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Abstract

Accurate 3D kinematics estimation of human body is
crucial in various applications for human health and mo-
bility, such as rehabilitation, injury prevention, and diag-
nosis, as it helps to understand the biomechanical load-
ing experienced during movement. Conventional marker-
based motion capture is expensive in terms of financial
investment, time, and the expertise required. Moreover,
due to the scarcity of datasets with accurate annotations,
existing markerless motion capture methods suffer from
challenges including unreliable 2D keypoint detection, lim-
ited anatomic accuracy, and low generalization capabil-
ity. In this work, we propose a novel biomechanics-aware
network that directly outputs 3D kinematics from two in-
put views with consideration of biomechanical prior and
spatio-temporal information. To train the model, we create
synthetic dataset ODAH with accurate kinematics annota-
tions generated by aligning the body mesh from the SMPL-X
model and a full-body OpenSim skeletal model. Our exten-
sive experiments demonstrate that the proposed approach,
only trained on synthetic data, outperforms previous state-
of-the-art methods when evaluated across multiple datasets,
revealing a promising direction for enhancing video-based
human motion capture.

1. Introduction

Kinematics estimation is the process of capturing the
relative position of human body segments through time.
In biomechanics, accurate estimation of joint loading of
the human body is crucial for applications in healthcare
and sports, as it helps in understanding the biomechanical
stresses experienced by the joints during movement. Opto-
electronic motion capture systems are the established stan-
dard in Kinematics estimation [32]. These systems neces-
sitate the attachment of reflective markers to the bony land-
marks of the subject. As a result, this method is time-
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Figure 1. The proposed biomechanics-aware network consists of
a frame feature encoder and a spatio-temporal feature refinement
module, which collectively infer 3D kinematics from two-view
real-world video inputs. To train the model, we create a synthetic
RGB video dataset ODAH by combining the kinematics skele-
ton from the OpenSim model, the body mesh from the SMPL-X
model, and motions from the AMASS dataset to provide accu-
rate ground truth data. Particularly, the end-to-end biomechanics-
aware 3D kinematics estimation model is exclusively trained on
this self-created synthetic data. Examples of real person images
are from the OpenCap dataset [31], and faces were pixelated for
privacy reasons.

consuming, requires a substantial financial investment and
the markers also restrict the natural movement of the in-
dividuals [8, 20]. Consequently, many researchers have
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focused on developing markerless kinematics estimation
[1, 23, 29, 31], which usually utilize 3D human pose esti-
mation methods, such as OpenPose [2], as the backbone to
infer 3D poses from detected 2D joints. The recent develop-
ment of deep learning methods has propelled substantial ad-
vancements in the field of 3D human pose estimation from
detected 2D joints [3, 7, 16, 38]. It provides great potential
through the integration of deep learning 3D human pose es-
timation techniques and biomechanics models.

Unfortunately, there are significant gaps between the two
research fields. The primary issue is the 2D joint annota-
tions for conventional human pose estimation [2] are often
anatomically wrong, resulting in imprecise 3D kinematics
estimation. Many 3D human pose estimation methods over-
look the incorporation of biomechanical constraints, lead-
ing to predictions that deviate from anatomically realistic
movements. This discrepancy is especially problematic for
3D kinematics estimation, which demands a higher level of
biomechanical fidelity for clinical diagnosis and sports sci-
ence domains.

Another challenge is the scarcity of large-scale datasets
with accurate 3D biomechanics annotations. The gold stan-
dard way to measure human joint kinematics is through the
X-ray scan of the person [13, 35], which is not realistic to
conduct in daily life settings. Although some datasets in-
corporate maker-based motion capture systems [9, 28, 31],
they suffer from sensor noise and lack synchronization with
the recording videos. Additionally, the expensive and time-
consuming nature of marker-based motion capturing fur-
ther impedes the construction of large-scale datasets nec-
essary for deep-learning-based markerless motion capture
models [1].

In this work, we propose a novel markerless motion cap-
ture framework comprising a biomechanics-aware network,
as illustrated in Figure 1. The model leverages two-view
RGB videos as inputs and performs feature extraction [5],
followed by a feature aggregation step to generate frame
features. There is no explicit human body joint detection,
instead, we sample the feature point on the input frame.
Given the dynamic nature of human motion, the frame fea-
tures are further refined by integrating temporal information
through a transformer-based U-Net architecture [36]. Fi-
nally, the model outputs a sequence of joint angles and a set
of body segment scales.

