
DART: A Principled Approach to Adversarially Robust

Unsupervised Domain Adaptation

Yunjuan Wang∗1, Hussein Hazimeh2, Natalia Ponomareva2, Alexey Kurakin2, Ibrahim
Hammoud2, and Raman Arora1

1Johns Hopkins University
2Google Research

Abstract

Distribution shifts and adversarial examples are two major challenges for deploying machine learning
models. While these challenges have been studied individually, their combination is an important topic
that remains relatively under-explored. In this work, we study the problem of adversarial robustness under
a common setting of distribution shift – unsupervised domain adaptation (UDA). Specifically, given a
labeled source domain DS and an unlabeled target domain DT with related but different distributions, the
goal is to obtain an adversarially robust model for DT . The absence of target domain labels poses a unique
challenge, as conventional adversarial robustness defenses cannot be directly applied to DT . To address
this challenge, we first establish a generalization bound for the adversarial target loss, which consists of (i)
terms related to the loss on the data, and (ii) a measure of worst-case domain divergence. Motivated by
this bound, we develop a novel unified defense framework called Divergence Aware adveRsarial Training
(DART), which can be used in conjunction with a variety of standard UDA methods; e.g., DANN [Ganin
and Lempitsky, 2015]. DART is applicable to general threat models, including the popular ℓp-norm model,
and does not require heuristic regularizers or architectural changes. We also release DomainRobust: a
testbed for evaluating robustness of UDA models to adversarial attacks. DomainRobust consists of 4
multi-domain benchmark datasets (with 46 source-target pairs) and 7 meta-algorithms with a total of 11
variants. Our large-scale experiments demonstrate that on average, DART significantly enhances model
robustness on all benchmarks compared to the state of the art, while maintaining competitive standard
accuracy. The relative improvement in robustness from DART reaches up to 29.2% on the source-target
domain pairs considered.

1 Introduction

In many machine learning applications, only unlabeled data is available and the cost of labeling can be
prohibitive. In such cases, it is often possible to obtain labeled training data from a related source domain,
which has a different distribution from the target domain (i.e., test-time data). As an example, suppose the
target domain of interest consists of real photographs of objects. One appropriate source domain could be
hand-drawn images of the same objects. Due to the distribution shift, learning models using only source data
may lead to poor performance [Ganin and Lempitsky, 2015]. To overcome this challenge, there has been
extensive research on unsupervised domain adaptation (UDA) methods [Ben-David et al., 2006, Mansour
et al., 2008, 2009, Wilson and Cook, 2020, Liu et al., 2022]. Given labeled data from the source domain
and only unlabeled data from the target domain, UDA methods aim to learn models that are robust to
distribution shifts and that work well on the target domain.

While standard UDA methods have proven successful in various applications [Ghafoorian et al., 2017, Liu
et al., 2021], they do not take into account robustness to adversarial attacks. These attacks involve carefully

∗Contact: ywang509@jhu.edu

1

ar
X

iv
:2

40
2.

11
12

0v
1

 [
cs

.L
G

]
 1

6
Fe

b
20

24

designed input perturbations that may deceive machine learning models [Szegedy et al., 2013, Goodfellow
et al., 2014, Chakraborty et al., 2018, Hendrycks and Dietterich, 2019]. The lack of adversarial robustness
can be a serious obstacle for deploying models in safety-critical applications. A significant body of research
has studied defense mechanisms for making models robust against adversarial attacks [Chakraborty et al.,
2018, Ren et al., 2020]. However, standard defenses are not designed to handle general distribution shifts,
such as those in UDA. Specifically, defenses applied on one domain may not generally transfer well to other
domains. Thus, adversarial robustness is a major challenge for UDA.

In this work, we study the problem of adversarial robustness in UDA, from both theoretical and practical
perspectives. Given labeled data from a source domain DS and unlabeled data from a related target domain
DT , our goal is to train a model that performs effectively on DT while ensuring robustness against adversarial
attacks. This requires controlling the adversarial target loss (i.e., the loss of the model on adversarial target
examples), which cannot be computed directly due to the absence of target labels. To make the problem
more tractable, we establish a new generalization bound on the target adversarial loss, which allows for
upper bounding this loss by quantities that can be directly controlled. Motivated by the theory, we introduce
DART, a unified defense framework against adversarial attacks, which can be used with a wide class of UDA
methods and for general threat models. Through extensive experiments, we find that DART outperforms
the state of the art on various benchmarks. Our contributions can be summarized as follows:

1. Generalization Bound. We establish a new generalization bound for the adversarial target loss. The
bound consists of three quantities: the source domain loss, a measure of “worst-case” domain divergence,
and the loss of an ideal classifier over the source domain and the “worst-case” target domain.

2. Unified Defense Framework. Building on our theory, we introduce Divergence Aware adversaRial
Training (DART), a versatile defense framework that can be used in conjunction with a wide range of
distance-based UDA methods (e.g., DANN [Ganin and Lempitsky, 2015], MMD [Gretton et al., 2012],
CORAL [Sun and Saenko, 2016], etc). Our defenses are principled, apply to general threat models
(including the popular ℓp-norm threat model) and do not require specific architectural modifications.

3. Testbed. To encourage reproducible research in this area, we release DomainRobust1, a testbed designed
for evaluating the adversarial robustness of UDA methods, under the common ℓp-norm threat model.
DomainRobust consists of four multi-domain benchmark datasets: DIGITs (including MNIST, MNIST-M,
SVHN, SYN, USPS), OfficeHome, PACS, and VisDA. DomainRobust encompasses seven meta-algorithms
with a total of 11 variants, including DART, Adversarial Training [Madry et al., 2017], TRADES [Zhang
et al., 2019a], and several recent heuristics for robust UDA such as ARTUDA [Lo and Patel, 2022] and
SRoUDA [Zhu et al., 2023]. The testbed is written in PyTorch and can be easily extended with new
methods.

4. Empirical Evaluations. We conduct extensive experiments on DomainRobust under a white-box setting
for all possible source-target dataset pairs. The results demonstrate that DART achieves better robust
accuracy than the state-of-the-art on all 4 benchmarks considered, while maintaining competitive standard
(a.k.a. clean) accuracy. For example, the average relative improvement across all 20 source-target domain
pairs of DIGITs exceeds 5.5%, while the relative improvement of robust accuracy on individual source-target
pairs reaches up to 29.2%.

1.1 Related Work

UDA. In their seminal study, Ben-David et al. [2006] established generalization bounds for UDA, which
were later extended and studied by various works [Mansour et al., 2009, Ben-David et al., 2010, Zhang et al.,
2019b, Acuna et al., 2021]; see Redko et al. [2020] for a survey of theoretical results. One fundamental class of
practical UDA methods is directly motivated by these theoretical bounds and is known as Domain Invariant
Representation Learning (DIRL). Popular DIRL methods work by minimizing two objectives: (i) empirical
risk on the labeled source data, and (ii) some discrepancy measure between the feature representations of

1Code can be found here.

2

https://github.com/google-research/domain-robust

the source and target domain, making these representations domain invariant; e.g., DAN [Long et al., 2015],
DANN [Ganin et al., 2016], CORAL [Sun and Saenko, 2016], MCD [Saito et al., 2018]. However, both the
theoretical results and practical UDA methods do not take adversarial robustness into consideration.

Adversarial Robustness. Understanding the vulnerability of deep models against adversarial examples is
a crucial area of research [Akhtar and Mian, 2018, Zhang et al., 2020, Bai et al., 2021]. Learning a classifier
that is robust to adversarial attacks can be naturally cast as a robust (min-max) optimization problem [Madry
et al., 2017]. This problem can be solved using adversarial training : training the model over adversarial
examples generated using constrained optimization algorithms such as projected gradient descent (PGD).
Unfortunately, adversarial training and its variants (e.g., TRADES [Zhang et al., 2019a], MART [Wang et al.,
2019]) require labeled data from the target domain, which is unavailable in UDA. Another related line of
work explores the transferability of robustness between domains [Shafahi et al., 2019], which still requires
labeled target data to fine-tune the model.

Adversarial Robustness in UDA. Unlike the supervised learning setting, there has been a limited number
of works that study adversarial robustness in UDA, which we discuss next. RFA [Awais et al., 2021] employed
external adversarially pretrained ImageNet models for extracting robust features. However, such pretrained
robust models may not be available for the task at hand, and they are typically computationally expensive to
pretrain from scratch. ASSUDA [Yang et al., 2021] designed adversarial self-supervised algorithms for image
segmentation tasks, with a focus on black-box attacks. Similarly, ARTUDA [Lo and Patel, 2022] proposed a
self-supervised adversarial training approach, which entails using three regularizers and can be regarded as a
combination of DANN [Ganin and Lempitsky, 2015] and TRADES [Zhang et al., 2019a]. SRoUDA [Zhu et al.,
2023] introduced data augmentation techniques to encourage robustness, alternating between a meta-learning
step to generate pseudo labels for the target and an adversarial training step (based on pseudo labels). While
all these algorithms demonstrated promising results, they are heuristic in nature. In contrast, our algorithm
DART is not only theoretically justified but also exhibits excellent performance–it outperforms ARTUDA
and SRoUDA on all the benchmarks considered.

2 Problem Setup and Preliminaries

In this section, we formalize the problem setup and introduce some preliminaries on UDA theory.
UDA setup. Without loss of generality, we focus on binary classification with an input space X ⊆ Rd

(e.g., space of images) and an output space Y = {±1}. Let H ⊆ {h : X → Y} be the hypothesis class and
denote the loss function by ℓ : R × Y → R+. We define the source domain DS and target domain DT as
probability distributions over X ×Y . Given an arbitrary distribution D over X ×Y , we use the notation DX

to refer to the marginal distribution over X ; e.g., DX
T denotes the unlabeled target domain. During training,

we assume that the learner has access to a labeled source dataset ZS = {(xsi , ysi)}
ns

i=1 drawn i.i.d. from DS

and an unlabeled target dataset {xti}
nt

i=1 drawn i.i.d. from DX
T . We use XS and XT to refer to the ns × d

source data matrix and nt × d target data matrix, respectively.
Robustness setup. We assume a general threat model where the adversary’s perturbation set is denoted

by B : X → 2X . Specifically, given an input example x ∈ X , B(x) ⊆ Rd represents the set of possible
perturbations of x that an adversary can choose from. One popular example is the standard ℓp threat model
that adds imperceptible perturbations to the input: B(x) = {x̃ : ∥x̃− x∥p ≤ α} for a fixed norm p and a
sufficiently small α. In the context of image classification, another example of B(x) could be a discrete set of
large-norm (perceptible) transformations such as blurring, weather corruptions, and image overlays [Hendrycks
and Dietterich, 2019, Stimberg et al., 2023]. In what follows, our theoretical results will be applicable to
a general B(x), and our experiments will be based on the standard ℓp threat model.

We denote the standard loss and the adversarial loss of a classifier h on a distribution D by

L(h;D) := E(x,y)∼D [ℓ(h(x), y)] and Ladv(h;D) := E(x,y)∼D sup
x̃∈B(x)

[ℓ(h(x̃), y)] ,

3

respectively. Given source samples ZS , we denote the empirical standard source loss as L(h;ZS) :=
1
n

∑n
i=1 ℓ(h(x

s
i), y

s
i). We add superscript 0/1 when considering 0-1 loss; i.e, ℓ0/1, L0/1, L

0/1
adv. Our ultimate

goal is to find a robust classifier h that performs well against adversarial perturbations on the target domain;

i.e., h = argminh∈H L
0/1
adv(h;DT).

2.1 Standard UDA Theory

In this section, we briefly review key quantities and a UDA learning bound that has been introduced in the
seminal work of Ben-David et al. [2010] – these will be important for the generalization bound we introduce
in Section 3. We first introduce H∆H-divergence, which measures the ability of the hypothesis class H to
distinguish between samples from two input distributions.

Definition 2.1 (H∆H-divergence [Ben-David et al., 2010]). Given some fixed hypothesis class H, let H∆H
denote the symmetric difference hypothesis space, which is defined by: h ∈ H∆H ⇔ h(x) = h1(x)⊕ h2(x) for
some (h1, h2) ∈ H2, where ⊕ stands for the XOR operation. Let DX

S and DX
T be two distributions over X .

Then the H∆H-divergence between DX
S and DX

T is defined as:

dH∆H(DX
S ,DX

T) = 2 sup
h∈H∆H

∣∣∣Ex∼DX
S
1 [h(x) = 1]−Ex∼DX

T
1 [h(x) = 1]

∣∣∣ ,
where 1(·) is the indicator function.

Here dH∆H(DX
S ,DX

T) captures an interesting interplay between the hypothesis class and the source/target
distributions. On one hand, when the two distributions are fixed, a richer H tends to result in a larger
H∆H-divergence. On the other hand, for a fixed H, greater dissimilarity between the two distributions
leads to a larger H∆H-divergence. In practice, H∆H-divergence is generally intractable to compute exactly,
but it can be approximated using finite samples, as we will discuss in later sections. With this definition,
Ben-David et al. [2010] established an important upper bound on the standard target loss, which we recall in
the following theorem.

Theorem 2.1 (Ben-David et al. [2010]). Given a hypothesis class H, the following holds:

L0/1(h;DT)︸ ︷︷ ︸
Target Loss

≤L0/1(h;DS)︸ ︷︷ ︸
Source Loss

+
1

2
dH∆H(DX

S ,DX
T)︸ ︷︷ ︸

Domain Divergence

+ γ(DS ,DT)︸ ︷︷ ︸
Ideal Joint Loss

. (1)

where γ(DS ,DT) := minh∗∈H[L0/1(h∗;DS) + L0/1(h∗;DT)] is the joint loss of an ideal classifier that works
well on both domains.

