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Stabilizer states, which are also known as the Clifford states, have been commonly
utilized in quantum information, quantum error correction, and quantum circuit sim-
ulation due to their simple mathematical structure. In this work, we apply stabilizer
states to tackle quantum many-body ground state problems and introduce the concept
of stabilizer ground states. We establish an equivalence formalism for identifying stabi-
lizer ground states of general Pauli Hamiltonians. Moreover, we develop an exact and
linear-scaled algorithm to obtain stabilizer ground states of 1D local Hamiltonians and
thus free from discrete optimization. This proposed equivalence formalism and linear-
scaled algorithm are not only applicable to finite-size systems, but also adaptable to
infinite periodic systems. The scalability and efficiency of the algorithms are numeri-
cally benchmarked on different Hamiltonians. Finally, we demonstrate that stabilizer
ground states are promising tools for not only qualitative understanding of quantum
systems, but also cornerstones of more advanced classical or quantum algorithms.

1 Introduction
Discovering the ground state of quantum Hamiltonians remains a central challenge in quantum
many-body physics. The difficulty stems from the exponential scaling of the Hilbert space di-
mension, rendering exact calculations impractical in most cases [1, 2, 3, 4, 5, 6]. Consequently, a
variety of classical and quantum algorithms have been developed to address this problem. Two
of the most commonly employed strategies for ground state determination are variational meth-
ods and approaches based on imaginary time evolution. The variational approach, represented by
techniques such as variational quantum Monte Carlo (VQMC) [7, 8, 9, 10], density matrix renor-
malization group (DMRG) [11, 12, 13], and variational quantum eigensolver (VQE) [14, 15, 16],
constructs a parameterized quantum state ansatz |ψ(θ)⟩ and minimizes the energy with respect to
the parameters θ. In contrast, imaginary time evolution methods, including auxiliary-field quan-
tum Monte Carlo (AFQMC) [17, 18, 19], time-evolving block decimation (TEBD) [20, 21, 22], and
quantum imaginary-time evolution (QITE) [23, 24], iteratively apply e−∆βH to an initial state
|ψ0⟩, converging toward the ground state. In both categories, the choice of initial state is crucial.
A well-chosen initial state can mitigate non-convex optimization challenges in variational methods
and improve the overlap with the true ground state |⟨ψ0|ψgs⟩|, which directly impacts the effi-
ciency of imaginary time evolution. The importance of the initial state is equally apparent in other
algorithms like Krylov subspace methods [25, 26] and quantum phase estimation (QPE) [27, 28].

In most scenarios, mean-field states [29, 30] are commonly chosen as initial guesses. These
states not only simplify computations but also often capture essential aspects of a system’s physics,
making them useful for qualitative insights [31, 32]. However, mean-field approximations can be
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overly simplistic for general many-body systems, and they frequently fail to describe more complex
phenomena, such as those found in topological systems [33, 34] and multireference systems [35, 36].
Therefore, alternative choices of quantum states with both mathematical simplicity and physical
expressivity are highly demanded.

During the development of quantum computing [37, 38] in recent decades, a new type of states
called stabilizer states has gained significant attention. From one perspective, it is the set of
quantum states “stabilized” by a maximum number of Pauli operators, which implies a polynomial-
sized classical description [39, 40]. From another perspective, it is the set of quantum states
reachable solely by Clifford operations, i.e., the combination of CNOT, Hadamard, and phase gates,
which are the “easy-to-implement” gates in the fault-tolerant quantum computation (FTQC) era
[41, 42, 43]. Compared with product states, stabilizer states are able to not only capture long-
range area-law entanglement that is significant for understanding topological order and symmetry-
protected topological states [44], but also support volume-law entanglement [45], which is a feature
lacking in other ansatzes, such as matrix product states (MPS) [46]. Thanks to these features,
Clifford operations and stabilizer states are utilized as important tools in the explorations of
quantum information [47, 48], quantum dynamics [49, 50, 51], quantum error correction [52, 53],
topological quantum computing [54], quantum circuit simulation [55, 56, 57], and quantum-classical
hybrid algorithms [58, 59, 60, 61, 62].

With the polynomial-sized classical description and efficient implementation on quantum com-
puters, stabilizer states naturally become a promising candidate for quantum initial states, facili-
tating the construction of advanced algorithms or quantum state ansatzes. Furthermore, one can
even take advantage of both stabilizer states and mean-field states by moving to the Heisenberg
picture and treating one of them as a Hamiltonian transformation (i.e. Clifford transformation or
basis rotation). In fact, stabilizer states have been used to enhance the power of VQE [58, 63, 64],
DMRG [65], tensor network [66], and quantum Monte Carlo [67]. However, the challenge lies
in the absence of scalable and general algorithms for identifying the appropriate stabilizer initial
state, typically the one with the minimum energy for a given Hamiltonian, which is defined as
the stabilizer ground state in this work. Although several optimization-based methods have been
proposed [63, 68], they are not guaranteed to reach the real minimum and are not scalable to large
systems due to the intrinsic difficulty of discrete optimization and the O(2(n+1)(n+2)/2) scaling of
the number of n-qubit stabilizer states [69].

In this work, we provide a series of algorithms to identify the stabilizer ground state of dif-
ferent types of Hamiltonians. We start by theoretically establishing the equivalence between the
stabilizer ground states and the closed maximum-commuting Pauli subsets (CMCS) for general
Pauli Hamiltonians. We further present an exact and linear-scaled algorithm to find the stabilizer
ground states of 1D local Hamiltonians. For properly defined sparse Hamiltonians, this exact 1D
local algorithm is proved to be computationally efficient with a scaling of O(n exp(Ck log k)) with
some constant C, where n is the number of qubits and k represents the locality. Additionally, we
prove that stabilizer ground states of 1D local Hamiltonians can be prepared on quantum com-
puters with fewer operations than general stabilizer states. Furthermore, we present that both
the equivalence formalism for general Hamiltonians and the linear-scaled algorithm for 1D local
Hamiltonians can be extended to infinite periodic systems. By numerical benchmarking on dif-
ferent systems with classical and quantum algorithms, we reveal that stabilizer ground states are
promising tools for both qualitative understanding of quantum systems and serving as the initial
states of advanced classical or quantum algorithms for quantum many-body ground state problems.
We envision stabilizer ground states and the corresponding algorithms as a pivotal foundation for a
wide range of interesting applications, and highlight the collective power of the theories, algorithms,
and applications to advance the field of quantum physics.

This paper is organized as follows: We first introduce the notations and mathematical back-
grounds of stabilizer states in Sec 2.1. The equivalence between the stabilizer ground state and
CMCS for general Hamiltonians is derived in Sec. 2.2, and the exact linear-scaled algorithm for
the stabilizer ground states of 1D local Hamiltonians is further presented in Sec. 2.3. Sec. 2.4
extends both the equivalence formalism for general Hamiltonians and the algorithm for 1D local
Hamiltonians to infinite periodic systems. In Sec. 2.5, we discuss the advantages and potential
applications of stabilizer ground states to both classical and quantum algorithms, along with a
comparison with other approximated ground states. Secs. 3.1 and 3.2 benchmark the exact 1D
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local algorithm on example Hamiltonians by numerically verifying the computational scaling and
comparing the performances with numerically optimized stabilizer ground states, respectively. In
Sec. 3.3, we demonstrate the ability of stabilizer ground states to qualitatively describe topological
systems. The power of stabilizer ground states as the cornerstone of advanced classical or quantum
algorithms is shown in Sec. 3.4 and Sec. 3.5, respectively. Finally, we draw conclusions and outline
future directions for the development and applications of stabilizer ground states in Sec. 4.

2 Theory
2.1 Notations and mathematical background of stabilizer groups
We first revisit the definitions and a few frequently used properties of Pauli operators and stabilizer
groups [37, 52].

Let Pn = ±{I,X, Y, Z}⊗n represent the set of Hermitian n-qubit Pauli operators. It is impor-
tant to clarify that Pn itself is not a group since Pn does not include anti-Hermitian operators.
For any two elements Pi, Pj ∈ Pn, Pi and Pj either commute or anticommute. A Pauli operator
Q commutes with a set of Pauli operators P = {Pi}, denoted as [Q,P ] = 0, if [Q,P ] = 0 for each
P ∈ P . We denote it as [Q,P ] ̸= 0 if Q anticommutes with any P ∈ P .

A stabilizer group S is a subset of Pn that forms a group and satisfies −I /∈ S. Any two
elements P,Q in S commute with each other, otherwise PQPQ = −I violates the definition.
⟨P ⟩ = ⟨P1, ..., Pl⟩ = {

∏
Q∈Q Q|Q ⊆ P } is the stabilizer group generated by a set of Pauli operators

P = {P li=1}, if ⟨P ⟩ satisfies the definition of stabilizer group. We say P is a set of generators of
the stabilizer group S when S = ⟨P ⟩. An n-qubit stabilizer group S has at most n independent
generators g = {gi} and 2n elements. If |g| = n, S is a full stabilizer group and we have either
P ∈ S or −P ∈ S (denoted as P ∈ ±S) for any [P,S] = 0, P ∈ Pn.

We say state |ψ⟩ is stabilized by P ∈ Pn if P |ψ⟩ = |ψ⟩. We define the stabilizer group of a
given |ψ⟩ as

Stab(|ψ⟩) = {P ∈ Pn|P |ψ⟩ = |ψ⟩}, (1)

and |ψ⟩ is a stabilizer state when Stab(|ψ⟩) is a full stabilizer group. The mapping |ψ⟩ → Stab(|ψ⟩)
from stabilizer states to full stabilizer groups is a one-to-one correspondence.

2.2 Stabilizer ground states of general Hamiltonians
In this section, we establish the equivalence between the stabilizer ground state and the closed
maximally-commuting Pauli subset. Furthermore, we show that, for properly defined sparse Hamil-
tonian (which includes almost all common Hamiltonians), such equivalence implies a much cheaper
algorithm to get the stabilizer state compared with the brute-force approach. We first define the
stabilizer ground state of Hamiltonian H:

Definition 1. (Stabilizer ground state) The stabilizer ground state of a given Hamiltonian H
is the stabilizer state |ψ⟩ with the lowest energy expectation ⟨ψ|H|ψ⟩.

The number of n-qubit stabilizer states is S(n) = 2n
∏n
i=1(2i + 1) ∼ 2 1

2 (n+1)(n+2), thus looping
over all the stabilizer states is infeasible for large n [69]. To find the stabilizer ground state,
Lemma 1 is first presented to determine the expectation value of a Pauli operator in a stabilizer
state:

Lemma 1. (Expectation values of stabilizer states) For any n-qubit stabilizer state |ψ⟩ and Pauli
operator P ∈ Pn, if P /∈ ±Stab(|ψ⟩), then ⟨ψ|P |ψ⟩ = 0

Proof. Since Stab(|ψ⟩) is a full stabilizer group, there exists Q ∈ Stab(|ψ⟩) such that {P,Q} = 0.
Thus

⟨ψ|P |ψ⟩ = ⟨ψ|PQ|ψ⟩ = −⟨ψ|QP |ψ⟩ = −⟨ψ|P |ψ⟩. (2)

Therefore, ⟨ψ|P |ψ⟩ = 0.

We further extend the concept of energy expectation associated with a stabilizer state to a (not
necessarily full) stabilizer group:

Accepted in Quantum 2025-06-10, click title to verify. Published under CC-BY 4.0. 3



Definition 2. (Stabilizer group energies) The energy of a stabilizer group S for a given Pauli
operator P or a Pauli Hamiltonian H =

∑
P∈P wPP is defined by

Estab(P,S) =
{
±1 P ∈ ±S

0 otherwise
,

Estab(H,S) =
∑
P∈P

wPEstab(P,S).
(3)

The relationship of stabilizer state energies and stabilizer group energies can be given by:

Corollary 1. (Stabilizer state energies are stabilizer group energies) We denote P̃ = ±P =
{±P |P ∈ P } for a set of Pauli operators P . For a Hamiltonian H =

∑
P∈P wPP and a stabilizer

state |ψ⟩, let stabilizer group S = ⟨Stab(|ψ⟩) ∩ P̃ ⟩, we have ⟨ψ|H|ψ⟩ = Estab(H,S).

Corollary 1 implies that, the energy of a stabilizer state |ψ⟩ depends only on Stab(|ψ⟩)∩P̃ ⊆ P̃ .
Since the number of subsets of P̃ is much less than S(n) ∼ 2 1

2 (n+1)(n+2) when P̃ is sparse (see
Definition 4 for rigorous definition), it gives a better way to determine the stabilizer ground state.
Rigorously, we introduce the concept of closed commuting subsets as follows:

Definition 3. (CCS) We define the closed commuting subsets (CCS) induced by P (or H) as

S (P ) = {Q ⊆ P̃ |Q = ⟨Q⟩ ∩ P̃ ,−I /∈ ⟨Q⟩} (4)

We note that −I /∈ ⟨Q⟩ implicitly indicates that ⟨Q⟩ is a stabilizer group.

Physically Q = ⟨Q⟩ ∩ P̃ is saying that, ⟨Q⟩ is generated by elements in P̃ . The name
“closed” means that Q is closed under group mutiplication operations within the range of P̃ .
Thus {⟨Q⟩|Q ∈ S (P )} is the full set of stabilizer groups generated by elements in P̃ , and S (P )
is an equivalent approach to represent with the generators in P̃ instead. (knowing either Q or
⟨Q⟩ immediately gives the other) As an example, we consider P = {+Z1,+Z2,−X1X2}, then
P̃ = {±Z1,±Z2,±X1X2}. Then S (P ) includes ∅, {sZ1}, {sZ2}, {s1Z1, s2Z2}, {sX1X2}, where
each s can be ±1 independently. We additionally note that each CCS corresponds to a stabilizer
subspace and can be viewed as a discrete analog of a noncontextual subspace in the sense used in
Contextual Subspace VQE [70], where all operators in the subset mutually commute and can be
jointly diagonalized.

We now present Theorem 1, which states that the stabilizer ground state can be obtained by
searching for Q ∈ S (P ) with the lowest Estab(H, ⟨Q⟩). The proof is given in the Appendix 5.1.

Theorem 1. (CMCS gives the stabilizer ground state) Given a Hamiltonian H =
∑
P∈P wPP ,

then
Egs = min

Q∈S (P )
Estab(H, ⟨Q⟩) (5)

is the stabilizer ground state energy. Such Q minimizes Estab(H, ⟨Q⟩) is named as the closed
maximally-commuting subset (CMCS) of P̃ (or H). Additionally, for any S = ⟨Q⟩, Q ∈
S (P ) such that Estab(H,S) = Egs, each stabilizer state |ψ⟩ stabilized by S is a (degenerate)
stabilizer ground state.

Theorem 1 suggests that the stabilizer ground state of a Hamiltonian H =
∑
P∈P wPP can

be found by listing all elements of S (P ), and thus the computational cost is scaled with |S (P )|.
However, the exact value of |S (P )| heavily depends on the form of the Hamiltonian, e.g. the
commutation/anticommutation relations between the Pauli terms. We give a loose upper bound
of |S (P )| as follows:

Lemma 2. (Upper bound of CCS) If P is defined on at most n qubits, then |S (P )| ≤ (n+1)|P̃ |n.