To address the limited availability of datasets with ac-
curate kinematics annotations, we propose to create ani-
mated humans by aligning the SMPL-X model [24] from
the computer vision community and OpenSim [6, 27] from
the biomechanics community. We subsequently animate the
SMPL-X model using OpenSim skeletal model and joint
angles derived from AMASS dataset [19], which includes
diverse motions captured by marker-based motion capture
systems. To cover variant situations in real-world settings,

we augment the data in terms of clothing, lighting, and cam-
era positions, resulting in a synthetic dataset. We name this
dataset as OpenSim Driven Animated Human (ODAH).

Please note we train the proposed biomechanics-aware
network only on our self-created synthetic dataset, which
has accurate ground truth labels. We perform an extensive
evaluation of our synthetic data as well as two real-world
datasets directly. we demonstrate that our framework out-
performs three state-of-the-art markerless motion capture
methods on average joint angle error and joint position error
across all datasets, which shows the strong generalization of
the proposed combination of biomechanics-aware network
and synthetic data.

In summary, the main contributions of this paper are:

• We introduce an end-to-end 3D kinematics estimation
model that predicts joint kinematics and body segment
scales with an underlying OpenSim skeletal model.

• We create a synthetic video dataset ODAH with accu-
rate kinematics annotations, varied subject appearance,
motions, and scene settings.

• We demonstrate that exclusively trained on synthetic
data, that the proposed biomechanics-aware network
can achieve superior performance in average joint an-
gle error across synthetic and real-world datasets, in-
dicating its potential for improving kinematics estima-
tion and domain generalization.

2. Related Works
2.1. Markerless Motion Capture with OpenSim

Markerless motion capture draws people’s attention with
its cost efficient nature and its ability to yield compara-
ble results to marker-based motion capturing [4, 29]. Ad-
vancements in 3D human motion estimation have enabled
the integration of 3D human motion estimation techniques
with biomechanical models, allowing for a comprehensive
analysis of human biomechanics [12]. Most of the existing
markerless motion capture methods use multi-step process-
ing for kinematics estimation [23, 31]. The process starts
with deriving 3D joint positions by triangulating the de-
tected 2D landmarks [2] from multiple views. Next, the 3D
joint positions are treated as marker positions in the Inverse
Kinematics (IK) tool and scaling tool in OpenSim software
to derive joint kinematics and body segment scales. The
mapping from the detected 3D joints to the real 3D joints
can be encoded in the marker offsets defined in the Open-
Sim model [23]. Alternatively, it is possible to train a model
to learn this mapping function [31]. To further improve the
performance, the landmark confidence scores are consid-
ered to remove low-confidence landmarks [23, 31].

However, the necessity for operator input and interaction
in the intermediate steps (e.g. model scaling and inverse



kinematics) of multi-step approaches introduces variabil-
ity and inconsistency. Therefore, end-to-end solutions are
preferred for reliable and accurate 3D kinematics estima-
tion [1, 22]. In addition, the end-to-end method can lever-
age the raw information contained in the input image and
not rely on landmark detection accuracy. D3KE [1], an end-
to-end method, utilizes CNNs to estimate joint kinematics
and body segment scales for each frame from monocular
videos. A lifting transformer encoder [15] is included to re-
fine the predicted joint angles and body segment scales by
incorporating temporal information.

Following the end-to-end approach, the proposed model
simultaneously estimates joint kinematics and body scales
based on visual inputs. Nevertheless, unlike D3KE, the
backbone of the proposed network is particularly designed
for human pose estimation, two views are utilized to better
handle occlusions, and the model is trained on a large-scale
synthetic dataset with accurate annotations and varied aug-
mentations.

2.2. 3D Human Pose Estimation

The two primary approaches are 2D-to-3D lifting and
direct 3D estimation. The 2D-to-3D lifting approach re-
quires feature learning from a sequence of 2D poses. This
allows for the consideration of temporal information inher-
ent in human motions. Additionally, it compensates for the
loss of 3D information from monocular inputs. Tempo-
ral dilated Convolution Networks (TCNs) are widely used
[3, 18, 25, 34] because they can effectively learn spatial and
temporal features that are essential for lifting 2D joints and
improving motion coherence. In recent years, transform-
ers have gained popularity in handling long-range sequen-
tial data [16, 17, 38, 39]. These methods typically involve
lifting the 2D pose to 3D ones through transformer-based
networks, followed by spatial and temporal refinements.