We note that Ben-David et al. [2010] also established a corresponding generalization bound, but the
simpler bound above is sufficient for our discussion. The ideal joint loss γ can be viewed as a measure of
both the label agreement between the two domains and the richness of the hypothesis class, and it cannot be
directly computed or controlled as it depends on the target labels (which are unavailable under UDA). If γ is
large, we do not expect a classifier trained on the source to perform well on the target, and therefore γ is
typically assumed to be small in the UDA literature. In fact, David et al. [2010] showed that having a small
domain divergence and a small ideal joint risk is necessary and sufficient for transferability. Assuming a small
γ, Theorem 2.1 suggests that the target loss can be controlled by ensuring that both the source loss and
domain divergence terms in (1) are small – we revisit some practical algorithms for ensuring this in Section 4.

3 Adversarially Robust UDA Theory

In this section, we derive an upper bound on the adversarial target loss, which will be the basis of our
proposed defense framework. We present our main theorem below and defer the proof to Appendix A.

Theorem 3.1. Let H be a hypothesis class with finite VC dimension VC(H) and adversarial VC dimension
AVC(H) [Cullina et al., 2018]. If ZS and ZT are labeled samples of size2 n drawn i.i.d. from DS and DT ,

2We assume that ZS and ZT have the same size for simplicity. The result still applies to different sizes.

4

respectively, and XS and XT are the corresponding data matrices, then for any δ ∈ (0, 1), w.p. at least 1− δ,
for all h ∈ H,

L
0/1
adv(h;DT) ≤ L0/1(h;ZS)︸ ︷︷ ︸

Source Loss

+

Worst-case target︷ ︸︸ ︷
sup

x̃t
i∈B(xt

i),∀i∈[n],Z̃T={(x̃t
i,y

t
i)}n

i=1

[
dH∆H(XS , X̃T)︸ ︷︷ ︸
Domain Divergence

+2 γ(ZS , Z̃T)︸ ︷︷ ︸
Ideal Joint Loss

]
+ ϵ, (2)

where the generalization gap ϵ = O(
√

max{VC(H),AVC(H)} log(n)+log(1/δ)
n), the (empirical) ideal joint loss is

defined as γ(ZS ,ZT) := minh∗∈H
[
L0/1(h∗;ZS) + L0/1(h∗;ZT)

]
, and the (empirical) H∆H-divergence can

be computed as follows3:

dH∆H(XS ,XT) = 2
(
1− min

h∈H∆H

[1
n

∑
x:h(x)=0

1(x∈XS)+
1

n

∑
x:h(x)=1

1(x∈XT)
])

. (3)

Theorem 3.1 states that the adversarial target loss can be bounded from above by three main terms
(besides generalization error ϵ): source loss, domain divergence, and the ideal joint loss. These three terms
are similar to those in the bound of Theorem 2.1 for standard UDA; however, the main difference lies in that
Theorem 3.1 evaluates the domain divergence and ideal joint loss terms for a “worst-case” target domain
(instead of the original target domain). The first two terms (source loss and domain divergence) do not
require target labels and can thus be directly computed and controlled. However, the ideal joint risk in
Theorem 3.1 requires labels from the target domain and cannot be directly computed.

In Section 2.1, we discussed how the ideal joint loss in the standard UDA setting is commonly assumed to be
small and is thus not controlled in many popular practical methods. Specifically, when the hypothesis class con-
sists of neural networks, if we decompose h into a feature extractor g and a classifier f (i.e., h = f ◦g), the ideal
joint loss can be written as a function of g: γ(DS ,DT , g) :=minf∗:f∗◦g∈H

[
L0/1(f∗ ◦ g;DS) + L0/1(f∗ ◦ g;DT)

]
.

In the literature [Ben-David et al., 2006], γ(DS ,DT , g) is commonly assumed to be small for any reasonable
g that is chosen by the learning algorithm. However, for a fixed g, the ideal joint loss with the worst-case
target in our setting may be generally larger than that of the standard UDA setting. While one possibility
is to assume this term remains small (as in the standard UDA setting), we hypothesize that in practice it
may be useful to control this term by finding an appropriate feature extractor g. In the next section, we
discuss a practical defense framework that attempts to minimize the adversarial target risk by controlling all
three terms in Theorem 3.1, including the ideal joint loss. In the experiments, we also present evidence that
controlling all three terms typically leads to better results than controlling only the source loss and domain
divergence.

4 Divergence Aware Adversarial Training: a practical defense

Recall that in the standard UDA setting, a fundamental class of UDA methods – DIRL – are based on the
upper bound (1) or variants that use other domain divergence measures [Ganin et al., 2016, Li et al., 2017a,
Zellinger et al., 2017]. These methods are based on neural networks consisting of two main components:
a feature extractor g that generates feature representations and a classifier f that generates the model
predictions. Given an example x (from either the source or target domain), the final model prediction is
given by f(g(x)) (which we also write as (f ◦ g)(x), h = f ◦ g ∈ H). The key insight is that if the feature
representations generated by g are domain-invariant (i.e., they are similar for both domains), then the
domain divergence will be small. Practical algorithms use a regularizer Ω that acts as a proxy for domain
divergence. Thus, the upper bound on the standard target loss in (1) can be controlled by identifying a
feature transformation g and a classifier f that minimize the combined effect of the source loss and domain
divergence; i.e.,

3In Definition 2.1, we defined dH∆H for two input distributions. Here we use an equivalent definition in which the two inputs
are data matrices.

5

min
g,f

L(f ◦ g;ZS)︸ ︷︷ ︸
Empirical Source Loss

+ Ω(XS ,XT , g)︸ ︷︷ ︸
Empirical Proxy for Domain Divergence

. (4)

Such strategy is the basis behind several practical UDA methods, such as Domain Adversarial Neural Networks
(DANN) [Ganin et al., 2016], Deep Adaptation Networks [Li et al., 2017a], and CORAL [Sun and Saenko,
2016]. As an example, DANN directly approximates H∆H-divergence in (3); it defines Ω as the loss of
a “domain classifier”, which tries to distinguish between the examples of the two domains (based on the
feature representations generated by g). We list some common UDA methods and their corresponding Ω in
Appendix C.2.

We now propose a practical defense framework based on the theoretical guarantees that we derived in
Section 3, namely DART (Divergence Aware adveRsarial Training).

A practical bound. We consider optimizing upper bound (2) in Theorem 3.1. Given a feature extractor
g and a classifier f , the upper bound in Theorem 3.1 can be rewritten as follows,

L
0/1
adv(f ◦ g;DT) ≤ L0/1(f ◦ g;ZS) + sup

x̃t
i∈B(xt

i),∀i∈[n]

Z̃T={(x̃t
i,y

t
i)}n

i=1

[
dH∆H(XS , X̃T) + 2γ(ZS , Z̃T , g)

]
+ ϵ, (5)

Note that minimizing this bound requires optimizing both g and f . Moreover, for any given g, the ideal joint loss
γ(ZS , Z̃T , g) requires optimizing a separate model. To avoid optimizing separate models at each iteration and
obtain a more practical method, we further upper bound Equation (5). Specifically, we note that the ideal joint
loss can be upper bounded as follows: γ(ZS ,ZT , g) = minf∗:f∗◦g∈H

[
L0/1(f∗ ◦ g;ZS) + L0/1(f∗ ◦ g;ZT)

]
≤

(L0/1(f ◦ g;ZS) + L0/1(f ◦ g;ZT)) for any f such that f ◦ g ∈ H. Plugging the latter bound in Equation (2)
gives us the following:

L
0/1
adv(f ◦ g;DT) ≤ 3L0/1(f ◦ g;ZS) + sup

x̃t
i∈B(xt

i),∀i∈[n]

Z̃T={(x̃t
i,y

t
i)}n

i=1

[
dH∆H(XS , X̃T) + 2L0/1(f ◦ g; Z̃T)

]
+ ϵ. (6)

DART’s optimization formulation. DART is directly motivated by bound (6). To approximate the latter
bound, we first fix some UDA method that satisfies form (4) and use the corresponding Ω as an approximation
of dH∆H. Let Z̃S = {(x̃si , ysi)}

ns

i=1 denote the source data (which can be either the original, clean source ZS or

potentially a transformed version of it, as we discuss later) and let X̃S be the corresponding data matrix. To
approximate the third term in (6), we assume access to a vector of target pseudo-labels ŶT corresponding to
the target data matrix XT – we will discuss how to obtain pseudo-labels later in this section. Using the latter
approximations in bound (6), we train an adversarially robust classifier by solving the following optimization
problem:

min
g,f

(
L(f ◦ g; Z̃S) + sup

x̃t
i∈B(xt

i),∀i∈[nt]

[
λ1Ω(X̃S , X̃T , g) + λ2L(f ◦ g; (X̃T , ŶT))

])
, (7)

where (λ1, λ2) are tuning parameters. We remark that problem (7) represents a general optimization
formulation–the choice of the optimization algorithm depends on the model (g, f) as well as the nature of
the perturbation set B. If a neural network is used along with the standard ℓp-norm perturbation set, then
problem (7) can be optimized similar to standard adversarial training, i.e., the network can be optimized
using gradient-based algorithms like SGD, and at each iteration the adversarial target examples X̃T can be
generated via projected gradient descent (PGD) [Madry et al., 2017]. In Appendix B.1, we present a concrete
instance of framework (7) for the common ℓp threat model and using DANN as the base UDA method. We
provide the pseudocode of DART in Appendix B.2.

Pseudo-Labels ŶT. The third term in bound (7) requires target labels, which are unavailable under the
UDA setup. We thus propose using pseudo-labels, which can be obtained through various methods. Here, we
describe a simple approach that assumes access to a proxy for evaluating the model’s accuracy (standard

6

or robust) on the target domain. This is the same proxy used for hyperparameter tuning. For example,
this proxy could be the accuracy on a small, labeled validation set if available or any UDA model selection
criterion [Wilson and Cook, 2020, Section 4.7]. We maintain a pseudo-label predictor that aims at generating
pseudo-labels for the target data. Initially, this predictor is pretrained using a standard UDA method in
Equation (4). We then use these pseudo-labels to optimize the model (g, f) as in (7). To improve the quality
of the pseudo-labels, we periodically evaluate the model’s performance (standard accuracy) based on the
pre-selected proxy and assign the model weights to the pseudo-label predictor if the model performance has
improved–see Appendix B.3 for details.

Source Choices Z̃S. We investigate three natural choices of transformations of the source data Z̃S =
{(x̃si , ysi)}

ns

i=1: 1) Clean source: use the original (clean) source data; i.e., x̃si = xsi . 2) Adversarial source:
choose the source data that maximizes the adversarial source loss; i.e., x̃si = argmaxx̃i∈B(xs

i)
ℓ(h(x̃i); y

s
i), which

is the standard way of generating adversarial examples. 3) KL source: choose the source data that maximizes
the Kullback-Leibler (KL) divergence of the clean and adversarial predictions [Zhang et al., 2019a]; i.e.,
x̃si = argmaxx̃i∈B(xs

i)
KL(h(x̃i), h(x

s
i)). At each iteration, the adversarial and KL sources can be generated

using the same optimization algorithm used to generate the adversarial target examples (e.g., PGD for an ℓp
perturbation set).

5 Empirical Evaluation

5.1 DomainRobust: A PyTorch Testbed for UDA under Adversarial Attacks

We conduct large-scale experiments on DomainRobust: our proposed testbed for evaluating adversarial robust-
ness under the UDA setting. DomainRobust focuses on image classification tasks, including 4 multi-domains
meta-datasets and 11 algorithms. Our implementation is PyTorch-based and builds up on DomainBed [Gulra-
jani and Lopez-Paz, 2020], which was originally developed for evaluating the (standard) accuracy of domain
generalization algorithms.

Datasets. DomainRobust includes four multi-domain meta-datasets: 1) DIGIT datasets [Peng et al., 2019]
(includes 5 popular digit datasets across 10 classes, namely MNIST [LeCun et al., 1998], MNIST-M [Ganin
and Lempitsky, 2015], SVHN [Netzer et al., 2011], SYN [Ganin and Lempitsky, 2015], USPS [Hull, 1994]);
2) OfficeHome [Venkateswara et al., 2017] (includes 4 domains across 65 classes: Art, Clipart, Product,
RealWorld); 3) PACS [Li et al., 2017b] (includes 4 domains across 7 classes: Photo, Art Painting, Cartoon,
SKetch); 4) VisDA [Peng et al., 2017] (includes 2 domains across 12 classes: Synthetic and Real). Further
details of each dataset are presented in Appendix C.1. We consider all pairs of source and target domains for
each dataset.

Algorithms. We study 7 meta-algorithms (with a total of 11 variants). Unless otherwise noted, we use
DANN as the base UDA method, i.e., we fix the domain divergence Ω to be DANN’s regularizer and use it
for all algorithms (except source-only models). We consider the following algorithms:

• Natural DANN. This is standard DANN without any defense mechanism.

• Source-only models, which include AT(src) and TRADES(src). We apply Adversarial Training [Madry
et al., 2017] and TRADES [Zhang et al., 2019a] only on labeled source data.

• Pseudo-labeled target models, which include AT(tgt,pseudo) and TRADES(tgt,pseudo). We first
train a standard DANN and use it to predict pseudo-labels for the unlabeled target data. We then apply
standard adversarial training or TRADES on the pseudo-labeled target data.

• AT+UDA. We train a UDA model where the source examples are all adversarial and the target examples
are clean.

7

• ARTUDA [Lo and Patel, 2022]. ARTUDA can be seen as a combination of DANN [Ganin and Lempitsky,
2015] and TRADES [Zhang et al., 2019a]. In comparison to DART with clean source, ARTUDA applies two
domain divergences to measure the discrepancy between clean source and clean target, as well as between
clean source and adversarial target. Additionally, ARTUDA’s methodology for generating adversarial
target examples does not take the domain divergence into consideration, which differs from DART.

• SRoUDA [Zhu et al., 2023]. SRoUDA alternates between adversarial training on target data with
pseudo-labels and fine-tuning the pseudo-label predictor. The pseudo-label predictor has a similar role to
that in DART; it is initially trained using a standard UDA method and is then continuously fine-tuned via
a meta-step, a technique originally proposed by [Pham et al., 2021]. Moreover, Zhu et al. [2023] introduced
novel data augmentation methods such as random masked augmentation to further enhance robustness.

• DART. We experiment with DART for three different source choices as described in Section 4; namely,
DART(clean src), DART(adv src), and DART(kl src).