Proof. For any Q ∈ S (P ), ⟨Q⟩ is constructed by at most n independent generators in P̃ . We
simply select each generator one by one, each with at most |P̃ | choices. Thus, we have |S (P )| ≤∑n
l=0 |P̃ |l ≤ (n+ 1)|P̃ |n.
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In fact, we will see that if |P | scales polynomial with n, |S (P )| will have a slower growing rate
than the number of n-qubit stabilizer states S(n). Therefore we define the sparse Hamiltonians as
follows:

Definition 4. (Sparse Hamiltonians) A n-qubit Pauli Hamiltonian H =
∑
P∈P wPP is sparse if

|P | ∼ O(poly(n)).

We note that almost all the common Hamiltonians are sparse Hamiltonians. Now we estimate
|S (P )| of sparse Hamiltonians:

Corollary 2. (Upper bound of CCS for sparse Hamiltonians) For sparse Hamiltonians H =∑
P∈P wPP , |S (P )| ∼ exp(Cn logn) for some constant C.

For sparse Hamiltonians, although |S (P )| still increases exponentially with n, it is much
smaller than the number of n-qubit stabilizer states S(n) ∼ 2 1

2 (n+1)(n+2).

2.3 Stabilizer ground states of 1D local Hamiltonians
In this section, we present an algorithm to determine the stabilizer ground state of a given n-qubit
1D k-local Hamiltonian with a O(n exp(Ck log k)) computational scaling. Note that such scaling
reduces to the exp(Cn logn) scaling in Corollary 2 in the limit of k → n up to a (possibly) different
factor C. We refer to this algorithm as the exact 1D local algorithm. To illustrate the motivation
of this algorithm, we first consider the constrained 1D classical Hamiltonians in Sec. 2.3.1 and
introduce a state machine algorithm with a linear scaling to obtain the exact ground state. Then
we build an exact mapping from the 1D local stabilizer ground state problem to the constrained
1D classical ground state problem in Sec. 2.3.2. We formally present the exact 1D local algorithm
for stabilizer ground states in Secs. 2.3.3 and 2.3.4, and its computational complexity is discussed
in Sec. 2.3.5.

2.3.1 A classical analogy: State machine algorithm for the constrained 1D classical ground state
problem

We first consider a general 1D n-site, k-local classical Hamiltonian without constraints on a chain
{σ1, ..., σn} as:

H =
n∑

m=1
hm(σm, σm+1, ..., σm+k−1), (6)

where each σi is a discrete variable which can take d distinct values, and hi is an arbitrary discrete
function. Here k-local means that each term acts on at most k continuous sites. The ground
state of such Hamiltonian can be exactly determined by the following state machine algorithm
with a computational complexity of O(ndk+1). We introduce sm = (σm, σm+1, ..., σm+k−1), which
combines k degree of freedoms (DOFs) as a single DOF with dk possible values. The Hamiltonian
can be written as the following 1-local form

H =
n∑

m=1
hm(sm), (7)

with the price that different si are dependent. In other words, the coupling is transferred from
the Hamiltonian to the valid state space, and we will later see that such change of perspective is
necessary in the quantum case, as the definition of independent local state is impossible. A key
step in this algorithm is that, for a fixed sm, the possible values of s≤m = {s1, ..., sm} are now
decoupled from s>m = {sm+1, ..., sn}, i.e.,

{s|sm} = {s≤m|sm} ⊗ {s>m|sm} (8)

where s = {s1, ..., sn}. This independence is because there is no overlap between s≤m and s>m
over {σi} beyond sm = (σm, σm+1, ..., σm+k−1). We define the energy on s≤m as

E(s≤m) =
m∑
i=1

hi(si) (9)
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and the “conditioned ground state energy” E≤m
gs (sm) as

E≤m
gs (sm) = min

s′
≤m

∈{s≤m|sm}
E(s′

≤m). (10)

The sequence {s1, . . . , sn} in Eq. (8) admits a natural physical interpretation as a non-probabilistic
analogue of a Markov chain, where the past (s≤m) and future (s>m) are conditionally independent
given the present state (sm). In addition, E≤m

gs (sm), as a function defined on the “non-probabilistic

Markov chain” sm, has the property that, for given values of E≤m
gs (sm) for all sm, E≤m+1

gs (sm+1)
for each sm+1 can be determined within O(dk+1) time. This conclusion is proved by first noticing
that

{s≤m|sm+1} = ∪sm
{s≤m|sm+1, sm}

= ∪sm∈{s′
m|sm+1}{s≤m|sm}

:= ∪sm∈Fback(sm+1){s≤m|sm}.
(11)

In the first line, all possible values of sm are looped over to determine s≤m. The shared sites
σm+1, ..., σm+k−1 in both sm+1 and sm must have the same values, and this constraint is denoted as
sm ∈ {s′

m|sm+1} in the second line. If this constraint holds, we have {s≤m|sm+1, sm} = {s≤m|sm}
due to the decoupling between s≤m and sm+1 for given sm (see Eq. (8)). We also introduce a
shorthand Fback(sm+1) for {s′

m|sm+1} in the last line. For instance, the 2-local spin Hamiltonian,
i.e., k = 2, sm = (σm, σm+1), and σi ∈ {↑, ↓}, has Fback(σm+1, σm+2) = {(σm, σm+1)|σm ∈ {↑, ↓}}.
From Eq. (11), the recurrence relation between E≤m

gs (sm) and E≤m+1
gs (sm+1) can be derived as

E≤m+1
gs (sm+1) = min

s′
≤m+1∈{s≤m+1|sm+1}

E(s′
≤m+1)

= hm+1(sm+1) + min
s′

≤m
∈{s≤m|sm+1}

E(s′
≤m)

= hm+1(sm+1) + min
sm∈Fback(sm+1)

E≤m
gs (sm).

(12)

For the above 2-local spin Hamiltonian example, Eq. (12) is equivalent to

E≤m+1
gs (σm+1, σm+2) = hm+1(σm+1, σm+2) + min

σm∈{↑,↓}
E≤m

gs (σm, σm+1). (13)

Thus, to obtain the ground state energy, we can sequentially build tables Tm for m = 1, 2, ..., n by
Eq. (12) to record the values of E≤m

gs (sm) over all sm, with the initial table T1 as E≤1
gs (s1) = h1(s1).

The final ground state energy is expressed as

Egs = min
sn

E≤n
gs (sn). (14)

Since Fback(sm+1) only has d elements (i.e. only σm can choose different values freely), and sm
has dk choices, one can build Tm+1 from Tm within O(dk+1) time, so the final computational
complexity is O(ndk+1). The ground state s⋆ (or σ⋆) is achieved when each table Tm is built with
sm = s⋆m, where s⋆m minimizes the right hand side (RHS) of Eq. (12) (m < n) or Eq. (14) (m = n).
A schematic workflow diagram of this algorithm using 2-local spin Hamiltonian example is shown
in Fig. 1.

Although the constraints between sm are local (sm and sm′ are independent if |m −m′| ≥ k)
in the above case, this approach also works for some special non-local constraints. An illustrative
example is H =

∑n
m=1 hm(sm), sm ∈ {0, 1, ..., d − 1} with constraints fm(

∑m
i=1 si) ≥ 0 and

gm(
∑n
i=m+1 si) ≥ 0 for each m, where the summation

∑m
i=1 si and

∑n
i=m+1 si are modulo d. We

introduce a state machine

Am = (sm, αm =
m∑
i=1

si, βm =
n∑

i=m+1
si), (15)

which is a function of s = {s1, ..., sn}. With a fixed Am = (sm, αm, βm), the constraints fl and gl
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Figure 1: State machine algorithm of the 1D local classical ground state problem illustrated by a 2-local spin
Hamiltonian H =

∑3
m=1 hm(σm, σm+1). For illustration, we use σ instead of s everywhere. For each m we

define the “conditioned ground state energy” E≤m
gs (σm, σm+1) (see Eq. (10)). E≤1

gs is simply h1, and E≤m+1
gs

can be determined from E≤m
gs via Eq. 12. The final ground state is the minimum value of E≤n

gs (see Eq. (14)).
The ground state can be obtained by finding each sm = (σm, σm+1) (orange blocks) that minimizes the RHS
of Eq. (12) and Eq. (14).

with l ≤ m can be rewritten as

fl(
l∑
i=1

si) = fl(αm − τl(s≤m)) ≥ 0

gl(
n∑

i=l+1
si) = gl(βm + τl(s≤m)) ≥ 0,

(16)

where τl(s≤m) =
∑m
i=l+1 si. This implies that these two constraints act only on s≤m. Similarly,

the constraints of l > m act only on s>m. Therefore, s≤m and s>m are again decoupled given Am,
i.e.,

{s|Am} = {s≤m|Am} ⊗ {s>m|Am}. (17)

For a given Am, s≤m fully determines each Al≤m as Al = (sl, αm − τl(s≤m), βm + τl(s≤m)), and
s>m similarly determines each Al>m. Thus we conclude

{A1, ..., An|Am} = {A1, ..., Am|Am} ⊗ {Am+1, ..., An|Am}, (18)

which is a generalized form of Eq. (8). In fact, Eq. (8) can be viewed as a special case of Eq. (18)
when Am = sm. Since Am contains the information of sm, we can rewrite hm(sm) as h′

m(Am). To
use the previous algorithm, we introduce a transition function

F (Am) = {Am+1|Am}
= {(sm+1, αm+1 = αm + sm+1, βm+1 = βm − sm+1)|fm+1(αm+1) ≥ 0, gm+1(βm+1) ≥ 0},

(19)
and thus Fback(Am) = {Am−1|Am ∈ F (Am−1)}. We can then similarly define the “conditioned
ground state energy” E≤m

gs (Am) and recursively construct the values for m = 1, 2, ..., n to determine
the ground state. For this specific problem, Am has d3 choices, and F (Am) has d elements, so the
computational complexity to obtain the ground state is O(nd4).

We further generalize the above solution of constrained 1D classical ground state problems.
Without loss of generality, the input Hamiltonian can be assumed as 1-local since a k-local problem
can always be rewritten as a 1-local problem. The key is to construct a state machine Am that
satisfies Eq. (18). Once we constructed such Am, the ground state could be obtained by recursively
building tables Tm that record each E≤m

gs (Am). Now we rigorously define a state machine as follows:
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Definition 5. (State machine) Consider a classical system with single-site states s1, ..., sn, where
each of them can take some discrete values si ∈ di. The valid space D is a subset of the full space
d1⊗d2⊗ ...⊗dn due to some constraints. Am defined on D is a state machine if (1) Am contains
information of sm, i.e. there exists a state function G(Am(s)) = sm for any s ∈ D, and (2)
given Am, the possible values of the left state machines A1, ..., Am and the possible values of right
state machines Am+1, ..., An are independent, i.e.

{A1, ..., An|Am} = {A1, ..., Am|Am} ⊗ {Am+1, ..., An|Am}. (20)

The corresponding transition function is defined as

F (Am) = {Am+1|Am} (21)
:= {Am+1(s)|Am(s) = Am, s ∈D}, (22)

where the second line is a rigorous definition of {Am+1|Am}. The definitions of other expressions
like {...|...} are similar.

As mentioned previously, it can be understood as a non-probabilistic version of the Markov
chain. We additionally require the existence of the state function G so that we could write hm(sm)
as hm(G(Am)) in the Hamiltonian. Now the above state machine algorithm of the constrained clas-
sical ground state problem can be generalized in the following theorem, and a schematic workflow
is shown in Fig. 2.

Theorem 2. (State machine algorithm of the constrained classical ground state problem) If Am
is a state machine on s ∈D with the state function G and transition function F , then the ground
state of Hamiltonian H =

∑n
m=1 hm(sm) can be determined by

1. Construct A1 = {A1(s)|s ∈D} and E≤1
gs (A1) = h1(G(A1)) for all A1 ∈ A1.

2. From m = 1 to n− 1, create Am+1 = ∪Am∈Am
F (Am) and

E≤m+1
gs (Am+1 ∈ Am+1) = hm+1(G(Am+1)) + min

Am∈Fback(Am+1)
E≤m

gs (Am), (23)

where Fback(Am+1) = {Am|Am+1 ∈ F (Am)}.

3. The ground state energy is
Egs = min

An∈An

E≤n
gs (An). (24)

4. To obtain the ground state s⋆, we find {A⋆1, ..., A⋆n} by

A⋆n = arg min
An∈An

E≤n
gs (An),

A⋆m = arg min
Am∈Fback(A⋆

m+1)
E≤m

gs (Am)
(25)

for m = 1, 2, ..., n− 1. Then the components of s⋆ is s⋆m = G(A⋆m) for m = 1, 2, ..., n.

Proof. The Hamiltonian can be rewritten as H =
∑n
m=1 hm(G(Am)), thus the all derivations in

the first k-local classical ground state problem still hold with all sm changed to Am.

We additionally note that, the algorithm in Theorem 2 is not automatically linearly-scaled, unless
we can ensure that the evaluations of transition function F and the initial A1 can be done in a
constant time.
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Figure 2: (a) Schematic diagram of the state machine and transition function defined in Definition 5. Given
Am, the possible paths of A<m = {A1, ..., Am−1} should be decoupled from the possible paths of A>m =
{Am+1, ..., An}. The transition function F (Am) gives the possible values of Am+1 given Am, and Fback(Am+1)
gives the possible values of Am given Am+1. (b) Schematic diagram of the state machine algorithm in Theorem 2
to obtain the ground state of constrained 1D local classical Hamiltonians. The Hamiltonian is given by H =∑n

m=1 hm(sm) in some constrained space D. Given a state machine Am and transition function F satisfying
Definition 5, we start from A1 ∈ A1, and sequentially determine the possible values of Am+1 ∈ F (Am)
for each Am. (lines connecting Am and Am+1 indicates that Am+1 ∈ F (Am)) In this process, each Am

can generate multiple Am+1, and each Am+1 can be generated from multiple Am. The energy difference
∆Em = hm(G(Am)) is a function of Am, where G is the state functions satisfying G(Am) = sm. By such
construction, each path {A1, ..., An} such that Am+1 ∈ F (Am), m = 1, ..., n − 1 uniquely maps a valid state
s ∈ D via sm = G(Am). To determine the ground state, we record the value of E≤m

gs (Am) for each Am in a
table starting from E≤1

gs (A1) = h1(A1). Once we record all values of E≤m
gs (Am), the values of E≤m+1

gs (Am+1)
can be determined from Eq. (23). The final ground state is simply Egs = minAn (E≤n

gs (An)), and the ground
state is the corresponding path {s⋆

1, ...., s⋆
n} (bold lines) such that each minimization in Eq. (23) and Eq. 24 is

taken at sm = s⋆
m.

2.3.2 Mapping the stabilizer ground state problem to the constrained classical ground state problem

In this subsection, we show that the 1D local stabilizer ground state problem can be rigorously
mapped to the constrained classical ground state problem considered in Sec. 2.3.1. we first define
the 1D k-local Hamiltonian as follows:

Definition 6. (k-local Hamiltonians) A Hamiltonian H =
∑
P∈P wPP is k-local if each P ∈ P

is between qubit qfirst
P to qlast

P that satisfies qlast
P − qfirst

P ≤ k − 1.