The direct human motion estimation approach eliminates
the reliance on 2D landmark detection by directly predict-
ing 3D poses, offering advantages such as avoiding biases
towards specific camera views and mitigating ambiguities
associated with 2D landmarks [33, 37]. Without guidance
from 2D landmarks, multi-view inputs, and temporal fea-
ture learning become necessary in such frameworks.

With the direct human pose estimation strategy, the pro-
posed method uses a frame feature encoder to map the in-
put frame into the frame features with sampling on the input
video frames. Different from previous works [5], we largely
improve the architecture to work with two input views to
perform 3D kinematic estimation. In addition, we propose
a spatio-temporal refinement module with a transformer-
based U-Net architecture adapted from [36], which was
originally proposed for image denoise.
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Figure 2. Architecture of the frame feature encoder. Image fea-
tures are extracted by a stacked hourglass network. The locations
to extract the local image features are calculated by projecting the
3D sampled point on two views. Subsequently, point features are
derived by concatenating the local image features and the 3D coor-
dinates of the sampled 3D points. Finally, MLP encodes all point
features into one compact frame feature.

3. Method
3.1. Overview

The proposed biomechanics-aware network first encodes
each frame into a frame feature using a stacked hourglass
network [21]. Similar to previous works [23,31], we utilize
two different views for each frame to provide an absolute
3D kinematic scale, which is essential for many clinical and
sports science applications. Then a spatio-temporal feature
refinement is performed to jointly consider spatial and tem-
poral information to optimize the features across frames.
The final output is the joint parameters of the OpenSim
model [6]. To achieve accurate kinematics annotations, we
create a synthetic dataset ODAH with the combination of
skeleton from OpenSim [6,27] model, meshes from SMPL-
X [24], and acquire the body shape and motion for the mesh
from the subject-specific OpenSim skeletal model and joint
angles.

3.2. Biomechanics-aware network

3.2.1 Frame Feature Encoder

We first segment the human body using the method pro-
posed in [11] and crop the tight bounding box containing
the human body. The biomechanics-aware network com-
prises a frame feature encoder and a spatio-temporal re-
finement module. The frame feature encoder is in charge
of generating frame features from two-view frames. More
specifically, the image feature of each view in a frame is ex-
tracted by a stacked hourglass network, which has demon-
strated exceptional performance in human pose estimation
tasks [21]. To effectively combine the image features of
two views, we first sample candidate 3D points based on the
camera rays and the camera parameters. Then, N points are
randomly selected from candidates whose 2D projections
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Figure 3. The overview of the proposed spatio-temporal feature
refinements. With the sequence of frame features from the frame
feature encoder across frames, this refinement architecture treats
the feature as a 2D image to process. This process results in a
sequence of joint angles and a set of body segments scales with
global optimization across frames.

on both views fall within the human segmentation masks
detected by YOLO [11]. Last, the point feature, denoted as
zpointi ∈ RL for point i, is obtained by concatenating the
3D point coordinates and the image local features allocated
from two views.

To generate one compact frame feature based on the
given N point features, we perform a two-stage feature
encoding. In the first stage, each point feature is trans-
formed into a more compact representation, denoted as
z̃pointi ∈ RL′

for point i, using a shared MLP. In the sec-
ond stage, the resulting N compact point features in frame
j are concatenated and further encoded into a frame feature
Zframe

j ∈ RD, for frame j, using a second MLP. The archi-
tecture of the frame feature encoder is shown in Figure 2.

3.2.2 Spatio-temporal Feature Refinement

The spatio-temporal feature refinement is applied to refine
a sequence of frame features with temporal information. As
shown in Figure 3, this module adopts a transformer-based
U-Net architecture to extract multi-range spatio-temporal
features from a given sequence of frame features. The adap-
tations include the downsizing of the U-Net, the temporal-
only downsampling and upsampling, and the removal of the
skip connection from input to output.

