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Abstract— Large Language Models (LLMs) have
demonstrated great potential in robotic applications by
providing essential general knowledge. Mobile robots
rely on map comprehension for tasks like localization
and navigation. In this paper, we explore enabling
LLMs to comprehend the topology and hierarchy
of Area Graph, a text-based hierarchical, topomet-
ric semantic map representation utilizing polygons
to demark areas such as rooms or buildings. Our
experiments demonstrate that with the right map
representation, LLMs can effectively comprehend Area
Graph’s topology and hierarchy. After straightforward
fine-tuning, the LLaMA2 models exceeded ChatGPT-
3.5 in mastering these aspects. Our dataset, dataset
generation code, fine-tuned LoRA adapters can be
accessed at https://github.com/xiefujing/LLM-osmAG-
Comprehension.

I. INTRODUCTION
Recent years have seen a growing interest in Large

Language Models (LLMs) like ChatGPT[1] and
LLaMA[2]. Real-life robots often face unpredictable
situations, such as a campus delivery robot blocked
by a closed intersection for pipe repair, depicted in
Fig. 1. Despite the construction notice being posted
publicly, the robot was unaware. Integrating general
knowledge with real-time data from public notice
boards through LLMs could significantly improve
navigation and decision-making. For this integration
to be effective, the robot’s ’brain’ needs to grasp the
map’s hierarchy and topology.

In mobile robotics, maps are essential foundational
knowledge. Common robotic map formats include
2D occupancy grids, 3D point clouds, and visual
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† Sören Schwertfeger is the corresponding author.
This work has been partially funded by the Shanghai Fron-

tiers Science Center of Human-centered Artificial Intelligence.
This work was also supported by the Science and Technol-
ogy Commission of Shanghai Municipality (STCSM), project
22JC1410700 ”Evaluation of real-time localization and mapping
algorithms for intelligent robots”. The experiments of this work
were supported by the core facility Platform of Computer Science
and Communication, SIST, ShanghaiTech University.

Fig. 1. The figure above depicts a real-life situation encountered
by a 3rd-party delivery robot on our University campus, where it
is blocked by an intersection closure. Below the notification sent
by Office of General Services announcing this closure is shown.

approaches like bag of words, but these are subop-
timal for LLM integration due to LLMs’ text-based
processing and token limitations. We propose using
osmAG[6] (Area Graph[3][4] in OpenStreetMap for-
mat) for path planning in future mobile LLM-robot
systems due to its advantages:

1) osmAG is stored in text format, making it
naturally readable by LLMs.

2) osmAG only stores permanent structures, en-
suring long-term stability.

3) osmAG can be easily generated from 3D point
clouds[5], 2D occupancy grid maps[3][4], or
CAD files[6].

4) Conventional robotic localization[7] and path
planning[6] algorithms based on osmAG have
been developed, making LLM behavior easy to
monitor and verify, thereby enhancing safety.

5) osmAG is easily visualized through JOSM and
ROS’s rviz, enabling intuitive human interac-
tion with the map.

The graph nodes of osmAG represent physical areas
like rooms, while edges, termed passages, are door
line segments of area polygons connecting adjacent
areas. For brevity, the details of osmAG are omitted
in this paper. Fig. 2 presents a JOSM (Java Open-
StreetMap editor) visualization of a osmAG map, as
discussed in Section IV-E. The objective of this paper
is to show that osmAG can be utilized by LLMs
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Fig. 2. osmAG visualization in JOSM displays areas in blue
polygons, passages in red lines, and nodes coordinates in yellow
dots. ChatGPT-4 identifies the shortest path via a two-way
elevator in red. After given an elevator maintenance notice, it
recommends an alternate route in green.

for applications in map-related mobile robotics tasks
such as path planning.

Research on LLMs in mathematics has shown
their challenges with numbers[8][9]. Considering that
humans often omit metric details in path planning dis-
cussions, as noted in the notification in Fig. 1, exclud-
ing these metrics from maps does not diminish the
system’s effectiveness. Therefore, this paper focuses
only on the topological and hierarchical properties of
osmAG, disregarding its metric information.