In the context of stabilizer ground states, we need to find suitable states with equivalent identi-
ties as s. According to Definition 5 and Theorem 2, the stabilizer ground state energy can be found
via Egs = minQ∈S (P ) Estab(H, ⟨Q⟩). In other words, S (P ) = {Q ⊆ P̃ |Q = ⟨Q⟩ ∩ P̃ ,−I /∈ ⟨Q⟩}
serves as the state space D, and each Q ∈ S (P ) is a state s. We find the equivalent identity
of single-site states sm as follows. We divide P̃ onto sites m by the last non-identity qubit qlastP

for any P ∈ P̃ , and define P̃ I = {P ∈ P |qlastP ∈ I} for a given index set I. For index sets {m},
{i|a ≤ i ≤ b}, {i|i > m}, {i|i ≥ m}, {i|i < m}, and {i|i ≤ m}, we use shorthands P̃m, P̃ a,b, P̃>m,
P̃ ≥m, P̃<m, and P̃ ≤m, respectively. For example, P̃ ≤m = {P ∈ P̃ |qlastP ≤ m}. According to the
definition, we have P̃ = ∪nm=1P̃m. We also introduce similar shorthands for P I . Since Q ∈ S (P )
is a subset of P̃ , we have Q = ∪nm=1Qm with Qm = Q ∩ P̃m, and Qm is the equivalent identity
of single-site states sm. The constraint Q ∈ S (P ) is the equivalent relation of s ∈ D. To give
an example of the constraint, we consider P = {Z1, Z2, Z1Z2}, and correspondingly P 1 = {Z1},
P 2 = {Z2, Z1Z2}. If Z1 ∈ Q and Z2 ∈ Q we must have Z1Z2 ∈ Q as well, so Q1 = {Z1} and
Q2 = {Z2} cannot hold simultaneously, although either of them can be taken if the other one is
empty. Finally, the stabilizer energy Estab(H, ⟨Q⟩) for any Q ∈ S (P ) can also be written as the
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sum of local Qm:

Estab(H, ⟨Q⟩) =
∑

P∈⟨Q⟩∩P

wP −
∑

P∈⟨Q⟩∩(−P )

w−P

=
∑
m

( ∑
Q∈Qm∩P m

wQ −
∑

Q∈Qm∩(−P m)

w−Q
)

:=
∑
m

hm(Qm)

(26)

In summary, the mapping from the 1D local stabilizer ground state problem to the 1D local
constrained classical ground state problem is:

1. Qm → sm

2. {Qm|Qm ⊆ P̃m} → dm

3. S (P )→D

4. Q ∈ S (P )→ s ∈D

5. hm(Qm)→ hm(sm)

We additionally note that the single-site state Qm becomes the CCS Q in the limit of k → n,
which suggests that the 1D local algorithm reduces to the general solution when k → n.

2.3.3 Construction of state machine Am
In the previous section, we have already mapped the 1D local stabilizer ground state problem
to a constrained classical ground state problem. Once we construct the state machine satisfying
Definition 5, we can obtain the ground state by Theorem 2. We first introduce the projection
operation as follow:

Definition 7. (Projection) We denote PI = ±{Ii, Xi, Yi, Zi}⊗i∈I , where i indicates the qubit
index, and I stands for some index set. The projection of a set of Pauli operators P to qubits I
is PI(P ) = P ∩ PI . The notations of the index set I are the same with P̃ I in Sec. 2.3.2.

It is important to note that, if S is a stabilizer group, PI(S) is also a stabilizer group. Following
the definition of state machine in Definition 5 and the mapping in Sec. 2.3.2, we hope to construct
Am on Q ∈ S (P ) satisfying Eq. (20). In the second example of Sec. 2.3.1, we first constructed
Am satisfying Eq. (17). In Appendix 5.2, we prove that Eq. (17) is a necessary condition of Eq.
(20). According to the mapping s→ Q, Eq. (17) is

{Q|Am} = {Q≤m|Am} ⊗ {Q>m|Am}, (27)

i.e., given Am, Q≤m and Q>m are decoupled. In Appendix 5.3, we derive

Am(Q) = (Sm
proj(Q≤m), P̃m

invalid(Q≤m),Sm
right(Q≥m)) (28)

that satisfies Eq. (17) and further Eq. (20), where

P̃
m

invalid(Q≤m) = {P ∈ P̃>m|[P,Q≤m] ̸= 0}, (29)
Sm

proj(Q≤m) = P>m−k(⟨Q≤m⟩), (30)
Sm

right(Q≥m) = P≤m(⟨Q≥m⟩). (31)

A physical illustration is that, the coupling between Q≤m and Q>m comes from (1) [Q>m,Q≤m] =
0 since elements of a stabilizer group commute, and (2) group multiplication operations be-
tween Q≤m and Q>m does not generated new elements in either P̃>m and P̃ ≤m. Given Am =
(Sm

proj, P̃
m

invalid,S
m
right), (1) is equivalent to P̃

m

invalid(Q≤m) = P̃
m

invalid, and (2) is equivalent to
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Sm
proj(Q≤m) = Sm

proj (for the P̃>m part) and Sm
right(Q≥m) = Sm

right (for the P̃ ≤m part), respec-
tively. Thus, Q≤m and Q>m are now decoupled.

Finally, by noticing

Sm
right(Q≥m) ∩ P̃m = P≤m(⟨Q≥m⟩) ∩ P̃m = Qm, (32)

the state function G is

G(Am = (Sm
proj, P̃

m

invalid,S
m
right)) = Sm

right ∩ P̃m. (33)

Therefore, the state machine for the 1D local stabilizer ground state problem is

Corollary 3. (State machine of the 1D local stabilizer ground state problem) Am defined in Eq.
(28) is a state machine of the state space S (P ). The state function G is given in Eq. (33).

2.3.4 Construction of transition function F

After defining the state machine in Corollary 3, we need to further derive the transition function
F (Am) = {Am+1(Q)|Am = Am(Q),Q ∈ S (P )} in order to use Theorem 2. A naive strategy is
looping over all Q ∈ S (P ) and calculating each Am(Q) and Am+1(Q), however its computational
complexity is still exponential. Our strategy is introduced as follows with a linear complexity. We

first notice that both Sm+1
proj and P̃

m+1
invalid can be obtained from Am and Sm+1

right as:

Sm+1
proj (Sm

proj,Qm+1) = ⟨P>m−k+1(Sm
proj(Q≤m)),Qm+1⟩, (34)

P̃
m+1
invalid(P̃m

invalid,Qm+1) ={P ∈ P̃ ≥m+1|P ∈ P̃
m

invalid(Q≤m) or [P,Qm+1] ̸= 0}, (35)

where Qm+1 = Sm+1
right ∩ P̃m+1 is determined by Sm+1

right . The derivations can be found in Appendix

5.3. For given Am and Sm+1
right , Am+1 is determined via Eq. (34) and Eq. (35), and we denote it as

Am+1 = Am+1(Am,Sm+1
right). (36)

This suggests that, to obtain the transition function F (Am), we need to determine all possible
Sm+1

right given Am:

Sm+1
right (Am) = {Sm+1

right |Am} ≡ {S
m+1
right(Q)|Am = Am(Q),Q ∈ S (P )}. (37)

Thus, the transition function F (Am) can be written as

F (Am) = {Am+1(Am,Sm+1
right)|S

m+1
right ∈ S

m+1
right (Am)}. (38)

However, the exact computation of Sm+1
right (Am) is still exponentially scaled. A solution to this issue

is proposed by relaxing the definition of state machines and transition functions as follows:

Definition 8. (Relaxed state machine and transition function) Let Am be a state machine defined
on D with transition function F , and Am = {Am(s)|s ∈D}. For an enlarged space Ãm ⊇ Am, we
say Am ∈ Ãm is a relaxed state machine, and F̃ (Am ∈ Ãm) is a relaxed transition function
if

1. F̃ (Am ∈ Am) ∩ Am+1 = F (Am), i.e. F̃ behaves the same with F in the “valid region” Am.

2. F̃ (Am ∈ (Ãm −Am)) ⊆ Ãm+1 −Am+1, i.e. if Am+1 ∈ Ãm+1, then Am ∈ Ãm

According to this definition, once some path {A1, A2, ...} enters into the “invalid region” at some
Am, i.e., Am ∈ Ãm −Am, all the following {Am+1, ...} will stay in the invalid region and the path
could even be early terminated at step t < n when F̃ (At) = ∅. To assure each full path {A1, ..., An}
always staying in the valid region, the condition of Ãn − An = ∅ is additionally required. With
this additional condition, the replacement of F to the relaxed definitions, F̃ , in Theorem 2 should
still result in the ground state. We refer to this replaced algorithm as the relaxed state machine
algorithm, whose schematic diagram is shown in Fig. 3.
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Figure 3: Schematic diagram of the relaxed state machine algorithm to obtain the ground state of constrained
1D local classical Hamiltonians in Corollary 4. Given a relaxed state machine Am and a relaxed transition
function F̃ defined in Definition 8, the full space of the relaxed state machine Ãm is divided to a valid part Am

and a non-valid part Ãm −Am. F̃ can connect Am ∈ Ãm with Am+1 ∈ Ãm+1, Am ∈ Ãm with Am+1 /∈ Ãm+1,
Am /∈ Ãm with Am+1 /∈ Ãm+1, but not Am /∈ Ãm with Am+1 ∈ Ãm+1 (red dashed line with a “×” sign).
In the valid part Am, the behavior of F̃ should be the same as the original transition function F . (the bottom
part is the same as Fig. 2. If there’s no invalid state machine at m = n, i.e. Ãm = Am, then the ground state
can be obtained by the same approach in Theorem 2 with the relaxed transition function F̃ . (once the path
A1, A2, ... enters into the top part is never reaches m = n so does not affect the result) With the mapping of the
stabilizer ground problem to the constrained classical ground state problem in Sec. 2.3.2, and the constructed
relaxed state machine Am, relaxed transition function F̃ , and state function G, one can obtain the stabilizer
ground state of 1D local Hamiltonians with a linear scaling. (See Corollary 6)

Corollary 4. (Relaxed state machine algorithm of contrained 1D local classical ground state)
Following the notations in Definition 8, we replace F by F̃ and replace the initial A1 by some Ã1 ⊇
A1 in Theorem 2, and generate Ãm, m = 1, 2, ...., n with the same procedure. If we additionally
have Ãn = An, then the modified algorithm still gives the correct ground state.

We now revisit the stabilizer ground state problem, where an enlarged space S̃m+1
right (Am) ⊇

Sm+1
right (Am) needs to be created. By implying Ãm ⊇ Am for each m, the corresponding construction

(Eq. (39)) automatically satisfies first condition of Definition 8.

F̃ (Am) = {Am+1(Am,Sm+1
right)|S

m+1
right ∈ S̃

m+1
right (Am)}. (39)

In Appendix 5.4, we show that the second condition of Definition 8 can be achieved if each Sm+1
right ∈

S̃m+1
right (Am) satisfies

−I /∈ ⟨Qm+1⟩,
Qm+1 ∩ P̃

m

invalid(Q≤m) = ∅,
⟨P≤m(Sm+1

right),Qm⟩ = Sm
right,

Sm+1
proj ∩ Sm+1

right = Qm+1,

(40)

where we used Qm = Sm
right ∩ Pm, Qm+1 = Sm+1

right ∩ Pm+1, and Sm+1
proj = Sm+1

proj (Sm
proj,Qm+1)

defined in Eq. (34). Thus, S̃m+1
right (Am) could be constructed by looping over all stabilizer groups

between qubit m − k + 2 and m + 1, and keeping only the terms satisfying Eq. (40). However,
this apporach has a non-ideal upper bound |S̃mright| ≤ S(k) ∼ 2 1

2 (k+1)(k+2). We note that if F̃ on
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Ãm ⊇ Am is a relaxed transition function, F̃ on any Ã′
m with Ãm ⊇ Ã′

m ⊇ Am is automatically
a relaxed transition function (Fig. 3). Thanks to this fact, a better solution can be obtained with
the truncation operation defined as follows:

Definition 9. (Truncation) Let P ∈ Pn be a Pauli operator, and P = ±p1 ⊗ p2 ⊗ ...⊗ pn, where
pi ∈ {Ii, Xi, Yi, Zi}. The truncation of P to qubits I is TI(P ) = ⊗i∈Ipi. Similarly, the truncation
of a set of Pauli operators P is TI(P ) = {TI(P )|P ∈ P }.

A tighter constraint is Sm
right(Q ∈ S (P )) ∈ T mright, where

T mright = {⟨Q⟩|Q ∈ S (T≤m(P ≥m))}, (41)

which are stabilizer groups generated by elements in ±T≤m(P ≥m). For example, if a stabilizer
group S is generated by elements in P = {X1X2, Z1Z2, Z2}, S1 = P1(S) is generated by elements
in T1(P ) = {X1, Z1}. Note that the converse statement is not true, i.e. S1 generated by T1(P )
is not necessarily some P1(S). Clearly the number of elements in T≤m(P ≥m) is up to the number
of elements in Pm,m+k−1. This leads to a O(exp(Ck log k)) scaling for some constant C given the
Hamiltonian is sparse, which will be shown in Theorem 3.

Finally, we define

S̃m+1
right (Am) = {Sm

right ∈ T mright|S
m
right satisfies Eq. (40)}. (42)

The corresponding relaxed transtion function F̃ (Am) is now given by

Corollary 5. (Relaxed transition function of the stabilizer ground state problem) F̃ (Am) defined
in Eq. (39) with S̃m+1

right (Am) defined in Eq. (42) is a relaxed transition function of the state machine
Am defined in Corollary 3.

The last component we missed is an approach to determine the initial values Ã1. A clever
construction is Ã1 = ∪A0∈Ã0

F (A0) from Ã0 by adding an ancillary site 0 with Q0 = P 0 = ∅. With

this ancillary site, we can derive S0
proj = P>−k(⟨Q≤0⟩) = ⟨∅⟩, P̃

0
invalid = {P ∈ P̃>0|[P,Q≤0] ̸=

0} = ∅, S0
right = P≤0(⟨Q≥0⟩) = ⟨∅⟩, and thus Ã0 = {A0}, where A0 = (⟨∅⟩, ∅, ⟨∅⟩). This naturally

gives Ã1 = F̃ (A0 = (⟨∅⟩, ∅, ⟨∅⟩)). According to Corollary 4, the final exact 1D local algorithm is
given by:

Corollary 6. (Exact 1D local algorithm of the stabilizer ground state problem) With the state
machine Am, relaxed transition function F̃ , and state function G defined in Corollary 3, Corollary 5
and Eq. (33), starting from Ã1 = F̃ (A0 = (⟨∅⟩, ∅, ⟨∅⟩)), the stabilizer ground state of 1D local
Hamiltonians can be determined by Corollary 4.

2.3.5 Computational complexity

We estimate the computational scaling of the exact 1D local algorithm, which is controlled by
|Ãm|. For the similar reason mentioned in Sec. 2.2, it does not have a simple expression. A loose
upper bound is provided in the following and its detailed proof is given in Appendix 5.5.