The input to the transformer-based U-Net is generated
by concatenating a sequence of frame features along the
temporal axis to create a feature map, denoted as Zseq

0 ∈
RD×T×1, where T is the number of frames in the sequence.
The feature map then undergoes processing through the
transformer blocks and the U-Net architecture to extract
multi-resolution spatio-temporal features along the con-
tracting and expanding paths of the U-Net. During the con-
tracting path, the feature map at level l, Zseq

l ∈ RD×t×c, is
downsampled to Zseq

l+1 ∈ RD×(t/r)×rc, where r represents
the downsampling factor from level k to level l+ 1, t is the

temporal length, and c is the number of channels. During
the expanding path, refined features are generated by hier-
archically combining the latent features from different lev-
els using multiple transformer blocks. Finally, regression
heads are employed to output a sequence of per-frame joint
angles θ̂ ∈ RC and the per-sequence body segment scales
ŝ ∈ RB×3, where C denotes the number of predicted joint
angles and B represents the number of body segments.

3.3. Loss Function

For supervision, we utilize a range of factors such as
joint angles, body segment scales, biomechanical con-
straints, and keypoint positions. The final loss function is
written as:

Ltotal = Langle + Lscale + Lbio + λ · Lpos, (1)

where λ is the weight for Lpos.
Joint angles. The joint angles refer to the coordinates de-
fined in the generic OpenSim skeletal model. The angle loss
is calculated differently based on whether the rotation of the
corresponding joint is constrained.

The angle loss for free joints, denoted as Lθf , is cal-
culated as in Eq. (2). This term measures the L1 distance
between the predicted and the ground truth when the an-
gles are represented on a unit circle as commonly seen in
trigonometry. This representation helps to avoid singulari-
ties and angle ambiguities caused by free rotation angles.

Lθf =
1

T

T−1∑
t=0

∥ ât − at ∥1, (2)

where ât = (cosθ̂
f

t , sinθ̂
f

t ), at = (cosθf
t , sinθ

f
t ), θ̂

f

t and
θf
t are the predicted and ground truth joint angles of the free

joints at time t, respectively. T is the number of frames in a
sequence.

The angle loss for constrained joints, denoted as Lθc ,
is calculated as the L1 distance between the predicted and
ground truth joint angles:

Lθc =
1

T

T−1∑
t=0

∥ θ̂
c

t − θc
t ∥1, (3)

where θ̂
c

t and θc
t are the predicted and ground truth joint

angles of the constrained joints at time t, respectively. T is
the number of frames in a sequence.
Biomechanical constraints. Predefined constraints are
commonly used to ensure biomechanical plausibility by
regulating movement. The constraints are further imposed
on the network by incorporating Lbio

θ in the loss function to
penalize joint angle predictions that violate the constraints



as in [30]. The calculation for Lbio
θ is:

Lbio =
1

T

T−1∑
t=0

∥ (θ̂
c

t ≥ θc
max) · (ât − amax) ∥1

+ ∥ (θ̂
c

t ≤ θc
min) · (ât − amin) ∥1,

(4)

where ât, amin, and amax are derived as in Eq. (2). θ̂
c

t is
the predicted joint angles, and [θc

min, θc
max] is the allowed

range for each joint. The term T denotes the number of
frames in a sequence.
Body segment scales. The body segment scale loss, de-
noted as Lscale, is the L1 distance between predicted and
ground truth body segment scales. The calculation is:

Lscale =
1

B

B−1∑
i=0

∥ŝi − si∥1, (5)

where ŝi and si represent the predicted and ground truth
body segment scales of body segment i, respectively. B is
the total number of body segments.
Keypoints. We define the position of the joints and mass
center of the body segments in the OpenSim skeletal model
as the keypoints for loss calculation. Supervision of the key-
point positions implicitly considers the body segment scales
and the skeleton topology in 3D space.

Given the joint angles at frame t, denoted as θ̂t ∈ RJ ,
and the body segment scales, denoted as ŝ ∈ RB×3, the
keypoint P̂t ∈ RK×3 are derived as Φforward(θ̂t, ŝ),
where K is the number of keypoints, Φforward is the kine-
matics forward function define in the OpenSim model.

The keypoint position loss Lpos is defined as the L1 dis-
tance between the prediction and the ground truth keypoint
positions. The derivation is:

Lpos =
1

TK

T−1∑
t=0

K−1∑
i=0

∥p̂i,t − pi,t∥1, (6)

where p̂i,t and pi,t are the predicted and the ground truth
keypoint positions, respectively. T is the number of frames,
and K is the number of keypoints. Note that all the posi-
tions are relative to the pelvis.