For fairness, we apply the same data augmentation scheme that is used in [Gulrajani and Lopez-Paz,
2020] (described in Appendix C.4) across all algorithms including SRoUDA.

Algorithm
Dataset DIGIT (20 source-target pairs) OfficeHome (12 source-target pairs) PACS (12 source-target pairs) VisDA (2 source-target pairs)

nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc
No defense Natural DANN 69.9±0.3 53.9±0.5 53.4±0.5 57.4±0.2 1.5±0.1 0.4±0.0 81.1±0.3 11.0±0.2 3.6±0.2 73.0±0.4 0.6±0.1 0.0±0.0
Source data
only

AT(src only) 71.5±0.1 62.0±0.1 61.7±0.1 49.7±0.7 31.2±0.1 29.9±0.2 65.7±0.9 48.2±0.1 47.0±0.1 36.2±0.5 29.8±0.3 28.5±0.3
TRADES(src only) 71.1±0.0 62.4±0.0 62.0±0.0 48.4±0.4 31.5±0.2 30.1±0.2 66.1±0.7 48.2±0.3 45.9±0.3 36.5±0.2 29.5±0.6 28.9±0.6

Target data +
pseudo-label

AT(tgt,pseudo) 73.8±0.1 68.9±0.1 68.6±0.0 52.7±0.1 40.5±0.2 39.8±0.2 82.0±0.4 70.0±0.2 69.6±0.3 77.7±0.2 70.2±0.3 69.6±0.3
TRADES(tgt,pseudo) 73.9±0.1 69.8±0.0 69.4±0.0 53.0±0.5 41.4±0.3 40.6±0.3 82.7±0.2 71.7±0.3 71.1±0.4 76.6±0.4 69.7±0.1 69.1±0.1

Robust UDA
methods

AT+UDA 71.9±0.1 63.0±0.1 62.7±0.1 51.3±0.9 32.7±0.1 31.2±0.2 68.6±0.8 52.9±0.9 44.4±0.1 57.2±0.7 36.7±0.3 33.2±0.7
ARTUDA 74.3±0.2 70.6±0.1 70.3±0.1 54.6±0.3 39.0±0.5 37.1±0.6 74.6±0.3 60.5±0.2 58.1±0.6 58.9±1.3 47.6±1.3 46.2±1.5
SROUDA 73.7±0.1 69.2±0.1 68.8±0.1 51.3±0.2 40.6±0.1 38.7±0.2 76.1±0.7 65.3±0.3 64.0±0.5 64.7±1.9 53.2±1.0 51.2±1.1

DART
DART(clean src) 78.3±0.2 74.5±0.1 74.4±0.1 56.4±0.1 40.7±0.1 39.6±0.1 85.5±0.1 73.3±0.0 72.6±0.1 78.4±0.1 71.7±0.2 71.3±0.3
DART(adv src) 77.8±0.2 74.0±0.2 73.9±0.2 55.6±0.2 42.6±0.3 41.6±0.2 84.4±0.3 72.7±0.0 72.2±0.0 77.6±0.4 70.9±0.6 70.6±0.7
DART(kl src) 78.3±0.1 74.5±0.1 74.4±0.1 56.0±0.2 42.4±0.2 41.3±0.2 85.3±0.2 73.1±0.3 72.6±0.4 78.2±0.5 71.3±0.7 71.9±0.4

Table 1: Standard accuracy (nat acc)/ Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under
AutoAttack (aa acc) on the target test data, averaged over all possible source-target pairs.

Architecture and optimization. For DIGIT datasets, we consider multi-layer convolutional networks
(see Table 5 in the appendix for the architecture). For the other datasets, we consider ResNet50 (pre-trained
using ImageNet) as the backbone feature extractor and all batch normalization layers frozen. We consider
a linear layer as the classifier on top of the feature extractor. We use cross-entropy loss and Adam [Kinga
et al., 2015] for optimization. We first pre-train each model using DANN, while periodically evaluating the
standard accuracy of different checkpoints during pre-training. We then pick the checkpoint with the highest
standard accuracy and use it as an initialization for all algorithms. We use the same number of training
iterations for pre-training and running the algorithms.

Robustness setup. We assume an ℓ∞-norm perturbation set B(x) = {x̃ : ∥x̃− x∥∞ ≤ α} and experiment
with two values of α: in the main text we report results for α = 2/255 and in Appendix E.3 we report
additional results for α = 8/255. During training, adversarial examples are generated using 5 steps of
PGD with step size 1/255. We evaluate all algorithms on the target data using standard accuracy and
robust accuracy, computed using two different attack methods: (i) PGD attack with 20 iterations, and (ii)
AutoAttack [Croce and Hein, 2020b], which includes four diverse attacks, namely APGD-CE, APGD-target,
FAB [Croce and Hein, 2020a], and Square Attack [Andriushchenko et al., 2020]. Note that these attack
methods have full access to the model parameters (i.e., white-box attacks), and are constrained by the same
perturbation size α. If not specifically stated, we evaluate on using the same α used for training.

Hyperparameter tuning. We follow an oracle setting where a small labeled validation set from the target
domain is used for tuning. This approach is commonly used for hyperparameter tuning in the literature on
UDA [Long et al., 2013, Shen et al., 2018, Kumar et al., 2018, Wei and Hsu, 2018]. If no labeled validation
set is available, the oracle setting can be viewed as an upper bound on the performance of UDA methods.

8

For the source domain, we keep 80% of the data (90% for VisDA). For the target domain, we split the data
into unlabeled training data, validation data and test data with a ratio of 6:2:2 (8:1:1 for VisDA4). For each
algorithm, we perform 20 random search trials4 over the hyperparameter distribution (see Appendix C.5).
We apply early stopping and select the best model amongst the 20 models from random search, based
on its performance on the target validation set. We repeat the entire suite of experiments three times,
reselecting random values for hyperparameters, re-initializing the weights and redoing dataset splits each
time. The reported results are the means over these three repetitions, along with their standard errors. This
experimental setup resulted in training a total of 29700 models.

5.2 Results

Performance on benchmarks. For each of the 4 benchmark datasets, we train and evaluate all algorithms
on all possible source-target pairs. In Table 1, we report the results for each dataset, averaged over all
corresponding source-target pairs (values after the ± sign are the standard error of the mean). We refer the
reader to Appendix D for full results for each of the 46 source-target pairs.

Based on Table 1, DART demonstrates significant improvements in adversarial robustness when compared
to the various baselines. As expected, Natural DANN (which does not use any defense mechanism) has
the lowest robust accuracy. Baselines that solely rely on the source data (specifically, AT(src only) and
TRADES(src only)) display lower robustness compared to the other baselines, indicating that robustness
does not transfer well due to the distribution shift.

Table 1 shows that DART consistently outperforms the robust UDA methods (AT+UDA, ARTUDA, and
SROUDA), in terms of robust accuracy across all four benchmarks. It is essential to highlight that previous
work investigating adversarial robustness in the UDA setting has not assessed two natural baselines we
consider: AT(tgt,pseudo) and TRADES(tgt,pseudo). The latter two baselines appear to be very competitive
with the robust UDA methods from the literature – but DART clearly outperforms these baselines. A more
granular inspection of the results across the 46 source-target pairs (in Appendix D) reveals that DART
consistently ranks first in terms of robust target test accuracy for 33 pairs under PGD attack and 35 pairs5

under AutoAttack. The results also demonstrate that DART does not compromise standard accuracy. In
fact, DART even improves standard accuracy on the DIGIT and PACS datasets, as indicated in Table 1.
Across the entirety of the 46 source-target pairs, DART achieves the highest standard accuracy on 30 pairs.

Source→Target SVHN→MNIST SYN→MNIST-M PACS Photo→Sketch
Algorithm nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc
(1) DART w/o DANN term 95.0±0.1 90.9±0.4 90.8±0.4 67.2±0.7 45.1±0.6 44.8±0.6 79.1±0.7 76.3±0.7 76.1±0.7
(2) DART w/o third term 84.8±0.3 81.3±0.2 81.2±0.3 65.7±0.5 53.6±0.3 53.3±0.4 72.3±2.4 63.8±1.1 60.6±0.8
(3) DART fixed label 87.3±0.2 85.2±0.2 85.1±0.2 65.6±0.4 56.0±0.3 55.5±0.5 79.3± 0.4 75.7±0.4 75.4±0.4
(4) DART self label 96.9±1.2 95.9±1.6 95.9±1.6 70.6±3.3 63.5±3.0 63.4±3.0 75.5±1.3 68.6±0.7 67.9±0.7
DART w. all components 98.7±0.1 98.2±0.2 98.2±0.2 75.2±0.8 66.7±0.8 66.5±0.8 82.5±0.8 79.9±0.4 79.5±0.5

Table 2: Standard accuracy (nat acc)/ Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under
AutoAttack (aa acc) on target test data for three source-target pairs.

Ablation study. We examine the effectiveness of the individual components in DART’s objective function
(Equation 7), by performing an ablation study on three source-target pairs: SVHN→MNIST, SYN→MNIST-
M, and PACS for Photo→Sketch. Specifically, we consider DART(clean src) and study the following ablation
scenarios: (1) w/o domain divergence term: we remove the second term Ω in the objective function; (2) w/o
the approximation of the ideal joint worst target loss: we exclude the third term in the objective function; (3)
we obtain pseudo-labels by standard UDA method, and fix it throughout the training process; (4) we use the
current model to predict pseudo-labels for the third term. The results are presented in Table 2. Our findings
reveal that omitting either the domain divergence or third term (which approximates the joint worst target

4As VisDA is a large dataset, we choose a different proportion and only perform 10 random search trials to save computational
resources.

5In a tie, we prioritize the method with smaller standard error.

9

Source→Target SVHN→MNIST SYN→MNIST-M PACS Photo→Sketch
Algorithm nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc
AT(tgt,cg) 91.4±0.1 90.2±0.1 90.2±0.1 67.7±0.7 58.6±0.6 58.4±0.6 79.6±0.5 76.3±0.7 75.9±0.7
TRADES(tgt,cg) 97.1±0.4 96.6±0.4 96.6±0.4 68.5±0.7 63.2±0.9 63.1±0.8 78.5±0.7 76.4±0.6 76.1±0.5
DART (clean src) 98.7±0.1 98.2±0.2 98.2±0.2 75.2±0.8 66.7±0.8 66.5±0.8 82.5±0.8 79.9±0.4 79.5±0.5
DART (adv src) 98.7±0.1 98.3±0.2 98.3±0.2 72.6±0.9 64.3±1.0 64.1±1.0 81.0±1.0 78.1±0.4 77.7±0.4
DART (kl src) 98.6±0.2 98.2±0.2 98.2±0.2 74.4±1.2 66.0±1.3 65.8±1.3 82.4±1.6 79.2±1.2 78.8±1.1

Table 3: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) / Robust accuracy
under AutoAttack (aa acc) on target test data for three source-target pairs.

Domain Divergence DANN MMD CORAL
Algorithm nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc
Natural UDA 74.0±1.1 24.0±2.1 5.6±1.3 68.7±0.9 23.4±1.5 11.0±1.4 68.2±1.1 3.6±1.2 0.2±0.1
AT+UDA 70.6±1.6 62.2±1.5 60.9±1.5 73.3±0.3 66.3±0.3 65.7±0.3 67.0±3.5 55.7±1.7 53.8±2.4
ARTUDA 74.9±1.3 70.4±1.4 69.2±1.3 60.2±2.3 54.6±1.7 52.8±1.9 42.8±1.2 34.2±1.6 31.6±1.8
SROUDA 71.9±0.9 63.7±1.2 60.8±2.0 62.3±4.3 56.7±4.1 54.9±4.1 61.3±2.0 53.6±1.5 51.8±1.9
DART(clean src) 82.5±0.8 79.9±0.4 79.5±0.5 76.8±1.1 76.8±1.1 73.7±1.4 80.2±0.8 76.8±0.8 76.5±0.8
DART(adv src) 81.0±1.0 78.1±0.4 77.7±0.4 79.2±1.4 76.6±1.4 76.6±1.4 83.0±0.8 80.5±0.9 80.3±0.8
DART(kl src) 82.4±1.6 79.2±1.2 78.8±1.1 77.6±1.2 75.1±0.9 74.9±0.8 81.7±1.4 79.3±1.5 79.3±1.5

Table 4: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) / Robust accuracy
under AutoAttack (aa acc) on target test data, for three different domain divergence metrics.

loss) results in a significant performance degradation, confirming that these components are important. On
the other hand, for DART without the pseudo-labeling technique discussed in Section 4, scenarios (3) and (4)
still experienced some performance degradation in both standard and robust accuracy compared to DART.
In summary, DART with all the components achieves the best performance.

Figure 1: Robust accuracy as a function of
perturbation size for different algorithms on
PACS (Photo→Sketch).

Comparison with additional baselines. To strengthen
the comparison, we propose two new, modified baselines that
run adversarial training or TRADES on pseudo-labeled tar-
get data, where the pseudo labels are generated using ex-
actly the pseudo labeling method used in our approach (de-
scribed in Section 4)–we refer to these methods as AT(tgt,cg)
and TRADES(tgt,cg). These two methods are similar to
AT(tgt,pseudo) and TRADES(tgt,pseudo), with the main dif-
ference that the pseudo labels may change during training. We
evaluate DART against AT(tgt,cg) and TRADES(tgt,cg) on the
same source-target pairs: SVHN→MNIST, SYN→MNIST-M,
and PACS for Photo→Sketch. The results, presented in Table 3,
show that DART outperforms these baselines, suggesting that
DART’s good performance is not solely due to the proposed
pseudo-labeling method.

Different domain divergence metrics. As discussed earlier, DART is compatible with a wide class
of UDA divergence metrics previously proposed in the literature. Here we study DART’s performance
on PACS Photo→Sketch when using alternative domain divergence metrics: MMD (Maximum Mean
Discrepancy) [Gretton et al., 2012] and CORAL (Correlation Alignment) [Sun and Saenko, 2016]. We
conduct a similar investigation with AT+UDA, ARTUDA, and SROUDA. The results, reported in Table 4,
demonstrate that DART consistently outperforms the adversarially robust UDA baselines for all three domain
divergence metrics considered.