Theorem 3. (Upper bound of |Ãm|) Let H =
∑
P∈P wPP be a k-local Hamiltonian, and there

exists M such that |Pm| ≤M for each m. Then for any m, we can construct candidate values of
Am as Ã′

m ⊇ Ãm solely from Tm−2k+1,m(P̃ ), such that |Ã′
m| < NA = (4kM)3k = exp(3k log 4kM).

We rewrite |Ãm| ∼ O(exp(Ck log kM)) for simplicity and further analysis. The total cost spent
on each site m is bounded by the product of (1) |Ãm|, (2) |Ãm+1|, and (3) time to compute a single
Am+1 ∈ Ãm+1 from a single Am ∈ Ãm. Since all stabilizer state operations used in the algorithm
can be realized in polynomial scaling of k, the total cost scales as

T ∼ n×O(exp(Ck log kM))×O(exp(Ck log kM))×O(poly(k))
∼ O(n exp(C ′k log kM))

for some constant C ′. Similar to Definition 4, we consider the 1D local and sparse Hamiltonians
defined as follows:
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Definition 10. (local sparse Hamiltonians) For a 1D k-local Pauli Hamiltonian H =
∑
P∈P wPP ,

we say that it is sparse if |Pm| ∼ O(poly(k)).

The conclusions T ∼ O(n exp(C ′k log kM)) and M ∼ O(poly(k)) lead to the final computation
complexity as:

Corollary 7. (Computational complexity of the exact 1D local algorithm) The computational
cost T to obtain the stabilizer ground state of a n-qubit, k-local sparse Hamiltonian is T ∼
O(n exp(Ck log k)) for some constant C.

2.4 Stabilizer ground states of infinite periodic Hamiltonians
In this section, the stabilizer ground state problem of infinite periodic Hamiltonians (referred to
as periodic Hamiltonians) is discussed. We will show that, for any 1D periodic local Hamiltonian,
the stabilizer ground state also has periodic stabilizers in some supercells. We also show that, the
stabilizer ground states of 1D periodic local Hamiltonians can be similarly obtained by the state
machine solution in the exact 1D algorithm with an additional periodic boundary condition of
state machines in a supercell. This algorithm is referred as the exact 1D periodic local algorithm.
For general periodic Hamiltonians in higher dimensions, we conjecture that the stabilizer ground
states should still have periodic stabilizers. With this assumption, the formalism in Sec. 2.2 is
extended to general periodic Hamiltonians.

We first review the properties of the eigenstates of periodic Hamiltonians on an infinitely long
1D lattice. Let T be an operator to translate a given |ψ⟩ by some fixed number of sites, and H
be a Hamiltonian satisfying [H,T ] = 0. Bloch’s theorem [71] states that the eigenstates |ψ⟩ of H
can be classified by the eigenvalue of T via T |ψ⟩ = eiϕ|ψ⟩ since H and T can be simultaneously
diagonalized. In numerical treatments, a supercell with size L is usually introduced and ϕ can take
discrete values ϕ = 2π jL for integers 0 ≤ j < L [72, 73].

Now we consider stabilizer states in the qubit space. Let Tl be the operator to translate
qubit q to q + l for any q. A Hamiltonian H =

∑
P∈P wPP is defined to be invariant under

Tl if P ′ = T †PT satisfies P ′ ∈ P and wP ′ = wP for any P ∈ P . However, the stabilizer
ground state |ψ⟩ of H might not be an eigenstate of Tl, i.e., Tl|ψ⟩ = λ|ψ⟩ for some λ. An
example is H = H0 + ϵHI , where H0 = −

∑
n(X3nX3n+1X3n+2 + Z3nZ3n+1Z3n+2) and HI =

−
∑
n(Z3n−1X3n + X3n−1Z3n), and H thus has a period of 3. At ϵ = 0, H can be divided into

independent subsystems {3n, 3n+1, 3n+2} for each n, and each subsystem has degenerate stabilizer
ground states with stabilizers X3nX3n+1X3n+2 and Z3nZ3n+1Z3n+2, respectively. At 0 < ϵ ≪ 1,
the interaction term HI breaks the degeneracy, and the stabilizers of the stabilizer ground state
become alternating X3nX3n+1X3n+2 and Z3nZ3n+1Z3n+2. This system has a period of 6 and thus
does not satisfy Tl=3|ψ⟩ = λ|ψ⟩.

Now let us treat the infinite periodic Hamiltonians as n-qubit Hamiltonians with n = ∞.
According to Sec. 2.3, we can efficiently determine the ground state by constructing the state
machines {Am} from the relaxed transition function F̃ , so we get an infinitely long state machine
chain {A∞

m=−∞}. We introduce an equivalence condition A ≃ B, if A and B differ only by
translation of some cl lattices, where c ∈ Z, e.g. ⟨Z1, Z2⟩ ≃ ⟨Z7, Z8⟩ with l = 3. The following
theorem presents that the state machine chain {A∞

m=−∞} corresponding to the stabilizer ground
state is periodic with some period cl, c ∈ Z. The proof is given in Appendix 5.6.

Theorem 4. (State machines of CMCS of infinitely periodic Hamiltonians are periodic) Let H =∑
P∈P wPP be an infinitely periodic 1D local sparse Hamiltonian with period l, and Q⋆ ∈ S (P )

be the CMCS of H. Let Am = Am(Q⋆), there exists some c < NA such that Am+cl ≃ Am for any
m, where NA is given in Theorem 3. Furthermore, the stabilizer ground state energy per site is

Eperiodic
gs = min

c≤NA

min
{Acl

m=0|Ai+1∈F̃ (Ai),A0≃Acl}

1
cl

cl∑
m=1

hm(G(Am)), (43)

which involves a periodic boundary condition A0 ≃ Acl , and the boundary state machine must be
one of the candidate values in Theorem 3.
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For a fixed supercell size c and boundary state machine A0, one can perform the algorithm in
Theorem 2 with an additional final state restriction of Acl ≃ A0 to obtain the chain {A0, A1, ..., Acl}
with the lowest energy. With additional loops over c and the boundary state machine A0, one can
find the stabilizer ground state with a linear scaling of l. This algorithm is referred to as the exact
1D periodic local algorithm. Besides, Theorem 4 implies that the CMCS Q⋆ is also periodic, and
thus the stabilizer ground state |ψ⟩ is also periodic, i.e. Tcl|ψ⟩ = |ψ⟩.

We then move on to discuss higher-dimensional Hamiltonians. Although we are not able to the-
oretically prove that the stabilizer ground state |ψ⟩ satisfies Tcl|ψ⟩ = |ψ⟩ for translation operators
Tcl in each dimension, we speculate that at least some approximated (if not exact) stabilizer ground
state satisfies such condition due to its similarity to the supercell treatments of exact eigenstates.

With the assumption of Tcl|ψ⟩ = |ψ⟩, we present the stabilizer ground state theory for general

infinite periodic Hamiltonians. For any stabilizer P with P |ψ⟩ = |ψ⟩, let P ′ = T †
clPTcl, we have

P ′|ψ⟩ = |ψ⟩, and thus P ′ is also a stabilizer of |ψ⟩. We only need to consider those Q ∈ S (P )
such that Q = T †

clQTcl. (Roughly speaking, we only need to determine the stabilizers Q in a single
supercell and then copy it to others) Strictly, we define the closed commuting periodic subsets
(CCPS) as

Sc(P ) = {Q ⊆ P̃ |Q = ⟨Q⟩ ∩ P̃ ,−I /∈ ⟨Q⟩,Q = T †
clQTcl}. (44)

Since [Q,T †
clQTcl] = 0 for any Q ∈ Q, Q ∈ Sc(P ), a näıve but useful simplification of Sc(P ) is

Sc(P ) = Sc(P ′), (45)

where P ′ = {P ∈ P |[P, T †
clPTcl] = 0}. Consider the example H =

∑
i ZiXi+1 which has period

l = 1. If the supercell size is c = 1, then according to {ZiXi+1, Zi+1Xi+2} = 0, we have P ′ = ∅
and thus Sc=1(P ) = {∅}. This indicates that c = 1 is not a good choice. If the supercell size is
c = 2, we could, for example have Q = {Z2iX2i+1|i ∈ Z}. Finally, the stabilizer ground state is
given by

Egs = min
c,Q∈Sc(P )

Estab(H, ⟨Q⟩). (46)

The Q ∈ Sc(P ) minimizing Eq. (46) is referred as the closed maximally-commuting periodic
subset (CMCPS) of P̃ (or H). For physically reasonable Hamiltonians, it might be enough to
search for the minimum stabilizer ground state energy by checking a few small c.

2.5 Applications analysis of stabilizer ground states
In the following, we discuss the potential applications of the concept and algorithms of stabilizer
ground states in simulating many-body physics problems from the aspects of both quantum and
classical algorithms. The stabilizer ground states are also compared with other common ground
states ansatzes, e.g. the mean-field state, and matrix product states (MPS). Since the concept of
”mean-field” has different definitions in different situations, we only consider the product states
[74, 75], which is a typical example of mean-field states in the qubit space. However, a similar
analysis also works for many other cases. We will also see that, although stabilizer states, product
states, and MPS each have their own advantages depending on the physical system, their strengths
are not mutually exclusive. In fact, one can seamlessly combine stabilizer states with product states
or MPS to leverage the benefits of both, especially for systems that exhibit features characteristic
of both classes.

Stabilizer ground states could serve as good candidates for initial states in terms of quantum
algorithms. Specifically, we consider two quantum algorithms for many-body ground state prob-
lems, i.e., the variational quantum eigensolver (VQE) [15, 16] and quantum phase estimation (QPE)
[27, 28], which are the most widely studied algorithms in the noisy intermediate-scale quantum
(NISQ) [76] and fault-tolerant quantum computation (FTQC) [77] era, respectively. For VQE, a
notorious issue is the barren plateau problem [78, 79, 80], implying that the energy gradients with
respect to the circuit parameters are exponentially small except in an exponentially small region,
and such behavior resulting in the failure of classical optimizations [79]. Thus, starting from a
physically valid state, such as an approximated ground state in the case of stabilizer ground state,
serves as the easiest and the most straightforward solution to mitigate the barren plateau problem.
In terms of the QPE algorithm, the output is a random eigenstate. Let the initial state be |ψ⟩init,
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the probability of getting each eigenstate |ψk⟩ follows Born rule |⟨ψinit|ψk⟩|2. For randomly chosen
|ψinit⟩, |⟨ψinit|ψk⟩|2 also decays exponentially with the system size [6]. Thus, an initial state having
a large overlap with the exact ground state is also vital for the success of QPE. In summary, for
both VQE and QPE, an initial state close to the ground state is desired, where stabilizer ground
states and the corresponding efficient algorithms serve as good candidates. [81]

One of the main advantages of the stabilizer states for initial states on quantum computers is
its ability to be efficiently prepared on quantum circuits with up to O(n2/ logn) single-qubit and
double-qubit Clifford gates [40]. Such advantage is further magnified on fault-tolerant quantum
computers, where the computational cost is dominated by non-Clifford operations via, e.g., magic
state distillation [41]. Besides, we prove in the following that, the gate count number can be further
reduced to O(nk/ log k) for the preparation of stabilizer ground states of 1D k-local Hamiltonians
(assuming the stabilizer ground state is not highly degenerate).

Theorem 5. (Decomposed Clifford transformations of local stabilizer groups) Given a n-qubit
stabilizer group S, if there exists independent generators P = {P1, ..., Pn} (i.e. S = ⟨P ⟩) that
each Pi is k-local, then we can find up to L ∼ O(nk/ log k) single-qubit and double-qubit Clifford
transformations U1, ..., UL, such that the combined Clifford transformation U =

∏1
i=L Ui satisfies

U†SU = ⟨Z1, Z2, ..., Zn⟩. Furthermore, if there are up to s elements in {Pi} that are not k-local,
the above conclusion still holds with L ∼ O(nk′/ log k′), where k′ = k + s.

Proof. See Appendix 5.7. The corresponding algorithm is given in Algorithm 1.

Corollary 8. (Quantum state preparation of stabilizer ground states of 1D local Hamiltonians)
Let H =

∑
P∈P wPP be a n-qubit , k-local 1D local Hamiltonian, and the corresponding CMCS

is Q⋆ ∈ S (P ). According to Theorem 1 the stabilizer ground states are those stabilizer states
stabilized by ⟨Q⋆⟩. If ⟨Q⋆⟩ has n − s independent generators, then each of the corresponding
ground states can be prepared on quantum circuits with up to L ∼ O(nk′/ log k′) single-qubit and
double-qubit Clifford operations, where k′ = k + s. Specifically, if the stabilizer ground state is
non-degenerate, one needs L ∼ O(nk/ log k) operations.

Proof. Since each Q ∈ Q⋆ is k-local, S = ⟨Q⋆⟩ has n − s k-local and independent generators,
thus it meets the requirement of Theorem 5, and the conclusion applies. Since each (degenerate)
stabilizer ground state satisfies P |ψ⟩ = |ψ⟩ for P ∈ S, we have U†PU(U†|ψ⟩) = (U†|ψ⟩). Since
U†SU = ⟨Z1, Z2, ..., Zn⟩, we have |ψ′⟩ = U†|ψ⟩ = |0⟩⊗n, or |ψ⟩ = U |0⟩⊗n, i.e. |ψ⟩ can be
prepared by U , which contains L single and double-qubit Clifford operations. When and only
when s = 0, the stabilizer ground state is unique, thus the non-degenerate stabilizer ground state
implies L ∼ O(nk/ log k).

We also compare it with product states and MPS in the following. Since product states can be
trivially prepared in O(1) circuit depth and O(n) gates, we mainly discuss the preparation of MPS.
MPS is a powerful common ground state ansatz especially for 1D local and gapped systems as the
ground state satisfies the area-law entanglement. It has also been shown that an n-site MPS with
bond dimension χ can be prepared on quantum computers with n numbers of (log2 χ + 1)-qubit
unitaries [82, 45]. Since m-qubit gate can be decomposed to O(4m) single-qubit and double-qubit
gates [83], this gives a total number of O(nχ2) single-qubit and double-qubit gates. (Recent work
[84] shows that the circuit depth can be reduced to O(logn) or O(log logn) but with the price of
higher scaling in terms of χ, typically O(χ4) or O(χ6)). In the worst case, MPS requires bond
dimension χ = 2k to describe a (k+1)-local stabilizer state, which leads to an exponentially higher
cost of circuit preparation in terms of dependence on the locality k. One example is the rainbow
state |ψ⟩ =

∑
i1....ik

|i1...iki1...ik⟩, which is essentially the product of k bell pairs on qubits (i, k+i),
i = 1, ...k.