3.4. Synthetic Data Generation

We developed a synthetic data generation pipeline to rig
an SMPL-X [24] model against a full-body OpenSim skele-
tal model [26] and its associated joint angles that produce
a variety of human motions (Fig 4). The OpenSim skeletal
model and the joint angles serve as the inputs to the pipeline.
The subject-specific SMPL-X models were fit to the joint
and marker locations extracted from the OpenSim skeletal
model. In the case of the AMASS dataset, we defined vir-
tual markers on AMASS mesh vertices to obtain marker tra-
jectories. The joint angle sequences were computed from

Skeleton and 
mesh registration

Shape and 
motion acquisition

Scene and 
camera settings

Video render

Synthetic video data

Figure 4. An overview of our synthetic data generation pipeline.
We first register the OpenSim skeletal model to the SMPL-X
mesh; followed by optimizing the body shape and motion parame-
ters of the mesh to fit the subject-specific OpenSim skeletal model
and joint angles. Finally, we simulate real-world environments
with scene and camera settings to render the synthetic video data.

the marker trajectories by scaling and performing inverse
kinematics in OpenSim.
Skeleton and mesh registration. An OpenSim model is
composed of rigid bodies (bones) that are connected by
joints. Joints connect two reference frames: one on the par-
ent and one on the child body of the joint, which coincide in
space at the joint center. The SMPL-X and OpenSim skele-
tal model do not share the same joint definitions. To remove
this discrepancy, we trained a joint regressor for the SMPL-
X model that located the joint keypoints corresponding to
the OpenSim model joint centers based on the position of
the SMPL-X vertices. A variety of poses are included dur-
ing the training of the joint regressor to avoid overfitting.
Shape and motion acquisition. We first utilized MoSh++
(Motion and Shape capture) [19] to create the initial hu-
man mesh. Given marker trajectories and a marker layout
on the mesh, MoSh++ generated SMPL-X mesh sequences.
The marker layout was defined manually by identifying cor-
responding SMPL-X vertices as OpenSim markers. From
MoSh++, we obtained the initial SMPL-X shape β and pose
θ for the given skeletal model and its motion. With addi-
tional subject-specific skin or clothing shape for the mesh
and a subject-specific OpenSim skeleton, we further opti-
mized β and pose θ to minimize differences between virtual
markers on the mesh and the markers on the skeletal model.

To animate the resulting subject-specific SMPL-X mesh,
its pose parameters, θ are optimized frame by frame to min-
imize the distance between joint keypoints and marker posi-
tions of the SMPL-X mesh and those on the OpenSim skele-
tal model driven by the input joint angles.
Scene settings. To augment appearances, we used four
types of upper body clothing, ranging from vests to long-
sleeved shirts, and four types of lower body clothing, from
shorts to trousers. Each type of the clothing is randomly
combined with 5 different textures in each trial. We used
multiple area light sources evenly distributed on the ceiling.
Cameras settings. We employed two static cameras for



video rendering that were positioned at a height of 1.1 ±
0.1 meters. One camera captured the frontal view, while the
other one captured the sagittal view. To enhance diversity,
the positions of the cameras are randomly perturbed within
a small range. Both cameras had a fixed focal length of 33
mm. The sensor fit of the cameras was set to horizontal with
the sensor width set to 36 mm.

Rendering. The videos were rendered using the Metal-
accelerated BLENDER EEVEE engine in Blender 3.5. The
video resolution was set to 1080 by 720 and collected at
a framerate of 60 fps. Motion blur effects are disabled.
The videos are encoded in the H264 format with a medium-
quality configuration.

4. Experiments

4.1. Datasets

ODAH. In the proposed ODAH, there are 56 synthetic sub-
jects generated from the BMLMovi [9] in a subset of the
AMASS [19] dataset. The actions include running, jogging,
jumping, sideways, scratching head, throwing and catching,
hand clapping, walking, checking watch, sitting down, hand
waving, crossing arms, stretching, kicking, phone talking,
taking photos, pointing, vertical jumping, crawling, cross-
ing legs while sitting, and freestyle. Overall, ODAH has
1132 videos in 60 fps, and each video has a duration of
around 10 seconds. We use 42 subjects for training, six
subjects for validation, and eight subjects for testing.

