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Abstract
Subject-driven text-to-image diffusion models em-
power users to tailor the model to new concepts
absent in the pre-training dataset using a few sam-
ple images. However, prevalent subject-driven
models primarily rely on single-concept input im-
ages, facing challenges in specifying the target
concept when dealing with multi-concept input
images. To this end, we introduce a textual local-
ized text-to-image model (Texual Localization) to
handle multi-concept input images. During fine-
tuning, our method incorporates a novel cross-
attention guidance to decompose multiple con-
cepts, establishing distinct connections between
the visual representation of the target concept and
the identifier token in the text prompt. Experimen-
tal results reveal that our method outperforms or
performs comparably to the baseline models in
terms of image fidelity and image-text alignment
on multi-concept input images. In comparison to
Custom Diffusion, our method with hard guidance
achieves CLIP-I scores that are 7.04%, 8.13%
higher and CLIP-T scores that are 2.22%, 5.85%
higher in single-concept and multi-concept gen-
eration, respectively. Notably, our method gen-
erates cross-attention maps consistent with the
target concept in the generated images, a capabil-
ity absent in existing models.

1. Introduction
Diffusion models have demonstrated unprecedented capa-
bilities in generating high-quality and diverse images, effec-
tively addressing the mode collapse problem encountered by
Generative Adversarial Networks (GANs) (Ho et al., 2020;
Dhariwal & Nichol, 2021). By leveraging cross-attention
layers within the UNet architecture (Ronneberger et al.,
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2015), diffusion models can be conditioned on information
in different modalities. Text-to-image diffusion models, a
specific subclass of conditional diffusion models, exemplify
remarkable proficiency in producing images semantically
aligned with natural language prompts (Nichol et al., 2021;
Rombach et al., 2022; Ramesh et al., 2022; Gu et al., 2022).

Despite the strong image-text connections established by
text-to-image models, introducing new concepts not present
in the pre-training datasets remains challenging (Gal et al.,
2022). In response, studies aimed at “customizing” text-
to-image models for generalization to newly introduced
concepts propose fine-tuning pre-trained models with a few
(typically 3 to 5) images of the target object, defining them
as subject-driven text-to-image models (Gal et al., 2022;
Ruiz et al., 2023a; Kumari et al., 2023; Li et al., 2023; Jia
et al., 2023; Gal et al., 2023; Arar et al., 2023; Ruiz et al.,
2023b; Ma et al., 2023a). However, prevalent subject-driven
models are designed to learn from images containing a sin-
gle new concept (termed single-concept images), imposing
high requirements for data preparation and demanding a
prolonged fine-tuning process when introducing multiple
concepts (Kumari et al., 2023). Conversely, the feasibility
of applying images containing multiple concepts (termed
multi-concept images) for fine-tuning has not been thor-
oughly explored.

To this end, we evaluate the state-of-the-art model Custom
Diffusion (Kumari et al., 2023) on multi-concept images.
The test involves utilizing the text prompt “Photo of a V
[class]”, where V serves as a unique identifier token rep-
resenting the target concept, and [class] denotes the class
name of the concept. We find that the model tends to gen-
erate all concepts present in the input images, disregarding
the specified target concept in the text prompt. Example
instances of these failure cases are showcased in Figure 1.

To address the identified deficiencies in existing subject-
driven models, we propose a novel approach named Textual
Localization. This method aims to decompose input images
and achieve precise customization of the target concepts,
especially when confronted with multi-concept images. Dur-
ing model fine-tuning, we introduce a cross-attention guid-
ance mechanism that incorporates a new cross-attention loss
Lattn, which is designed to pinpoint the target concept re-
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gion in the input image and establish a distinct connection
between the visual representation of the target concept and
the identifier token V . Our method encompasses two distinct
strategies of cross-attention guidance: hard guidance and
soft guidance, both of which eliminate the model’s attention
on non-target concepts but apply different ways of attention
activation in the target region of the input images. The cross-
attention guidance manipulates the cross-attention maps
between the input images and identifier token V , thereby
influencing the model’s attention. Additionally, we com-
pile a dataset comprising both multi-concept images and
single-concept images for model training and evaluation.
Experimental results indicate that our method either outper-
forms or matches baseline models in both single-concept
and multi-concept generation when taking multi-concept
images as input. Moreover, our approach explicitly show-
cases the connection between the visual representation of
the target concept and identifier token V through the cross-
attention maps.