10

Sanity checks on the PGD attack. We present some sanity checks to demonstrate that no gradient
masking phenomena [Athalye et al., 2018] exist in our setup. First, we increase the PGD attack strength
(perturbation size) when evaluating the algorithms for PACS (Photo→Sketch); see Figure 1. It is evident
from the figure that as the perturbation size increases, the robust accuracy of all the algorithms decreases,
while DART consistently outperforms the other algorithms for all perturbation sizes. With sufficiently large
perturbation size, the robust accuracy of all algorithms drops to zero, as expected. Second, we fix the
perturbation size to 2/255, and gradually increase the number of attack iterations–we present the results of
this experiment in Figure 2 in the appendix. The results of Figure 2 indicate that 20 attack iterations are
sufficient to achieve the strongest PGD attack within the given perturbation size.

6 Conclusion

In this paper, we tackled the problem of learning adversarially robust models under an unsupervised
domain adaptation setting. We developed robust generalization guarantees and provided a unified, practical
defense framework (DART), which can be integrated with standard UDA methods. We also released a new
testbed (DomainRobust) and performed extensive experiments, which demonstrate that DART consistently
outperforms the state of the art across four multi-domain benchmarks. A natural next step is to extend our
theory and defense framework to other settings of distribution shift such as domain generalization.

Acknowledgements

This work was done when Yunjuan Wang was a student researcher at Google Research. YW and RA were
supported, in part, by DARPA GARD award HR00112020004, and NSF CAREER award IIS-1943251.

References

David Acuna, Guojun Zhang, Marc T Law, and Sanja Fidler. f-domain adversarial learning: Theory and
algorithms. In International Conference on Machine Learning. PMLR, 2021.

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision: A survey.
Ieee Access, 2018.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a
query-efficient black-box adversarial attack via random search. In European conference on computer vision.
Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In International conference on machine learning. PMLR,
2018.

Muhammad Awais, Fengwei Zhou, Hang Xu, Lanqing Hong, Ping Luo, Sung-Ho Bae, and Zhenguo Li.
Adversarial robustness for unsupervised domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training for
adversarial robustness. arXiv preprint arXiv:2102.01356, 2021.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for domain
adaptation. Advances in neural information processing systems, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 2010.

Dimitri Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

11

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay.
Adversarial attacks and defences: A survey. arXiv preprint arXiv:1810.00069, 2018.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack. In International Conference on Machine Learning. PMLR, 2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning. PMLR, 2020b.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical data augmentation
with no separate search. arXiv preprint arXiv:1909.13719, 2019.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence of adversaries. Advances
in Neural Information Processing Systems, 31, 2018.

Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain adaptation. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In International
conference on machine learning. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The journal of
machine learning research, 2016.

Mohsen Ghafoorian, Alireza Mehrtash, Tina Kapur, Nico Karssemeijer, Elena Marchiori, Mehran Pesteie,
Charles RG Guttmann, Frank-Erik de Leeuw, Clare M Tempany, Bram Van Ginneken, et al. Transfer
learning for domain adaptation in mri: Application in brain lesion segmentation. In Medical Image
Computing and Computer Assisted Intervention. Springer, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. arXiv preprint
arXiv:2007.01434, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern
analysis and machine intelligence, 1994.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via function transformation. arXiv preprint
arXiv:1810.09519, 2018.

D Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International conference on
learning representations, 2015.

Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogerio Feris, Bill Freeman,
and Gregory Wornell. Co-regularized alignment for unsupervised domain adaptation. Advances in neural
information processing systems, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

12

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan: towards
deeper understanding of moment matching network. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, 2017a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, 2017b.

Xiaofeng Liu, Xiongchang Liu, Bo Hu, Wenxuan Ji, Fangxu Xing, Jun Lu, Jane You, C-C Jay Kuo, Georges
El Fakhri, and Jonghye Woo. Subtype-aware unsupervised domain adaptation for medical diagnosis. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges El Fakhri, Je-Won Kang, Jonghye Woo,
et al. Deep unsupervised domain adaptation: A review of recent advances and perspectives. APSIPA
Transactions on Signal and Information Processing, 2022.

Shao-Yuan Lo and Vishal Patel. Exploring adversarially robust training for unsupervised domain adaptation.
In Proceedings of the Asian Conference on Computer Vision, 2022.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu. Transfer feature learning
with joint distribution adaptation. In Proceedings of the IEEE international conference on computer vision,
2013.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep
adaptation networks. In International conference on machine learning. PMLR, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation
networks. In International conference on machine learning. PMLR, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple sources.
Advances in neural information processing systems, 2008.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds and
algorithms. arXiv preprint arXiv:0902.3430, 2009.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In Proceedings of the NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and Atılım Güneş Baydin. Kl guided domain
adaptation. arXiv preprint arXiv:2106.07780, 2021.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda: The
visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the IEEE/CVF international conference on computer
vision, 2019.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021.

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younès Bennani. A survey on domain
adaptation theory: learning bounds and theoretical guarantees. arXiv preprint arXiv:2004.11829, 2020.

13

Chiara Regniez, Gauthier Gidel, and Hugo Berard. A distributional robustness perspective on adversarial
training with the ∞-wasserstein distance. 2021.

Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial attacks and defenses in deep learning.
Engineering, 2020.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier discrepancy for
unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and Tom Goldstein.
Adversarially robust transfer learning. arXiv preprint arXiv:1905.08232, 2019.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation learning for
domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

Matthew Staib and Stefanie Jegelka. Distributionally robust deep learning as a generalization of adversarial
training. In NIPS workshop on Machine Learning and Computer Security, 2017.

Florian Stimberg, Ayan Chakrabarti, Chun-Ta Lu, Hussein Hazimeh, Otilia Stretcu, Wei Qiao, Yintao Liu,
Merve Kaya, Cyrus Rashtchian, Ariel Fuxman, et al. Benchmarking robustness to adversarial image
obfuscations. arXiv preprint arXiv:2301.12993, 2023.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Computer
Vision–ECCV 2016 Workshops. Springer, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving adversarial
robustness requires revisiting misclassified examples. In International conference on learning representations,
2019.

Kai-Ya Wei and Chiou-Ting Hsu. Generative adversarial guided learning for domain adaptation. In BMVC,
2018.

Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation. ACM Transactions on
Intelligent Systems and Technology (TIST), 2020.

Jinyu Yang, Chunyuan Li, Weizhi An, Hehuan Ma, Yuzhi Guo, Yu Rong, Peilin Zhao, and Junzhou Huang.
Exploring robustness of unsupervised domain adaptation in semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne Saminger-Platz.
Central moment discrepancy (cmd) for domain-invariant representation learning. In International Conference
on Learning Representations, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically
principled trade-off between robustness and accuracy. In International conference on machine learning.
PMLR, 2019a.

14

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on deep-learning
models in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology
(TIST), 2020.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm for domain
adaptation. In International conference on machine learning. PMLR, 2019b.

Wanqing Zhu, Jia-Li Yin, Bo-Hao Chen, and Ximeng Liu. Srouda: Meta self-training for robust unsupervised
domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

15

Supplementary Material

A Proof of Theorem 3.1

Before presenting the proof, we first define the set of all possible perturbed distributions as follows:

P(DT) =
{
D̃ : (T (x), y) ∼ D̃,∃ a map T : X → X with T (x) ∈ B(x), (x, y) ∼ DT

}
.6

As an illustrative example, consider the scenario where the perturbation set B is defined as an ℓp norm ball,
then set of perturbation distributions P can be effectively constructed using the Wasserstein metric [Staib
and Jegelka, 2017, Khim and Loh, 2018, Regniez et al., 2021].

Theorem 3.1. Let H be a hypothesis class with finite VC dimension VC(H) and adversarial VC dimension
AVC(H) [Cullina et al., 2018]. If ZS and ZT are labeled samples of size7 n drawn i.i.d. from DS and DT ,
respectively, and XS and XT are the corresponding data matrices, then for any δ ∈ (0, 1), w.p. at least 1− δ,
for all h ∈ H,

L
0/1
adv(h;DT) ≤ L0/1(h;ZS)︸ ︷︷ ︸

Source Loss

+

Worst-case target︷ ︸︸ ︷
sup

x̃t
i∈B(xt

i),∀i∈[n],Z̃T={(x̃t
i,y

t
i)}n

i=1

[
dH∆H(XS , X̃T)︸ ︷︷ ︸
Domain Divergence

+2 γ(ZS , Z̃T)︸ ︷︷ ︸
Ideal Joint Loss

]
+ ϵ, (2)

where the generalization gap ϵ = O(
√

max{VC(H),AVC(H)} log(n)+log(1/δ)
n), the (empirical) ideal joint loss is

defined as γ(ZS ,ZT) := minh∗∈H
[
L0/1(h∗;ZS) + L0/1(h∗;ZT)

]
, and the (empirical) H∆H-divergence can

be computed as follows8:

dH∆H(XS ,XT) = 2
(
1− min

h∈H∆H

[1
n

∑
x:h(x)=0

1(x∈XS)+
1

n

∑
x:h(x)=1

1(x∈XT)
])

. (3)

Proof of Theorem 3.1. We use the notation fS and fT to represent labeling function X → Y of the given
source domain and target domain. Note that (x, y) ∼ DS implies fS(x) = y, and (x, y) ∼ DT implies
fT (x) = y. Here we consider 0-1 loss, which can be represented as ℓ(y1, y2) = |y1 − y2|.

For any given DT , we consider h∗ := h∗(DT) = argminh∈H γ(DS ,DT). We first upper bound the
adversarial target risk as follows:

L
0/1
adv(h;DT)

= E(x,y)∼DT
sup

x̃∈B(x)

|h(x̃)−fT (x)|

= sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−fT (x)| (By the definition of P(DT).)

≤ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ sup

D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|

= sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ E(x,y)∼DS

|h(x)−h∗(x)|

+ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

6We slightly abuse the notation when the input distribution is over X ; i.e., P(DX
T) ={

D̃ : T (x) ∼ D̃, ∃ a map T : X → X with T (x) ∈ B(x), x ∼ DX
T

}
.

7We assume that ZS and ZT have the same size for simplicity. The result still applies to different sizes.
8In Definition 2.1, we defined dH∆H for two input distributions. Here we use an equivalent definition in which the two inputs

are data matrices.

16

≤ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ E(x,y)∼DS

|h(x)−h∗(x)|

+

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣∣∣∣∣
≤ sup

D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ E(x,y)∼DS

|h∗(x)−fS(x)|+ E(x,y)∼DS
|h(x)−fS(x)|

+

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣∣∣∣∣
= sup

D̃T∈P(DT)

L0/1(h∗; D̃T) + L0/1(h∗;DS) + L0/1(h;DS)

+

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣∣∣∣∣
= L0/1(h;DS) + sup

D̃T∈P(DT)

γ(DS , D̃T)

+

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣∣∣∣∣
≤ L0/1(h;DS) + sup

D̃T∈P(DT)

γ(DS , D̃T)

+ sup
h∈H∆H

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]− E(x,y)∼DS

1 [h(x) = 1]

∣∣∣∣∣
(Denote this line as 1

2dH∆Hadv
(DX

S ,DX
T), which we also define later in the proof.)

= L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS , D̃T) +
1

2
dH∆Hadv

(DX
S ,DX

T) (8)

Given distributions DS ,DT , samples XS ,XT each with size n, we recall the definition of expected and
empirical H∆H-divergence:

dH∆H(DX
S ,DX

T) = 2 sup
h∈H∆H

∣∣∣Ex∼DX
S
1 [h(x) = 1]− Ex∼DX

T
1 [h(x) = 1]

∣∣∣
dH∆H(XS ,XT) = 2 sup

h∈H∆H

∣∣∣∣∣ 1n
n∑

i=1

1 [h(xsi) = 1]− 1

n

n∑
i=1

1
[
h(xti) = 1

]∣∣∣∣∣
We now define the expected and empirical adversarial target domain divergence, namely dH∆Hadv

(DX
S ,DX

T)

and d̂H∆Hadv
(XS ,XT), respectively, as follows:

dH∆Hadv
(DX

S ,DX
T) = 2 sup

h∈H∆H

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]−E(x,y)∼DS

1 [h(x) = 1]

∣∣∣∣∣
dH∆Hadv

(XS ,XT) = 2 sup
h∈H∆H

∣∣∣∣∣ 1n
n∑

i=1

sup
x̃t
i∈B(xt

i)

1
[
h(x̃ti) = 1

]
− 1

n

n∑
i=1

1 [h(xsi) = 1]

∣∣∣∣∣
Under the same perturbation constraints, we have

dH∆Hadv
(DX

S ,DX
T) ≤ sup

D̃T∈P(DT)

dH∆H(DX
S , D̃X

T)

dH∆Hadv
(XS ,XT) ≤ sup

X̃T∈P(XT)

dH∆H(XS , X̃T) (9)

17

Therefore, the following upper bound holds:

dH∆Hadv
(DX

S ,DX
T)− dH∆Hadv

(XS ,XT)

≤ 2 sup
h∈H∆H

∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]− E(x,y)∼DS

1 [h(x) = 1]

− 1

n

n∑
i=1

sup
x̃t
i∈B(xt

i)

1
[
h(x̃ti) = 1

]
+

1

n

n∑
i=1

1 [h(xsi) = 1]

∣∣∣∣
≤ 2 sup

h∈H∆H

∣∣∣∣∣ sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]− 1

n

n∑
i=1

sup
x̃t
i∈B(xt

i)

1
[
h(x̃ti) = 1

]∣∣∣∣∣
(Denote this line as dHadv∆Hadv

(D̃X
T , X̃T))

+ 2 sup
h∈H∆H

∣∣∣∣∣E(x,y)∼DS
1 [h(x) = 1]− 1

n

n∑
i=1

1 [h(xsi) = 1]

∣∣∣∣∣
= dHadv∆Hadv

(D̃X
T , X̃T) + dH∆H(DX

S ,XS)