Testing. To evaluate the performance of the proposed
biomechanics-aware network and the generalization capa-
bility in real-world settings, we tested the method on two
real datasets, OpenCap [31] and BMLMovi [9], as well
as the proposed synthetic ODAH. OpenCap consists of ten
subjects performing actions including walking, squatting,
rising from a chair, drop jumps, and the asymmetric coun-
terparts. It was recorded using five RGB cameras and a
marker-based motion capture system. OpenCap also pro-
vides processed marker data and kinematics annotations
for a full-body OpenSim skeletal model. BMLMovi in-
volves 90 subjects performing 21 actions, recorded using
two cameras and a marker-based motion capture system.
Since BMLmovi does not include kinematics annotations,
we utilized the provided marker data, the OpenSim Scale
tool, and the OpenSim IK tool to acquire accurate joint an-
gles and body segment scales for ground truth. We recog-
nize the root-mean-square of the marker data and the fit-
ted ground truth is between one to three centimeters. We
excluded two actions, namely crawling and crossing legs
while sitting, from our test set due to the challenges in fit-
ting the underlying OpenSim skeletal model to the bending
movement.

4.2. Implementation Details

We first train the stacked hourglass network for 14
epochs with a batch size set to eight, and then integrate
it with the spatio-temporal refinement network for another
five epochs with a batch size set to two. We use the Adam
optimizer [14] with β1 = 0.5 and β2 = 0.999 is applied,
and the learning rate is set to 1×5×10−5. Input frames are
resized to 3× 256× 256 before feature extraction. The loss
weight λ is set to 100. We train our method with a single
A40 GPU.

We set N = 500 3D points for point feature extraction,
the point feature length L = 1027, and the reduced one
L′ = 32. The final frame feature length D = 102. The
sequence length T is set to 64. The U-Net consists of three
encoder-decoder levels, with downsampling factors r set to
two for level two and four for level three. The number of
transformer blocks for each level is [2, 4, 6], the number of
attention heads is [1, 2, 4], and the number of channels is
[48, 96, 384].

In the generic OpenSim skeletal model, the number of
the joint angles J is 36. The number of body segments B is
22, and the number of joint keypoints K is 44. Our generic
OpenSim skeletal model has nine unconstrained joint an-
gles, controlling the pelvis, and left and right arms. There-
fore, only 17 joint angles are restricted by biomechanical
constraints.

4.3. Metrics

To make the evaluation focus more on the performance
of the 3D joint kinematics, Procrustes alignment [10] is ap-
plied as the first step to align the global translation, rotation,
and scaling between the predictions and the ground truth.

Mean Absolute Error (MAE) is used to evaluate joint an-
gle error as

MAEangle =
1

T

T∑
t=1

∥θ̂t − θt∥1, (7)

where θ̂t is the predicted angles, θt is the ground truth an-
gles, and T is the number of frames in a sequence.

Mean Per Joint Position Error with Procrustes Alignment
(PA-MPJPE) is widely used in 3D human motion estimation
to measure the Euclidean distance between the predicted
and the ground truth 3D joint keypoint positions. The cal-
culation is

PA-MPJPE =
1

TB

T−1∑
t=0

B−1∑
i=0

∥p̂PA
i,t − pi,t∥2, (8)

where B is the number of joint keypoints, p̂PA
i,t is the pre-

dicted joint keypoint positions relative to the root joint after
Procrustes alignment and pi,t represents the ground truth
joint keypoint positions relative to the root joint.



MAEangle (deg.) ↓ PA-MPJPE (mm) ↓
Pose2Sim OpenCap D3KE Ours Pose2Sim OpenCap D3KE Ours

OpenCap 9.77 7.37 12.47 9.65 67.69 53.86 95.64 74.85
BMLmovi 10.68 15.27 9.43 9.73 58.55 113.45 49.31 64.68
ODAH 10.99 10.78 12.11 4.81 60.67 64.27 74.29 27.09
Mean 10.48 11.14 11.34 8.06 62.30 77.19 73.08 55.54

Table 1. Comparison between Pose2Sim, OpenCap, D3KE, and our method (columns) with the joint angle error (MAE) and joint keypoint
error (PA-MPJPE). The evaluation is performed on OpenCap, BMLMovi, and ODAH (rows) datasets. The last row shows the average error
across all datasets.

4.4. Baselines

We compare the performance of the proposed method
against state-of-the-art methods of two multi-step meth-
ods Pose2Sim [23] and OpenCap [31], and one end-to-end
method D3KE [1].