For proprietary LLMs like ChatGPT, we adjust
prompts and osmAG variants to evaluate their com-
prehension using datasets. For open-source LLMs,
we fine-tune LLaMA2 models, achieving over 90%
success rate in map comprehension tasks. Section IV-
E highlights ChatGPT-4’s ability to understand real-
life scenarios, demonstrating the utility of LLMs with
osmAG in robotics. Our contributions are as follows:
• We propose utilizing osmAG as the map repre-

sentation for future mobile LLM-robot systems.
• We offer scripts to convert osmAG for LLMs and

generate datasets for fine-tuning on topology and
hierarchy understanding.

• We employ efficient fine-tuning to achieve bet-
ter performance with our LLaMA2 model than
ChatGPT-3.5 on our tasks.

• Our dataset, dataset generation scripts, and
LLaMA2 adapters are made publicly available
to encourage further research and collaboration
in the field.

II. RELATED WORKS

A. Integrated Robotics and Navigation with LLMs
and Maps

Research in robotics integrates natural language
models like PaLM-E[10], which uses real-world
sensor data for better decision-making, and LLMs

Fig. 3. Our prompts include two main elements: a task
description in a blue box and the osmAG map in a green box.
We offer three prompt levels: Level 1 with just the description
and map, Level 2 with a simple example in the upper yellow box,
and Level 3 with a detailed example in the lower yellow box.

for tasks such as code generation[11], object
rearrangement[12], and motion planning[13]. Visual-
language navigation systems like [14] allow robots
to follow human instructions using advanced map
technologies such as VLMaps[15] that combine lan-
guage models with 3D point clouds. Our focus is
on developing map representations that are easily
understandable by both LLMs and robots, prioritizing
map data to enhance navigation and decision-making
in robotics.

B. Scene Graph in Robotics
Armeni et al. [16] and Hughes et al. [17] intro-

duced Scene Graphs as RGB-D camera-based 3D
representations that organize environments into lay-
ered graphs with nodes for spatial concepts from
geometry to high-level semantics, and edges depicting
relationships. Subsequent applications by Chen et
al. [18], and others have advanced Scene Graphs
for localization and planning. Unlike Scene Graphs,
osmAG, derived from grid maps, LiDAR, or CAD
data, is less prone to occlusion and remains reliable
without frequent updates. It focuses on permanent
structures and doesn’t require the semantic or visual
data that traditional robot navigation algorithms use
to avoid obstacles.

III. APPROACH

This paper explores how osmAG can aid LLMs
in robotic tasks like path planning. For proprietary
LLMs such as ChatGPT, in Sections III-A and III-B,
we explore the levels of task description in prompt
and the variants of osmAG, respectively. For open-
source models like LLaMA2, initial results show a
low success rate of approximately 0.1 (see Table II).
This indicates that merely combining prompt engi-
neering with appropriate osmAG representation falls
short of our objectives, leading us to also incorporate
fine-tuning LLMs using our datasets. Detailed in
Section III-C is our methodology for dataset creation,
and Section III-D outlines the fine-tuning process
using LoRA (Low Rank Adaptation)[19].



Fig. 4. The osmAG map representation and two of its variants.
The osmAG enclosed in blue box represents the original format
that uses ’passage’ to describe connections between areas. In the
yellow box we illustrate Variant 1 of osmAG, which introduces a
tag with a key set to ”connected area” and a value corresponding
to the area connected via the passage. Variant 2 of osmAG
displayed in the green box, modifies Variant 1 by replacing ”con-
nected area” with ”current area name directly connected room”.

A. Prompt Engineering

The prompt is structured into two parts: the first
provides a complete task description, including the
map format and task details, while the second part
offers osmAG context. We explored three levels of
detail in the task description (see Fig. 3): all include
basic osmAG and task explanations. Level 1 has
no example, Level 2 includes a simple example,
and Level 3 provides a detailed example with an
illustrative map and detailed answer. Our aim is to
enhance LLM performance by using examples to
better clarify the task, leveraging in-context learning
principles [20].

B. osmAG Variants

As shown in Fig. 4 and referenced in [3], the orig-
inal Area Graph uses ’passage’ to connect different
areas, with ’passage’ and ’area’ under separate ’way’
tags in the osmAG XML, complicating connection
understanding for LLMs. We developed a script to
create osmAG variants that integrate connection de-
tails directly within the ’area’ tags. Variant 1 adds a
’connected area’ key directly to the ’area’, specifying
its connected area. Variant 2 further specifies the
current area’s name and its direct connections.