Therefore from standard VC theory [Vapnik, 1999] we have

P

[
sup
h∈H

∣∣∣L0/1(h;DS)− L0/1(h;ZS)
∣∣∣ ≥ ϵ

4

]
≤ 8(2n)VC(H) exp(−nϵ2

128
) (10)

P
[
dH∆H(DX

S ,XS) ≥
ϵ

4

]
≤ 8(2n)VC(H) exp(−nϵ2

128
) (11)

Based on the adversarial VC theory from [Cullina et al., 2018], we have

P
[
dHadv∆Hadv

(D̃X
T , X̃T) ≥

ϵ

4

]
≤ 8(2n)AVC(H) exp(−nϵ2

128
) (12)

Similarly, we recall the definition of expected and empirical ideal joint risk as follows:

γ(DS ,DT) = min
h∈H

[
L0/1(h;DS) + L0/1(h;DT)

]
γ(ZS ,ZT) = min

h∈H

[
L0/1(h;ZS) + L0/1(h;ZT)

]
We then have,

γ(DS ,DT)− γ(ZS ,ZT)

= min
h1∈H

[
L0/1(h1;DS) + L0/1(h1;DT)

]
− min

h2∈H

[
L0/1(h2;ZS) + L0/1(h2;ZT)

]
≤
[
L0/1(h2;DS) + L0/1(h2;DT)

]
− min

h2∈H

[
L0/1(h2;ZS) + L0/1(h2;ZT)

]
≤ sup

h∈H

[
L0/1(h;DS) + L0/1(h;DT)− L0/1(h;ZS)− L0/1(h;ZT)

]
≤ sup

h∈H

[
L0/1(h;DS)− L0/1(h;ZS)

]
+ sup

h∈H

[
L0/1(h;DT)− L0/1(h;ZT)

]
Applying standard VC theory and adversarial VC theory leads to:

P
[
|γ(DS ,DT)− γ(ZS ,ZT)| ≥

ϵ

4

]
≤ P

[
sup
h∈H

∣∣∣L0/1(h;DS)− L0/1(h;ZS)
∣∣∣ ≥ ϵ

8

]
· P
[
sup
h∈H

∣∣∣L0/1(h;DT)− L0/1(h;ZT)
∣∣∣ ≥ ϵ

8

]
≤ 64(2n)2VC(H) exp(−nϵ2

256
) (13)

18

Consider each of the above events (10), (11), (12), (13) hold with probability δ
4 , we set

ϵ = O

(√
max (VC(H),AVC(H)) log(n) + log(1/δ)

n

)
.

By taking a union bound over the above events gives us that with probability at least 1− δ, the following
holds:

L
0/1
adv(h;DT)

≤ L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS ,DT) +
1

2
dH∆Hadv

(DX
S ,DX

T) (Equation (8))

≤ L0/1(h;ZS) + sup
D̃T∈P(DT)

γ(DS ,DT) +
1

2
dH∆Hadv

(XS ,XT) + ϵ (Union bound)

≤ L0/1(h;ZS) + sup
D̃T∈P(DT)

γ(DS ,DT) +
1

2
sup

X̃T∈P(XT)

dH∆H(XS , X̃T) + ϵ (Equation (9))

≤ L0/1(h;ZS) + sup
X̃T∈P(XT)

[
2γ(ZS ,ZT) + dH∆H(XS , X̃T)

]
+ ϵ

(Given non-negative functions a(x) and b(x), supx a(x) + supx b(x) ≤ 2 supx(a(x) + b(x)))

We remark that the theorem can be extended to any symmetric loss function that satisfies the triangle
inequality.

B DART Discussion

B.1 Using DART to robustify DANN against ℓp attacks

Here we provide a concrete example of DART, using DANN as the base UDA method, and assuming the
standard (white-box) ℓp threat model with perturbation set B(x) = {x̃ : ∥x̃ − x∥p ≤ α} for some positive
scalars p and α. In DANN, let g be the feature extractor, f be the network’s label predictor, and d be
the domain classifier (a.k.a. discriminator), which approximates the divergence between the two domains.
With this notation, the empirical proxy for domain divergence Ω can be written as ΩDANN(XS ,XT , g, d) =
− 1

ns

∑ns

i=1 ℓ((d◦g)(xsi), 1)−
1
nt

∑nt

i=1 ℓ((d◦g)(xti), 0), which represents the negated loss of the domain classifier
d (which classifies source domain examples as 1 and target examples as 0). To find a robust DANN against
ℓp attacks, Equation (7) can be written more explicitly as:

min
f,g

sup
d

sup
∥x̃t

i−xt
i∥p≤α,∀i

1

ns

ns∑
i=1

ℓ((f ◦ g)(x̃si), ysi) + λ2
1

nt

nt∑
i=1

ℓ((f ◦ g)(x̃ti), hp(x
t
i))

− λ1

(
1

ns

ns∑
i=1

ℓ((d ◦ g)(x̃si), 1) +
1

nt

nt∑
i=1

ℓ((d ◦ g)(x̃ti), 0)

)

where hp is a pseudo-label predictor. x̃si can be chosen as 1) clean source x̃si = xsi , 2) adversarial source
x̃si = argmax∥x̃i−xs

i∥p
≤ϵ ℓ(h(x̃i); y

s
i), or 3) KL source x̃si = argmax∥x̃i−xs

i∥p
≤ϵ KL((f ◦ g)(x̃i), (f ◦ g)(xsi)).

One common strategy for solving the problem above is by alternating optimization where we iterate
between: (i) optimizing for transformed source and target data x̃si and x̃ti for all i, (ii) optimizing over the
domain divergence d, (iii) optimizing the neural network f and g. The optimization problem over the neural
network’s weights (f, g, d) can be done using gradient based methods such as SGD. Optimization over the
transformed data X̃S and X̃T can be done using a wide range of constrained optimization methods [Bertsekas,
2016], such as projected gradient descent (PGD).

19

B.2 Pseudocode of DART

Algorithm 1 Divergence-Aware adveRsarial Training (DART)

Require: Labeled source training data {(xsi , ysi)}
ns

i=1, unlabeled target training data XT = {xti}
nt

i=1. Feature
extractor g, target classifier f . Training iteration T . Checkpoint frequency K. Pseudo-labeling approach.

1: Pre-train f, g using Equation (4).
2: Calculate pseudo-label ŶT for unlabeled target training data.
3: for t = 1, 2, . . . T do
4: Sample a random mini-batch of source and target examples with the same batch size.
5: Choose either clean source examples or apply one of the following two transformations to the source

examples: adversarial or KL.
6: Update f, g by optimizing over Equation (7).
7: if t % K = 0 then
8: If the pseudo labeling approach chosen can generate new pseudo labels during training, update the

pseudo-labels ŶT for the unlabeled target training data. Otherwise, keep using the initial pseudo
labels.

9: end if
10: end for
11: Return f ◦ g.

B.3 Pseudo labeling in DART

DART can use any pseudo labeling approach from the literature. Here we present a simple approach that we
used in the experiments. We assume that we are given a proxy that can be used to evaluate the model’s
accuracy (standard or robust)–this is the same proxy used for hyperparameter tuning. We maintain a
pseudo-label predictor hp (with the same model architecture as f ◦ g). In step 2 of Algorithm 1, we assign

weights of f ◦ g to hp, and generate pseudo-labels for the target data ŶT = hp(XT). In step 8 of Algorithm 1,
we approximate the standard accuracy of f ◦ g (using the proxy). If the accuracy is better than that of
the current pseudo-label predictor, we update the pseudo-label predictor’s (hp) weights to that of f ◦ g;
otherwise, the pseudo-label predictor’s (hp) weights remain unchanged. We then regenerate the pseudo-labels

ŶT = hp(XT).

C Experimental Details

C.1 Datasets

• DIGIT contains 5 popular digit datasets. In our implementation, we use the digit-five dataset presented
by [Peng et al., 2019]

1. MNIST is a dataset of greyscale handwritten digits. We include 64015 images.

2. MNIST-M is created by combining MNIST digits with the patches randomly extracted from color
photos of BSDS500 as their background. We include 64015 images.

3. SVHN contains RGB images of printed digits cropped from pictures of house number plates. We
include 96322 images.

4. Synthetic digits contains synthetically generated images of English digits embedded on random
backgrounds. We include 33075 images.

5. USPS is a grayscale dataset automatically scanned from envelopes by the U.S. Postal Service. We
include 9078 images.

20

• OfficeHome contains objects commonly found in office and home environments. It consists of images from 4
different domains: Artistic (2,427 images), Clip Art (4,365 images), Product (4,439 images) and Real-World
(4,357 images). For each domain, the dataset contains images of 65 object categories.

• PACS is created by intersecting the classes found in Caltech256 (Photo), Sketchy (Photo, Sketch), TU-Berlin
(Sketch) and Google Images (Art painting, Cartoon, Photo). It consists of four domains, namely Photo
(1,670 images), Art Painting (2,048 images), Cartoon (2,344 images) and Sketch (3,929 images). Each
domain contains seven categories.

• VisDA is a synthetic-to-real dataset consisting of two parts: synthetic and real. The synthetic dataset
contains 152,397 images generated by 3D rendering. The real dataset is built from the Microsoft COCO
training and validation splits, resulting in a collection of 55,388 object images that correspond to 12 classes.

C.2 Common Domain Divergence in UDA Methods

Recall the following notation: f represents the classifier, g represents the feature extractor, d represents the
discriminator.

1. Domain Adversarial Neural Network (DANN) [Ganin and Lempitsky, 2015].

Ω(XS ,XT , g, d) = sup
d

(
Exs∈XS

log(d ◦ g(xs)) + Ext∈XT
log(1− d ◦ g(xt))

)
.

2. Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]. Given kernel k(·, ·),

Ω(XS ,XT , g, k)

= Exs∈XS
k(g(xs), g(xs)) + Ext∈XT

k(g(xt), g(xt))− 2Exs∈XS
Ext∈XT

k(g(xs), g(xt)).

A similar idea has been used in DAN [Long et al., 2015], JAN [Long et al., 2017].

3. Central Moment Discrepancy (CMD). Given moment K, a range [a, b]d. Denote Ck(X) = Ex∈X((x−
E(x))k).

Ω(XS ,XT , g,K) =
1

|b− a|
∥∥Exs∈XS

(g(xs))− Ext∈XT
(g(xt))

∥∥
2

+

K∑
k=2

1

|b− a|k
∥Ck(g(XS))− Ck(g(XT))∥2

4. CORrelation ALignment (CORAL) [Sun and Saenko, 2016]. Define the covariance matrix
Cov(X) = Exi∈X,xj∈X [(xi − E [xi])(xj − E [xj])].

Ω(XS ,XT , g) = ∥Cov(g(XS))− Cov(g(XT))∥2F .

5. Kullback-Leibler divergence (KL) [Nguyen et al., 2021].

Ω(XS ,XT , g)

= Ext∈XT

[
log(pT (g(x

t)))− log(pS(g(x
t)))
]
+ Exs∈XS

[log(pS(g(x
s)))− log(pT (g(x

s)))]

where pS(z) ≈ Exs∈XS
p(z|xs), pT (z) ≈ Ext∈XT

p(z|xt), p(z|x) is a Gaussian distribution with a diagonal
covariance matrix and z is sampled via reparameterization trick.

6. Wasserstein Distance (WD) [Shen et al., 2018]. Hyperparameter λ.

Ω(XS ,XT , f, g, d) = sup
d

(
Exs∈XS

(d ◦ g)(xs)−Ext∈XT
(d ◦ g)(xt)−λ

(
∇g(x)(d ◦ g)(x)−1

)2)
.

21

C.3 Architectures

For the DIGIT dataset, we use the same convolutional neural network that has been used in [Gulrajani and
Lopez-Paz, 2020]– see Table 5 for details.

Layer
1 Conv2D(in=d, out=64)
2 ReLU
3 GroupNorm(groups=8)
4 Conv2D(in=64,out=128,stride=2)
5 ReLU
6 GroupNorm(8 groups)
7 Conv2D(in=128,out=128)
8 ReLU
9 GroupNorm(8 groups)
10 Conv2D(in=128,out=128)
11 ReLU
12 GroupNorm(8 groups)
13 Global average-pooling

Table 5: Details of Convolutional network architecture for DIGIT datasets (including MNIST, MNIST-M,
SVHN, SYN, USPS). All convolutions use 3× 3 kernels and “same” padding.

C.4 Data Preprocessing and Augmentation

For DIGIT datasets, we only resize all images to 32 × 32 pixels. For non-DIGIT datasets, we apply the
following standard data augmentation techniques [Gulrajani and Lopez-Paz, 2020] (for both the labeled
source training data and the unlabeled target training data): crops of random size and aspect ratio, resizing
to 224×224 pixels, random horizontal flips, random color jitter, grayscaling the image with 10% probability;
and normalized the data using ImageNet channel means and standard deviations. Note that for SRoUDA, we
do not apply the proposed random masked augmentation [Zhu et al., 2023] as well as RandAugment [Cubuk
et al., 2019] to ensure a fair comparison across all methods.

C.5 Hyperparameters

22

Condition Parameter Default value Random distribution
Network Resnet dropout rate 0 Uniform([0, 0.1, 0.5])

Algorithm λ1 1.0 10Uniform(−1,1)

λ2 1.0 10Uniform(−1,1)

discriminator steps 1 2Uniform(0,3)

adam β1 0.9 Uniform(0,0.9)
DIGIT data augmentation False False

batch size 128 128
number of iterations 20k 20k
learning rate 0.001 10Uniform(−4.5,−2.5)

discriminator learning rate 0.001 10Uniform(−4.5,−2.5)

weight decay 0 0
discriminator weight decay 0 10Uniform(−6,−3)

not DIGIT data augmentation True True
batch size 16 16
number of iterations 25k 25k
learning rate 0.00005 10Uniform(−5,−3.5)

discriminator learning rate 0.00005 10Uniform(−5,−3.5)

weight decay 0.0001 10Uniform(−5,−2)

discriminator weight decay 0.0001 10Uniform(−5,−2)

Table 6: Hyperparameters, the default values and distributions for random search.

