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Abstract. Class activation maps (CAMs) are commonly employed in
weakly supervised semantic segmentation (WSSS) to produce pseudo-
labels. Due to incomplete or excessive class activation, existing studies
often resort to offline CAM refinement, introducing additional stages or
proposing offline modules. This can cause optimization difficulties for
single-stage methods and limit generalizability. In this study, we aim to
reduce the observed CAM inconsistency and error to mitigate reliance on
refinement processes. We propose an end-to-end WSSS model incorporat-
ing guided CAMSs, wherein our segmentation model is trained while con-
currently optimizing CAMs online. Our method, Co-training with Swap-
ping Assignments (CoSA), leverages a dual-stream framework, where
one sub-network learns from the swapped assignments generated by the
other. We introduce three techniques in this framework: i) soft perplexity-
based regularization to penalize uncertain regions; ii) a threshold-searching
approach to dynamically revise the confidence threshold; and iii) con-
trastive separation to address the coexistence problem. CoSA demon-
strates exceptional performance, achieving mIoU of 76.2% and 51.0% on
VOC and COCO validation datasets, respectively, surpassing existing
baselines by a substantial margin. Notably, CoSA is the first single-stage
approach to outperform all existing multi-stage methods including those
with additional supervision. Source code is publicly available at herel
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1 Introduction

The objective of weakly supervised semantic segmentation (WSSS) is to train a
segmentation model without relying on pixel-level labels but on weak and cost-
effective annotations, such as image-level classification labels , object
points , and bounding boxes . In particular, image-level classi-
fication labels have commonly been employed as weak labels due to the minimal
or negligible annotation effort required . With the absence of precise local-
ization information, image-level WSSS often makes use of the coarse localization
offered by class activation maps (CAMs) . CAMs pertain to the intermediate
outputs derived from a classification network. They visually illustrate the activa-
tion regions corresponding to each individual class. Thus, they are often used to


https://github.com/youshyee/CoSA

2 Xinyu et al.

generate pseudo masks for training. However, CAMs suffer from i) Inconsistent
Activation: CAMs demonstrate variability and lack robustness in accommodat-
ing geometric transformations of input images [60|, resulting in inconsistent ac-
tivation regions for the same input. ii) Inaccurate Activation: activation region
accuracy is often compromised, resulting in incomplete or excessive class activa-
tion, only covering discriminative object regions [1]. Despite enhanced localiza-
tion mechanisms in the variants GradCAM |[55] and GradCAM™* |7], they still
struggle to generate satisfactory pseudo-labels for WSSS [60]. Thus, many WSSS
works are dedicated to studying CAM refinement or post-processing [1,(15,/31].

In general, they |2}[18]/50L/65] comprise three stages: CAM generation, refine-
ment, and segmentation training with pseudo-labels. Multi-stage frameworks are
known to be time-consuming and complex as several models must be trained at
different stages. In contrast, single-stage models [3,/52.(73], which include a uni-
fied network of all stages, are more efficient. They are trained to co-optimize the
segmentation and classification tasks, but the generated CAMs are not explicitly
trained. As a result, they need refinement to produce high-quality pseudo-labels,
often leveraging hand-crafted modules, such as CRF in [73], PAMR in [3], PAR
in [52,/53]. As the refinement modules are predefined and offline, they decouple
the CAMs from the primary optimization. When the refined CAMs are employed
as segmentation learning objectives, the optimization of the segmentation branch
may deviate from that of the classification branch. Hence, it is difficult for single-
stage models to optimize the segmentation task while yielding satisfactory CAM
pseudo-labels. This optimization difficulty underlies the inferior performance in
single-stage approaches compared to multi-stage [50,/65|. Further, hand-crafted
refinement modules require heuristic tuning and empirical changes, thereby lim-
iting their adaptability to novel datasets |31/52]. Despite the potential benefits of
post-refinement in addressing the aforementioned issues associated with CAMs,
which have been extensively discussed in WSSS studies, there has been limited
exploration of explicit online optimization for CAMs.

The absence of fully optimized CAMs is an important factor in the indis-
pensability of this refinement. In this paper, we take a different approach by
optimizing CAMs in an end-to-end fashion. We ask a core question: Can we
train a model that delivers reliable, consistent and accurate CAMs, which can
be applied directly for WSSS without the necessity for subsequent refinements?
We show that the answer is yes, in two respects: 1) we note that even though
CAM is differentiable, it is not robust to variation. As the intermediate output
of classification, CAMs are not fully optimized for segmentation purposes since
the primary objective is to minimize classification error. This implies that within
an optimized network, numerous weight combinations exist that can yield ac-
curate classification outcomes, while generating CAMs of varying qualities. To
investigate this, we conduct oracle experiments, training a classification model
while simultaneously guiding the CAMs with the segmentation ground truth.
A noticeable enhancement in quality is observed in guided compared to vanilla
CAMs, without compromising classification accuracy. 2) we demonstrate the fea-
sibility of substituting the oracle with segmentation pseudo-labels (SPL) in the
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context of weak supervision. Consequently, we harness the potential of SPL for
WSSS by co-training both CAMs and segmentation through mutual learning.

We explore an effective way to substitute the CAM refinement process, i.e.
guiding CAMs in an end-to-end fashion. Our method optimizes the CAMs and
segmentation prediction simultaneously thanks to the differentiability of CAMs.
To achieve this, we adopt a dual-stream framework that includes an online net-
work (ON) and an assignment network (AN), inspired by self-training frame-
works [5[22/68]. The AN is responsible for producing CAM pseudo-labels (CPL)
and segmentation pseudo-labels (SPL) to train the ON. Since CPL and SPL are
swapped for supervising segmentation and CAMSs, respectively, our method is
named Co-training with Swapping Assignments (CoSA).

The benefit of this end-to-end framework is that it enables us to quantify
pseudo-label reliability online, as opposed to the offline hard pseudo-labels used
in existing methodologies [2,[15/50,/65]. We can then incorporate soft regular-
ization to compensate for CPL uncertainty, where the segmentation loss for
different regions is adaptively weighted according to our estimated perplexity
map. In comparison to existing literature, this dynamic learning scheme can ex-
ploit the potential of CPL and enhance the final performance, as opposed to
performance being constrained by predetermined CPL. The threshold is a key
hyper-parameter for generating the CPL [50,53,/60]. It not only requires tuning
but necessitates dynamic adjustment to align with the model’s learning state at
various time-steps. CoSA integrates threshold searching to dynamically adapt
its learning state, as opposed to the fixed thresholding [12}/18,52]. This can en-
hance performance and help to eliminate the laborious manual parameter-tuning
task. We further address a common issue with CAMs, known as the coexistence
problem, whereby certain class activations display extensive false positive re-
gions that inaccurately merge the objects with their surroundings (Fig. . In
response, we introduce a technique to leverage low-level CAMs enriched with
object-specific details to contrastively separate those coexistent classes.

The proposed CoSA greatly surpasses existing WSSS methods. Our approach
achieves the leading results on VOC and COCO benchmarks, highlighting the
contribution of this work: i) We are the first to propose SPL as a substitute
for guiding CAMs. We present compelling evidence of its potential to produce
more reliable, consistent and accurate CAMs. ii) We introduce a dual-stream
framework with swapped assignments, which co-optimizes the CAMs and seg-
mentation predictions in an end-to-end fashion. iii) We address the learning
dynamics, proposing two components within our framework: reliability-based
adaptive weighting and dynamic thresholding. iv) We address the CAM coex-
istence issue, proposing a contrastive separation approach to regularize CAMs,
significantly enhancing the results of affected classes.