Even in systems where area-law entanglement holds and MPS or product states are effec-
tive—such as 1D gapped Hamiltonians—stabilizer ground states can still provide complementary
benefits. One can exploit this by combining stabilizer states with MPS or product states in ei-
ther the Schrödinger picture (e.g., treating stabilizer states as basis) or the Heisenberg picture
(e.g., applying Clifford transformations to simplify the Hamiltonian). Hybrid approaches often
offer more expressive power, particularly in systems that exhibit both short-range correlations and
stabilizer-like structures. In Sec. 3.4, we present an example where product states are used as basis
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transformations to extend stabilizer ground states, which we apply to describe the toric code model
in the presence of external fields. Recent works further support the utility of hybrid strategies be-
tween stabilizer states and MPS or tensor network. For example, stabilizer tensor networks [66]
use stabilizer states as local bases within tensor networks, and Clifford-augmented DMRG [65]
applies sequential Clifford transformations to enhance MPS representations. In the former case,
stabilizer ground states naturally appear as a physical basis for ground state descriptions. In the
latter, stabilizer ground states can be used to construct a Clifford transformation UC such that
UC |0⟩⊗n = |ψstab gs⟩, thereby simplifying the Hamiltonian before applying MPS methods. The
various ways in which stabilizer states, product states, and MPS can be combined are illustrated
schematically in Fig. 4.

Figure 4: Conceptual relationships among stabilizer states, product states, and matrix product states (MPS) or
tensor networks (TN). The intersection of stabilizer states and product states corresponds to extended stabilizer
states (see Sec. 3.4), i.e., stabilizer states expressed in rotated local bases. The intersection of stabilizer states
and tensor networks corresponds to stabilizer tensor networks [66], where stabilizer states serve as local building
blocks of the network. The intersection of product states and MPS/TN is trivially contained within MPS/TN,
since product states correspond to MPS with bond dimension one and MPS naturally allow local basis rotations.

In the context of classical algorithms, stabilizer ground states can be incorporated into both
variational and perturbative methods. On the variational side, similar to their role in mitigating
barren plateaus in VQE, stabilizer ground states can serve as building blocks for classical ansatzes
where energy expectation values must be efficiently computable. While most classical variational
methods operate in the computational basis—such as product states, MPS, or variational Monte
Carlo (VMC)—the stabilizer basis provides a natural generalization. For example, VMC ansatzes
can be extended from the form |ψ⟩ =

∑
i ψi(θ)|i⟩ to

|ψ⟩ =
∑
ψstab

C(ψstab; θ)|ψstab⟩, (47)

where the sum runs over all or a subset of stabilizer states, and C(ψstab; θ) is a parameterized
coefficient function. Since overlaps ⟨ψ′

stab|H|ψstab⟩ can be efficiently computed for Pauli Hamilto-
nians, such stabilizer-based VMC methods may be especially suitable for capturing long-range or
strongly entangled features beyond those well-described by the computational basis.

Stabilizer ground states also offer a useful tool in perturbative approaches. These methods
typically split the Hamiltonian as H = H0 +H1, where H0 is exactly solvable and H1 is treated as
a perturbation. As discussed in Sec. 2.2, our algorithm identifies a CMCS Q⋆ ⊂ P for a given Pauli
Hamiltonian H =

∑
P∈P wPP . This yields a natural decomposition where H0 =

∑
P∈P ∩±Q⋆ wPP ,

with the stabilizer ground state being the exact ground state of H0. The remaining terms define H1,
and their effects can be treated perturbatively. This approach allows the stabilizer ground state
algorithm to not only provide an approximate solution but also guide the optimal partitioning
of the Hamiltonian for perturbative expansion. A related recent direction is the development
of doped stabilizer states [85], which utilize the stabilizer nullity structure of a Hamiltonian for
efficient approximation. Our method is complementary in that it provides a systematic framework
to extract stabilizer-aligned structure even in non-stabilizer Hamiltonians.
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3 Results
In this section, we first perform a few benchmarks on the exact 1D local algorithm, including
the computational cost in Sec. 3.1 and the comparison with numerically optimized approximated
stabilizer ground states in Sec. 3.2. Furthermore, we demonstrate a few potential applications
for stabilizer ground states and the corresponding algorithms on (1) simple qualitative analysis of
phase transitions in Sec. 3.3, (2) serving as the cornerstone of developing advanced ground state
ansatzes in Sec. 3.4, and (3) generation of initial states for VQE problems for better performance
in Sec. 3.5.

All algorithms introduced in this work are implemented in both Python and C++ in https:
//github.com/SUSYUSTC/stabilizer_gs. The Python code is presented for concept illustration
and readability, and the C++ code is used for optimal performance with a simple parallelization.

3.1 Computational cost of the exact 1D local algorithm
The scaling of the computation time for this exact 1D local algorithm only has a loose theoretical
upper bound (Theorem 3 and Corollary 7) and lacks an exact analytical formula. Therefore,
we implement the algorithm in C++ and numerically benchmark the computational time. All
corresponding timings are collected on an 8-core i7-9700K Intel CPU.

We consider the following stochastic k-nearest Heisenberg model as the example Hamiltonian:

H =
n∑
i=1

i+k−1∑
j=i+1

Jxxij S
x
i S

x
j + Jyyij S

y
i S

y
j + Jzzij S

z
i S

z
j (48)

with each Jxxij , J
yy
ij , J

zz
ij ∼ N (0, 1), i.e. all these coupling coefficients independently follow the

normal distribution. We also consider the case of Jzzij = 0, Jxxij , J
yy
ij ∼ N (0, 1) for comparisons.

The two models are referred to as {XX,YY,ZZ} and {XX,YY}, respectively.
Following the procedure of the exact 1D local algorithm, all the possible values of {Am} with

m = 1, 2, ...n+ 1 are generated sequentially. In Figure 5(a), the computational time of generating
{Am+1} from {Am} are plotted as a function of site m for both the {XX,YY,ZZ} and {XX,YY}
models with n = 25 and k = 5. Except for a few sites near the boundaries, the wall-clock time
spent at each site is almost a constant for both models. This verifies that the computational cost
of the 1D local algorithm scales as O(n), as proved in Theorem 3. Due to the smaller number of
Pauli terms in the Hamiltonian, the computational cost of the {XX,YY} model is systematically
lower than the {XX,YY,ZZ} model.
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Figure 5: Wall-clock time of the 1D local algorithm on the {XX,YY,ZZ} and {XX,YY} model (see the main
text). (a) Computational time spent on each site m for the two models. (b) Maximum single-site computational
time (solid lines) as a function of k for the two models, and fitted curves (dashed lines) with the form of
C exp(C′k log k).

After showing that the time spent at each site is a constant except for the sites near the
boundaries, we further discuss the scaling of the maximum single-site running time as a function
of the locality parameter k for different types of Hamiltonians. Figure 5(b) displays the maximum
wall-clock time of a single site as a function of k for both models. We assume that the form of the
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scaling function is C exp(C ′k log k) according to Corollary 7. The numerical scaling functions are
fitted independently for two models in Figure 5(b). The resulting fitted scaling curves have the
parameters C ′ = 1.23 and C ′ = 1.11 for the {XX,YY,ZZ} and {XX,YY} models, respectively, and
match the true timing data well. This indicates that the computation time of different Hamiltonians
within the same class scales similarly.

3.2 Comparison with numerical discrete optimizations of stabilizer ground states
We demonstrate that numerical optimizations of stabilizer ground states are not scalable and lead
to unacceptable energy errors with an increasing number of qubits. The numerical optimization
of stabilizer ground states can be performed by discrete optimizations of the Clifford circuits
representing stabilizer states [63].

Here, we still use the stochastic k-nearest Heisenberg Hamiltonian in Eq. (48) (the {XX,YY,ZZ}
model) as an example. The Clifford ansatz employed here modifies the hardware-efficient Clifford
ansatz in Ref. [63] by generalizing the single-qubit Clifford rotations to all single-qubit Clifford
operations (24 unique choices in total) [86]. The simulated annealing algorithm is used in the
discrete optimization with an exponential decay of temperature from 5 to 0.05 in 2500 steps.
In each step of the simulated annealing, one of the single-qubit Clifford operations is randomly
selected and replaced with one of the 24 operations, and the move is accepted with a probability
of min(exp(−∆E/T ), 1), where ∆E is the energy difference.
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Figure 6: Stabilizer ground state energies of the stochastic k-nearest Heisenberg model obtained by the exact
1D local algorithm (Es

exact) and the numerical simulated annealing optimization algorithm (Es
opt). (a) Es

exact per
site versus Es

opt per site with n = 4, 8, 12, 16, 20 and k = 4. The black dashed line corresponds to Es
exact = Es

opt.
(b) The mean relative energy error of stabilizer ground state energy captured by the numerical optimization
algorithm (⟨Es

opt/Es
exact⟩) versus n with locality k = 4.

Figure 6(a) compares the stabilizer ground state energies obtained from the exact 1D local
algorithm (Es

exact) and the numerical optimization algorithm (Es
opt). For each n, 100 random

Hamiltonians are tested. For every single test, the numerically optimized ground state energy is
either equal to or higher than the exact stabilizer ground state energy. With increasing n, the
success probability of numerical optimization that results in accurate stabilizer ground state ener-
gies decreases and Es

opt approaches zero. This indicates that the numerical discrete optimization
cannot correctly obtain the stabilizer ground state due to the exponential scaling of the number of
stabilizer states and the number of possible Clifford circuits. Figure 6(b) displays the quantitative
statistics of the performance degradation speed of numerical optimization by plotting the averaged
relative stabilizer ground state energy ⟨Es

opt/E
s
exact⟩ versus the number of sites n with k = 4. A

rapid decay of the energy ratio is observed from 97.4% at n = 4 to 0.4% at n = 20. Therefore, the
optimization method fails to bootstrap large-scale variational quantum algorithms via stabilizer
initializations as claimed in Ref. [63] and the challenge is fully solved by our new algorithm at
least in the 1D case.
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3.3 Qualitative analysis of phase transitions
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Figure 7: Ground state phase diagram of the Hamiltonian in Eq. (49) obtained by (a) numerical DMRG
calculations in Ref. [87] and (b) stabilizer ground state calculations via the exact 1D periodic local algorithm.
There are three phases, including the cluster phase, the polarized phase, and the ferromagnetism phase, for
both cases.

Similar to the mean-field states, stabilizer ground states can also qualitatively capture the
phases and phase transitions in many interesting systems. Specifically, stabilizer ground states are
good at capturing topological phases with long-range entanglements. This capability is demon-
strated using an infinite 1D generalized cluster model [87] as an example, whose Hamiltonian
is

H =
∞∑

n=−∞
−Xn−1ZnXn+1 − JyYnYn+1 + hyYn. (49)

This model is equivalent to the free fermion model at hy = 0, while it is not dual to any free
fermion model at hy ̸= 0 due to the lack of Z2 symmetry. This Hamiltonian has been studied
by numerical density matrix renormalization group (DMRG) calculations in Ref. [87], and the
corresponding phase diagram is replotted in Figure 7(a). Three phases are observed in this phase
diagram, including the symmetry-protected topological phase at small but positive Jy and hy, the
polarized phase at Jy →∞, hy →∞, and the ferromagnetic phase at hy = 0, Jy > 1.

We apply the exact 1D periodic local algorithm to the Hamiltonian to obtain the stabilizer
ground states of this model using different parameters (Jy, hy). Calculations are performed with
candidate supercell sizes c ≤ 6, and the minimum energy is selected as the stabilizer ground state
energy. All possible types of distinct stabilizer ground states are listed in Table 1, and the cor-
responding phase diagram is plotted in Figure 7(b). When comparing Figure 7 (a) and (b), the
stabilizer ground state phase diagram matches the numerical ground state phase diagram well
except for the shape of the boundary between the cluster phase and the polarized phase. The
boundary predicted by stabilizer ground states is a straight line, while the numerical boundary
is slightly curved. These agreements indicate that stabilizer ground states are useful to qualita-
tively understand phase transitions in quantum many-body systems and provide a new perspective
compared to conventional mean-field approaches. The stabilizer ground state at the tricritical
point Jy = 1, hy = 0 is observed to have two new degenerate stabilizer ground states besides
the stabilizer ground states in other phases. These two new stabilizer ground states have stabi-
lizers {X3n−1Z3nX3n+1, Y3n−1Y3n, Y3nY3n+1} and {X3n−1Z3nX3n+1, X3nZ3n+1X3n+2, Y3nY3n+1},
respectively.

3.4 Extended stabilizer ground states
Stabilizer ground states can be used as a starting point to develop advanced numerical methods
or quantum state ansatz for classical simulation. As an illustration, we introduce the extended
stabilizer ground state and demonstrate its capability of characterizing phase transitions of a 2D
generalized toric code model. The relation between computational basis states, stabilizer states,
product states, and extended stabilizer states are discussed in Sec. 2.5 and Fig. 4. We first

Accepted in Quantum 2025-06-10, click title to verify. Published under CC-BY 4.0. 20



Table 1: Stabilizer ground states of the Hamiltonian in Eq. (49) in different phases. Note that the conditions
of (Jy, hy) do not strictly contradict each other, which indicates degeneracies of stabilizer ground states in the
overlap regions (borders between phases or the tricritical point).

Stabilizers (Jy, hy) Phase
{Xn−1ZnXn+1} Jy + hy ≤ 1 Cluster

{−Yn} Jy + hy ≥ 1,hy > 0 Polarized
{YnYn+1} Jy ≥ 1, hy = 0 Ferromagnetism

{X3n−1Z3nX3n+1, Y3n−1Y3n, Y3nY3n+1} Jy = 1, hy = 0 Tricritical point
{X3n−1Z3nX3n+1, X3nZ3n+1X3n+2, Y3nY3n+1} Jy = 1, hy = 0 Tricritical point

introduce a quantum state ansatz expressed as applying single-qubit rotations on some stabilizer
states, i.e.

|ψ⟩ = U({θj})|ψstab⟩ =
∏
j

eiθj ·Sj |ψstab⟩, (50)

where Sj is the vector spin operator on the jth qubit. We then define the extended stabilizer
ground state by the state |ψ⟩ with the lowest energy among all possible combinations of {θj} and
|ψstab⟩. Instead of directly finding the value of {θj} and |ψstab⟩ that minimizes the energy, which
requires expensive discrete optimizations, we can effectively transform the Hamiltonian by

H → H ′({θj}) = U†({θj})HU({θj}). (51)

The stabilizer ground state of the Hamiltonian H ′({θj}) is thus a function of {θj}. Since local
Hamiltonians after single-site rotations remain local with the same localities k, such an extended
stabilizer ground state formalism increases the expressive power without significantly complicating
the problem, especially when each Pauli operator only nontrivially acts on a limited number of
sites.
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Figure 8: Geometry and phase diagrams of the 2D generalized toric code. (a) The geometry of the 2D generalized
toric code model in Eq. (52). (b) Numerical ground state phase diagram obtained by continuous-time Monte
Carlo calculations in Ref. [88]. (c) Extended stabilizer ground state phase diagram. For both (b) and (c), three
phases are found, including the topological phase, phase A, and phase B. The first-order transition line (dashed
blue line) at hx = hz begins at hx = hz = 0.34 and ends at hx = hz = 0.418 in (b), while it begins at
hx = hz = 0.46 and ends at hx = hz = 1.414 in (c)

As a demonstration, we consider a 2D generalized toric code model with external magnetic
fields. The Hamiltonian is

H = −
( ∑

v

Av +
∑
p

Bp

)
− hx

∑
j

Xj − hz
∑
j

Zj , (52)

which is defined on a torus, where Av =
∏
j∈vXj and Bp =

∏
j∈p Zj represent the product of

spin operators on bonds incident to the vertex v and surrounding plaquette p, respectively. The
geometry of the vertices and plaquettes is shown in Figure 8(a). This Hamiltonian is studied
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by continuous-time Monte Carlo simulation in Ref. [88] and the phase diagram is reproduced in
Figure 8(b). At hx → ∞ with fixed hz or hz → ∞ with fixed hx, each spin is polarized in the x
or z direction, and gives the phase A or B, respectively. A phase transition happens between the
phase A and B at the first-order transition line hx = hz, which begins at hx = hz = 0.34 and ends
at hx = hz = 0.418. In the limit of hx → ∞ and hz → ∞, the polarization of the system varies
continuously between phases A and B, thus no phase transition occurs.