D Results on all source-target pairs

D.1 Digits

Source→Target SVHN→MNIST SVHN→MNIST-M SVHN→SYN SVHN→USPS
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 82.6±0.2 64.9±0.9 64.0±0.9 51.8±0.6 21.0±2.3 20.2±2.4 93.8±0.1 80.2±0.4 79.2±0.4 88.0±1.0 69.2±1.1 67.4±1.6
AT(src only) 82.3±0.4 75.1±0.4 74.7±0.4 55.7±0.3 36.7±0.3 35.5±0.3 94.8±0.2 90.6±0.1 90.4±0.1 90.2±0.3 82.0±0.3 81.4±0.2
TRADES(src only) 83.0±0.6 74.9±0.2 74.4±0.2 54.3±0.3 38.9±0.2 37.6±0.2 94.3±0.1 90.7±0.1 90.4±0.2 91.5±0.3 81.7±0.1 80.9±0.1
AT(tgt,pseudo) 87.5±0.1 85.8±0.1 85.8±0.1 59.2±0.2 47.0±0.3 46.0±0.3 95.6±2.0 92.4±0.1 92.3±0.1 93.8±0.5 91.7±0.4 91.6±0.3
TRADES(tgt,pseudo) 86.6±0.2 84.8±0.1 84.7±0.1 61.1±0.3 50.4±0.6 49.4±0.5 95.7±0.2 93.3±0.2 93.2±0.2 94.3±0.4 92.1±0.2 92.0±0.1
AT+UDA 81.6±0.6 71.7±0.5 70.9±0.6 55.8±0.3 39.5±0.2 38.5±0.2 94.8±0.0 90.7±0.2 90.4±0.1 88.4±1.2 80.2±1.1 79.4±1.2
ARTUDA 92.6±0.7 91.2±0.7 91.1±0.7 58.0±0.7 48.0±1.2 47.2±1.3 97.0±0.2 94.8±0.1 94.7±0.1 98.1±0.1 97.0±0.2 96.9±0.1
SROUDA 86.5±0.1 84.0±0.2 83.9±0.2 59.9±0.6 50.1±0.6 48.9±0.6 95.9±0.1 93.9±0.1 93.8±0.1 94.5±0.3 91.9±0.9 91.8±0.9
DART(clean src) 98.7±0.1 98.2±0.2 98.2±0.2 70.2±1.4 61.7±1.3 61.4±1.3 97.2±0.1 94.4±0.3 94.3±0.3 98.5±0.1 97.8±0.1 97.7±0.1
DART(adv src) 98.7±0.1 98.3±0.2 98.3±0.2 68.5±1.5 59.8±1.2 59.3±1.2 97.0±0.0 95.0±0.0 94.9±0.0 98.3±0.4 97.5±0.4 97.4±0.4
DART(kl src) 98.6±0.2 98.2±0.2 98.2±0.2 72.6±1.4 63.6±1.7 63.2±1.8 97.1±0.1 94.9±0.1 94.8±0.1 98.4±0.0 97.4±0.1 97.7±0.1

Table 7: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on DIGIT dataset with a fix source domain SVHN and different
target domains.

23

Source→Target SYN→MNIST SYN→MNIST-M SYN→SVHN SYN→USPS
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 96.3±0.2 89.0±1.3 88.6±1.4 60.4±0.8 38.7±0.3 38.3±0.3 82.2±0.7 37.9±0.7 36.3±0.6 97.5±0.1 85.6±0.7 85.1±0.8
AT(src only) 96.6±0.1 94.4±0.1 94.3±0.1 63.4±0.5 43.1±0.3 42.9±0.3 79.0±0.5 49.2±0.3 48.4±0.3 97.3±0.0 93.4±0.1 93.2±0.1
TRADES(src only) 96.5±0.0 94.3±0.1 94.2±0.1 63.1±0.2 43.8±0.4 43.5±0.4 76.7±0.5 52.4±0.1 51.1±0.3 97.1±0.2 93.4±0.1 93.2±0.1
AT(tgt,pseudo) 97.2±0.0 96.8±0.0 96.8±0.0 65.9±0.6 55.8±0.5 55.2±0.5 84.6±0.2 70.9±0.0 69.9±0.1 98.1±0.1 97.3±0.2 97.3±0.2
TRADES(tgt,pseudo) 97.3±0.0 96.9±0.0 96.9±0.0 66.5±0.3 58.6±0.6 58.0±0.6 84.7±0.3 73.8±0.2 72.4±0.2 98.3±0.1 97.2±0.1 97.2±0.1
AT+UDA 95.9±0.1 94.0±0.1 94.0±0.1 68.2±0.4 51.5±0.2 51.3±0.2 82.3±0.3 53.5±0.3 52.8±0.3 96.2±0.2 92.7±0.2 92.5±0.2
ARTUDA 98.6±0.1 98.2±0.1 98.2±0.1 69.6±0.6 61.6±0.7 60.9±0.4 83.4±0.6 69.4±1.2 68.3±1.4 98.6±0.1 97.8±0.1 97.8±0.1
SROUDA 97.0±0.0 96.0±0.1 96.0±0.1 63.6±0.4 55.0±0.1 54.4±0.1 84.8±0.2 71.1±0.1 69.6±0.1 98.1±0.1 96.9±0.3 96.8±0.4
DART(clean src) 98.3±0.3 97.9±0.3 97.9±0.3 75.2±0.8 66.7±0.8 66.5±0.8 86.2±0.1 72.8±0.3 72.2±0.3 98.6±0.2 97.8±0.3 97.8±0.3
DART(adv src) 98.1±0.3 97.5±0.2 97.5±0.2 72.6±0.9 64.3±1.0 64.1±1.0 86.1±0.1 73.0±0.2 72.3±0.2 98.4±0.1 97.6±0.1 97.6±0.1
DART(kl src) 98.2±0.3 97.8±0.3 97.8±0.3 74.4±1.2 66.0±1.3 65.8±1.3 86.2±0.2 72.8±0.3 72.1±0.3 98.4±0.1 97.5±0.0 97.5±0.0

Table 8: Standard / Robust accuracy (%) of target test data on DIGIT dataset with a fix source domain
SYN and different target domains.

Source→Target USPS→MNIST USPS→MNIST-M USPS→SVHN USPS→SYN
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 98.3±0.1 95.9±0.4 95.8±0.4 54.1±3.4 40.7±2.2 40.5±2.2 21.2±1.4 9.8±1.4 9.6±1.4 40.8±1.6 33.2±1.8 33.1±1.8
AT(src only) 98.3±0.0 97.5±0.0 97.5±0.0 60.7±0.2 48.2±0.2 48.0±0.2 24.0±0.3 15.5±0.2 15.3±0.2 46.3±0.4 38.6±0.4 38.5±0.4
TRADES(src only) 98.4±0.0 97.5±0.0 97.5±0.0 60.7±0.3 48.3±0.1 48.1±0.1 24.4±0.2 15.1±0.3 14.9±0.3 46.2±0.4 39.1±0.4 39.0±0.4
AT(tgt,pseudo) 98.5±0.1 98.2±0.1 98.2±0.1 63.9±0.3 56.3±0.1 56.0±0.1 24.9±0.1 19.7±0.1 19.5±0.1 45.5±0.1 41.9±0.2 41.8±0.2
TRADES(tgt,pseudo) 98.5±0.1 98.2±0.1 98.2±0.1 64.1±0.0 58.3±0.2 57.9±0.2 24.7±0.1 20.3±0.2 20.1±0.2 45.3±0.2 42.6±0.2 42.5±0.2
AT+UDA 98.2±0.0 97.6±0.1 97.6±0.1 62.4±0.5 50.4±0.4 50.1±0.3 23.0±0.1 14.6±1.0 14.5±1.1 45.7±1.1 39.7±0.5 39.6±0.4
ARTUDA 99.0±0.0 98.8±0.0 98.8±0.0 56.9±0.7 52.2±0.8 52.1±0.8 23.8±0.9 20.0±0.3 19.9±0.3 49.0±1.1 49.3±0.5 49.3±0.5
SROUDA 98.4±0.0 97.9±0.1 97.9±0.1 62.5±0.1 54.2±0.4 53.7±0.4 21.4±0.8 18.0±0.3 17.9±0.3 45.6±0.0 41.6±0.1 41.4±0.1
DART(clean src) 98.8±0.0 98.4±0.0 98.4±0.0 66.8±1.0 60.7±0.8 60.6±0.8 29.1±0.4 25.2±0.2 25.1±0.2 53.2±0.5 50.7±0.4 50.6±0.4
DART(adv src) 98.8±0.0 98.5±0.0 98.5±0.0 67.3±0.8 61.0±0.9 60.8±0.9 29.7±0.8 25.5±0.5 25.4±0.4 53.0±0.2 50.6±0.2 50.6±0.2
DART(kl src) 98.8±0.1 98.5±0.1 98.5±0.1 68.4±0.8 62.0±0.8 61.8±0.8 29.0±0.9 25.2±0.7 25.1±0.7 53.8±0.5 51.3±0.6 51.3±0.6

Table 9: Standard / Robust accuracy (%) of target test data on DIGIT dataset with a fix source domain
USPS and different target domains.

Source→Target MNIST→MNIST-M MNIST→SVHN MNIST→SYN MNIST→USPS
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 62.4±3.9 45.9±3.2 45.6±3.2 21.8±0.2 12.4±0.6 12.2±0.7 47.0±1.4 39.0±2.5 38.8±2.5 98.8±0.2 97.2±0.4 97.1±0.4
AT(src only) 67.7±0.5 51.8±0.0 51.4±0.0 25.5±1.2 14.4±0.1 14.2±0.0 50.0±0.5 44.1±0.4 44.0±0.4 99.0±0.1 98.1±0.1 98.1±0.1
TRADES(src only) 67.0±0.4 52.2±0.2 51.9±0.2 25.5±0.9 14.1±0.1 13.9±0.1 49.6±0.7 43.9±0.5 43.8±0.5 98.8±0.2 98.0±0.1 98.0±0.1
AT(tgt,pseudo) 70.2±0.1 61.8±0.3 61.4±0.3 22.9±0.0 17.9±0.1 17.7±0.1 51.0±0.5 48.0±0.5 47.9±0.5 99.0±0.2 98.4±0.2 98.4±0.2
TRADES(tgt,pseudo) 70.0±0.2 63.7±0.1 63.2±0.2 22.5±0.1 17.9±0.2 17.7±0.2 51.2±0.6 48.9±0.7 48.8±0.7 99.1±0.2 98.6±0.2 98.6±0.2
AT+UDA 68.9±0.5 54.7±0.4 54.2±0.3 21.3±1.3 17.6±0.5 17.5±0.5 49.9±0.4 44.0±0.4 43.8±0.4 98.9±0.1 98.1±0.1 98.1±0.1
ARTUDA 63.3±0.4 56.5±0.7 56.3±0.7 20.0±0.4 18.7±0.1 18.6±0.1 52.2±0.5 51.0±0.6 50.9±0.6 99.2±0.1 98.8±0.2 98.8±0.2
SROUDA 69.9±0.2 62.0±0.2 61.4±0.2 23.0±1.8 18.8±0.4 18.7±0.3 51.2±0.5 48.6±0.6 48.5±0.6 99.0±0.2 98.5±0.2 98.5±0.2
DART(clean src) 77.7±1.8 71.2±1.9 71.1±1.9 22.5±0.1 19.1±0.3 19.0±0.3 53.2±0.6 51.1±0.6 51.1±0.6 99.1±0.1 98.5±0.1 98.5±0.1
DART(adv src) 78.4±0.3 71.3±0.2 71.1±0.2 22.6±0.3 19.4±0.1 19.3±0.1 53.2±0.5 51.2±0.6 51.2±0.6 99.1±0.2 98.4±0.1 98.4±0.1
DART(kl src) 77.3±2.1 70.6±2.1 70.4±2.1 22.5±0.1 19.8±0.2 19.7±0.2 53.4±0.3 51.4±0.2 51.3±0.2 99.1±0.1 98.6±0.1 98.6±0.1

Table 10: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of DIGIT dataset with a fix source domain MNIST and different target domains.

Source→Target MNIST-M→MNIST MNIST-M→SVHN MNIST-M→SYN MNIST-M→USPS
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 98.4±0.1 94.1±1.1 94.0±1.2 35.9±0.8 5.7±1.6 5.4±1.5 69.0±1.4 38.4±1.2 38.0±1.2 97.5±0.1 78.9±2.8 78.1±3.1
AT(src only) 98.7±0.0 97.8±0.1 97.7±0.1 34.0±0.5 22.8±0.2 22.3±0.2 68.9±0.1 54.8±0.3 54.4±0.3 96.8±0.1 91.2±0.4 91.0±0.5
TRADES(src only) 98.6±0.1 97.7±0.0 97.7±0.0 32.0±0.1 24.3±0.1 23.8±0.1 67.3±0.6 54.9±0.2 54.3±0.2 96.6±0.4 92.3±0.3 92.2±0.3
AT(tgt,pseudo) 98.9±0.1 98.6±0.0 98.6±0.0 43.4±0.1 32.0±0.4 30.8±0.4 77.3±0.3 70.1±0.4 69.8±0.4 98.3±0.1 97.5±0.1 97.5±0.1
TRADES(tgt,pseudo) 98.9±0.1 98.6±0.1 98.6±0.1 43.2±0.5 31.7±0.4 30.4±0.4 77.7±0.3 72.0±0.6 71.7±0.6 98.5±0.3 97.6±0.2 97.6±0.2
AT+UDA 98.8±0.1 98.0±0.1 98.0±0.1 37.3±1.2 18.2±0.8 17.5±0.8 73.5±0.6 61.6±0.5 61.3±0.6 96.4±0.5 92.1±0.8 91.9±0.8
ARTUDA 99.2±0.1 99.0±0.1 99.0±0.1 34.5±2.9 22.6±0.8 21.4±0.7 92.3±0.8 88.5±1.3 88.2±1.3 99.0±0.1 98.1±0.3 98.1±0.2
SROUDA 99.1±0.0 98.9±0.0 98.9±0.0 48.2±0.4 38.2±0.1 37.1±0.2 76.4±0.1 70.4±0.2 70.1±0.2 98.4±0.1 97.7±0.2 97.7±0.2
DART(clean src) 99.3±0.0 98.9±0.0 98.9±0.0 52.3±2.4 41.7±1.6 41.3±1.6 92.6±0.4 88.3±0.8 88.2±0.9 99.1±0.1 98.2±0.2 98.2±0.2
DART(adv src) 99.4±0.1 99.1±0.1 99.1±0.1 48.4±1.8 38.6±1.3 38.2±1.3 89.6±0.9 85.5±1.1 85.4±1.1 98.9±0.1 98.2±0.1 98.2±0.1
DART(kl src) 99.3±0.0 99.1±0.0 99.1±0.0 49.9±1.8 40.3±1.2 40.0±1.2 91.8±0.8 87.4±1.1 87.2±1.1 99.0±0.2 98.5±0.2 98.5±0.2

Table 11: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on DIGIT dataset with a fix source domain MNIST-M and
different target domains.