Figure 1. Failure cases in single-concept generation by Custom
Diffusion when fine-tuning on multi-concept inputs

2. Related Work
2.1. Text-to-image diffusion model

Diffusion model, functioning as a likelihood-based model,
attains state-of-the-art performance in generating high-
quality images, surpassing other generative models (Ho
et al., 2020; Dhariwal & Nichol, 2021). Additionally, the in-
clusion of cross-attention layers equips the diffusion model
with the capability to incorporate conditioning information
in diverse modalities (Rombach et al., 2022), with natu-
ral language being one of the predominant sources of con-
ditioning information. Nichol et al. (2021) and Saharia
et al. (2022) apply a text-to-image generation model in the
pixel space with classifier-free guidance (Ho & Salimans,
2022). They utilize a transformer (Vaswani et al., 2017)
and a pre-trained large language model (Ramesh et al.,
2021) as text encoders, respectively. Besides, Rombach
et al. (2022) train a diffusion model in the latent space by
using a Variational Autoencoder (VAE) (Kingma & Welling,

2013) to project images into latent space, using a pre-trained
text encoder from Contrastive Language-Image Pre-training
(CLIP) (Radford et al., 2021) to process the text prompt.
Ramesh et al. (2022) propose a multimodal latent space
by training a prior model to generate the CLIP image em-
bedding of the input text prompt, and generating images
conditioned on the image embedding.

2.2. Subject-driven text-to-image generation

To address the challenge of generating novel concepts ab-
sent in the pre-training dataset, subject-driven generation
is devised to customize the text-to-image generation model
using a limited set of sample images (Ruiz et al., 2023a).
In subject-driven generation, rare-occurring identifier to-
kens from the vocabulary are inserted into the text prompt
to establish a connection with the input images during the
fine-tuning process. Various training targets are explored,
including solely the text encoder (Gal et al., 2022), the text
encoder along with cross-attention layers in the UNet (Ku-
mari et al., 2023; Shi et al., 2023), and the text encoder
together with the entire UNet (Ruiz et al., 2023a). Addi-
tionally, Li et al. (2023) and Jia et al. (2023) incorporate an
image encoder to obtain more accurate and robust embed-
dings of the input images, replacing the identifier tokens.
In a bid to further optimize the fine-tuning process and re-
duce the number of training parameters, Arar et al. (2023)
and Ruiz et al. (2023b) propose applying Low-Rank adapta-
tion (LoRA) (Hu et al., 2021) for expedited personalization.
However, the majority of the aforementioned models pre-
dominantly focus on learning from single-concept images,
while our approach excels in decomposing input images and
facilitating precise learning from multi-concept images.

2.3. Cross-attention in text-to-image image generation

Diffusion models harness the cross-attention layers
(Vaswani et al., 2017) embedded in the underlying UNet
backbone to integrate conditioning information from text
prompts into the generated images (Rombach et al., 2022).
These cross-attention layers amalgamate information from
both images and text, producing cross-attention maps that
represent the probability distribution over text tokens for
each image patch in the latent space (Tang et al., 2022;
Chefer et al., 2023). Guiding these cross-attention maps
during inference empowers the pre-trained diffusion model
to generate images with superior semantic alignment to the
provided text prompts (Feng et al., 2022; Chefer et al., 2023;
Wang et al., 2023; Phung et al., 2023), achieve image editing
(Hertz et al., 2022), and provide positional control over the
contents in the generated images (Ma et al., 2023b; He et al.,
2023; Chen et al., 2023a; Phung et al., 2023). Besides, cross-
attention guidance is also applied during training to help
achieve zero-shot personalized image generation, although
the generation quality is inferior compared to the models
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fine-tuned on input images (Ma et al., 2023a). Xiao et al.
(2023) utilize cross-attention guidance to address the iden-
tity blending problem and enable multi-subject generation.
Notably, their model’s performance is demonstrated on a
human face dataset, with its general subject performance
remaining undisclosed.