Now we consider the extended stabilizer ground state of this Hamiltonian. Since the Hamilto-
nian only contains X and Z, the single-qubit rotations can be restricted to the form of U({θj}) =∏
j e

1
2 iθjYj . As stated previously, we need to transform the Hamiltonian in Eq. (52) by U({θj}) and

then determine the stabilizer ground state. As discussed in Sec. 2.4, the stabilizer ground state of a
periodic local Hamiltonian should be periodic over supercells with some size c. For simplification,
the stabilizer ground state is assumed to have period 1. We set θj = α and θj = β for sites j
on vertical bonds and horizontal bonds, respectively, and thus the total rotation operator can be
written as U(α, β).

With fixed supercell size c = 1, the stabilizer ground state of the rotated Hamiltonian U(α, β)†HU(α, β)
can be found via Eq. (46) for each set of rotation angles α, β. The corresponding stabilizer ground
state energy per site is written as E(hx, hz, α, β). The extended stabilizer ground state energy
per site is then given by E(hx, hz) = minα,β E(hx, hz, α, β). In the following analysis, we apply
the simplification process in Eq. (45) for convenience, which allows us to exclude Pauli terms like
P = XlZrXuZd, where the subscripts l, r, u, d stand for the left, right, up, and down site of either
a vertex or a plaquette. The valid Pauli terms of the rotated Hamiltonians include (1) X and Z on
each site; and (2) XlXrXuXd, XlXrZuZd, ZlZrXuXd, and ZlZrZuZd on each vertex or plaquette.

The resulting extended stabilizer ground state phase diagram is plotted in Figure 8(c) and it
matches the exact phase diagram qualitatively. In the topologically ordered phase, the stabilizers
are the set of all XlXrXuXd, XlXrZuZd, ZlZrXuXd, ZlZrZuZd on all vertices and plaquettes. We
find that the corresponding E(hx, hz, α, β) is a constant with respect to α and β, attributed to the
fact that U(α, β) is a symmetry operation of this stabilizer state. In phase A and B, the stabilizers
are simply X on each site and XlXrXuXd on each vertex and plaquette, which corresponds to the
product of single-site polarized states in the picture of the unrotated Hamiltonian. We consider
hx = hz, in which case the extended stabilizer ground state is always found at α = β. The
corresponding per-site energy function E(h, α) = E(hx = h, hz = h, α, β = α) is given by

E(h, α) = −1
2(cos4 α+ sin4 α)− h(cosα+ sinα), (53)

which is symmetric under α → π
2 − α. No phase transition happens for large h since only one

minimum α = π
4 , while two minimums can be found for small h. The behavior could be better

understood by Taylor expansion around α = π
4 , which gives

E(h, α = π

4 + θ) = const + ( h√
2
− 1)θ2 + 32−

√
2h

24 θ4 +O(θ6). (54)

This indicates that the first-order transition ends at h =
√

2, where a second-order phase transition
happens due to the change of sign of the quadratic term. Furthermore, at h < hc ≈ 0.46, E(h, α)
is higher than the energy of the topologically ordered state for all α. Thus, we claim that the
corresponding first-order transition line begins at hx = hz ≈ 0.46 and ends at hx = hz =

√
2 ≈

1.414. Although the exact transition values are different, the qualitative picture captured by the
extended stabilizer ground state is consistent with the ground truth.

3.5 Initial state for VQE problems
Stabilizer states have been recently used as initial states [63, 64] for VQE problems to mitigate
the notorious barren plateau issue [78, 79, 80]. The stabilizer initial states can be prepared on
quantum circuits by efficient decomposition to up to O(n2/ logn) single-qubit and double-qubit
Clifford gates [40], or even fewer gates for stabilizer ground states of 1D local Hamiltonians (see
Corollary 8). The effective VQE ansatz is

|ψ(θ)⟩ = U(θ)|ψstab⟩ = U(θ)UC |0⟩⊗n, (55)
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Figure 9: Errors of optimized VQE energies computed using the stochastic k-nearest Heisenberg model. Eexact
represents the exact ground state energy, and EVQE

(i) is the optimized VQE energy, where (i) is the employed
initialization scheme. Three initialization schemes, i.e. zero state, classical ground state, and stabilizer ground
state, are compared. They are abbreviated as (i) =zero, (i) =cls, (i) =stab, respectively. (a) EVQE

stab - Eexact
plots versus EVQE

zero - Eexact for N = 100 random Hamiltonians with n = 6 and k = 2, 4. (b) Mean relative errors
of energies (1 − ⟨EVQE

(i) /Eexact⟩) versus the number of sites n for the three initializations with k = 2, 4.

where the stabilizer initial state |ψstab⟩ is decomposed to UC |0⟩⊗n. Another approach is to employ
the quantum state ansatz as follows:

|ψ(θ)⟩ = UCU(θ)|0⟩⊗n. (56)

The advantage of the latter approach is that one can equivalently transform the Hamiltonian by
H → H ′ = U†

CHUC classically, and thus only the U(θ) part needs to be performed on the quantum
circuit [60, 59, 89]. However, its disadvantage is that it might break the locality of the Hamiltonian
and cause additional overhead on the hardware that cannot support nonlocal operations [90, 91].
Therefore, we adopt the former strategy in Eq. (55) for the following benchmark.

The {XX,YY,ZZ} model in Eq. (48) still serves as the example Hamiltonian, and the variational
Hamiltonian ansatz [92] is used as the example VQE circuit for ground state optimization. By
rewriting the Hamiltonian as H =

∑
P wPP with P = Sxi S

x
j , S

y
i S

y
j , S

z
i S

z
j , the corresponding

quantum circuit ansatz is as follows:

|ψ(θ)⟩ =
∏
P

eiθPP |ψinit⟩. (57)

We compare three choices of the initial state |ψinit⟩, including the |0⟩⊗n state (referred to as zero
state), the classical ground state, and the stabilizer ground state obtained by the exact 1D local
algorithm. The relations between classical ground states, stabilizer ground states, and product
states are discussed in Sec. 2.3.2. The quantum circuit simulations are conducted via the Tensor-
Circuit software [93]. The optimization of parameters θ is performed by the default L-BFGS-B
[94] optimizer in SciPy [95] with zero initial values.

Figure 9(a) displays the distributions of optimized energy errors of the zero state and stabilizer
ground state initialization strategies tested on 100 random Hamiltonians with n = 6. Stabilizer
state initializations result in lower VQE errors compared with those via the zero state in 82% and
92% of the 100 tests for k = 2 and k = 4, respectively. There are few points in the region of
EVQE

zero < EVQE
stab , which is attributed to the fact that an initialization state with a lower energy

does not guarantee a lower final energy after VQE optimizations. Figure 9(b) also shows the mean

relative errors of energies 1 − ⟨EVQE
(i) /Eexact⟩ for increasing n and k = 2, 4, where (i) represents

each of the three initialization strategies. Initializations via stabilizer ground states are observed
to systematically provide better energy estimations for both k = 2 and k = 4.
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4 Conclusions and Outlook
In this work, we introduce stabilizer ground states as a versatile toolkit of both qualitative analysis
of quantum systems and cornerstone of developing advanced quantum state anstazes on classical or
quantum computers. For general Hamiltonians, we establish the equivalence between the stabilizer
ground state and the closed maximally-commuting Pauli subset. For 1D local Hamiltonians, we
additionally develop an exact and efficient algorithm to obtain the exact stabilizer ground state with
linear scaling. Besides, we prove that the stabilizer ground state of 1D local Hamiltonians can be
prepared on quantum circuits with a linear scaled circuit depth. Furthermore, both the equivalence
formalism for general Hamiltonians and the linear-scaled algorithm for 1D local Hamiltonians can
be extended to infinite periodic systems. We also compare stabilizer ground states, mean-field
ground states, and MPS ground states in terms of the applications for constructing quantum and
classical ansatzes. By benchmarking on example Hamiltonians, we verified the computational
scaling of the exact 1D local algorithm and demonstrated the substantial performance gain over
the traditional discrete optimization strategies. We also illustrate that stabilizer ground states
are promising tools for various applications, including qualitative analysis of phase transitions,
generating better heuristics for VQE problems, and developing more expressive classical ground
state ansatzes.

Looking forward, future studies can fruitfully branch into three major directions. The first
avenue is to develop algorithms for stabilizer ground states of other types of Hamiltonians, including
Hamiltonians with other quasi-1D structures and local Hamiltonians in higher dimensions. For the
latter, finding the exact stabilizer ground state is NP-hard, evidenced by the NP-hardness of one
of its simplified cases, i.e., the ground state problem of 2D classical spin models with random
magnetic fields [96, 97]. However, approximate or heuristic algorithms [98, 99, 100] for stabilizer
ground states may still be practically useful for higher-dimensional systems. The second avenue
extends the concept of stabilizer ground states to other physically interesting properties, such
as excited states, mixed states, and thermal state sampling. These extensions are plausible, as
the automaton structure of the 1D algorithm shares similarities with an ensemble of quantum
states. The third avenue involves the exploration of more downstream applications for stabilizer
ground states, especially via combining with other well-established quantum state ansatzes, such
as tensor network [66], perturbation theory [85, 57], variational quantum Monte Carlo, or low-rank
(or low-energy) stabilizer decomposition [55].
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5 Appendix
5.1 Proof of Theorem 1
Let S = ⟨Q⟩, Q ∈ S (P ) be one of the stabililizer group such that Estab(H,S) = Egs, and |ψ⟩
is any stabilizer state stabilized by S. Let Sψ = ⟨Stab(|ψ⟩) ∩ P̃ ⟩, obviously we have S ⊆ Sψ.
Let Sψ = ⟨S, P1, P2, ..., Pk⟩ where each Pi ∈ P̃ , 1 ≤ i ≤ k. We consider the sequence Si =
⟨S, P1, P2, ..., Pi⟩ with i = 0, 1, ..., k. Clearly we have Si ∩ P̃ ∈ S (P ) for each Si.

First we prove that Estab(H,Si) = Egs for each Si. Obviously, it is true for i = 0. Given
it is true for Si, we then consider Si+1 = ⟨Si, Pi+1⟩. If Pi+1 ∈ Si, then Si+1 = Si so
Estab(H,Si+1) = Egs. Otherwise we consider Ei = Estab(H,Si), E+ = Estab(H, ⟨Si, Pi+1⟩)
and E− = Estab(H, ⟨Si,−Pi+1⟩). For each P ∈ P , it falls into one of the following situations: (1)
P ∈ ±Si so it contributes equally to E+ and E−, (2) P /∈ ±Si but P ∈ ±⟨Si, Pi+1⟩ so it con-
tributes no energy to Ei and opposite energy to E+ and E−, (3) P /∈ ±⟨Si, Pi+1⟩ so it contributes
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no energy to Ei, E+ and E−. Thus we have 2Ei = E+ +E−. However Ei is already the minimum
of Estab(H,S) for S ∈ S (P ), thus E+ = E− = Ei = Egs, i.e. Estab(H,Si+1) = Egs. Now we can
conclude that Estab(H,Si) = Egs for each Si, which implies Estab(H,Sψ) = Egs.

Next we prove |ψ⟩ is a (degenerate) stabilizer ground state. According to Corollary 1, we
have ⟨ψ|H|ψ⟩ = Estab(H,Sψ) = Egs. If there exists stabilizer state |ψ′⟩ such that ⟨ψ′|H|ψ′⟩ <
⟨ψ|H|ψ⟩ = Egs, we should have Estab(H, ⟨Stab(|ψ′⟩)∩ P̃ ⟩) = ⟨ψ′|H|ψ′⟩ < Egs, which conflicts with
the definition of Egs. Thus we conclude that |ψ⟩ is a (degenerate) stabilizer ground state.

5.2 Proof of Eq. 17 from Eq. 20
We first introduce an important fact s↔ {A1, ..., An}, where ↔ means bijective mapping. This is
because (1) G(Am) = sm gives the mapping from the latter one to the former one, and (2) Am(s)
itself is the function that maps from the former one to the latter one. Based on this, we have

{s|Am} ↔ {A1, ..., An|Am}
= {A1, ..., Am|Am} ⊗ {Am+1, ..., An|Am}
→ {s≤m|Am} ⊗ {s>m|Am}
⊇ {s|Am},

(58)

where in the first line used s↔ {A1, ..., An}, the second line used Eq. 20, the third line used the
mapping G(Am) = sm, and → means the surjective mapping. Thus Eq. 58 gives a four-step way
to map {s|Am} to itself. Therefore the mapping in each step must be bijective. Specifically, the
mapping from the third line to the fourth line is bijective, which exactly gives Eq. 17, i.e.

{s|Am} = {s≤m|Am} ⊗ {s>m|Am}. (59)

5.3 Derivation of the state machine
We first introduce the following lemma related to the projection operations, which will be frequently
used:

Lemma 3. If B ⊆ PI , then PI(⟨A,B⟩) = ⟨PI(⟨A⟩),B⟩.

Proof. We only need to prove ⟨A,B⟩ ∩ PI = ⟨A ∩ PI ,B⟩. This can be seen by (1) ⟨A ∩ PI ,B⟩ ⊆
⟨A,B⟩, (2) ⟨A∩PI ,B⟩ ⊆ PI since A∩PI ⊆ PI and B ⊆ PI , and (3) for any P = ⟨A,B⟩∩PI we
can write P = AB where A ∈ A and B ∈ B. Since B ∈ PI , P ∈ PI we also have A ∈ PI . Thus
P = AB ∈ ⟨PI(⟨A⟩),B⟩.

We have already proved that Eq. 17 is a necessary condition of Eq. 20. In fact, if we additionally
have

{s≤m, Am} ↔ {A1, ..., Am},
{s>m, Am} ↔ {Am, ..., An}

(60)

they are equivalent. With the mapping s→ Q given in Sec. 2.3.2, Eq. 60 becomes

{Q≤m, Am} ↔ {A1, ..., Am},
{Q>m, Am} ↔ {Am, ..., An},

(61)

and Eq. 17 becomes
{Q|Am} = {Q≤m|Am} ⊗ {Q>m|Am}, (62)

i.e. Q≤m must be decoupled from Q>m given Am. The coupling between Q≤m and Q>m is given
in the following two lemmas:

Lemma 4. If Q ∈ S (P ), then Q≤m ∈ S (P ≤m) for each m.