24

D.2 OfficeHome

Source→Target RealWorld→Art RealWorld→Clipart RealWorld→Product
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 61.0±0.6 0.4±0.1 0.0±0.0 55.5±0.6 3.8±0.5 1.1±0.2 74.3±0.9 1.9±0.2 0.2±0.1
AT(src only) 47.2±1.2 28.0±1.2 27.3±1.1 54.1±0.8 40.9±1.0 39.7±1.0 66.7±0.3 49.9±1.1 48.9±1.3
TRADES(src only) 45.6±0.4 27.5±1.3 26.5±1.4 53.9±1.7 41.9±0.7 41.0±0.6 66.9±1.3 48.9±0.8 47.4±0.5
AT(tgt,pseudo) 46.4±0.8 29.4±1.4 28.8±1.2 55.0±0.5 49.4±0.6 48.9±0.5 72.3±1.5 60.4±0.8 59.6±0.9
TRADES(tgt,pseudo) 47.9±2.4 27.4±0.4 26.5±0.3 55.6±0.9 49.7±0.8 49.3±0.8 70.0±1.4 61.9±1.2 61.3±1.2
AT+UDA 50.3±1.5 27.7±0.4 26.5±0.3 53.8±1.0 44.2±0.3 43.3±0.2 67.0±1.0 51.2±0.9 49.7±0.9
ARTUDA 49.5±2.0 28.4±1.0 26.1±1.1 58.3±0.7 48.5±0.9 46.7±0.5 73.0±0.6 58.3±0.4 55.7±0.6
SROUDA 42.1±1.4 27.5±0.1 25.2±0.3 55.4±0.6 47.3±0.7 46.2±0.8 70.7±0.6 60.6±1.2 58.6±2.0
DART(clean src) 53.7±1.0 29.1±1.6 27.2±1.1 58.6±0.4 49.8±1.1 49.0±1.0 74.0±0.9 60.2±1.5 59.1±1.4
DART(adv src) 49.8±2.3 32.3±1.7 31.3±1.4 57.8±0.5 52.5±0.5 51.9±0.5 73.8±0.7 63.1±0.2 62.3±0.2
DART(kl src) 53.4±1.5 32.0±1.6 30.8±1.6 57.4±0.5 51.8±0.9 51.0±0.8 73.0±0.6 63.2±0.9 62.5±0.9

Table 12: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on OfficeHome dataset with a fix source domain RealWorld
and different target domains.

Source→Target Art→Clipart Art→Product Art→RealWorld
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 49.1±0.3 2.8±0.4 1.1±0.2 55.5±0.8 0.9±0.2 0.3±0.1 66.8±0.8 1.0±0.3 0.1±0.1
AT(src only) 45.4±0.6 32.0±0.3 30.7±0.2 48.5±0.4 29.8±0.3 28.0±0.6 57.2±2.1 36.1±0.8 34.7±1.1
TRADES(src only) 46.1±0.7 32.8±0.6 31.5±0.8 50.4±0.6 31.2±0.1 29.5±0.1 58.8±1.3 35.2±0.6 33.4±0.7
AT(tgt,pseudo) 48.0±0.5 41.7±0.7 41.2±0.7 55.9±0.4 46.2±0.3 45.6±0.5 57.6±0.6 40.5±1.1 39.6±1.0
TRADES(tgt,pseudo) 48.6±0.3 43.6±0.4 43.1±0.4 55.9±0.4 47.6±0.1 47.2±0.3 57.1±1.6 41.8±0.2 40.6±0.5
AT+UDA 45.6±0.6 32.9±0.6 32.2±0.5 48.4±1.0 30.0±1.0 28.6±1.2 56.2±1.6 34.6±0.9 33.3±0.8
ARTUDA 50.9±1.6 41.7±1.7 40.0±2.0 55.0±0.8 41.2±1.0 39.2±1.4 61.7±0.6 42.5±1.0 39.6±0.4
SROUDA 48.2±0.5 38.9±0.5 37.5±0.8 52.9±0.6 45.8±0.3 44.6±0.3 57.4±1.4 44.2±0.7 42.0±1.1
DART(clean src) 50.4±0.9 42.2±0.6 41.4±0.5 60.1±0.2 47.7±1.0 46.4±1.4 62.7±0.5 40.7±0.5 38.5±0.4
DART(adv src) 49.8±0.3 42.5±0.5 41.9±0.6 58.5±0.9 47.1±1.4 46.4±1.5 61.6±0.7 41.8±0.3 39.4±0.3
DART(kl src) 50.8±0.1 43.9±0.2 43.3±0.2 57.9±1.0 47.7±0.6 46.7±0.6 62.1±0.6 43.8±1.1 41.4±1.3

Table 13: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on OfficeHome dataset with a fix source domain Art and
different target domains.

Source→Target Clipart→Art Clipart→Product Clipart→RealWorld
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 45.2±0.8 0.0±0.0 0.0±0.0 47.9±0.8 3.6±1.0 1.1±0.3 67.4±1.5 0.6±0.3 0.1±0.1
AT(src only) 34.4±1.8 14.5±0.6 13.0±0.3 51.2±1.5 33.1±0.8 31.7±0.8 53.8±1.0 28.3±0.1 26.5±0.7
TRADES(src only) 30.6±2.5 16.6±0.4 15.1±0.5 48.6±1.5 34.1±0.9 32.8±0.7 50.2±2.1 30.9±0.8 28.7±1.2
AT(tgt,pseudo) 39.4±1.5 23.0±0.1 22.0±0.4 55.6±0.8 46.8±1.2 46.5±1.2 56.5±0.8 41.5±0.4 40.4±0.4
TRADES(tgt,pseudo) 40.0±1.0 22.0±0.4 21.1±0.5 56.2±0.3 47.9±0.5 47.3±0.4 56.2±0.3 43.8±1.0 42.8±0.5
AT+UDA 39.6±1.9 16.4±1.0 15.2±1.2 52.4±1.1 34.5±0.7 32.5±1.3 57.6±0.5 32.0±0.8 28.0±1.8
ARTUDA 42.0±0.2 20.2±1.0 18.9±1.2 56.1±1.3 44.1±1.4 42.9±1.5 58.9±1.2 39.2±0.6 37.9±0.5
SROUDA 36.3±0.3 23.8±0.6 21.3±0.1 53.9±1.0 47.2±1.1 45.7±1.2 55.1±1.7 42.1±0.8 39.9±1.1
DART(clean src) 44.1±0.9 24.2±0.5 22.6±0.3 57.0±0.3 45.5±0.6 44.8±0.5 57.8±0.3 39.6±0.2 38.3±0.3
DART(adv src) 43.0±1.3 26.1±1.1 25.0±1.0 58.0±1.0 47.6±0.9 47.0±0.8 58.0±0.2 41.5±0.9 40.4±0.8
DART(kl src) 42.6±0.8 24.6±0.8 23.0±0.7 58.3±0.8 48.8±1.4 48.5±1.3 58.9±0.8 40.8±0.6 39.9±0.4

Table 14: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on OfficeHome dataset with a fix source domain Clipart and
different target domains.

25

Source→Target Product→Art Product→Clipart Product→RealWorld
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 49.1±0.3 0.2±0.1 0.0±0.0 57.4±0.2 2.0±0.5 0.3±0.1 60.0±0.6 0.3±0.1 0.0±0.0
AT(src only) 33.8±1.3 15.3±0.4 13.8±0.4 47.2±0.1 34.1±0.6 32.1±0.6 56.9±1.3 34.6±1.0 32.1±0.9
TRADES(src only) 29.5±3.1 13.5±0.9 12.5±0.9 45.7±1.1 32.0±0.4 30.9±0.4 54.5±0.6 33.4±0.1 32.1±0.1
AT(tgt,pseudo) 38.5±1.6 20.3±0.6 19.3±0.6 49.1±0.8 42.9±0.4 42.3±0.6 61.4±1.5 44.2±1.2 43.3±1.2
TRADES(tgt,pseudo) 37.7±2.2 22.1±0.8 21.2±0.9 49.3±1.1 44.3±1.7 43.8±1.9 61.6±0.9 44.0±1.5 42.9±1.4
AT+UDA 36.1±3.4 14.8±0.9 14.2±0.6 48.9±0.7 37.9±1.3 36.7±1.4 59.3±1.8 35.8±1.1 34.4±1.2
ARTUDA 38.3±2.1 18.0±1.4 15.8±1.1 48.5±0.9 42.8±0.8 42.2±0.6 62.4±0.3 42.7±2.0 40.9±2.3
SROUDA 33.5±1.3 22.4±1.3 20.8±1.1 49.9±0.4 41.6±0.6 39.9±0.3 60.2±2.0 45.6±0.7 43.2±0.7
DART(clean src) 43.7±2.5 21.5±0.8 20.0±1.0 52.5±1.3 44.8±1.3 43.7±1.4 63.5±0.8 43.6±0.5 42.6±0.5
DART(adv src) 41.7±0.5 23.9±0.5 22.2±0.5 50.0±0.7 44.8±0.9 44.4±0.9 64.4±1.1 47.7±0.9 46.4±1.0
DART(kl src) 41.8±1.0 23.0±0.0 21.0±0.1 52.0±0.9 44.3±1.1 43.6±1.2 64.2±1.6 44.5±1.2 43.3±1.2

Table 15: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on OfficeHome dataset with a fix source domain Product and
different target domains.

D.3 PACS

Source→Target Photo→Art Photo→Clipart Photo→Sketch
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 89.1±0.2 3.9±3.1 0.0±0.0 80.5±0.2 11.5±2.5 2.2±1.3 74.0±1.1 24.0±2.1 5.6±1.3
AT(src only) 71.0±3.0 32.7±1.6 31.1±1.7 71.4±1.9 50.4±0.6 48.6±0.2 69.3±0.5 61.0±0.6 59.6±0.7
TRADES(src only) 61.5±2.8 33.2±0.7 32.4±0.5 72.9±2.2 50.0±0.7 47.3±0.5 68.9±0.8 59.3±1.0 58.1±1.4
AT(tgt,pseudo) 82.3±0.7 59.1±0.7 58.5±0.9 85.5±0.6 77.4±1.0 77.1±0.9 78.2±0.4 75.5±0.3 75.1±0.3
TRADES(tgt,pseudo) 82.1±1.0 63.2±1.5 62.1±1.3 84.4±0.2 76.7±0.9 76.5±0.8 78.7±0.5 75.3±0.7 74.9±0.7
AT+UDA 73.3±3.5 44.1±1.4 29.5±2.1 70.6±1.6 62.2±1.5 60.9±1.5 70.6±1.6 62.2±1.5 60.9±1.5
ARTUDA 85.9±1.1 60.1±1.4 56.3±1.2 87.5±1.7 78.1±0.5 77.5±0.6 74.9±1.3 70.4±1.4 69.2±1.3
SROUDA 76.1±1.7 56.4±0.2 54.7±0.3 82.4±1.3 71.7±1.8 70.1±1.8 71.9±0.9 63.7±1.2 60.8±2.0
DART(clean src) 85.2±1.2 58.0±0.9 56.7±1.3 89.4±0.8 80.5±0.3 79.9±0.1 82.5±0.8 79.9±0.4 79.5±0.5
DART(adv src) 84.1±1.2 59.3±0.3 58.5±0.2 87.7±0.7 80.7±0.5 80.1±0.4 81.0±1.0 78.1±0.4 77.7±0.4
DART(kl src) 84.1±0.4 58.8±1.5 57.8±1.5 87.3±0.4 79.5±0.8 79.3±0.8 82.4±1.6 79.2±1.2 78.8±1.1

Table 16: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on PACS dataset with a fix source domain Photo and different
target domains.

Source→Target Clipart→Art Clipart→Photo Clipart→Sketch
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 84.9±0.7 0.6±0.3 0.0±0.0 92.5±0.7 1.4±0.4 0.0±0.0 78.2±0.9 25.7±2.2 8.7±0.9
AT(src only) 59.6±1.0 30.2±1.0 28.9±1.0 77.9±1.9 53.8±0.5 51.8±0.3 77.1±0.9 66.6±0.6 65.1±0.8
TRADES(src only) 58.7±2.5 28.0±0.4 27.1±0.5 78.9±1.3 53.8±0.8 51.9±1.0 74.6±0.9 67.6±0.2 66.7±0.2
AT(tgt,pseudo) 76.2±1.7 55.0±1.6 54.7±1.6 93.3±0.5 80.3±0.8 80.0±0.8 80.0±0.3 77.4±0.2 77.1±0.3
TRADES(tgt,pseudo) 78.5±1.7 58.0±1.4 56.8±1.0 92.2±0.1 82.1±0.5 81.7±0.6 79.9±0.5 77.6±0.4 77.5±0.4
AT+UDA 68.9±1.2 46.2±5.9 23.3±1.7 78.8±2.3 61.3±2.0 41.8±5.1 75.9±1.7 67.7±1.4 66.8±1.2
ARTUDA 76.5±2.5 53.3±1.6 52.2±1.7 89.4±0.9 75.0±1.7 71.7±1.0 80.3±0.4 74.9±1.0 73.8±1.1
SROUDA 72.0±1.5 50.9±1.1 49.2±1.6 90.3±0.9 79.9±2.0 79.2±1.9 76.7±1.2 72.3±1.3 71.3±1.3
DART(clean src) 77.4±1.1 54.6±0.3 53.8±0.2 94.2±0.5 79.8±1.2 78.6±1.2 84.9±0.4 81.0±0.7 80.6±0.7
DART(adv src) 78.2±1.3 56.3±1.3 55.9±1.2 90.6±0.9 77.6±1.4 77.1±1.2 85.5±1.0 82.4±1.2 82.0±1.3
DART(kl src) 78.9±1.0 55.5±1.0 54.6±1.6 92.0±0.1 78.1±0.8 77.5±0.6 84.6±0.3 81.0±0.5 80.5±0.6

Table 17: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on PACS dataset with a fix source domain Clipart and different
target domains.