3. Textual Localized Diffusion Model
3.1. Preliminaries

In this study, we adopt Stable Diffusion (SD) as the founda-
tional model, built upon the Latent Diffusion Model (LDM)
(Rombach et al., 2022). For an input image x ∈ RH×W×3,
SD initially projects x into a latent representation z ∈
Rh×w×c by employing the encoder E of a VAE (Kingma &
Welling, 2013), where c denotes the latent feature dimension.
The downsampling follows a factor f = H/h = W/w, de-
termining the downsampling scale. The diffusion process is
subsequently executed on the latent representation by intro-
ducing noise into z, forming a fixed-length Markov Chain
denoted as z1 . . . zT , where T signifies the length of the
chain. SD trains the UNet to learn the reverse process of the
Markov Chain, predicting a denoised variant of the input
zt given the timestep t ∈ [1, T ]. In the context of text-to-
image generation, the conditioning information y from the
text prompts is projected into an intermediate representation
τθ(y), where τθ is a pre-trained CLIP text encoder. The
training objective of the text-to-image diffusion model can
be expressed as:

LLDM = EE(x),y,t

[
∥ε− εθ (zt, t, τθ(y))∥22

]
(1)

where ε and εθ represent the standard Gaussian noise (ε ∼
N (0, 1)) and predicted noise residue, respectively. Specif-
ically, the intermediate representation τθ(y) is linked to
the intermediate layers of the UNet through cross-attention
layers using the following mapping:

Attention(Q,K, V ) = softmax

(
QKT

√
d

· V
)

(2)

Q = W
(i)
Q ·φi(zt),K = W

(i)
K ·τθ(y), V = W

(i)
V ·τθ(y) (3)

where d signifies the output dimension of the query (Q)
and key (K) features. W (i)

Q , W (i)
K , and W

(i)
V are learnable

projection matrices in cross-attention layer i, φi(zt) is a
flattened intermediate representation of the noisy latent zt.
The cross-attention map at layer i is given by:

Attn(i) = softmax

(
Q(i)K(i)T

√
d

)
(4)

3.2. Pipeline of Textual Localization

Subject-driven text-to-image models establish a connection
between the new concept from the input images and the

identifier token V . During the fine-tuning process, the text
embedding of V is refined to represent the target concept
through the cross-attention layers, and the model learns a
connection between the text embedding of V with the visual
representation of the target concept in pixel space (Ruiz
et al., 2023a; Kumari et al., 2023). However, when pre-
sented with multi-concept images, this connection becomes
ambiguous, as depicted in Figure 1. To address this ambi-
guity, we enhance the model by incorporating additional
cross-attention guidance during the fine-tuning process. Our
proposed method is denoted as the textual localized text-to-
image model, or Textual Localization.

A single fine-tuning step of Textual Localization is illus-
trated in Figure 2. Following Custom Diffusion, we only
optimize the text encoder as well as the WK and WV matri-
ces in the cross-attention layers in the UNet. The learning
objective of the Textual Localization involves minimizing a
loss function comprised of a denoising loss Ldenoise and an
attention loss Lattn. The denoising loss encompasses the
original training objective of LDM, as given by Equation (1),
along with a class-specific prior preservation loss, expressed
as:

Lprior = EE(xpr),ypr,t

[∥∥ε− εθ
(
zprt , t, τθ(ypr)

)∥∥2
2

]
(5)

where xpr is the sample generated by the pre-trained text-
to-image model under the text prompt ypr that solely spec-
ifies the class name of the target concept. The inclusion
of the class-specific prior preservation loss serves to main-
tain output diversity and prevent language drift (Ruiz et al.,
2023a). The cross-attention loss Lattn is formulated to bias
the model’s attention, establishing a clear connection be-
tween the identifier token V and the target concept. The
intricacies of cross-attention guidance are elucidated in Sec-
tion 3.3. Consequently, the overarching training objective is
to minimize:

L = LLDM + λLprior + δLattn (6)

where λ and δ are two scaling coefficients.

3.3. Cross-attention Guidance

The positional information of the target concept in the input
images is derived from the segmentation maps, generated
by a pre-trained segmentation model. Through the utiliza-
tion of these segmentation maps, we introduce two distinct
strategies for cross-attention guidance: hard guidance and
soft guidance.