2 Related Work

Multi-Stage WSSS.Most image-level WSSS work is multi-stage, typically com-
prising three stages: CAM generation, CAM refinement, and segmentation train-
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ing. Some approaches employ heuristic strategies to address incomplete acti-
vation regions, such as adversarial erasing |30} /58,70,|74], feature map opti-
mization [12H14}[32], self-supervised learning |11,[56}/60], and contrastive learn-
ing [1527,)64,76]. Some methods focus on post-refining the CAMs by propagating
object regions from the seeds to their semantically similar pixels. AffinityNet [2],
for instance, learns pixel-level affinity to enhance CPL. This has motivated other
work [14/104/204/38] that utilize additional networks to generate more accurate
CPL. Other work studies optimization given coarse pseudo-labels: [40] explores
uncertainty of noisy labels, [43] adaptively corrects CPL during early learning,
and [50] enhances boundary prediction through co-training. Since image-level
labels alone do not yield satisfactory results, several methods incorporate addi-
tional modalities, such as saliency maps [18}37,38,(76] or CLIP models [42,63./67].
Recently, vision transformers [17] have emerged as prominent models for vari-
ous vision tasks. Several WSSS studies benefit from vision transformers: [21]
enhances CAMs by incorporating the attention map from ViT; [65] introduces
class-specific attention for discriminative object localization; [42] and [67] lever-
age multi-modal transformers to enhance performance.

Single-Stage WSSS. In contrast, single-stage methods are much more effi-
cient. They contain a shared backbone with heads for classification and segmen-
tation [31/52}/53}/73]. The pipeline involves generating and refining the CAMs,
leveraging an offline module, such as PAMR 3|, PAR [52], or CRF [73]. Subse-
quently, the refined CPL are used for segmentation. Single-stage methods exhibit
faster speed and a lower memory footprint but are challenging to optimize due
to the obfuscation in offline refinement. As a result, they often yield inferior per-
formance compared to multi-stage methods. More recently, with the success of
ViT, single-stage WSSS has been greatly advanced. AFA [52] proposes learning
reliable affinity from attention to refine the CAMs. Similarly, ToCo |53| mitigates
the problem of over-smoothing in vision transformers by contrastively learning
from patch tokens and class tokens. The existing works depend heavily on offline
refinement of CAMs. In this study, we further explore the potential of single-
stage approaches and showcase the redundancy of offline refinement. We propose
an effective alternative for generating consistent, and accurate CAMs in WSSS.

3 Method

3.1 Guiding Class Activation Maps

Class activation maps are determined by the feature map F' and the weights Wi,
for the last FC layer [75]. Let us consider a C classes classification problem:

c
%IZ[Y logoz + 1—Yc)log(1—az)] (1)

c=1

Las(Z,Y)=

where 0%, £ o(Z°) represents Sigmoid activation, Y £ Yy denotes the one-hot
multi-class label, and Z £ GWfI € R represents the prediction logits, derived
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Fig.1: Oracle Experiments on VOC. CAMs are guided by the ground truth (GT), pro-
posed segmentation pseudo-labels (SPL), no guidance (NO) and random noise (NS). (a):
classification performance; (b): CAM quality; (c) CAM visualization. All experiments employ
2k-iters warm-up before guidance is introduced.

from the final FC layer, where G =Pooling(F)cRP” is a spatial pooled feature
from F € REWXP  During training, Eq. is optimized with respect to the
learnable parameters 6 in the backbone. When gradients flow backwards from G
to F', only a fraction of elements in F' get optimized, implying that a perturbation
in F' does not guarantee corresponding response in G due to the spatial pooling,
resulting in non-determinism in the feature map F'. This indeterminate nature
can lead to stochasticity of the generated CAMs.

To demonstrate, we conduct oracle experiments wherein we supervise the out-
put CAMs from a classifier with the ground truth segmentation (GT), enabling
optimization of all elements in F'. For comparison, we conduct experiments where
the CAMs are not guided (NO), and guided with random noise masks (NS). Re-
sults, shown in Fig. [I] demonstrate that different guidance for M does not affect
classification even for the NS group, as all experiment groups achieved over 97%
classification precision. However, drastic differences can be observed w.r.t. the
quality of the CAMs. The GT group results in a notable quality improvement
over the NO group, as shown in Fig. (b)(c) In contrast, the NS group sab-
otages the CAMs. This suggests the stochasticity of CAMs and explains their
variability and lack robustness, something also observed in .

Since relying on GT segmentation is not feasible in WSSS, we propose an al-
ternative for guiding CAMs, employing predicted masks as segmentation pseudo-
labels (SPL). As shown in Fig. [1} a SPL-guided classifier yields CAMs that sig-
nificantly outperform vanilla CAMs (NO), performing close to the oracle (GT).
Motivated by this, we introduce a co-training mechanism in which CAMs and
predicted masks are optimized mutually without additional CAM refinement.

3.2 Co-training with Swapping Assignments

Overall Framework. As shown in Fig. [2 CoSA contains two networks: an
online network (ON) and an assignment network (AN). ON, parameterized by
©, comprises three parts: a backbone encoder, FC layers, and a segmentation
head. AN has the same architecture as ON but uses different weights, denoted
©’. ON is trained with the pseudo assignments generated by AN, while AN is
updated by the exponential moving average of ON: @' + m@O’ + (1 — m)6O,
where m € [0,1] denotes a momentum coefficient. Consequently, the weights of
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Fig. 2: Co-training with Swapping Assignments (CoSA). We propose an end-to-end
dual-stream weakly-supervised segmentation framework, capable of co-optimizing the segmen-
tation prediction and CAMs by leveraging the swapped assignments, namely CAM pseudo-
labels (CPL) and segmentation pseudo-labels (SPL). Our framework comprises two networks:
an assignment network (AN) and an online network (ON), where the AN is responsible for
generating pseudo-labels for training the ON. While the AN has identical architecture to the
ON, it is updated through exponential moving average (EMA) of the ON. The diagram on the
right provides an illustration of the architecture. Given weak-augmented images as input, the
AN produces CPL to supervise segmentation in the ON (Lc2s). During training, the CPL is
softened by reliability-based adaptive weighting (RAW), formed based on CAM perplexity es-
timation and dynamic thresholding. The AN also generates SPL which is utilized to supervise
the CAMs (Ls2c). Further, the CAMs are regularized to contrastively separate the foreground
from the background regions (Lcsc). Note that the ON is also trained for classification using
the image-level class labels (Lcs).

AN represent a delayed and more stable version of the weights of ON, which
helps to yield a consistent and stabilized learning target .

An image and class label pair (z,Yg) is randomly sampled from a WSSS
dataset D. CoSA utilizes two augmented views 7;(x) and Ty, (z) as input for ON
and AN, respectively, representing strong and weak image transformations. Dur-
ing training, AN produces CAMs M’ and segmentation predictions S’. The CAM
pseudo-labels (CPL) and segmentation pseudo-labels (SPL) are generated by M’
and &’ after filtering with respect to Y. CPL and SPL are subsequently used as
learning targets for supervising the segmentation predictions S and CAMs M
from ON, respectively.

Swapping Assignments. Our objective is to co-optimize S and M. A naive
approach could enforce the learning objectives S £ S’ and M £ M’ as a knowl-
edge distillation process , where AN and ON play the roles of teacher and
student. However, this assumes availability of a pretrained teacher which is not
possible in WSSS settings. Instead, we setup a swapped self-distillation objective:

[«swap = £025(87M,) + Es?c(Mvsl) ) (2)

where L5 optimizes the segmentation performance given the CPL, and Lgo.
assesses the CAM quality with respect to SPL. Building on self-distillation @,
, we present this swapped self-distillation framework tailored specifically to
facilitate information exchange between the CAMs and segmentation.
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Fig.3: CPL Analysis (a): heatmap of CPL accuracy vs. confident ranges (x-axis) for
different time-steps (y-axis) for VOC and COCO. (b): correlation between perplexity and
accuracy of CPL for different time-steps. (c): distribution of CAMs’ confidence categorized by
the proposed dynamic threshold on VOC. See Supp. for COCO analysis.

3.3 Segmentation Optimization

CAMZ2Seg Learning. Previous studies refine the CAMs to obtain
pseudo-label, then perform pseudo-label to segmentation learning (PL2Seg). As
our guided-CAMs do not require extra refinement process, they can be directly
employed as learning targets (CAM2Seg). Nonetheless, CAMs primarily concen-
trate on the activated regions of the foreground while disregarding the back-
ground. As per the established convention [15,[53,60], a threshold value ¢ is
employed for splitting the foreground and the background. Formally, our CAM
pseudo-label (CPL) is given by:

- argmax /\/l/z +1, ifv>g,
yggL _ { ( y) (3)

o, ifv<g’

where v £ max(M, ) denotes the the maximum activation, 0 denotes the back-
ground index. Then, the CAM2seg learning objective L.os is cross entropy be-
tween YCPL and S, as with the general supervised segmentation loss .