C. Datasets

In order to test and fine-tune the ability of LLMs
to understand the topology and hierarchy of osmAG,
we need to construct specific datasets with language
instructions, osmAG, and ground truth. We generate
topological and hierarchical datasets specifically to
enhance and evaluate the LLMs’ capabilities in these
areas. Additionally, a general knowledge dataset is
created to evaluate whether the model retains its
general knowledge capabilities after fine-tuning.

Due to the limitation of token size (LLaMA2
supports up to 4096 tokens) and our decision to
omit the metric information of osmAG, the spe-
cific shapes of areas become irrelevant. Instead, only
the information regarding connections and hierarchy

remains pertinent. Consequently, employing hand-
drawn layout templates is sufficient for evaluating the
LLMs’ proficiency in understanding topological and
hierarchical relationships.

1) Topological Datasets: Map templates shown
in Fig. 5 are handcrafted using JOSM, with ’area’
and ’passage’ defined per osmAG standards in [6].
Labels like ’1d-201’ indicate a room’s location by
zone, floor, wing, and room number. We employ a
script to randomize these attributes to create varied
maps from a single template. Room numbers are
shuffled to ensure paths rely on map information, not
sequence. For each map, we ask the LLM to find
a path (sequence of room names) between each two
rooms as one item of the dataset. Dataset 1, using
the ’normal’ layout Template (a) from Fig. 5, contains
440 entries. Dataset 2, mixing Templates (a), (b), and
(c), includes 12,520 entries aimed for training, with
440 reserved for testing. Dataset 3, derived from an
Template (d) that is not used in the training dataset,
aim to evaluate the model’s generalization ability. The
number of rooms in templates is limited by token
limits, preventing larger designs. However, leaf rooms
with a single door are unnecessary for path planning
unless they are the terminal rooms, so they can
be omitted beforehand. Thus, despite the template’s
limited number of rooms, it remains highly relevant
for real-world, large environment applications.

Based on experiment in Sections IV-A and IV-
B, we utilize task description Level 3 and osmAG
Variant 2 in prompts. Our datasets’ ground truth is
sequential room numbers from standard path plan-
ning algorithms. For circular paths with equal-length
alternatives, both are included.

Fig. 5. Hand-drawn map layout templates created using JOSM,
with areas depicted as blue polygons, passages represented by red
lines, and room names in red. Templates (a), (b), and (c) were
utilized to generate datasets for fine-tuning the LLaMA2 model.
Template (d), on the other hand, was exclusively used in the test
dataset to assess the LLM’s capacity to adapt to unseen layouts.



Fig. 6. This image displays two osmAG maps from Dataset
2, each randomly assigned a ’owner’ tag per room (first names
shown for clarity). The maps are structured by zone, floor,
and wing, with buildings ’SIST 1’ or ’SIST 2’ to establish a
hierarchical tree using ’parent’ tags. Details for the left map are:
SIST 2, 3 wing, 7 floor, b zone.

2) Hierarchical Datasets: As shown in Fig. 6,
we randomly selected two osmAG from Dataset 2,
assigning each room a random ’owner’ tag. We
structured each map with ’parent’ tags linking rooms
to zones, floors, and wings, and assigned buildings
’SIST 1’ or ’SIST 2’ to establish a hierarchy. This
setup supports queries asking the LLM to locate
individuals by directing towards the correct building.
We created 1056 such queries for training Dataset
4. An example of this map visualized by JOSM is
in Fig. 6. The LLM must navigate hierarchy tree to
correctly identify the target building.

3) General Knowledge Dataset: LoRA fine-tuning
is not completely immune to catastrophic forgetting
[21]. To verify that general knowledge capabilities
remain intact, we created a small Dataset 5 with 20
general questions, like ”Who wrote ’Hamlet’?”, to
test the model after fine-tuning.