Hard guidance. In the case of hard guidance, the cross-
attention map of the identifier token AttnV is optimized
to align with the segmentation map Seg ∈ RH′×W ′

. The
attention loss Lattn is computed as the mean square error
(MSE) between AttnV and Seg. Thus, Lattn can be formu-
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Figure 2. Illustration of a single step of the fine-tuning process of
Textual Localization

lated as:

Lattn =
1

H ′W ′
∑H′

i=1

∑W ′

j=1 (Seg(i, j)−AttnV(i, j))
2

(7)
Note that Lattn is calculated in the pixel space. Given
that the cross-attention maps Attn(i) extracted from various
layers possess distinct resolutions determined by their posi-
tions in the UNet, all cross-attention maps of the identifier
token Attn

(i)
V are up-scaled to H ′ ×W ′ and subsequently

averaged to obtain AttnV .

Soft guidance. The objective of soft guidance is to elimi-
nate the model’s attention on regions outside of the target
concept in the input images, without influencing attention
within the target concept region. The attention loss Lattn is
formulated as the element-wise product of a binary matrix
(BInv), representing the inverse segmentation map, and the
MSE between AttnV and Seg, which is given by:

Lattn =
1

H ′W ′
∑H′

i=1

∑W ′

j=1[
(Seg(i, j)−AttnV(i, j))

2 ·BInv(i, j)
] (8)

BInv(i, j) =

{
1 if Seg(i, j) = 0

0 if Seg(i, j) > 0
(9)

While both hard guidance and soft guidance effectively
reduce the model’s attention on non-target concepts, they
diverge in their treatment of the target concept region in
the input images. Notably, hard guidance influences the
model to activate attention in the target region, producing
cross-attention maps that align with the segmentation map.
In contrast, soft guidance does not alter attention activation
in the region of the target concept.

4. Experiments and Results
4.1. Experimental setup

Datasets. We curated a dataset comprising 10 novel con-
cepts encompassing general and everyday items. To assess
the model’s efficacy with multi-concept images, we ran-
domly formed five groups by pairing two concepts. Addi-
tionally, we prepared single-concept images for each con-
cept to facilitate evaluation. Each single and multiple con-
cept set consists of five images, and samples can be found in
Appendix A. To pinpoint the locations of the target concepts
in the input images, we employed the Grounding DINO de-
tection model (Liu et al., 2023) to generate bounding boxes.
These bounding boxes served as cues for the segmentation
model SAM (Kirillov et al., 2023) to derive segmentation
maps for the target concepts.

Baseline models. We conduct a comparative analysis of
our method against two baseline models, namely, Dream-
Booth (Ruiz et al., 2023a) and Custom Diffusion (Kumari
et al., 2023). Both baseline models are subject-driven text-
to-image models and integrate the class-specific prior preser-
vation loss to mitigate language drift. DreamBooth under-
takes fine-tuning of the text encoder and the entire UNet,
while Custom Diffusion focuses solely on optimizing the
text encoder and the WK and WV matrices within the cross-
attention layers of the UNet.

Evaluation metrics. We evaluate our method on the bench-
mark raised by the baseline models to present a fair compar-
ison, focusing on image fidelity and image-text alignment.
To gauge image fidelity, we compute the cosine similar-
ity between the CLIP embeddings of the generated images
and the real images, denoted as CLIP-I. Additionally, we
calculate the Kernel Inception Distance (KID) (Bińkowski
et al., 2018) between the generated and real images, pro-
viding further evidence of image fidelity. Furthermore, the
average Learned Perceptual Image Patch Similarity (LPIPS)
(Zhang et al., 2018) is computed for the generated images of
the same target concept under identical text prompts. This
measure reveals the diversity of the generated images and
aids in assessing potential model overfitting. For image-text
alignment, the cosine similarity between CLIP embeddings
of the generated images and the corresponding text prompts
is calculated (CLIP-T). Note that when evaluating CLIP-T,
the identifier token V is omitted, as the CLIP text encoder
has not undergone fine-tuning on V .

Implementation details. For all experiments, we employ
SD v1.5 trained on the LAION-5B dataset (Schuhmann
et al., 2022) as the foundational model. Prior to fine-tuning,
we leverage the pre-trained SD to generate 200 images per
target concept for computing Lprior, using text prompts
consisting of the class name of the respective target con-
cept. In the case of our method, the scaling coefficients λ
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Figure 3. Qualitative comparison in single-concept generation

and δ are set to 1.0. We extract cross-attention maps from
cross-attention layers with downsampling factors f ∈ 2, 4, 8
(Hertz et al., 2022; Chefer et al., 2023), and up-scale to
H ′ × W ′, where H ′ = W ′ = 256 for computational ef-
ficiency. The identifier token V (V1 and V2 for multiple
concepts) is initialized with the token ID 48136 in the pre-
trained CLIP tokenizer (Gal et al., 2022; Ruiz et al., 2023a).
The learning rate is set to 1.0 × 10−5 for our method and
Custom Diffusion, and 5.0× 10−6 for DreamBooth. Main-
taining a fixed batch size of 2, all models are fine-tuned on
an NVIDIA A100 GPU.