Reliability based Adaptive Weighting (RAW). Segmentation performance
depends heavily on the reliability of the pseudo-labels. Thus, it is important to
assess their reliability. Existing methods use post-refinement to enhance pseudo-
label credibility . As CoSA can generate online CPL, we propose to lever-
age confidence information to compensate the CAM2Seg loss during training.
Specifically, we propose to assess the perplexity scores for each pixel in YCPL and
leverage these scores to re-weight L o4 for penalizing unreliable regions. However,
estimating per-pixel perplexity is non-trivial. Through empirical analysis, we ob-
serve a noteworthy association between the confidence values of CAMs and their
accuracy at each time-step. This correlation suggests that regions with extremely
low or high confidence exhibit higher accuracy throughout training, as shown in
Fig. a). To quantitatively model perplexity, we make two assumptions: i) the
reliability of pseudo-labels is positively correlated with their accuracy, and ii)
the perplexity score is negatively correlated with the reliability. Then, per-pixel
perplexity of jiggL is defined as:

— 08 (AallV — - 2 ifp
m—{[ log (Aa(v =)/ =M ifv =g,

4
[~ log (Aa (& = 1) /€)1 ifv <¢, W
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where the term within the logarithm denotes the normalized distance to £ in
[0,1]. The logarithm ensures P, , — 400 as distance — 0, and P, , — 0 as dis-
tance —1. A, € R controls the perplexity score’s minimum value and A\g € R*
determines the sharpness or smoothness of the distribution. Higher P, , indi-
cates confidence of yCPL closer to threshold . This observation is substantiated
by Fig. 3| l(a where conﬁdence values near £ =0.5 exhibit lower reliability. Fur-
thermore, the correlation between perplexity and accuracy remains significant
across various training time-steps and datasets, as depicted in Fig. b).

Since we hypothesize negative reliability-perplexity correlation, the reliability
score can be defined as the reciprocal of perplexity. To accommodate reliability
variation for different input, we use the normalized reliability as the per-pixel
weights for Lcos. This arrives our RAW-based CAM2Seg objective:

R| [ rvepL exp s,
Leos(z,y)=— — 1 Vo =cllogl || » (5)
Zi,jeR (PijPay) ' ;) [ ! ] chzo exp Sty

where |R| represents total number of pixels in a batch.

Dynamic Threshold. Existing WSSS work [52}/53] prescribes a fixed threshold
to separate foreground and background, which neglects inherent variability due
to prediction confidence fluctuation during training. Obviously, applying a fixed
threshold in Fig. (a) is sub-optimal.

To alleviate this, we introduce dynamic thresholding. As shown in Fig. c),
the confidence distribution reveals discernible clusters. We assume the fore-
ground and background pixels satisfy a bimodal Gaussian Mixture distribution.
Then, the optimal dynamic threshold £* is determined by maximizing the Gaus-
sian Mixture likelihood:

¢* = argmax H TpgN (m\ﬁfgvfjfg> + H TogN (mlﬂbg’fjbg> ©(6)

¢ peimze} zE{M’/ <€}

where N (z|u, X)) denotes the Gaussian function and 7, u, X' are the weight, mean
and covariance. To avoid mini-batch bias, we maintain a queue to fit GMM, with
the current M’ batch enqueued and the oldest dequeued. This facilitates estab-
lishment of a gradually evolving threshold, contributing to learning stabilization.

3.4 CAM Optimization

Seg2CAM Learning. To generate SPL, segmentation predictions S’ are fil-
tered by the weak labels Y, and transformed into probabilities:

c —o0, if Vg =0,  _.gpp, S,
S;MU = {S/ c lf Yc ?é 0 yﬁyy = SOftmaX( Ty) ? (7)
x,yo gt ]

where 7 denotes the temperature to sharpen JA)EIZL Let R be all the positions in
SPL, then the Seg2CAM learning objective is defined as:

Loe=- cm\Z > | el togto (M2 ) (1= i Tox(1-a(ME,)| - (8

c=1z,yeR
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Fig. 4: Illustration of Coexistence Problem in CAMs. The first row shows the input
images. The second row shows the coexistence problem e.g. ’bird’ with ’branches’, 'train’ with
railways’ and ’boat’ with ’the sea’.

Coexistence Problem in CAMs. Certain class activations often exhibit large
false positive regions, where objects are incorrectly merged with surroundings,
as shown in Fig. 4] For instance, the classes ‘bird’ and ‘tree branches’, ‘train’
and ‘railways’, etc. frequently appear together in VOC dataset. We refer to this
issue as the coexistence problem. We hypothesize that the coexistence problem
is attributed to three factors: i) Objects that coexist in images, such as ‘tree
branches’, are not annotated w.r.t. weak labels, which makes it challenging for a
model to semantically distinguish coexistence. ii) Training datasets lack sufficient
samples for such classes. iii) High-level feature maps, though rich in abstract
representations and semantic information, lack essential low-level features such
as edges, textures, and colors . Thus, CAMs generated from the last layer
are poor in low-level information for segmenting objects. Conversely, segmenting
objects with high-level semantics is hindered due to factors i) and ii).

Contrastive Separation in CAMs. We posit that the effective usage of low-
level information can alleviate the coexistence problem. Since shallower-layer
feature is rich in low-level info , we propose to extract CAMs M from an
earlier layer, and present its comparison with M in Fig. [5] showing that directly
substituting M with M is not feasible due to the lower mIoU upperbound
of M*. However, if we consider the confident regions in M and MT, i.e. filter
by a low-pass perplexity, then {M] , | P, < €} result in higher mIoU than
{Myz.y | Psy <€}, as shown in Fig. b), where e denotes a low-pass coefficient.
Further, we observe in some examples the presence of coexistence issues in M
but absence in M as shown in Fig. (c) This suggests that M performs worse
than M in general, but better for those regions with low perplexity. Driven by
these findings, we propose to regularize M by M1 (from AN). Specifically, M
after a low-pass filter are used to determine the positive ’R;{’j and negative R, j
regions:

RE, ={(@) | Pey < e 355 =557, (2y) # (i4) }

Ry ={@) | Poy <, 3558 #55}

where (i,7) € 2, 2={(z,y)| Ps,, <€} is low-perplexity region in M, and 7
represents the CPL of M. Then, we have contrastive separation loss for M:

9)

CPL

1 1 Lid
Lese = —— — log ——2% 10
csc |_Q| Z |R-'~_j Z og L;,]y i Krz{,Jm ) ( )

i,j€8 z,ye’l?.;rj
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Fig.5: M and MT Comparisons. (a): mIoU vs. time-steps for M and MT on VOC val.
(b): same as (a) but filtered by perplexity. (c): cases of coexistence in M but not in MT.

where L% = exp(la(M j, Myy)/7), la(a,b) measures the similarity between
(a,b), 7 denotes the InfoNCE loss temperature, and K7 =3~ L

n,mER;j n,m-*
Overall Objectives. The objectives encompass the aforementioned losses and
a further Eé‘;; to stabilize training and accelerate convergence, resulting in the

CoSA objective:

t 1
LCOSA: ['cls + [«/:\1/; +Ac2s (£CQS +£(jz\gs ) +As2cLs2¢ +AescLese. (11)

4 Experiments

4.1 Experiment Details and Results

Datasets. We evaluate on two benchmarks: VOC and COCO . VOC
encompasses 20 categories with train, val, and test splits of 1464, 1449, and
1456 images. Following WSSS practice , SBD is used to augment the
train split to 10,582. COCO contains 80 categories with train and val splits
of approx. 82K and 40K images. Our model is trained and evaluated using only
the image-level classification labelsEI, and employing mloU as evaluation metrics.