D. Fine-tuning

We utilize Meta’s LLaMA2 model[2], a decoder-
only transformer, as our base model. The models are
fine-tuned using datasets from Section III-C with the
LoRA (Low Rank Adaptation)[19] method, which
updates additive low-rank matrices in neural layers
while keeping the original weights frozen, reducing
the number of trainable parameters and allowing
efficient use of computational resources. Fine-tuning
targets topological tasks with Dataset 2 and hierarchi-
cal tasks with Dataset 4. The LoRA hyperparameters
are as follows: the rank is set to 8, and target
modules of LoRA are set to ”q proj” and ”v proj”.
These two modules are the query and value matrices
in the self-attention mechanism of the transformer
architecture [19], [25]. The learning rate is set to 5e-
5 and we opted for a cosine learning rate scheduler.
The fine-tuning process is illustrated in Figure 7. The
LLaMA2-7B and LLaMA2-13B models were fine-

TABLE I
COMPARISON CHATGPT-3.5&4’S SUCCESS RATE ON

DIFFERENT PROMPT LEVELS AND OSMAG VARIANTS

Task
Description

Level

Original
osmAG

osmAG
Variant 1

osmAG
Variant 2

Chat
GPT3.5

Chat
GPT4

Chat
GPT3.5

Chat
GPT4

Chat
GPT3.5

Chat
GPT4

Level 1 0.54 0.85 0.50 0.95 0.69 0.95
Level 2 0.42 0.87 0.45 0.97 0.70 0.95
Level 3 0.49 0.87 0.57 0.96 0.69 0.96

tuned for topological and hierarchical tasks using
4×NVIDIA A40 and 4×A100 GPUs, respectively.
Topological tasks took 6.6 hours for LLaMA2-7B
and 5.5 hours for LLaMA2-13B, both running 2.5
epochs with a dataset of 12,520 entries. Hierarchical
tasks required 2 hours for LLaMA2-7B and 1.5 hours
for LLaMA2-13B, each undergoing 7.76 epochs with
1,056 entries.

IV. EXPERIMENTS
Since LLMs can only process textual input, com-

paring osmAG with occupancy grid maps or point
clouds is impractical. Regarding the 3D Scene Graph,
it primarily focuses on semantic representation within
a 3D scene. We assert that semantic information is
unnecessary for mobile robot path planning between
specified start and end rooms, and therefore, do not
include comparisons with Scene Graph.

For topological tests, matching ground truth is con-
sidered successful, while correctly identifying build-
ings signifies success in hierarchical tests. Model
performances are measured by success rates on the
test dataset. Sections IV-A and IV-B detail exper-
iments on ChatGPT-3.5 and ChatGPT-4 regarding
prompt engineering and osmAG variants. Sections
IV-C and IV-D compare pre and post-fine-tuning
performance of LLaMA2 models. Section IV-E and
Fig. 2 demonstrate ChatGPT-4 using real osmAG for
live path planning and adjustments.

However, it is important to note that, despite
ChatGPT-4’s high success rate, all its responses are
verbose. This verbosity persists even when specifying
concise outputs in the prompt, like ’only output the
room numbers’. While this chattiness may be accept-
able in human interactions, it poses challenges for
traditional robotic applications to utilize the LLMs’
responses. Nevertheless, we counted those answers
as correct, if the room numbers matched the ground
truth.

A. Prompt Engineering Experiment
As discussed in Section III-A, we tested ChatGPT-

3.5 (gpt-3.5-turbo-0125) and ChatGPT-4 (gpt-4-0125-
preview)’s understanding of osmAG path planning



using three prompt levels. The results, shown in Table
I, reveal that including an example in the prompt
does not always enhance performance. However, we
opted for Level 3 prompts in our training dataset for
topological tasks due to its marginally better results.

B. osmAG Variant Experiment
The osmAG variants for this experiment are de-

tailed in Section III-B. We compared original osmAG
and two of its variants with different prompt levels
on ChatGPT-3.5 and ChatGPT-4. According to the
results summarized in Table I, osmAG Variant 2
outperforms the others on both models. Therefore,
we have selected this variant as the preferred map
representation for LLMs and used it in our fine-tuning
dataset.

C. Topological & Hierarchical Understanding Ex-
periment Without Fine-tuning

We tested the LLaMA2-7B and LLaMA2-13B
models on Datasets 1-5 to evaluate their map un-
derstanding. For comparison, we also used ChatGPT-
3.5 and ChatGPT-4’s APIs on these datasets. The
results, shown in Table II, reveal a 0.1 success rate
for the LLaMA2 models in topological tasks with-
out fine-tuning, which is impractical. ChatGPT-3.5
achieved about a 0.5 success rate, still insufficient for
real-world use. In hierarchical tasks, LLaMA2-13B
achieved a 0.55 success rate, better than LLaMA2-
7B’s 0.19, but not yet practical. ChatGPT-3.5 reached
a 0.66 success rate, still below practical deployment
standards. ChatGPT-4 showed high success rates in
both tasks.
D. Fine-tuning Experiment

After fine-tuning the LLaMA2 models as outlined
in Section III-D, we assessed their performance on
Datasets 1-5, observing significant improvements de-
tailed in Table II.