4.2. Single-concept generation

We assess each model’s capability to generate a single new
concept when provided with multi-concept images as in-
put. For each target concept, we employ 10 text prompts
and generate 50 image samples per prompt, resulting in
a total of 500 images. Additionally, we evaluate the per-
formance of baseline models when taking single-concept
images as input for a more comprehensive analysis. The
average model performance across all target concepts is
summarized in Table 1. Our method achieves superior per-
formance in CLIP-T and LPIPS, with the soft guidance

variant obtaining the highest score and the hard guidance
variant securing the second-best score. This indicates that
our method effectively preserves more semantic information
from the text prompts and exhibits reduced overfitting. On
the other hand, DreamBooth, fine-tuned on single-concept
images, attains the highest scores in CLIP-I and KID, reflect-
ing higher similarities between input and generated images.
However, it is noteworthy that these results may be biased,
as baseline models fine-tuned on single-concept images also
use the same images for evaluation. Moreover, Dream-
Booth, optimizing more parameters, showcases enhanced
learning of visual representation but also accelerates the loss
of learned prior knowledge, resulting in lower CLIP-T and
LPIPS scores. Furthermore, compared to Custom Diffusion,
our method exhibits an overall improvement, as the CLIP-I,
CLIP-T, and LPIPS scores of the hard guidance variant are
7.04%, 2.22%, 0.91% higher, and the KID score is 6.10%
lower on multi-concept images.

The qualitative evaluation results are presented in Figure 3.
Our method, fine-tuned on multi-concept images, success-
fully generates images containing only the target concept
while retaining rich semantic information from the text
prompt. In contrast, both baseline models encounter dif-
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Figure 4. Qualitative comparison in multi-concept generation

ficulties in clarifying the target concept and are prone to
generating images containing all concepts present in the in-
put images. Additionally, while DreamBooth demonstrates
a better visual representation of the input concept, it tends to
lose more semantic knowledge, leading to results inconsis-
tent with the text prompts (e.g., V doll under water). Further
examples and analysis can be found in Appendix B.1.

4.3. Multi-concept generation

We evaluate each model’s performance in generating multi-
ple new concepts when fine-tuning them on multi-concept
images. Two identifier tokens, V1 and V2, are introduced in
the text prompts to represent the two target concepts. All tar-
get concepts are learned simultaneously during fine-tuning,
pairing the input images with the text prompt “photo of a
V1 [class1] and a V2 [class2]”. Baseline models are also
jointly fine-tuned on single-concept images of the two target
concepts, following the approach by Kumari et al. (2023).
We generate 50 images per prompt for 10 text prompts
in each multi-concept group, resulting in a total of 500 im-
ages. Quantitative evaluation results are presented in Table 1.

Overall, our method exhibits superior performance in multi-
concept generation. The hard guidance variant achieves
the best CLIP-I and KID scores as well we the second-best
CLIP-T score, while the soft guidance variant records the
highest LPIPS score. In comparison to Custom Diffusion,
the CLIP-I, CLIP-T, and LPIPS scores of the hard guidance
variant are 8.13%, 5.85%, 7.50% higher, and the KID score
is 7.75% lower on multi-concept images. It’s important
to note that as both fine-tuning and evaluation use multi-
concept images, there might be bias in the results when
comparing our method with baseline models fine-tuned on
single-concept images. Nevertheless, our method outper-
forms both baseline models fine-tuned on multi-concept
images in terms of CLIP-I, KID, and LPIPS. Notably, while
Custom Diffusion fine-tuned on single-concept images at-
tains the highest CLIP-T score, it exhibits the worst CLIP-I
and KID scores, indicating insufficient learning of visual
representation from input images, resulting in less loss of
semantic knowledge during fine-tuning.