Implementation Details. Following , we use ImageNet pretrained ViT-
base (ViT-B) as the encoder. For classification, we use global max pooling
(GMP) and the CAM approach . For the segmentation decoder, we use
LargeFOV , as with . ON is trained with AdamW . The learning rate is
set to 6E-5 in tandem with polynomial decay. AN is updated with a momentum
of 0.9994. For preprocessing, the images are cropped to 4482, then weak/strong
augmentations are applied (see Supp.). The perplexity constants (Ay, Ag) are
set to (0.8,1), GMM-fitting queue length is 100, and softmax temperature 7
is 0.01. The low perplexity threshold € is set to 1 and the loss weight factors
()\c2sv )\52c7 )\csc) to (01, 005, 01)

Semantic Segmentation Comparison. We compare our method with ex-
isting SOTA WSSS methods on VOC and COCO for semantic segmentation
in Tab. [Il CoSA achieves 76.2% and 75.1% on VOC12 val and test, respec-
tively, surpassing the highest-performing single-stage model (ToCo) by 5.1% and
2.9%, as well as all multi-stage methods, including those with additional supervi-
sion. In the COCO evaluation, CoSA consistently outperforms other approaches,

3 Not available for VOC test split and so not used in evaluation.
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demonstrating a significant increase of 8.7% over the top-performing single-stage
methods. Further, there is a also 2.7% improvement over the leading multi-stage
method |13|. While our primary goal is to provide an end-to-end WSSS solution,
we also offer a multi-stage version of CoSA, denoted as CoSA-MS in Tab.
where various standalone segmentation networks are trained using our CPL. Our
CoSA-MS models can also attains SOTA performance in multi-stage scenarios.

vocC CcOocCoO

Methods Sup. Net.
val test val

Supervised Upperbounds.

Deeplab [8] TPAMI'2017 F R101 77.6 79.7 -
WideRes38 [61] PR’2019 F WR38 80.8 82.5 -
ViT-Base |17| 1ICLR 2021 F ViT-B 80.5 81.0 -
UperNet-Swin [44] 1ccvi2021  F SWIN 83.4 83.7 -
Multi-stage Methods.

L2G |26] cvPR 2022 I4+S R101 721 717 44.2
Du et al. |18] cvPR’2022 Z4+S R101 726 736 -
CLIP-ES 42| cvPR’2023 I+ L R101 738 739 45.4
ESOL |39] NeurIPS’2022 A R101 69.9 69.3 42.6
BECO [50] cvPR’2023 T R101 72.1 71.8 45.1
Mat-Label [59] 1ccv2023 T R101 73.0 72.7 45.6
CoSA-MS Z  Rior 76.5 75.3[1 50.9
Xu et al. |66] cvPR’2023 I+ L WR38 722 722 45.9
W-0o0D [35] cvPR’2022 z WR38 70.7 70.1 -
MCT |65] cvPR’2022 T WR38 719 71.6 42.0
ex-ViT |71| PrR'2023 T WR38 71.2 71.1 42.9
ACR-ViT |31] cvPR’2023 T WR38 724 724 -
MCT+OCR |15 cvPR’2023 T WR38 72.7 72.0 42.0
CoSA-MS Z WR38 76.6 74.971 50.1
ReCAM |14] cvPR 2022 T SWIN 70.4 717 47.9
LPCAM |13] cvPR’2023 z SWIN 73.1 734 48.3
CoSA-MS T SWIN 81.4 78.481 53.7

Single-stage (End-to-end) Methods.

RRM [73] AaAT2020 T WR38 62.6 62.9 -

AFA |52] cvPR’2022 A MiT-B1 66.0 66.3 38.9
RRM 73] aaarz020 I  ViT-B 63.1 624 -

ViT-PCM |51] BECCV’2022 A ViT-B 69.3 45.0
ToCo |53] cVPR’2023 A ViT-B 71.1 722 42.3
SeCo [|69] cvPR’2024 T ViT-B 74.0 73.8 46.7
CoSA z ViT-B 762 75.114 51.0
CoSA* z ViT-B 76.4 75.2P°1 51.1

Table 1: Weakly Supervised Semantic Segmentation Results. Sup.: supervision type.
Net.: segmentation backbone. F: Fully supervised, Z: Image-level labels, S: Saliency maps, L:
language models. * represents CRF [8| postprocessing results.

CAM Quality Comparison. Tab.[2]shows CoSA’s CPL results compared with
existing WSSS methods. Our method yields 78.5% and 76.4% mloU on train
and val. Notably, an ensemble of M’ and M’ improves performance to 78.9%
and 77.2%, suggesting the activation of M’ is orthogonal to that of M.

Qualitative Comparison. Fig. [f] presents CAMs and segmentation visualiza-
tions, comparing with recent methods: MCT, BECO, and ToCo. As shown, our
method can generate improved CAMs and produce well-aligned segmentation,
exhibiting superior results in challenging segmentation problems with intra-class
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Image

ToCo

Fig.7: Effect of CSC.
The class activation for
bird, train, plane, boat
and car are presented from
top to bottom.

Fig. 6: Qualitative Comparison. The results are reported on
the val splits of VOC (in R1 - R3) and COCO (in R4 - R6). The
official codebases and provided weights for MCT , BECO ,
and ToCo are used for this comparison. (best viewed under
zoom; see Supp. for more).

variation and occlusions. In addition, CoSA performs well w.r.t. the coexistence
cases (Fig. |§| R1, R2), while existing methods struggle. Moreover, CoSA reveals
limitations in the GT segmentation (Fig. [6| R4).

4.2 Ablation Studies

CoSA Module Analysis. We begin by employing CAMs directly as the su-
pervision signal for segmentation, akin to , albeit without refinement, and
gradually apply CoSA modules to this baseline. As shown in Tab.[3|(a), the mIoUs
progressively improve with addition of our components. Further, we examine the
efficacy of each CoSA component. As shown in Tab. b), the elimination of each
component results in deteriorated performance, most notably for CSC.

Model : 0.9
/o RAW
15 EEE w/RAW

06

205
]

S

Perplexity MAE Iters 5K 10K 15K 20K

Model
— W.SA
—— W/O.SA

Network
— oOnline Network
-=- Assignment Network

i
[
i
I

Iters 5K 10K 15K 20K 5K 10K 15K 20K miou

Fig. 8: Ablative Study of SA. The per-
formance of SPL (left) and CPL (right) w.r.t.
iterations on VOC val set are shown for
CoSA with or without SA.

Fig.9: Ablation Study of RAW. (left)
boxplot of mloU, perplexity and MAE to
(1,0) for individual CPLs on VOC val. (right)
perplexity reduction over times.

Method ViT-PCM ACR-ViT CLIP-ES SeCo [69] ToCo CoSA CoSA*

71.4 70.9
69.3 -

train
val

75.0

76.5 73.6

72.3

78.5
76.4

78.9
77.2

Table 2: Comparisons of CPL. All methods use ViT as the backbone for generating the
CAMs on VOC dataset. o represents the ensemble of M’ and M1/ in CoSA.
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() (b)
mlIoU (inc.) mlIoU (dec.)
Base. GC SA RAW CSC DT vOC COCO CoSA GC SA RAW CSC DT VOC COCO

v 55.96 37.32 v 76.19 51.00
v v 63.09 (7.13) 42.55 (15.23) v X 75.54 (-0.65) 49.67 (-1.33)
v v / 64.41 (+8.45) 43.92 (16.60) v X 69.89 ) 45.95 (-5.05)
v v v/ 68.22 (+12.26) 45.39 (18.07) v X 72.45 (-3.74) 47.83 (-3.17)
v v/ 4 71.66 (+15.70) 47.10 (10.78) 4 X 72.10 (-4.09) 49.04 (-1.96)
v v 7/ v v 75.54 (+19.58) 49.67 (+12.35) v X 74.12 (-2.07) 49.67 (-1.33)
v v 7/ v v/ T76.19 (+20.23) 51.00 (+13.68)

Table 3: Ablation Study on Contribution of Each Component. (a): gradually add
proposed components to baseline. (b): systematically exclude components from CoSA. GC:
Guided CAMs, SA: Swapping Assignments, RAW: Reliability based Adaptive Weighting,
CSC: Contrastive Separation in CAMs, and DT: Dynamic Threshold. mIoU is reported on
PASCAL VOC12 and COCO val splits.