For topological tasks, the fine-tuned LLaMA2-7B
and LLaMA2-13B models exceeded ChatGPT-3.5’s
performance, with LLaMA2-13B also outperforming
ChatGPT-4 on Dataset 2. LLaMA2-7B achieved over
a 0.9 success rate on Datasets 1-2 with templates used
in fine-tuning but dropped to 0.89 on new layouts.
LLaMA2-13B showed stronger generalization with a
0.97 success rate on new layouts.

During testing, besides the fixed prompt from
training, we also use random prompts to evaluate
generalization. The results, shown in Table II, reveal
a performance drop for LLaMA2-7B under varied
prompts, while LLaMA2-13B maintained high per-
formance, suggesting its suitability for unpredictable

Fig. 7. Fine-tuning LLaMA2-7B and LLaMA2-13B on Topo-
logical and Hierarchical Tasks

interactions. Conversely, LLaMA2-7B is more suited
for scenarios with consistent prompts, particularly
when computational resources are limited.

In hierarchical tasks, after fine-tuning, both the
LLaMA2-7B and LLaMA2-13B models achieve a
success rate of 1, both models also generalize well on
unseen prompts, which makes them totally practical.

E. Real-life Experiment

Here we perform an experiment to emulate the
real-world situation of a robot blocked by a construc-
tion site, as show in Fig. 1. As depicted in Fig. 2, we
send a request to the ChatGPT-4 API, providing a
osmAG map with Prompt Level 3 to query a path
planning from the start room to the destination room.
The osmAG is converted into Variant 2, and any
leaf areas with single door are removed to conserve
tokens. ChatGPT-4 then returns a path, highlighted
with red lines in the image, via a two-door elevator
(identified by a semantic tag indicating it is an ele-
vator). Upon introducing an email regarding elevator
maintenance, ChatGPT-4 adjusts the path, adding a
detour to bypass the unavailable elevator.

V. CONCLUSION AND DISCUSSION

In the rapidly evolving field of AI, LLMs are
increasingly used to enhance robotic intelligence,
though integrating them remains a key research
area. This paper introduces osmAG, a map repre-
sentation suited for LLM-robot systems, interpretable
by LLMs, compatible with robotic algorithms, and
understandable by humans. For proprietary models
like ChatGPT, we provide datasets to evaluate the
model’s comprehension of osmAG, along with os-
mAG variants to improve performance. For open-
source models such as LLaMA2, we supply datasets,
dataset generation methods, and fine-tuned adapters
for comprehensive testing. We recognize that in real
robotics, path length is crucial, but current token
limitations and the LLM’s difficulty with math mean
we cannot ensure optimal paths. However, we are



TABLE II
COMPARISON OF SUCCESS RATES OF LLMS ON TOPOLOGICAL (T), HIERARCHICAL (H) AND GENERAL (G) TASKS

LLaMA2-7B LLaMA2-13B
Fine-tuned LLaMA2-7B

(with unseen prompt)
Fine-tuned LLaMA2-13B

(with unseen prompt) ChatGPT-3.5 ChatGPT-4.0

Dataset 1 (T) 0.10 0.12 0.99 (0.78) 0.98 (0.91) 0.54 0.99
Dataset 2 (T) 0.05 0.066 0.94 (0.60) 0.95 (0.94) 0.50 0.89
Dataset 3 (T) 0.11 0.14 0.89 (0.75) 0.97 (0.92) 0.53 0.96
Dataset 4 (H) 0.19 0.55 1.0 (0.98) 0.99 (0.98) 0.66 0.99
Dataset 5 (G) 0.95 0.95 0.95 0.95 1 1

exploring closer integration of LLMs with traditional
algorithms like A* [6] to address these issues.

Traditional robotics has been explored for decades,
but integrating it with LLMs is a new frontier. os-
mAG aims to accelerate this integration, facilitating
a map representation that aligns with LLMs, robotic
systems, and human operators.
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