Results of the qualitative evaluation in multi-concept gener-
ation are presented in Figure 4. All models demonstrate the
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Table 1. Comparison between our method and baseline models (Bold indicates the best value, underline represents the second-best value)

Method Input Concept Single-concept generation Multi-concept generation
CLIP-I ↑ CLIP-T ↑ KID ↓ LPIPS ↑ CLIP-I ↑ CLIP-T ↑ KID ↓ LPIPS ↑

DreamBooth Single 0.6583 0.2161 0.1297 0.5884 0.5189 0.1970 0.1952 0.5971
Custom Diffusion Single 0.5525 0.2645 0.1865 0.6355 0.4600 0.2890 0.2179 0.6485
DreamBooth Multiple 0.5999 0.2099 0.1985 0.6162 0.5034 0.2136 0.1625 0.6036
Custom Diffusion Multiple 0.4883 0.2612 0.2228 0.6595 0.4907 0.2548 0.1743 0.5890
Ours (hard guidance) Multiple 0.5227 0.2670 0.2092 0.6655 0.5306 0.2697 0.1608 0.6332
Ours (soft guidance) Multiple 0.5077 0.2680 0.2205 0.6685 0.4951 0.2638 0.1781 0.6508

capability to generate both target concepts when fine-tuned
on multi-concept images. However, DreamBooth exhibits
a more pronounced loss of semantic knowledge, leading
to weaker representations of text prompts in some sample
images. For instance, with the text prompt “V1 helmet and
V2 headphone at a beach with a view of the seashore”, only
a small amount of water is presented. Similarly, a water-
color painting is shown on the penbag with the text prompt
“A watercolor painting of V1 pot and V2 penbag”. Further-
more, baseline models trained on single-concept images
display property fusion of the two target concepts or only
depict one concept in generated images. In contrast, our
method appropriately presents both target concepts while
accurately reflecting semantic information from the text
prompts. Additional examples and detailed results are pro-
vided in Appendix B.2.

4.4. Probing into cross-attention maps

A crucial aspect of subject-driven models is the establish-
ment of a connection between the identifier token V and
the visual representation of the target concept. However,
this connection heavily relies on the diffusion models’ per-
ceptual ability to accurately locate the target region. When
confronted with multi-concept images, the connection be-
comes ambiguous due to a lack of guidance, resulting in the
presence of non-target concepts in the generated images. To
showcase the connection, we extract cross-attention maps
from the 16× 16 (f = 4) layers of the UNet throughout all
timesteps during inference, and then upscale to 256× 256,
which are displayed in Figure 5.

It can be observed that both DreamBooth and Custom Dif-
fusion tend to produce the non-target concept in single-
concept generation, and the cross-attention maps of the
identifier token outline the shape of all concepts present in
the generated images in both single and multiple concept
generation. Moreover, a comparative analysis between the
soft guidance variant and the hard guidance variant of our
method shows that while both variants avoid generating the
non-target concept, the former only partially depicts the
outline of the target concept in the cross-attention maps
in single-concept generation. This partial connection ex-

Figure 5. Images samples and cross-attention maps of identifier
tokens generated by adopted models fine-tuned on multi-concept
input images

plains the higher CLIP-T score but lower CLIP-I score of
the soft guidance variant compared to the hard guidance vari-
ant. In multi-concept generation, the soft guidance variant
struggles to differentiate cross-attention maps for different
concepts, whereas the hard guidance variant accurately de-
picts the outlines of each target concept. Consequently,
ambiguities persist when using the soft guidance variant
for multi-concept generation, leading to lower CLIP-I and
CLIP-T scores compared to the hard guidance variant.

4.5. Ablation study

As detailed in Table 1, DreamBooth achieves a higher CLIP-
I score but a lower CLIP-T score compared to Custom
Diffusion when provided with the same input images as
DreamBooth optimizes more model parameters, resulting in
a more pronounced loss of prior semantic knowledge. Deter-
mining an optimal set of trainable parameters is crucial for
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improving the model’s ability to learn visual representation
while retaining semantic knowledge. To explore this, we
conducted an ablation study on parameter optimization.