26

Source→Target Art→Clipart Art→Photo Art→Sketch
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 84.3±0.6 12.4±6.1 1.1±0.8 97.9±0.4 2.7±1.5 0.0±0.0 84.9±0.7 0.6±0.3 17.5±5.2
AT(src only) 79.2±0.4 63.9±1.2 63.0±1.0 82.5±0.6 65.8±0.5 65.3±0.2 79.9±1.1 72.4±1.2 71.4±1.2
TRADES(src only) 81.5±1.5 62.5±2.0 60.8±1.9 87.9±0.6 70.8±0.8 69.9±0.6 78.8±1.1 71.5±0.7 70.7±0.6
AT(tgt,pseudo) 85.1±0.1 76.5±0.9 76.2±0.8 95.0±1.4 83.1±1.2 82.2±1.2 84.8±0.1 81.1±0.6 81.0±0.6
TRADES(tgt,pseudo) 85.1±0.9 77.2±1.0 76.9±1.0 95.3±0.7 82.2±0.6 81.4±0.4 86.1±0.7 83.3±0.7 83.0±0.7
AT+UDA 78.5±1.8 65.1±0.6 64.5±0.5 79.0±2.0 57.8±2.1 57.3±1.9 80.8±0.7 71.6±0.3 70.4±0.6
ARTUDA 88.3±2.1 76.0±1.7 74.3±2.1 95.0±0.6 78.5±1.3 74.7±1.3 80.3±1.3 61.5±1.0 53.5±1.8
SROUDA 84.2±1.4 75.8±0.6 75.1±0.5 94.1±0.7 81.5±1.0 80.3±1.1 77.3±4.6 73.2±4.9 72.6±4.8
DART(clean src) 89.1±0.3 79.1±0.3 78.7±0.2 95.9±0.7 81.4±1.4 80.3±1.6 89.5±0.6 86.4±0.5 85.8±0.6
DART(adv src) 88.9±0.4 79.2±0.9 78.3±1.0 94.1±0.4 81.3±0.6 80.6±0.8 87.9±0.9 84.6±0.9 84.3±0.9
DART(kl src) 89.4±0.7 80.9±1.0 80.5±1.2 96.1±0.5 81.1±0.4 80.5±0.4 88.3±0.6 85.4±0.5 85.1±0.5

Table 18: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on PACS dataset with a fix source domain Art and different
target domains.

Source→Target Sketch→Art Sketch→Clipart Sketch→Photo
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 68.0±1.2 1.5±1.2 0.7±0.5 72.3±1.4 14.0±4.5 7.4±3.1 71.1±4.0 0.3±0.1 0.0±0.0
AT(src only) 22.3±1.4 19.0±0.9 18.6±1.1 66.6±1.7 40.2±1.1 38.7±1.5 31.7±5.5 22.7±1.1 22.2±1.3
TRADES(src only) 26.8±4.2 17.3±2.1 11.6±4.8 67.1±0.8 43.4±1.3 42.6±1.4 35.0±5.5 21.3±2.4 12.3±4.3
AT(tgt,pseudo) 62.4±2.2 37.5±0.8 36.7±0.5 72.5±1.8 64.0±1.2 63.8±1.1 88.8±0.7 73.6±0.7 72.9±0.7
TRADES(tgt,pseudo) 69.1±2.3 44.2±2.5 43.2±2.2 71.6±0.6 63.8±0.6 63.4±0.4 89.6±0.7 76.4±1.4 75.6±1.4
AT+UDA 47.0±1.2 28.5±1.4 6.2±1.0 67.9±1.6 40.4±0.8 38.2±0.6 32.4±3.3 27.2±2.1 12.5±4.3
ARTUDA 49.5±2.4 31.7±3.4 31.1±3.2 38.1±2.5 25.5±1.8 22.9±1.4 48.9±1.8 40.4±2.9 39.6±3.2
SROUDA 24.5±1.7 22.4±0.3 22.4±0.4 72.4±1.0 62.3±0.2 61.3±0.2 91.9±0.5 73.1±3.6 70.5±4.7
DART(clean src) 71.9±1.8 53.1±4.4 52.4±4.6 78.4±0.7 69.2±0.9 68.9±0.8 87.8±1.4 76.8±1.0 75.9±1.1
DART(adv src) 67.8±1.4 47.4±2.9 46.6±3.0 77.3±0.8 68.2±1.0 67.9±1.1 89.3±0.8 77.6±1.5 77.0±1.7
DART(kl src) 69.4±0.5 49.3±1.4 48.6±1.6 80.0±0.5 70.3±0.2 70.1±0.2 90.5±0.5 77.7±1.7 77.2±1.9

Table 19: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on PACS dataset with a fix source domain Sketch and different
target domains.

27

D.4 VISDA

Source→Target Synthetic→Real Real→Synthetic
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 67.4±0.2 0.5±0.2 0.0±0.0 78.6±0.9 0.8±0.1 0.0±0.0
AT(src only) 19.0±0.2 18.0±0.3 17.2±0.4 53.5±0.8 41.6±0.4 39.8±0.4
TRADES(src only) 18.6±0.1 16.5±0.7 16.4±0.7 54.4±0.5 42.6±0.5 41.3±0.6
AT(tgt, fix) 69.6±0.3 58.3±0.7 57.5±0.7 85.7±0.2 82.0±0.2 81.7±0.2
TRADES(tgt, fix) 68.1±0.7 57.9±0.5 56.9±0.5 85.1±0.3 81.5±0.5 81.2±0.5
AT+UDA 48.0±1.1 24.1±0.9 18.5±1.4 66.4±0.6 66.4±0.6 47.8±0.8
ARTUDA 45.2±4.8 32.5±2.7 31.9±2.6 72.5±2.5 62.6±0.3 60.6±0.4
SROUDA 48.2±2.7 33.4±0.7 30.8±0.7 81.2±1.4 72.9±1.3 71.7±1.6
DART(clean src) 69.5±0.2 58.0±0.5 57.5±0.6 87.3±0.3 85.3±0.2 85.1±0.3
DART(adv src) 69.0±0.4 57.5±0.8 56.9±0.9 86.3±0.7 84.4±0.7 84.3±0.7
DART(kl src) 69.6±1.2 57.4±1.2 58.5±0.6 86.8±0.3 85.3±0.3 85.2±0.3

Table 20: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy
under AutoAttack (aa acc) of target test data on VisDA dataset.

28

E Additional Experimental Results

E.1 Results on source test data

While our primary objective is to defend against attacks on the target domain, we note that DART continues
to exhibit robustness against adversarial attacks on the source domain. In Table 21, we provide the standard
and robust accuracy for the PGD attack on source test data. These results clearly demonstrate that DART,
when employing an adversarial source or KL source, consistently maintains or even improves robustness on
source test data.

Dataset DIGIT OfficeHome PACS VisDA
Algorithm nat acc pgd acc nat acc pgd acc nat acc pgd acc nat acc pgd acc
Natural DANN 96.5±0.1 85.7±0.1 71.2±0.2 1.2±0.1 89.7±0.4 12.3±1.4 88.0±0.7 1.9±0.2
AT(src only) 96.7±0.1 90.4±0.2 68.9±0.9 47.1±0.3 82.9±1.6 64.6±1.5 60.7±6.1 47.8±4.9
TRADES(src only) 96.5±0.0 90.5±0.2 68.8±0.2 47.5±0.4 81.5±2.2 62.5±1.9 72.2±1.8 57.7±1.6
AT(tgt,pseudo) 76.6±0.4 68.2±0.4 45.5±0.2 28.0±0.1 52.2±1.4 33.3±1.1 37.7±2.2 28.7±1.2
TRADES(tgt,pseudo) 79.3±1.2 69.6±0.7 45.2±0.8 29.6±0.3 55.2±1.1 36.7±0.7 37.9±0.6 28.9±0.5
AT+UDA 96.2±0.2 89.6±0.3 66.9±0.9 45.0±0.3 83.4±1.0 64.5±1.4 82.8±1.0 68.0±0.9
ARTUDA 96.1±0.1 82.8±0.0 67.3±0.3 38.4±0.2 85.1±1.0 47.0±0.2 81.0±3.1 31.5±2.1
SROUDA 82.6±0.2 73.0±0.3 46.2±0.2 30.4±0.2 58.3±1.4 33.7±1.5 35.1±4.0 19.7±1.6
DART(clean src) 96.0±0.0 82.4±0.2 65.1±0.7 37.6±0.4 85.1±0.1 51.5±0.6 80.9±2.0 38.6±2.0
DART(adv src) 96.1±0.0 90.5±0.1 65.0±0.6 45.7±0.4 86.0±0.8 68.7±0.5 77.8±0.8 64.3±1.1
DART(kl src) 95.9±0.0 89.4±0.1 64.9±0.4 44.6±0.3 85.5±0.1 67.4±0.3 80.3±1.2 62.8±1.2

Table 21: Standard / Robust accuracy(%) of source test data with an average of all source-target pairs
for all datasets. These experiments compare 11 algorithms across 46 source-target pairs in the exact same
conditions.

E.2 Robustness for varying attack iterations

In Figure 2, we present a plot of the robust accuracy vs. the number of attack iterations (for a fixed
perturbation size of 2/255). The results indicate that 20 attack iterations are sufficient to achieve the
strongest PGD attack within the given perturbation size.

Figure 2: Robust accuracy as a function of attack iterations for different algorithms on PACS (Photo→Sketch).

E.3 Results for perturbation size of 8/255

We conducted additional experiments with α = 8/255 on four DIGIT source-target pairs (fixing one source as
SVHN and trying all possible targets) and three PACS source-target pairs (fixing one source as Photo and

29

trying all possible targets). We compare DART with some of the most competitive methods. The algorithms
were trained and evaluated using the same α. The results, as shown in the tables below, indicate that DART
outperforms other methods on average. These findings are consistent with the results of α = 2/255.

Source→Target SVHN→MNIST SVHN→MNIST-M SVHN→SYN SVHN→USPS
Algorithm clean acc pgd acc clean acc pgd acc clean acc pgd acc clean acc pgd acc
Natural DANN 75.5±0.2 34.9±1.0 55.1±1.0 5.9±0.1 93.8±0.1 25.5±0.8 87.9±0.6 33.7±1.4
AT(tgt,pseudo) 88.0±0.1 84.5±0.1 62.5±0.9 43.2±0.3 95.8±0.0 87.2±0.1 95.5±0.4 90.5±0.3
TRADES(tgt,pseudo) 88.2±0.4 84.9±0.6 63.1±1.5 41.5±1.4 96.0±0.1 89.1±0.4 95.5±0.2 91.4±0.4
ARTUDA 96.8±0.7 94.2±1.2 48.6±2.5 24.1±2.6 95.2±0.2 82.7±0.4 98.5±0.1 94.0±0.8
SROUDA 87.0±0.3 80.4±0.4 53.6±1.7 39.6±1.1 96.4±0.1 89.1±0.1 96.5±0.2 88.8±1.0
DART(clean src) 99.0±0.0 97.8±0.2 62.1±0.4 45.9±0.1 97.1±0.1 88.6±0.4 98.8±0.1 96.2±0.1

Table 22: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) of target test data on
DIGIT dataset with a fixed source domain (SVHN) and different target domains.

Source→Target Photo→Art Photo→Clipart Photo→Sketch
Algorithm clean acc pgd acc clean acc pgd acc clean acc pgd acc
Natural DANN 89.1±0.2 0.0±0.0 80.5±0.2 1.1±0.5 74.0±1.1 0.0±0.0
AT(tgt,pseudo) 33.8±1.2 26.9±0.5 81.9±0.6 65.1±1.5 77.0±0.5 72.0±0.5
TRADES(tgt,pseudo) 62.6±3.4 29.7±1.0 80.9±1.2 66.5±1.3 77.2±0.5 72.5±0.6
ARTUDA 26.6±0.7 23.5±1.0 71.1±2.8 52.9±1.7 63.4±4.9 57.1±3.5
SROUDA 29.0±0.6 24.4±0.8 81.2±1.4 64.1±0.7 50.2±3.8 41.9±2.7
DART(clean src) 52.8±6.0 28.1±2.6 85.3±0.8 68.9±1.6 79.9±0.9 74.0±0.9

Table 23: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) of target test data on
PACS dataset with a fixed source domain (Photo) and different target domains.

30

	Introduction
	Related Work

	Problem Setup and Preliminaries
	Standard UDA Theory

	Adversarially Robust UDA Theory
	Divergence Aware Adversarial Training: a practical defense
	Empirical Evaluation
	DomainRobust: A PyTorch Testbed for UDA under Adversarial Attacks
	Results

	Conclusion
	Proof of Theorem 3.1
	DART Discussion
	Using DART to robustify DANN against p attacks
	Pseudocode of DART
	Pseudo labeling in DART

	Experimental Details
	Datasets
	Common Domain Divergence in UDA Methods
	Architectures
	Data Preprocessing and Augmentation
	Hyperparameters

	Results on all source-target pairs
	Digits
	OfficeHome
	PACS
	VISDA

	Additional Experimental Results
	Results on source test data
	Robustness for varying attack iterations
	Results for perturbation size of 8/255

