pairwise compar-
isons): Using the selected ‘input document
(2)’, same instructions and questions were
used as shown in Fig. 14.

7. Granularity: The attribution scores can be
presented in two levels of granularity, which
are sentence- level and mixed-level granulari-
ties.

• Sentence-level granularity: each sen-
tence in the input document is color
coded based on how much of it was used
by the language model.

• Mixed-level granularity: each phrase
within a few high-scoring sentences is
color coded based on how much of
it was used by the language model.
Low-scoring sentences are coded in the
sentence-level granularity.

In the next two pages, you will select your
preferred granularity for each of the following
examples.

• Which granularity do you prefer in this
example? [A randomly selected sum-
mary and two highlighted input docu-
ments] See Figure 15.

• Which granularity do you prefer in this

Figure 13: A scale used to color-code the attribution scores.

example? [Another randomly selected
summary and two highlighted input doc-
uments]. See Figure 15.

8. Background
• What is your job title?
• Where is your work location?
• What type of work do you do? (Please

check all that apply.)
• What is your proficiency level in En-

glish?
• How often do you use language models

either as part of your job or as a hobby?
• What kind of tasks do you usually do

with language models?
• Besides the attribution scores/highlights

that are shown in this study, what other
information would you like to know to
help you understand how a language
model generated a summary?

Figure 14 and Figure 15 show primary questions
we asked in the survey with screenshots.

F Future Directions

Hierarchical explanations It could be profitable
in future work to incorporate the hierarchical ex-
planations discussed in Appendix A into the multi-
level MExGen framework. The method of Chen

and Jordan (2020) may be especially relevant since
it leverages a constituency parse tree to compute
word-level importances, which may be related to
our use of dependency parse trees.

Word infilling with BERT We have explored
perturbing words by masking them and then call-
ing a BERT model to fill the masks with different
words that fit within the sentence. However, we
have thus far not seen a quantifiable benefit to using
BERT compared to replacing with a fixed baseline
value (such as an empty string). Our experience is
in line with the the mixed results reported by Pham
et al. (2022) on using BERT in this manner.

Phrase segmentation Segmentation of sentences
into phrases could of course be done in ways other
than our dependency parsing algorithm, for exam-
ple using constituency parsing instead. A possible
advantage of using dependency parsing is that each
phrase can be labeled with the dependency label of
its root token and treated differently on this basis.

Figure 14: Survey questions. Participants answered a series of questions related to perceived fidelity and general
preference comparing a pair of attribution methods, followed by questions related to perceived concentrations of
each method.

Figure 15: Granularity question. Participants were asked to select their preferred granularity of attributions (sentence-
level vs. multi-level).

	Introduction
	Related Work
	Multi-Level Explanations for Generative Language Models
	Handling Text Outputs
	Handling Long Text Inputs

	Automated Evaluation
	Setup
	Scalarizer Evaluation
	Comparison Between Explainers
	Comparison with LLM Self-Explanation

	User Study
	Concluding Remarks
	More on Related Work
	Further Details on MExGen
	Scalarizers
	Phrase Segmentation
	L-SHAP

	Automated Evaluation Details
	Datasets
	Language model inference
	MExGen
	Baseline attribution methods
	Perturbation curves
	Computing environment

	More Automated Evaluation Results
	Scalarizer Evaluation
	Comparison Between Explainers
	Comparison with LLM Self-Explanation

	User Study
	Participants
	Scalarizers
	Attribution Methods
	Granularity Preference
	Survey

	Future Directions