For Pose2Sim and OpenCap, frontal and sagittal views
are taken as inputs and the Body25 model in OpenPose [2]
is used as the 2D landmark detection backbone. We use
Pose2Sim default Butterworth low-pass filter with a cut-off
frequency of six Hz as the smoothing filter. For OpenCap,
the cut-off frequency is set to half of the framerate. To en-
sure a fair comparison, we disable the landmark synchro-
nization and the video trimming in OpenCap. For D3KE,
it only requires a single-view image as input that we take
frontal view. We acknowledge that it is not a totally fair
comparison due to different inputs. However, it is natural
of the D3KE method with only single-view as the input.
We choose the transformer-based temporal model with the
sequence length set to 243 frames for the D3KE method.
Additionally, we only compare joint angles present in our
generic OpenSim skeletal model and exclude arm flexion
since D3KE’s generic OpenSim skeletal model does not
have a joint angle defined for arm flexion for the sake of
fair comparison.

4.5. Comparison with State-of-the-Art

We compare the proposed biomechanics-aware network
with state-of-the-art methods and show the results in Ta-
ble 1. We conduct experiments on three datasets Open-
Cap, BMLmovi, and our synthetic ODAH as shown in each
row, and compare three methods Pose2Sim, OpenCap, and
D3KE as shown in columns. We report the errors on both
joint angle error (MAEangle) and joint keypoint position
error (PA-MPJPE). We also average the performance across
three datasets for each method for comparison. From the
table, we can see that our method achieves the best per-
formances in terms of averaged joint angle and keypoint
position errors. Our method is significantly better than
the second-best baseline Pose2Sim with 23% improvement
(8.06 degrees vs. 10.48 degrees) on joint angle estimation
error and 10% improvement (55.54 mm vs. 62.30 mm) on

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓
small medium large small medium large

OpenCap 11.04 10.64 9.65 92.62 81.79 74.85
BMLmovi 10.54 9.95 9.73 82.91 69.53 64.68
ODAH 6.23 5.39 4.81 39.71 33.60 27.09
Mean 9.27 8.66 8.06 71.75 61.64 55.54

Table 2. Ablation study on different data sizes. We configure
ODAH into small, medium, and large subsets. The evaluation is
performed on OpenCap, BMLMovi, and ODAH (rows) with joint
angle error (MAE) and joint position error (PA-MPJPE).

the joint keypoint position error. It clearly shows the advan-
tage of the proposed model over the previous state-of-the-
art methods with our advanced neural network architecture
and spatial-temporal feature refinement.

Note that the OpenCap method was trained on the Open-
Cap training dataset, D3KE was trained on the BMLmovi
dataset training set, and biomechanics-aware network was
trained on ODAH training set. Therefore, each of these
methods achieves the best performance on the correspond-
ing test set with their specific domain knowledge. However,
our biomechanics-aware network shows strong generaliz-
ability by achieving the best averaged performances across
the three datasets. Even if we remove results on our syn-
thetic dataset ODAH from the Table 1, our biomechanics-
aware network still can achieve the best averaged perfor-
mances across the rest two real-world datasets in terms of
the joint angle estimation task. Since biomechanics-aware
network is solely trained on synthetic ODAH without fine-
tuning on any real data, the superior average results show
the effectiveness of using synthetic data improving domain
generalization. These results also confirm the biomechani-
cal fidelity of the proposed synthetic dataset ODAH.

4.6. Ablation Study

4.6.1 Training Data Size

The benefit of synthetic data generation is its great potential
for large amounts of data creation. To verify the effective-
ness of the proposed ODAH, we configure the ODAH into
three subsets. The small set has 10 subjects and 195 clips,



MAEangle (deg.) ↓ PA-MPJPE (mm) ↓ PA-MPJVE (mm/s) ↓
Frame Ours Frame Ours Frame Ours

OpenCap 9.91 9.65 76.59 74.85 906.65 471.37
BMLmovi 9.82 9.73 65.59 64.68 394.71 254.02
ODAH 4.61 4.81 27.36 27.09 296.45 155.71
Mean 8.11 8.06 56.51 55.54 532.60 293.70

Table 3. Ablation study on the effectiveness of temporal infor-
mation. Frame-based prediction is the proposed network without
spatio-temporal refinement, and we compare this baseline to our fi-
nal model. The evaluation is performed on OpenCap, BMLMovi,
and ODAH (rows) with joint angle error (MAE), joint position er-
ror (PA-MPJPE), and joint velocity error (MPJVE).