(a) (b) (c)
Source Detach train val Method C-mlIoU mloU mlIoU (%) Speed
Use CRF? Vv X v X
GT  None 83.99 80.16 FPR [9] 53.09 53.34
ToCo [53] 63.62 72.33  BECO-R101 72.1 70.9(¢-1.2)|1.95 4.94
NO — 7228 7138 oo [69] 73.18 73.63  COSA-RI0L 76.5 76.4(-0.1)|2.36 9.60
SPL F 74.19 73.36 ToCo-ViT  71.1 69.2(-1.9)1.82 3.99

SPL Wi 78.05 76.15 w/o CSC  62.61 67.82  COSA-VIiT 76.4 76.2(-0.2)|1.83 4.11
SPL  None 78.5476.37 w/ CSC  82.34 76.37

Table 4: Ablation Study of GC, CSC and CRF. (a): CPL performance comparison
on VOC. Source: guidance sources. Detach: stop gradient in GC for feature map F' or Wi..
(b): CPL performance comparison. FPR, ToCo and SeCo results are based on their code and
weights. C-mIoU: mloU for classes with coexistence. (¢): CRF Impact. Best speed-accuracy
tradeoff is achieved without using CRF. Inference speeds (FPS) are tested on RTX 3090.

Impact of Guided CAMs. Our model is compared with a baseline 73| that
directly uses CAMs as CPL. As shown in Tab. a), our guided CAMs notably
enhance CPL quality by 6.26% and 4.99% for train and val splits. Further, we
conduct experiments to ascertain the extent to which the two CAM components,
feature F' and weights Wy, exert greater impact on guiding CAMs. As shown,
the deteachment of F' results in 74.19% and 73.36%, but Wi, can decrease the
results slightly to 78.05% and 76.37%. This suggests that guiding CAMs pri-
marily optimizes feature maps, verifying our hypothesis of the non-deterministic
feature map contributing to the stochasticity of CAMs in Sec.

Impact of Swapping Assignments (SA). Tab. (b) suggests that eliminating
SA results in significant mloU decreases, highlighting the importance of this
training strategy. Further examination of the ON and AN w.r.t. SPL and CPL
indicates that, in later training stages, AN consistently outperforms ON for
both SPL and CPL, as shown in Fig. |8, due to AN performing a form of model
ensembling similar to Polyak-Ruppert averaging [49./54]. We observe a noticeable
disparity of mloUs between two ONs (solid orange line wvs. solid blue line in
Fig. , which may be attributed to the superior quality of CPL and SPL from
the AN facilitating a more robust ON for CoSA. The momentum framework,
originally introduced to mitigate noise and fluctuations of the online learning
target [6,22], is used for info exchange across CAMs and segmentation in CoSA.
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Impact of RAW. Tab. [3[b) shows notable mIoU reduction without RAW. We
conduct further studies to investigate its effect on perplexity reduction. The
boxplot in Fig. [0] suggests that RAW leads to higher mIoU but lower perplex-
ity. Fig. @(right) illustrates a faster decrease in perplexity when RAW is used,
affirming its impact on perplexity reduction.

Impact of CSC. Our CSC is introduced to address the coexistence issues. We
establish C-mlIoU to measure the CAM quality for those coexistence-affected
classes. As shown in Tab. b)7 applying CSC sees a boost in C-mloU and mloU,
which surpass the existing methods. Some visual comparisons are given in Fig. [7]

Impact of Dynamic Threshold. We evaluate CoSA using some predetermined
thresholds, comparing them with one employing dynamic threshold on VOC
val split (see Supp. for results). The performance is sensitive to the threshold,
but dynamic thresholding achieves 0.65% increased performance over the best
manual finetuning while saving 80% of hyper-parameter searching time.

4.3 Further Analysis

Training and Inference Efficiency Analysis. Unlike multi-stage approaches,
CoSA can be trained end-to-end efficiently. Compared to BECO [50], our method
is 240% faster in training, uses 50% fewer parameters, and yields a 4.3% higher
mloU on VOC test. Please refer to Supp. for more discussion. At inference
time, we find that CRF post-processing, which is commonly adopted for refining
masks [15,/50] or the CAMs [51}|65[73], can greatly slow down the inference
speed. As our aim is to develop a fully end-to-end WSSS solution, incorporating
CRF post-processing contradicts this principal. Through our experiments, we
show that CoSA does not heavily depend on CRF: incorporating CRF results in
marginal improvement of 0.2%, 0.1%, and 0.1% for VOC val, VOC test, and
COCO val, respectively (Tab. . Conversely, eliminating CRF in CoSA can
greatly speed up inference (a noteworthy 307% and 165% 1) and achieve better
speed-accuracy tradeoff as suggested in Tab. C).

Hyper-parameter Sensitivity. We apply grid search strategy to explore the
hyper-parameters in CoSA. The analysis of parameters, such as perplexity filter,
loss weights, momentum are discussed in Supp. CoSA maintains consistent with
variations of those parameters, which demonstrate its robustness.

5 Conclusion

This paper presents an end-to-end WSSS method: Co-training with Swapping
Assignments (CoSA), which eliminates the need for CAM refinement and en-
ables concurrent CAM and segmentation optimization. Our empirical study re-
veals the non-deterministic behaviors of CAMs and that proper guidance can
mitigate such stochasticity, leading to substantial quality enhancement. We pro-
pose explicit CAM optimization leveraging segmentation pseudo-labels in our
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approach, where a dual-stream model comprising an online network for predict-
ing CAMs and segmentation masks, and an ancillary assignment network provid-
ing swapped assignments (SPL and CPL) for training, is introduced. We further
propose three techniques within this framework: RAW, designed to mitigate
the issue of unreliable pseudo-labels; contrastive separation, aimed at resolving
coexistence problems; and a dynamic threshold search algorithm. Incorporat-
ing these techniques, CoSA outperforms all SOTA methods on both VOC and
COCO WSSS benchmarks while achieving exceptional speed-accuracy trade-off.
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A Further Analysis

Contrastive Separation Analysis. Fig. shows the analysis of contrastive
separation on COCO. A similar trend between M and M is observed as on
VOC. This suggests that the distinct relationship between M and M' extends
beyond the VOC dataset to encompass a broader dataset as well.
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Fig.10: M and M’ Comparisons on COCO. (left): mIoU vs. time-steps for M
and MT on COCO val. (right): same as (left) but filtered by perplexity.

CPL Analysis. While the proposed dynamic learning techniques in Sec. 3.3,
namely reliability based adaptive weighting and dynamic threshold, were origi-
nally inspired by the VOC dataset, we demonstrate their applicability on COCO
here. As shown in Fig. leﬁ), the negative correlation between perplexity and
accuracy remains significant across various training time-steps, highlighting our
purposed perplexity estimation method can be used to penalize inaccurate re-
gions in our CAM2Seg loss. Fig. m'ght) also suggests that the confidence
distribution on the COCO dataset shows discernible clusters.
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Fig.11: CPL Analysis on COCO (left) correlation between perplexity and accuracy
of CPL for different time-steps. (right) distribution of CAMs’ confidence categorized
by the proposed dynamic threshold

Impact of CRF. The conditional random field (CRF) proposes to optimize
the segmentation by utilizing the low-level information obtained from the lo-
cal interactions of pixels and edges . Traditionally, a manually designed CRF
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postprocessing step has been widely adopted for refining segmentation [15}[50]
or CAMs [51L[65L[73]. As our aim is to develop a fully end-to-end WSSS solution,
incorporating CRF postprocessing contradicts this principal. Through our ex-
periments, we demonstrate that CoSA, unlike other single-stage methods, does
not heavily depend on CRF. Our results indicate that incorporating CRF results
in marginal improvement of 0.2%, 0.1%, and 0.1% for VOC val, VOC test, and
COCO val, respectively, as presented in Tab. 2 of the main paper. Tab. (a)
suggests that in comparison to other SOTA models, our CoSA exhibits a lesser
dependency on the CRF postprocessing. On the contrary, eliminating the CRF
step leads to a noteworthy enhancement of 165% in terms of inference speed, as
demonstrated in Tab. [5|(b).

(a) (b)
Method w/o CRF w/ CRF CoSA Speed
AFA [52] 63.8  66.0 (+2.2) w/o CRF 4.11 imgs/s
VIT-PCM [51]  67.7 714 ( 3.7 w/ CRF 1.83 imgs/s
ToCo [53] 69.2  71.1 (+0.9)
SeCo [69] 722 73.7 (+1.5)
CoSA 76.2 76.4 (1+0.2)

Table 5: CRF Impact. (a): Comparisons of CRF impact on SOTA single-stage WSSS
methods on VOC val. (b): Inference speed with and without CRF. Speed tested using
a RTX 3090.