Proof. We recall that S (P ) = {Q|Q = ⟨Q⟩ ∩ P̃ ,−I /∈ ⟨Q⟩}. Then −I /∈ ⟨Q≤m⟩ is obvious
because Q≤m ⊆ Q. Given that Q = ⟨Q⟩ ∩ P̃ , we have ⟨Q≤m⟩ ∩ P̃ ≤m ⊆ ⟨Q⟩ ∩ P̃ ≤m = ⟨Q⟩ ∩
P̃ ∩ P̃ ≤m = Q ∩ P̃ ≤m = Q≤m. On the other hand, we must have Q≤m ⊆ ⟨Q≤m⟩ ∩ P̃ ≤m. Thus
⟨Q≤m⟩ ∩ P̃ ≤m = Q≤m, i.e. Q≤m ∈ S (P ≤m).
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For simplicify, given Q≤m ∈ S (P ≤m), we say Q>m ⊆ P̃>m is valid if Q = Q≤m ∪ Q>m ∈
S (P ). The requirement of Q>m can be rewritten as follows:

Corollary 9. Given Q≤m ∈ S (P ≤m) , Q>m ⊆ P̃>m is valid if and only if

1. −I /∈ ⟨Q>m⟩, i.e. ⟨Q>m⟩ is a stabilizer group

2. [Q>m,Q≤m] = 0

3. ⟨Q≤m,Q>m⟩ ∩ P̃>m = Q>m

4. ⟨Q≤m,Q>m⟩ ∩ P̃ ≤m = Q≤m

Condition 1 is only dependent on Q>m itself so it does not couple Q>m with Q≤m. Condition
2 requires that the added stabilizers Q>m should commute with all previous stabilizers Q≤m.
Conditions 3 and 4 require that group multiplication operations between Q≤m and Q>m does not

generate new elements in P̃ , which can be further decomposed to P̃>m and P̃ ≤m. Thus conditions
2, 3, 4 give the coupling between Q>m and Q≤m. Now we want to construct Am to decouple them.
With

P̃
m

invalid = P̃
m

invalid(Q≤m) = {P ∈ P̃>m|[P,Q≤m] ̸= 0} (63)
(i.e. Eq. 29), condition 2 can be rewritten as

[Q≤m,Q>m] = 0
⇔Q>m ∩ {P ∈ P̃>m|[P,Q≤m] ̸= 0} = ∅
⇔Q>m ∩ P̃

m

invalid = ∅
(64)

which is only dependent on Q>m. With

Sm
proj = Sm

proj(Q≤m) = P>m−k(⟨Q≤m⟩) (65)

(i.e. Eq. 30), condition 3 can be rewritten as

Q>m = ⟨Q≤m,Q>m⟩ ∩ P̃>m

= P>m−k(⟨Q≤m,Q>m⟩) ∩ P̃>m

= ⟨P>m−k(⟨Q≤m⟩),Q>m⟩ ∩ P̃>m

= ⟨Sm
proj,Q>m⟩ ∩ P̃>m,

(66)

which is only dependent on Q>m. Here we used Q>m ⊆ P>m−k and Lemma 3 in the third line.
With

Sm
right = Sm

right(Q≥m) = P≤m(⟨Q≥m⟩) (67)
(i.e. Eq. 31), condition 4 can be rewritten as

Q≤m = ⟨Q≤m,Q>m⟩ ∩ P̃ ≤m

= ⟨Q≤m,Q≥m⟩ ∩ P̃ ≤m

= P≤m(⟨Q≤m,Q≥m⟩) ∩ P̃ ≤m

= ⟨Q≤m,P≤m(⟨Q≥m⟩⟩ ∩ P̃ ≤m

= ⟨Q≤m,S
m
right⟩ ∩ P̃ ≤m,

(68)

which is only dependent on Q≤m. Here we used Q≤m ⊆ P≤m and Lemma 3 in the fourth line. As
a summary, given

Am(Q) = (Sm
proj(Q≤m), P̃m

invalid(Q≤m),Sm
right(Q≥m)), (69)

the four conditions are now
−I /∈ ⟨Q>m⟩

Q>m ∩ P̃
m

invalid = ∅
⟨Sm

proj,Q>m⟩ ∩ P̃>m = Q>m.

(70)
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for conditions 1, 2, 3, which depend on Q>m, and

⟨Q≤m,S
m
right⟩ ∩ P̃ ≤m = Q≤m. (71)

for condition 4, which depends on Q≤m. Recalling that Corollary 9 additionally requires Q≤m ∈
S (P ≤m), we conclude that Eq. 62 holds with

{Q≤m|Am} = {Q≤m ∈ S (P ≤m) satisfying Eq. 71} (72)

and
{Q>m|Am} = {Q>m ⊆ P̃>m satisfying Eq. 70}. (73)

Now we show that Am is a state machine. The existence of the state function G is already
given in Eq. 33. Therefore we just need to prove Eq. 61. The “← ” part is trivial due to
the state function G. For the “→ ” part, {Q≤m, Am} → {A1, ..., Am} can be obtained by Ai =
(Si

proj(Q≤i), P̃
i

invalid(Q≤i),Si
right = P≤i(Q≥i⟩) = P≤i(Sm

right)) for i ≤ m. To prove {Q>m, Am} →
{Am, ..., An}, we show that Am+1 can be obtained by Am and Sm+1

right , i.e

Am+1 = Am+1(Am,Sm+1
right). (74)

Once it is true, {Am, ..., An} can be obtained by applying Ai+1 = Ai+1(Ai,Si+1
right(Q≥i+1)) for i =

m, ..., n−1. To construct Am+1(Ai,Sm+1
right), we only need to derive Sm+1

proj and P̃
m+1
invalid. Specifically,

we have:

Sm+1
proj (Q≤m+1) = P>m−k+1(⟨Q≤m,Qm+1⟩)

= ⟨P>m−k+1(⟨Q≤m⟩),Qm+1⟩
= ⟨P>m−k+1(Sm

proj(Q≤m)),Qm+1⟩
:= Sm+1

proj (Sm
proj,Qm+1),

(75)

where the second line used Qm+1 ⊆ P>m−k+1 and Lemma 3, and

P̃
m+1
invalid(Q≤m+1) = {P ∈ P̃>m+1|[P,Q≥m+1] ̸= 0}

= {P ∈ P̃ ≥m+1|P ∈ P̃
m

invalid(Q≤m) or [P,Qm+1] ̸= 0}

:= P̃
m+1
invalid(P̃m

invalid,Qm+1),

(76)

which are the same with Eq. 34 and Eq. 35. Finally, Qm+1 is given by Sm+1
right ∩ P̃m+1 according

to Eq. 33, thus we conclude that Am+1 can indeed be rewritten as a function of Am and Sm+1
right .

5.4 Derivation of Eq. 40
Definition 8 requires that, for any path {A1, ..., Am+1|Ai+1 ∈ F̃ (Ai)}, if Am+1 ∈ Am+1, then
Am ∈ Am. We require a stronger version: if Am+1 = Am+1(Q) for some Q ∈ S (P ), then
Am = Am(Q′), where Q′ = Q>m+1 ∪ Q′

≤m, Q′
≤m = ∪mi=1G(Am). Clearly it implies Am ∈ Am

given Am+1 ∈ Am+1. Additionally, we require that Q′
≤m ∈ {Q≤m|Am}. As shown in Eq. 72, it is

equivalent to

Q′
≤m ∈ S (P ≤m),

⟨Q′
≤m,S

m
right⟩ ∩ P̃ ≤m = Q′

≤m.
(77)

Now we construct F̃ (Am) to satisfy the above two requirements. Following the logic of Sec.
2.3.4, we essentially need to construct S̃m+1

right (Am), and F̃ (Am) is then given in Eq. 39. The latter

requirement Q′
≤m ∈ {Q≤m|Am} is equivalent to say that, if Eq. 77 holds for m, it also holds for

m+ 1. Given Q′
≤m = ∪mi=1G(Ai) ∈ S (P ≤m), we want to construct Q′

m+1 = Sm+1
right ∩ P̃m+1 such

that Q′
≤m+1 = Q′

≤m ∪Q′
m+1 ∈ S (P ≤m+1). We can derive it by replacing all subscripts > m to
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m+ 1 in Corollary 9 and the following derivations. With such replacements, we require Q′
m+1 to

satisfy
−I /∈ ⟨Q′

m+1⟩
Q′
m+1 ∩ P̃

m

invalid = ∅
⟨Sm

proj,Q
′
m+1⟩ ∩ P̃m+1 = Q′

m+1

(78)

for the first three conditions, and

⟨Q′
≤m,Q

′
m+1⟩ ∩ P̃ ≤m = Q′

≤m (79)

for the last condition. Similarly, given ⟨Q′
≤m,S

m
right⟩∩ P̃ ≤m = Q′

≤m, we require ⟨Q′
≤m+1,S

m+1
right⟩∩

P̃ ≤m+1 = Q′
≤m+1, which can be decomposed to the P̃ ≤m part and P̃ ≤m part as:

Q′
m+1 = ⟨Q′

≤m+1,S
m+1
right⟩ ∩ P̃m+1

= ⟨P≤m+1(Q′
≤m+1),Sm+1

right⟩ ∩ P̃m+1

= ⟨Sm+1
proj (Q′

≤m+1),Sm+1
right⟩ ∩ P̃m+1

= ⟨Sm+1
proj (Sm

proj,Q
′
m+1),Sm+1

right⟩ ∩ P̃m+1

(80)

where Sm+1
proj (Sm

proj,Q
′
m+1) is given in Eq. 66, and

Q′
≤m = ⟨Q′

≤m+1,S
m+1
right⟩ ∩ P̃ ≤m

= ⟨Q′
≤m,S

m+1
right⟩ ∩ P̃ ≤m

= ⟨Q′
≤m, ⟨P≤m(Sm+1

right),Q
′
m⟩⟩ ∩ P̃ ≤m,

(81)

where in the second line we used Q′
m+1 = Sm+1

right∩P̃m+1 ⊆ Sm+1
right . By comparing with ⟨Q′

≤m,S
m
right⟩∩

P̃ ≤m = Q′
≤m, Eq. 81 is satisfied if

⟨P≤m(Sm+1
right),Q

′
m⟩ = Sm

right. (82)

Now we consider the former requirement Am = Am(Q′), which is equivalent to Sm
proj =

Sm
proj(Q′

≤m), P̃
m

invalid = P̃
m

invalid(Q′
≤m), and Sm

right = Sm
right(Q′

≥m = Q>m+1 ∪ G(Am+1)) given

Am+1 = Am+1(Q), where Q′ = Q>m+1∪Q′
≤m, Q′

≤m = ∪mi=1G(Am). The first two are trivial since

Sm
proj and P̃

m

invalid are recursively constructed by Si+1
proj = Si+1

proj(S
i
proj,Q

′
i+1) and P̃

i+1
invalid(P̃ i

invalid,Q
′
i+1).

Combined with Eq. 75 and Eq. 76, we can recursive derive Si+1
proj = Si+1

proj(Q
′
≤i+1) from Si

proj =
Si+1

proj(Q
′
≤i), P̃

i+1
invalid = P̃

i+1
invalid(Q′

≤i+1) from P̃
i

invalid = P̃
i

invalid(Q′
≤i). We show that Sm

right =
Sm

right(Q′
≥m = Q>m+1 ∪G(Am+1)) can be derived from Eq. 82 as

Sm
right(Q′

≥m) = P≤m(⟨Q′
≥m⟩)

= ⟨P≤m(⟨Q′
≥m+1⟩),Q′

m⟩
= ⟨P≤m(P≤m+1(⟨Q′

≥m+1⟩)),Q′
m⟩

= ⟨P≤m(Sm+1
right(Q

′
≥m+1)),Q′

m⟩

= ⟨P≤m(Sm+1
right),Q

′
m⟩

= Sm
right,

(83)

where in the last line we used Eq. 82.
Until now, we have shown that Am+1 ∈ Am+1 implies Am ∈ Am if Eq. 78, Eq. 79, Eq. 80,

and Eq. 82 are satisfied. We now simplify these conditions as follows. First we show that Eq. 79
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can be derived from Eq. 82 and ⟨Q′
≤m,S

m
right⟩ ∩ P̃ ≤m = Q′

≤m by observing

Q′
≤m = ⟨Q′

≤m⟩ ∩ P̃ ≤m

⊆ ⟨Q′
≤m,Q

′
m+1⟩ ∩ P̃ ≤m

⊆ ⟨Q′
≤m,S

m+1
right⟩ ∩ P̃ ≤m

= ⟨Q′
≤m,P≤m(Sm+1

right)⟩ ∩ P̃ ≤m

= ⟨Q′
≤m,S

m
right⟩ ∩ P̃ ≤m

= Q′
≤m,

(84)

which implies that all the ⊆ relations must be =. Similarly, the third line in Eq. 78 can be derived
from Eq. 80 by observing

Q′
m+1 = ⟨Q′

m+1⟩ ∩ P̃m+1

⊆ ⟨Sm
proj,Q

′
m+1⟩ ∩ P̃m+1

⊆ ⟨Sm+1
proj ,S

m+1
right⟩ ∩ P̃m+1

= Q′
m+1.

(85)

Thus it simplies to the four conditions in Eq. 40, i.e.

−I /∈ ⟨Q′
m+1⟩,

Q′
m+1 ∩ P̃

m

invalid = ∅,
⟨P≤m(Sm+1

right),Q
′
m⟩ = Sm

right,

Sm+1
proj ∩ Sm+1

right = Q′
m+1,

(86)

where Sm+1
proj = Sm+1

proj (Sm
proj,Q

′
m+1 = Sm+1

right ∩ P̃m+1) is a function of Sm+1
right . This expression is the

same with Eq. 40.
Besides, one can easily verify that Eq. 40 is satisfied for Am(Q) and Am+1(Q) if Q ∈ S (P ).

This means that F̃ defined by Eq. 39 and Eq. 42 has the same behavior with F in the valid
region Am, which is the first requirement of Definition 8. Finally, we can conclude that such F̃ is
a relaxed transition function according to Definition 8.

5.5 Proof of Theorem 3
Proof. Following Sec. 2.3.4, and especially Eq. 77, for each (partial) path {Ami=1|Ai+1 ∈ F̃ (Ai)},
let Q≤m = ∪i≤mQi = ∪i≤mSi

right ∩ P̃ i, we always have Q≤m ∈ S (P ≤m), Sm
proj = Sm

proj(Q≤m)
and P̃

m

invalid = P̃
m

invalid(Q≤m). In the following we give the upper bound of the number of pairs
(Sm

proj, P̃
m

invalid) and the number of Sm
right, respectively.

First, we can prove that the pair (Sm
proj, P̃

m

invalid) can be determined from

S′ = P>m−2k+2(⟨Q≤m⟩). (87)

For Sm
proj we have

Sm
proj = P>m−k(⟨Q≤m⟩) (88)

= P>m−k(S′). (89)

For P̃
m

invalid, since P ∈ P̃>m has qbegin
P > m − k + 1, any Q ∈ Q<m with {P,Q} = 0 must have

qlast
P > m− k + 1 and thus qbegin

P > m− 2k + 2, so we have Q ∈ S′. Thus

P̃
m

invalid = {P ∈ P̃>m|[P,Q≤m] ̸= 0} (90)
= {P ∈ P̃>m|[P,S′] ̸= 0}. (91)

For simplify we use Sm
proj(S′) and P̃

m

invalid(S′) as the shorthands of the above two formulas.
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Next, we have
S′ ∈ {⟨Q⟩|Q ∈ S (T>m−2k+2(P̃ ≤m))} (92)

Since any P ∈ P ≤m with T>m−2k+2 ̸= I must have qlast
P > m− 2k+ 2, thus T>m−2k+2(P̃ ≤m) has

at most (2k− 2)M non-identity elements. Also S′ is a 2k− 2 qubit stabilizer group. According to
Lemma 2, there are at most (2(2k − 2)M)2k−1 choices of S′.