MAEangle (deg.) ↓ PA-MPJPE (mm) ↓
Langle ✓ ✓ ✓ ✓ ✓ ✓
Lscale ✓ ✓ ✓ ✓ ✓ ✓
Lbio ✓ ✓ ✓ ✓
Lpos ✓ ✓
OpenCap 10.68 10.20 9.65 90.74 92.64 74.85
BMLmovi 9.78 9.75 9.73 78.51 84.09 64.68
ODAH 4.45 4.68 4.81 36.45 37.24 27.09
Mean 8.30 8.21 8.06 68.57 71.32 55.54

Table 4. Ablation study on the loss function. We incrementally test
the effects of biomechanical constraints (+ Langle) and the key-
point positions (+ Lpos). The evaluation is performed on Open-
Cap, BMLMovi, and ODAH (rows) with joint angle error (MAE)
and joint position error (PA-MPJPE).

the medium set has 20 subjects and 397 clips, and the large
set has 42 subjects and 841 clips. Note the large set is the
full ODAH dataset. We train our model on each of these
subsets and test on the test set of ODAH. We show results
in Table 2 across three datasets as each row and training sub-
sets as each column. From the table we can that the perfor-
mances of the large subsets achieve the best performances
across all datasets, thus, indicating that more data ensures
better performances for kinematics estimation in terms of
both joint angles and position. Note the large subset training
does not cause the overfitting problem on the two real-world
datasets OpenCap and BMLmovie. It confirms again the
high biomechanical fidelity of the proposed ODAH which
benefits the model training for the generalizability. Since it
is feasible to generate large synthetic data with the proposed
synthetic data generation method, there is great potential for
future method development.

4.6.2 Frame-based vs. Sequence-based

In the method design, we have two components including
the frame feature encoder for the frame-based prediction
and the spatio-temporal feature refinement for the sequence-
based prediction. Essentially, the frame-based prediction
can already perform the 3D kinematic estimation task. To

investigate the effectiveness of feature refinement, we per-
form a comparison between the frame feature encoder only
and the completed model. Specifically, frame-based pre-
diction is implemented by removing the spatio-temporal re-
finement module in the proposed framework, and directly
outputs the joint angles and body segment scales. For ex-
periments, besides the joint angle and position errors, we
also calculate the Mean Per Joint Velocity Error (MPJVE)
since it indicates the smoothness of the motion. The results
are shown in Table 3, which indicates that the completed
model achieves better results than the frame-based predic-
tion baseline in general. Moreover, the improvements in the
motion coherence, as indicated by Mean Per Joint Velocity
Error (MPJVE), are much more significant.

4.6.3 Loss Function

Finally, We further conduct tests to examine the contribu-
tion of each loss term. The joint angle loss Langle and
body segment scale loss Lscale are essential for the train-
ing that must be included. Therefore, we only examined
the effectiveness of biomechanical constraints Lbio and key-
point position loss Lpos. The results are present in Table 4.
Although the Lbio does not bring significant improvement
numerically, we notice there could be extreme joint angle
and position predictions without it. The implicit weights on
joint angles introduced by Lpos can improve both the joint
angle error and the joint keypoint position error. Combin-
ing all loss terms, our model can achieve the optimal per-
formance across the three datasets.

5. Conclusion

We propose a novel end-to-end biomechanics-aware net-
work that is solely trained on self-created synthetic data.
The proposed method utilizes direct mapping from two
input views to the frame features and is refined with a
spatio-temporal refinement module. We create synthetic
data by combining the SMPL-X model from the computer
vision community and the OpenSim skeletal model from
the biomechanics community to provide accurate ground
truth of kinematics. By solely trained on synthetic data,
our proposed method achieves superior performance with
the best generalization across multiple datasets. It demon-
strates the effectiveness of the proposed method for improv-
ing kinematics estimation and enhancing domain general-
ization, and also validates the biomechanical fidelity of the
proposed dataset generation pipeline.

The limitations include visual quality and motion varia-
tions in the synthetic dataset, and the size of the proposed
architecture. Future research could focus on improving the
visual quality via adversarial training, including variant ac-
tions from real humans, and extending the method.
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