Training Efficiency Study. Unlike multi-stage approaches, CoSA is extremely
efficient in training. It can be trained end-to-end efficiently. When training a
semantic segmentation model with weak labels on the VOC dataset, our method
requires a mere 8.7 hours of training time and a total of 92M parameters. In
contrast, MCT [65] would necessitate approximately 231% more time (20.1hrs
1) and 173% more parameters (159M 1) for the same task, and BECO [50]
would require around 240% more time (20.9hrs 1) and 50% more parameters
(46M 1). When compared to the single-stage method, CoSA also demonstrate
its advantage in speed-accuracy trade-off. Further details regarding the efficiency
study can be found in Tab. [6}

B Further Implementation Details

CoSA Implementation Details. For image preprocessing, weak transforma-
tion T, and strong transformation 7T, are employed in CoSA for the input of
assignment network and online network, respectively. 7T, and 7T, details are given
in Tab. [12|and Tab.[13] Following 53|, we use the multi-scale inference in assign-
ment network to produce CPL and SPL. For VOC training, CoSA is warmed
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CAMs CAMs Seg.
Generation  Refinement Training Total mloU
MCT [65] 2.2hrs (21M) 11.1hrs (106M) 15.5hrs (124M) 28.8hrs (251M) 71.6
BECO [50] 0.9hrs (23M) 6.5hrs (24M) 22.2hrs (91M) 29.6hrs (138M) 71.8
ToCo [53] 9.9hrs (98M) 9.9hrs (98M) 72.2
SeCo |69] 8.8hrs (98M) 8.8hrs (98M) 73.8

CAMs and Seg. Co-optimization

CoSA 8.7hrs (92M) 8.7hrs (92M) 75.1
Table 6: Training Speed and Parameters Comparisons. We report the detailed
training time, parameters and final mIoU on VOC test split for MCT, BECO, ToCo
and our CoSA. All methods are tested using the same machine with a single 3090 GPU.
The official MCT, BECO and ToCo code repositories are utilized in this study.

up with 6K iterations, where A.os, Acas, and Mg are set to 0. In practice, we
train CoSA for 20K iterations on 2 GPUs, with 2 images per GPU, or for 40K
iterations on 1 GPU for some ablation experiments. For COCO training, CoSA
is warmed up with 10K iterations and is trained on 2 GPUs, handling 4 images
per GPU across 40K iterations.

CoSA-MS Implementation Details. Tab. 2 in the main paper presents the
segmentation results of the multi-stage version of our approach, known as CoSA-
MS. In those experiments, we leverage the CAM pseudo-labels generated by our
CoSA to directly train standalone segmentation networks. It is important to note
that we do not use PSA |2|, which is widely used in [15/65], nor IRN [1], exten-
sively used in [13}311/50,59], for CPL post-refinement. For our R101 segmentation
network, we use a ResNet101 version of DeepLabV3+ model, same as BECO [50].
As for the CoSA-MS with WR38 network, we utilize a encoder-decoder frame-
work, where encoder is WideResNet38 [61] and decoder is LargeFoV [§], follow-
ing the final step described in MCT [65]. Regarding the SWIN implementation,
we use the SWIN-Base encoder [44] in conjunction with UperNet decoder [62],
following the description in [13}[14].

Training Pseudo Code. we present the pseudo code for training CoSA in
Algorithm [I]

C Additional Results

C.1 Contribution of each Component

In addition to the module analysis in Sec. 4.2, we further present additional
ablation studies regarding the impact of each component on the baseline. A one-
stage WSSS framework, proposed in RRM [73], is utilized as the baseline model,
albeit without the inclusion of the offline refinement module. As illustrated in
Tab. [7 it is evident that all components proposed in CoSA exhibit positive
effects on the baseline model.



CoSA 23

Algorithm 1 CoSA Training Pseudo Code

1: Require: D > image-level classification dataset
2: Require: Fo, Fgo/ > online network parameterized by © and assignment network by @’
q o p y g y

3: Fo < Init, Fg/ <+ Init > initialize networks with pretrained backbone
4: do

5: z, Ygt < Sample(D) > sample a mini-batch of image and weak-label pairs
6: Ts, Ty — Ts(x), Tw(x) > apply strong and weak augumentations
7 {z } < multiscale(x,) > generate a set of x,, with different scales
8: {M', M) 8"} « For({z}) > forward a set of x,, in assignment network
9: M, MV 8" < Maxpool({M'}), Mazpool({M1'}), Avgpool({S’}) > ensemble multiscale

outputs

10: M, MY 8 Filter(M', MY, 8’), b filter CAMs and segmentation prediction with
Vet

11: z, zt, M, MT, § « Fol(zs) > forward zs in online network

12: Les + E?{;T — Las(Z, Yer) + l:cls(ZT7 Ygt) > get classification losses for M and mt by eq.
(1)

13: £* <« solve eq. (6) with M’ > get dynamic threshold
14: YOPL « eq. (2) with M/, £* > obtain CPL
15: P + eq. (4) with M’, &* > estimate perplexity score
16: Leos < eq. (5) with YCPL s P > get CAM2seg loss
17: Eé\g; + follow 14 — 17 but with M’ > get another CAM2seg loss
18: VSPL  eq. (7) with &’ > obtain SPL
19: Lgoc < eq. (8) with ﬁSPL, M > get Seg2CAM loss
20: RT, R™ « eq. (9) with P, YEPL > define positive and negative correlation matrix
21: Lecse < eq. (10) with M, RT, R~ > get contrastive seperation loss
22: Lcosa < Leas+ L(/:\IQTJF)\CQS (£C25+Li\2/l; ) +As2cLs2¢ +Acse Lesc- > weighted sum as the
overall training objective

23: AO +— =V 50 @ > backpropagate the overall loss
24: O« O+ A6 > undate online network with gradient
25: O +— mO' + (1 —-m)o > undate assignment network via EMA
26: until Loosa converge

27: end

C.2 Hyper-parameter Finetuning

we examine the impact of hyper-parameter variation with CoSA resulting from
our finetuning. The fine-tuning of each hyper-parameter is demonstrate with the
remaining parameters fixed at their determined optimal values. Those hyper-
parameters were tuned on VOC val set, and the SOTA results on COCO were
achieved with the same hyper-parameters, except batch size and number of it-
erations were tweaked to accommodate the dataset size difference.

Loss Weights. We demonstrate the finetuning of the Seg2CAM and CAM2Seg
loss weights in Tab. a)(b). A significant mIoU decrease is observed as Mg,
reduces the influence of the segmentation branch, as expected. The mloU reaches
its peak when Ago. =0.05 and Aq0s=0.1.

Low-perplexity Filter. We finetune the coefficient for the low-pass perplexity
filter €, described in eq. (9) of the main paper. The corresponding findings are
illustrated in Tab. c). Optimum performance is obtained when € is set to 1,
either decreasing or increasing this value can impair the performance of our
model.

EMA Momentum. Here, the momentum used for updating the assignment
network is finetuned. Results presented in Tab. (d) indicate that the optimal
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mlIoU @ val (increase)

Base. GC SA RAW CSC DT VOC COCO
v 55.96 37.32
v v 63.09 (7.13) 42.55 (15.23)
v v /7 64.41 (+8.45) 43.92 (1+6.60)
v v 67.04 (+11.08) 42.65 (+5.33)
v v 69.24 (+13.27) 44.11 (+6.79)
v v 61.80 (15.84) 43.28 (15.96)

Table 7: Contribution of Each Component. We systematically include the pro-
posed components on the baseline (Base.). GC: Guided CAMs, SA: Swapping Assign-
ments, RAW: Reliability based Adaptive Weighting, CSC: Contrastive Separation in
CAMs, and DT: Dynamic Threshold.

performance is achieved when m = 0.9994. Additionally, we find that setting
m = 1 freezes the assignment network, breaking the training of online network
and leading to framework collapse.