Finally, according to Eq. 42, we have

Sm
right ∈ T mright ≡ {⟨Q⟩|Q ∈ S (T≤m(P ≥m))} (93)

For the similar reason, there are at most kM non-identity elements in T≤m(P̃ ≥m). Thus there are
at most (2kM)k+1 choices of Sm

right.
Combining the above results, we can construct

Ã′
m = {(Sm

proj(S′), P̃m

invalid(S′),Sm
right)|S′,Sm

rightsatisfy Eq. 92 and Eq. 93}. (94)

Clearly we have Ã′
m ⊇ Ãm and |Ã′

m| ≤ (2(2k − 2)M)2k−1 · (2kM)k+1 < (4kM)3k. Also both
T≤m(P̃ ≥m) and T>m−2k+2(P̃<m) can be determined by Tm−2k+1,m(P̃ ). Thus Ã′

m can be deter-
mined by Tm−2k+1,m(P̃ ).

5.6 Proof of Theorem 4
We prove that the stabilizer ground state per site of an infinite periodic local and sparse Hamilto-
nian with period l is given by:

Eperiodic
gs = min

c,A,{Acl
m=0|Ai+1∈F̃ (Ai),A0≃Acl≃A}

1
cl

cl∑
m=1

hm(G(Am)). (95)

Strictly speaking, let Hn be the n-qubit Hamiltonian truncated from the infinite Hamiltonian
(with arbitrary truncation strategy at edges), Eperiodic

gs above is defined by the minimum per-site
stabilizer ground state of Hn in the limit of n→∞.

Eperiodic
gs = lim

n→∞

1
n

min
n-qubit stabilizer state|ψ⟩

⟨ψ|Hn|ψ⟩. (96)

We first prove that, for any chain of state machine A0, A1, ...An such that Am+1 ∈ F (Am) for
each m, if n ≥ NAl we can always find c1 and c2 that Ac1l ≃ Ac2l, and |c1 − c2| ≤ NA, where
NA is defined in Theorem 3. According to Theorem 3, each possible Am is taken from candidate
values Ã′

m ⊇ Ãm, and Ã′
m is periodic with period l, i.e. Ã′

m ≃ Ã′
m+l, since it is determined by

local terms Tm−2k+1,m(P̃ ) in the Hamiltonian. Now we consider the equivalence set {Acl|c ∈ Z}.
Since each Acl ∈ Ãcl ≃ Ã0 for each c, and Ã0 has up to NA values according to Theorem 3, we
can find some Ac1l ≃ Ac2l with |c1 − c2| ≤ NA.

If Eperiodic
gs is not the stabilizer ground state energy per site, then for sufficiently large n, the

stabilizer ground state energy E
(n)
min of Hn =

∑
P∈P wPP can be lower than nEperiodic

gs by arbitrary

amount of energy EC , i.e. E
(n)
min ≤ nEperiodic

gs − EC . Let the stabilizer group of the corresponding
n-qubit stabilizer state be S = ⟨Q⋆⟩, Q⋆ ∈ S (P ), and let Am = Am(Q⋆) for each m. The
expectation energy is given by E =

∑n
m=1 hm(G(Am)). If n > NAl, we can find 0 ≤ c1 ≤ c2 ≤ n

such that Ac1l ≃ Ac2l ≃ A. Then we have ∆E =
∑c2l
m=c1l+1 hm(G(Am)) ≥ (c2 − c1)lEperiodic

gs

according to the definition of Eperiodic
gs . Now we remove {Ac2l

i=c1l+1} from the path {Anm=1}, and
consider the new path {A′

i|0 ≤ i ≤ n′}, such that A′
i = Ai for i ≤ c1l and A′

i ≃ Ai+(c2−c1)l for i >
c1l, where n′ = n−(c2−c1)l. Obviously, it still satisfies A′

m+1 ∈ F (A′
m) for each m, thus it maps to

some n′-qubit stabilizer state with energy E(n′) = E
(n)
min−∆E ≤ E(n)

min−(c2−c1)Ẽmin ≤ n′Ẽmin−EC .
We can then continue the above deleting process and create {A′′

i |0 ≤ i ≤ n′′}, {A′′′
i |0 ≤ i ≤ n′′′},

..., until we end up with some n∗ ≤ NAl and the corresponding path {A∗
i |0 ≤ i ≤ n∗}. Such path

can map to some n∗-qubit stabilizer state |ψ∗⟩ with energy ⟨ψ∗|Hn∗ |ψ∗⟩ = E(n∗) ≤ n∗Ẽmin −EC .
However ⟨ψ∗|Hn∗ |ψ∗⟩ should have a finite lower bound in the order of O(NAl), which is independent
of n. Thus EC cannot be arbitrarily large, which conflicts with the assumption. Thus we conclude
that Eperiodic

gs is the stabilizer ground state energy per site.
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5.7 Proof of Theorem 5
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Figure 10: Schematic diagram of a single iteration of the algorithm for Theorem 4. Blocks in the same color
indicate the same values. Three situations are discussed, including (1) the general situation that all {Pi} have
no locality, (2) all {Pi} are k-local, and (3) up to s elements in {Pi} are not k-local. The performed operation
is the same for these three situations (i.e. simply the same algorithm with different types of inputs) except the
choice of m in these cases is different. For a given m, the qubits are divided into the left part q≤m and the
right part q>m, and {Pi} are divided to P left, P center, and P right by the part that each Pi acts on. A Clifford
UC is applied on q≤m to transform P left to {Z1, Z2, ..., Znl }. One can prove that the other generators of the
stabilizer groups are effectively transformed to qubits q>nl , i.e. the generators become two decoupled parts. In
the general situation that {Pi} are non-local, we cannot guarantee that nl > 0. If there are up to s elements
in {Pi} that are not k-local, then for any m ≥ 3k − 3, one can guarantee that nl ≥ m − 2k + 2 − s. Thus
we can let m = 4(k + s), which gives nl ≥ 2k + 3s + 2 ∼ O(k + s). Thus with O(n/(k + s)) numbers of
O(k + s)-qubit Clifford transformations we transform ⟨P ⟩ to ⟨Z1, ..., Zn⟩.

Let qI be a shorthand of qubits in the index set I with the same convention of P̃ I in Sec.
2.3.2. We first consider a general situation that P = {Pi} are nonlocal, and we introduce a
procedure to transform the stabilizers S and the generators P . (see Fig 10, general situation)
Let m be some arbitray integer, divide P = {P1, .., Pn} to three parts P left = {P left

1 , ..., P left
nl
},

P center = {P center
1 , ..., P center

nc
}, and P right = {P right

1 , ..., P right
nr
} such that, each P left

i only acts on

qubits q≤m (the blue block), each P right
i only acts on qubits q>m (the green block), and each

P center
i acts on both qubits q≤m (the purple block) and q>m (the orange block), where nl, nc, nr

are number of elements in P left,P center,P right respectively. For each P center
i , we can uniquely

decompose it to the left and right part, i.e. P center
i = P center

l,i P center
r,i (up to a choice of ±1 sign),

where P center
l,i (the purple block) only acts on q≤m, and P center

r,i (the orange block) only acts on

qubits q>m. Next, we construct a Clifford transformation UC on q≤m such that U†
CP

left
i UC = Zi

(small red blocks) for each P left
i . The existence of such UC comes from the fact that elements in

P left commute with each other and are independent. Now we consider the elements in U†
CPUC ,

which are generators of the transformed stabilizer group U†
CSUC . We keep the above conventions

but use symbol Q to denote the transformed Pauli operators, i.e. Q = U†
CPUC , Qµ = U†

CP µUC
and Qµi = U†

CP
µ
i UC for µ = left, center, right. Thus we have Qleft

i = Zi according to the definition,
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and Qright
i = P right

i since UC acts on q≤m. For Qcenter
i = Qcenter

l,i Qcenter
r,i , we have Qcenter

r,i = P center
r,i .

We then focus on Qcenter
l,i . Since elements of a stabilizer group commute with each other, we have

[Qcenter
l,i , Z left

j ] = [Qcenter
l,i , Qleft

j ]
= [P center

l,i , P left
j ]

= [P center
i , P left

j ]
= 0

(97)

for each i, j, where the first line uses Qleft
j = Z left

j , the second line uses the fact that Clifford
transformation does not change commutation relation, the third line uses the fact that P center

r,i is

on q>m so commutes with P left
j , and the last line use the fact that generators of a stabilizer group

commute. Thus we can write

Qcenter
l,i =

( nl∏
k=1

(Qleft
k )sk

)
Q̃center
l,i (98)

such that sk ∈ {0, 1}, and Q̃center
l,i (the yellow block) acts on qubits qnl+1,m (i.e. between qubit nl+1

and m). Since ⟨P, PQ⟩ = ⟨P,Q⟩, for the transformed stabilizer group ⟨Q⟩ = {Qleft,Qcenter,Qright},
we can now remove the

∏nl

k=1(Qleft
k )sk part in each Qcenter

i =
∏nl

k=1(Qleft
k )skQ̃center

l,i Qr,i. Rigorously,

let Q̃center
i = Q̃center

l,i P center
r,i and Q̃

center = {Q̃center
i }, we have ⟨Q⟩ = ⟨Qleft, Q̃

center
,Qright⟩ as well,

where elements in Q̃
center

acts on q>nl
and elements in Qright acts on q>m. Thus the first nl sites

are decoupled from the other sites in the transformed stabilizer group ⟨Q⟩, i.e. ⟨Q⟩ = ⟨Z1, ..., Znl
⟩⊗

⟨Q̃center
,Qright⟩, where ⟨Q̃center

,Qright⟩ is on qubits q>nl
. Therefore, we have successfully reduced

the n-qubit problem to a n − nl qubit problem on q>nl
. All we do until now is some Clifford

operation on q≤m. Since Q̃center
l,i can be viewed as a truncation of Qcenter

l,i with the global sign kept,
we write it as

Q̃
center = T∗

>nl
(U†

CP centerUC), (99)
where T∗

I indicates the truncation operation to qubits I with signs kept (similar to Definition 9).
For general stabilizer groups and generators, there is no guarantee that nl > 0, so the above

procedure may eventually do nothing. Now we consider the situation that P1, ..., Pn are all k-local
(see Fig. 10, situation 1), and we hope to construct some m ∼ O(k), so that when we can iteratively
execute the above procedure, we can reduce the problem size by some nl > 0 in each iteration
until n = 0. When we execute the above procedure for the first time, each P center

i (the purple and
orange block) is between qubit m−k+ 2 to m+k− 1 (totally 2k− 2) due to the k-local condition,
so nc ≤ 2k − 2, where we used the fact that a n-qubit stabilizer group has up to n independent
generators. For the same reason, we have nl ≤ m and nr ≤ n−m. Since nc+nl+nr = n, we should
have nl = n−nc−nr ≥ n− (2k− 2)− (n−m) = m− 2k+ 2. Thus we just need to let m > 2k− 2,
so that we have nl > 0 in the first iteration. When it comes to later iterations, the situation
becomes slightly different. As explained above, the “right” part is unchanged (i.e.Qright = P right),

so each Qright
i is still k-local. However, for each Q̃center

i = Q̃center
l,i P center

r,i , Q̃center
l,i (the yellow block)

is on qnl+1,m and P center
r,i (the orange block) is on qm+1,m+k−1,so we can only ensure that Qcenter

i

is on qnl+1,m+k−1. In the reduced n− nl qubit problem (i.e. the first nl qubits are removed), it is
between qubit 1 and m+k−nl−1 ≤ 3k−3, so it is 3k−3 local. Fortunately, in the above analysis
to derive nl ≥ m − 2k + 2, we only require each P ∈ P center to be k-local, but we don’t require
it for P left and P right. Therefore we want to additionally ensure that all Q̃center

i in the previous
iteration enter into P left in the next iteration, so P center in the next iteration are all taken from
Qright = P right in the previous iteration, which are k-local. Recall that P left are elements of P on
q≤m only, so we just need to have m ≥ 3k− 3. To summarize, with m ≥ 3k− 3, we can iteratively
apply a m-qubit Clifford transformation to reduce the problem size by nl ≥ m− 2k + 2. Thus we
could, for example, let m = 4k, so each time we reduce the problem size by O(k). Finally, with
O(n/k) number of O(k)-qubit Clifford transformations, we can transform the original stabilizer
group to ⟨Z1, Z2, ..., Zn⟩. Since O(k)-qubit Clifford transformation can decompose to O(k2/ log k)
single-qubit and double-qubit Clifford transformations [40], the total number of single-qubit and
double-qubit Clifford transformations we need is O(n/k)×O(k2/ log k) = O(nk/ log k).
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Finally, we consider the situation that there are up to s elements in {P1, ..., Pn} that are not
k-local. (see Fig. 10, situation 2) In fact, we can use the same procedure with m = 4(k+s) and no
other modifications. To see the reason, in the first iteration, we have all these s elements classified
into P center (the wide purple and orange blocks at the bottom), so we have nc = |P center| ≤ 2k−2+s
(2k−2 local elements and s non-local elements). After the Clifford transformation, for those k-local
P center
i (the narrow purple block), the corresponding Qcenter

i (the narrow orange block) are still
3k−3 local, and for those non-local P center

i (the wide purple block), the corresponding Qcenter
i (the

wide orange bock) are still generally nonlocal (can also accidentally be local). Thus in the next
iteration, those local Qcenter

i enter into P left (including the nonlocal ones that accidentally become
local), and those non-local Qcenter

i enter into P center. So we still have nc ≤ 2k − 2 + s in the next
iteration. Thus, with m ≥ 3k − 3, we can iteratively apply m-qubit Clifford transformation to
reduce the problem size by nl ≥ m−nc = m− 2k+ 2− s. By choosing, for example, m = 4(k+ s),
we achieve the same conclusion with L ∼ O(nk′/ log k′), where k′ = k + s. In fact, when s = 0,
this algorithm reduces to the previous situation. A pseudo-code of this algorithm in shown in
Algorithm 1.

Algorithm 1 Algorithm to find Clifford operations for Theorem 5
1: m = 4(k + s)
2: Initiate an empty list of single-qubit and double-qubit Clifford operations U
3: while n = |P | > 0 do
4: Classify each P ∈ P to P left, P right, P center if P acts on only q≤m, only q>m, or both

parts, respectively
5: nl = |P left|
6: Construct Clifford transformation UC such that U†

CP leftUC = {Z1, ..., Znl
}

7: Decompose UC to single-qubit and double-qubit Clifford operations UC = U1U2 · · ·UN with
the standard method [40]

8: Append {U1, U2, ..., UN} (the order matters) to the end of U

9: P → T∗
>nl

(U†
CP centerUC) ∪ P right

10: end while
11: Output U
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