Fixed Threshold vs. Dynamic Threshold. We evaluate CoSA with prede-
termined thresholds. The results are presented in Fig. As shown, the per-
formance peaks when this threshold is set to 0.45, with an mlIoU of 75.54%.
However, our dynamic threshold can outperform the best manual finetuning by
0.65%. Despite the incurred additional 10% computation overhead, our thresh-
old searching algorithm obviates time-consuming finetuning efforts, resulting
in nearly 80% reduction in hyper-parameter searching time in this case and
(1-1.1n~1)% in general where n thresholds are considered. In addition, the adop-
tion of dynamic thresholding can enhance the generalizability to novel datasets.

(a) Seg2CAM (b) CAM2Seg (c) Perplexity (d) Momentum m
weight As2c weight Acas filter € m ‘mIoU
Az |mloU Aczs [mIoU _¢ [mIoU 0.999073.79
0.2 [73.79 0.4 |74.67 oo |73.66 0.999275.40
0.1 |74.67 0.2 |75.56 2 |75.52 0.9994(76.19
0.05 (76.19 0.1 [76.19 1176.19 0.9996|75.58
0.025 |75.25 0.05 |73.95 0.5]74.30 0.999971.42
0.0125[74.33 0.025(61.55 0.1|70.63 1.0000(15.99

Table 8: Hyper-parameter Finetuning Results. Parameter searching for (a) Loss
weight for CAM2Seg Aq2s; (b) Loss weight for Seg2CAM Agac; (¢) Low-pass perplexity
filter coefficient ¢; (¢) EMA Momentum m for updating assignment network. mIoU
represents semantic segmentation result on PASCAL VOC val split.
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Fig. 12: Threshold finetuning. (left) determined dynamic threshold during training.
(right) mIoU comparison of fixed threshold vs. the purposed dynamic threshold on VOC
val.

C.3 Per-class Segmentation Comparisons

We show the per-class semantic segmentation results on VOC val and test
splits as well as COCO val split.

Comparisons on VOC. Tab. [J] illustrates the CoSA per-class mIoU results
compared with recent works: AdvCAM [33], MCT [65], ToCo [53], Xu et al. |66],
BECO [50]. To be fair in comparison, we include CoSA with CRF [8] postpro-
cessing results, denoted as CoSA*, same as other SOTA models. Notably, CoSA
dominates in 10 out of 21 classes. In particular, categories like boat (5.9% 1),
chair (8.2%1), and sofa (17.2%7), demonstrate substantial lead over the SOTA
models. In the VOC test split (depicted in Tab. , we still observe its su-
periority over other SOTA methods, where CoSA dominates in 15 out of 21
classes.

Comparisons on COCO. We compare CoSA with recent WSSS works for indi-
vidual class performance on the COCO val set. As illustrated in Tab. [II} CoSA
outperforms its counterparts in 56 out of 81 classes. Particularly, classes such
as truck (10.6%1), tie (14.3% 1), kite (12.4%1), baseball glove (20.3% 1), knife
(14.5%7), (10.6% 1), carrot (13.0%1), donuts (10.0%1), couch (13.9% 1), oven
(13.0%7), and toothbrush (10.0%1) exhibit remarkable leading performance.
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Method ‘bkg plane bike bird boat bottle bus car cat chair cow

AdvCAM |[34] cvpr21[90.0 79.8 34.1 82.6 63.3 70.5 894 76.0 87.3 31.4 81.3
MCT [65] cvpraz 91.9 783 39.5 89.9 559 76.7 81.8 79.0 90.7 32.6 87.1
ToCo [53| cvrras 91.1 80.6 48.7 68.6 454 79.6 87.4 83.3 89.9 35.8 84.7
Xu et al. [66] cveres [92.4 84.7 42.2 855 64.1 774 86.6 82.2 88.7 32.7 83.8
BECO [50] cvpras 91.1 81.8 33.6 87.0 632 76.1 92.3 87.9 90.9 39.0 90.2
CoSA* (Ours) 93.1 85.5 485 88.7 70.0 77.6 904 86.4 90.3 47.2 88.7

Method ‘table dog horse mbike person plant sheep sofa train tv mlIoU

AdvCAM |[34] cver21|33.1 82.5 80.8 74.0 729 50.3 823 42.2 74.1 529 68.1
MCT [65] cvPrz2 57.2 87.0 84.6 774 792 551 89.2 472 70.4 58.8 71.9
ToCo 53| cveras 60.5 83.7 83.7 76.8 83.0 56.6 879 43.5 60.5 63.1 T71.1
Xu et al. [66] cverzs | 59.0 82.4 80.9 76.1 81.4 48.0 88.2 46.4 70.2 62.5 72.2
BECO [50] cveras 41.6 859 86.3 81.8 76.7 56.7 89.5 54.7 64.3 60.6 72.9
CoSA* (Ours) 54.1 87.3 87.1 79.6 85.6 53.2 89.9 71.9 65.1 63.4 76.4

Table 9: Per-class Segmentation on VOC val Split. Comparison of per-class
segmentation results on VOC val. CoSA is compared with AdvCAM, MCTformer,
ToCo, Xu et al. and BECO. Best results are in bold.

Method ‘bkg plane bike bird boat bottle bus car cat chair cow

AdvCAM |[34] cvpr21[90.1 81.2 33.6 80.4 524 66.6 87.1 80.5 87.2 28.9 80.1
MCT [65] cvPrz2 909 76.0 37.2 79.1 541 69.0 781 78.0 86.1 30.3 79.5
ToCo [53| cvrras 91.5 88.4 49.5 69.0 41.6 72.5 87.0 80.7 88.6 32.2 85.0
CoSA* (Ours) 93.3 88.1 47.0 84.2 60.2 75.0 87.7 81.7 92.0 34.5 87.8

Method ‘table dog horse mbike person plant sheep sofa train tv mlIoU

AdvCAM |[34] cver21|38.5 84.0 83.0 79.5 71.9 475 80.8 59.1 65.4 49.7 68.0
MCT [65] cvPrz2 58.3 81.7 81.1 770 764 49.2 80.0 55.1 65.4 54.5 68.4
ToCo 53| cveras 68.4 81.4 85.6 83.2 83.4 68.2 88.9 55.0 49.3 65.0 72.2
CoSA* (Ours) 59.6 86.2 86.3 84.9 828 68.2 87.4 63.967.7 61.6 75.2

Table 10: Per-class Segmnetation on VOC test Split. Comparison of per-class
segmentation results on VOC test. Results from AdvCAM, MCT, and ToCo are used
for this comparison. Best results are in bold.




CoSA 27
Class Mﬁ(s‘/]T g%.u\sest] T‘(gg]lo C(?)?“A) * Class 1\‘46(;)’1’ 3%-11\68623 T?)go C<g§rsA> :
(CVPR22) (CVPRE3) (CVPR23) (CVPR22) (CVPRE3) (CVPR23)

background 82.4 85.3 68.5  84.0 |wine glass  27.0 33.8 20.6  42.1
person 62.6 72.9 28.1 70.3 |cup 29.0 35.8 26.0 33.1
bicycle 474 49.8 39.7 52.4 |fork 23.4 20.0 7.6 24.2
car 47.2 43.8 38.9  54.3 |knife 12.0 12.6 184  32.9
motorcycle  63.7 66.2 55.1  71.9 |spoon 6.6 6.7 3.0 9.0
airplane 64.7 69.2 62.1 74.0 |bowl 224 23.7 19.8 22.8
bus 64.5 69.1 39.0 77.2 |banana 63.2 64.4 71.5 69.3
train 64.5 63.7 48.7 60.0 |apple 44.4 50.8 55.5 61.3
truck 44.8 434 37.3  55.4 |sandwich 39.7 47.0 41.2  48.3
boat 42.3 42.3 49.1  52.1 |orange 63.0 64.6 70.6  69.2
traffic light  49.9 49.3 47.3  55.1 |broccoli 51.2 50.6 56.7 528
fire hydrant  73.2 74.9 69.6  78.8 |carrot 40.0 38.6 46.4  59.4
stop sign 76.6 7.3 70.1  82.2 |hot dog 53.0 54.0 60.1 599
park meter  64.4 67.0 67.9 71.5 |pizza 62.2 64.1 54.9 56.5
bench 32.8 34.1 43.9  50.2 |donut 55.7 59.7 61.1 71.1
bird 62.6 63.1 58.6  65.4 |cake 47.9 50.6 42,5  57.0
cat 78.2 76.2 74.0  79.8 |chair 22.8 24.5 24.1  33.8
dog 68.2 70.6 64.0 72.8 |couch 35.0 40.0 442  58.1
horse 65.8 67.1 66.1  71.4 |plant 13.5 13.0 27.4 235
sheep 70.1 70.8 679 74.3 |bed 48.6 53.7 54.0 61.5
cow 68.3 71.2 69.0 74.0 [table 12.9 19.2 25.6 29.2
elephant 81.6 82.2 79.7  81.9 [toilet 63.1 66.6 62.0 69.7
bear 80.1 79.6 76.8  85.3 |tv 47.9 50.8 49.1  53.2
zebra 83.0 82.8 775  76.3 |laptop 49.5 55.4 55.7  63.9
giraffe 76.9 76.7 66.1 68.5 |mouse 13.4 14.4 8.6 16.4
backpack 14.6 17.5 20.3  28.6 |remote 41.9 47.1 56.6 49.1
umbrella 61.7 66.9 70.9  73.4 |keyboard 49.8 57.2 41.8  49.6
handbag 4.5 5.8 8.1 11.9 |cellphone 54.1 54.9 585 66.2
tie 25.2 314 33.4  47.7 |microwave  38.0 46.1 55.5 53.2
suitcase 46.8 51.4 55.3  63.8 |oven 29.9 35.3 36.2  49.2
frisbee 43.8 54.1 39.6  63.1 |toaster 0.0 2.0 0.0 0.0
skis 12.8 13.0 4.0 22.5 |sink 28.0 36.1 19.0 41.9
snowboard ~ 31.4 30.3 15.5  40.5 |refrigerator 40.1 52.7 51.9  62.0
sports ball 9.2 36.1 11.0 33.1 |book 32.2 34.8 315 37.8
kite 26.3 47.5 40.7  59.9 |clock 43.2 51.5 329 55.2
baseball bat 0.9 7.0 1.8 3.8 |vase 22.6 25.8 33.3 33.8
glove 0.7 10.4 17.6  37.9 |scissors 32.9 30.7 49.8  54.7
skateboard 7.8 15.2 13.3 12.5 |teddy bear 61.9 61.4 67.5 69.3
surfboard 46.5 51.5 21.5 16.5 |hair drier 0.0 1.3 10.0 0.3
racket 1.4 26.4 6.8 7.2 |toothbrush 12.2 19.0 29.3 39.3
bottle 31.1 37.1 25.7  35.1 mlIoU 42.0 45.9 424 51.1

Table 11: Per-class Segmentation Results on COCO. Comparison of per-class
segmentation results on COCO val. CoSA is compared with MCT, Xu et al. and ToCo.
Best results are in bold.
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C.4 Further Qualitative Comparisons

More visualizations of our CoSA results are given in Fig. [I4]for VOC and Fig.
Fig. for COCO. When compared to other SOTA models, CoSA exhibits 1)
better foreground-background separation (evidenced in R2-R& in Fig. and
R1-R10 in Fig. ; ii) more robust to inter-class variation and occlusion (af-
firmed in R4—R7 in Fig.|14|and R1-R/4 in Fig. . iii) less coexistence problem
(demonstrated in R9-R11 in Fig. and R8— R10 in Fig. ; Last but not
least, our CoSA can reveal certain limitations in manual GT segmentation, as
depicted in R8 in Fig.[I4)and R5-R7 in Fig.[I6] We also show our CoSA results
on VOC test set in Fig. [[3 and some failure cases in Fig. [I7]

Fig. 13: Visualization on VOC test. Different colors represent different categories:
black: background; @: car; ®: person; @: boat; @: plant; @: dog; @: cow. ®: dining-
table. @: bird; @: sofa; @: sheep; @: house; @: airplane; @: cat.
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Image MCT ToCo CoSA BECO ToCo CoSA GT
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Fig. 14: Qualitative Comparisons on VOC Dataset. CoSA exhibits 1) better
foreground-background separation (RI1—R3); 2) more robust to inter-class variation
and occlusion (R4—R7); 3) limitations in the ground troth annotations (R8); 4) less
coexistence problem (R9-R11). Different colors represent different categories: black:
background; white: ignore areas; @: chair; @: plant; @: cat; @: person; @: bottle; @:
sofa; @: dog; @: cow. @: bird; @: boat; The activated classes in the demonstration
from top to bottom are: chair, cat, bottle, person, dog, person, cow, person, bird, boat,
boat.
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Image MCT ToCo CoSA BECO ToCo CoSA GT
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Fig. 15: Qualitative Comparisons on COCO Dataset. CoSA demonstrates su-
perior quality in terms of foreground-background separation (R1-R10). Categories
involved — R1: person, tie; R2: person, umbrella; R3: person, skis; R4: person, tie;
R5: person, train, umbrella; R6: person, hot dog; R7: person, hot dog; RS8: dog,
frisbee; R9: bottle, toilet; R10: person, teddy bear; Categories in Bold denotes the
activated classes in CAMs.
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Image ToCo CoSA BECO ToCo CoSA

R10

Fig.16: More Qualitative Comparisons on COCO Dataset. CoSA shows 1)
more robust to inter-class variation and occlusion (R1—-R4); 2) limitations in the ground
troth annotations (R5—R7); 3) less coexistence problem (R8—R10). Categories involved
— R1: person, donuts; R2: person, surfboard. R3: person, car, motorcycle, bus; R4:
toilet; R5: person, kite; R6: person, kite; R7: person, cell phone; RS: clock; R9:
clock; R10: clock. Categories in Bold denotes the activated classes in CAMs.
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Fig. 17: Illustrations of CoSA failure Cases. Different colors represent different
categories: black: background; white: ignore areas; @: plant; ®@: person; @: sofa; @: dog;
@: cat; @: chair; @: motorbike; @: bicycle. The activated classes in the demonstration
from left to right and from top to bottom are: plant, sofa, dog, plant, person, cat,

person, bicycle.
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Transformation ‘ Description ‘Parameter Setting

RandomRescale|Rescale the image by r times, r randomly sampled from 7 ~ U("min, maz)-|Tmin = 0.5, "maz = 2

RandomFlip |Randomly horizontally flip a image with probability of p. p=0.5
RandomCrop |Randomly crop a image by a hight h and a width w. w = 448, h = 448
GaussianBlur |Randomly blur a image with probability of p. p=0.5

Table 12: Weak data augmentation 7., for the input of assignment network.

Transformation ‘Description ‘Parameter Setting
RandomRescale|Rescale the image by r times, r randomly sampled from r ~ U(Tmin, Tmaz)-|Tmin = 0.5, "maz = 2
RandomFlip |Randomly horizontally flip a image with probability of p. p=0.5
RandomCrop |Randomly crop a image by a hight h and a width w. w = 448, h = 448
GaussianBlur |Randomly blur a image with probability of p. p=20.5
OneOf Select one of the transformation in a transformation set 7. T = TransAppearance

Table 13: Strong data augmentation 7T, for the input of online network image.

Transformation ‘ Description ‘Parameter Setting
Identity Returns the original image.
Autocontrast |Maximizes the image contrast by setting the darkest (lightest) pixel to black (white).
Equalize Equalizes the image histogram.
RandSolarize |Invert all pixels above a threshold value T TeU(0,1)
RandColor |Adjust the color balance. C' = 0 returns a black&white image, C' = 1 returns the original image.|C € U(0.05,0.95)
RandContrast |Adjust the contrast. C'= 0 returns a solid grey image, C' = 1 returns the original image. C e U(0.05,0.95)
RandBrightness| Adjust the brightness. C' = 0 returns a black image, C' = 1 returns the original image. C € U(0.05,0.95)
RandSharpness | Adjust the sharpness. C' = 0 returns a blurred image, C' = 1 returns the original image. C € U(0.05,0.95)
RandPolarize |Reduce each pixel to C' bits. CeU(4,8)

Table 14: Appearance transformations, called TransAppearance, used in strong data
augmentation.
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