Building upon the conclusion by Kumari et al. (2023), we
delve deeper by evaluating the rate of weight change for the
WQ, WK , and WV matrices in the cross-attention layers.
We fine-tuned the cross-attention layers on six single con-
cepts from our dataset, calculating the mean rate of weight
change for each layer using ∆l = ||θ′

l − θl||/||θl||, where θl
and θ

′

l represent weights of the parameters in layer l before
and after fine-tuning (Li et al., 2020). The rates of weight
change for different matrices with fine-tuning steps are pre-
sented in Figure 6. Notably, the weights of WV undergo the
most significant change, while the weights of WQ and WK

exhibit less pronounced changes. Given this observation,
we select three sets of model parameters for optimization:
(1) WQ +WK +WV , (2) WQ +WV , and (3) WK +WV

(adopted in our method). We fine-tune these three parameter
sets within the framework of our method with hard guid-
ance and evaluate the generated images. Table 2 showcases
the results of the ablation study, revealing that optimizing
WK +WV achieves the best or second-best performance
across most metrics in single-concept generation. Remark-
ably, it attains both the highest CLIP-I and CLIP-T scores in
multi-concept generation. Therefore, optimizing WK+WV

emerges as a rational choice in this study. Additional details
are provided in Appendix B.3.

Table 2. Ablation study of different selections of trainable parame-
ters (Bold indicates the best value, underline represents the second-
best value)

Parameter Set CLIP-I ↑ CLIP-T ↑ KID ↓ LPIPS ↑
Single-concept generation
WQ+WK+WV 0.5288 0.2629 0.1985 0.6587
WQ +WV 0.5142 0.2658 0.2103 0.6601
WK +WV 0.5227 0.2670 0.2092 0.6655

Multi-concept generation
WQ+WK+WV 0.5224 0.2644 0.1512 0.6313
WQ +WV 0.5133 0.2659 0.1583 0.6303
WK +WV 0.5306 0.2697 0.1608 0.6332

5. Discussion and Conclusion
This study introduces a novel subject-driven text-to-image
model, termed Textual Localization, aimed at mitigating am-
biguities inherent in subject-driven models on multi-concept
input images. The proposed method incorporates a novel
cross-attention guidance to disentangle multiple concepts
from input images and establish accurate connections be-
tween the visual representations of the target concept and
the identifier token in the text prompt. Our method demon-
strates superior or comparable performance to baseline mod-

Figure 6. Rates of weight change of different matrices in cross-
attention layers

Figure 7. Failure cases on subject-driven text-to-image generation.
Left: failure to capture the details of the cat figurine; Right: failure
to generate all concepts in the text prompt. (Text prompts: V1 cat
figurine (left) / V1 pot and V2 penbag (right) in woods with falling
leaves in the background)

els in terms of image fidelity and image-text alignment on
multi-concept input images, as the hard guidance variant
achieves CLIP-I scores that are 7.04%, 8.13% higher, and
CLIP-T scores that are 2.22%, 5.85% higher than Custom
Diffusion in single-concept and multi-concept generation,
respectively. Notably, our technique effectively delineates
the outlines of target concepts in cross-attention maps.

Nevertheless, limitations emerge in capturing intricate de-
tails of target concepts as shown in Figure 7. Additionally,
failure cases may arise in multi-concept generation, where
only one concept is generated despite models being fine-
tuned on multi-concept images, as depicted in Figure 7.
Hence, our focus in future work will be on addressing these
limitations. Specifically, we propose adopting more pow-
erful feature extractors (Chen et al., 2023b) to accentuate
details in the input images, and integrating guiding tech-
niques during inference (Chefer et al., 2023; Chen et al.,
2023a) to ensure the successful generation of all target con-
cepts mentioned in the text prompt.
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Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Appendix

A. Self-constructed Dataset
Our experiments encompass evaluations on both single-concept and multi-concept images. Existing datasets for subject-
driven text-to-image models, such as the DreamBooth Dataset (Ruiz et al., 2023a) and CustomConcept101 (Kumari et al.,
2023), primarily comprise single-concept images. However, the availability of datasets featuring multi-concept images is
limited. To address this, we curated a self-constructed dataset containing both single-concept and multi-concept images, each
depicting various general and everyday items. The dataset comprises 10 concepts, each accompanied by 5 single-concept
images, as illustrated in Figure 8 along with their corresponding class names. For multi-concept images, we randomly
grouped the concepts into 5 pairs, collecting 5 images for each pair. Additionally, we employed a pre-trained detection model,
Grounding DINO (Liu et al., 2023), to identify the locations of each concept in the input images, generating corresponding
bounding boxes. These bounding boxes served as input for a pre-trained segmentation model, SAM (Kirillov et al., 2023),
which produced segmentation maps for each concept. Samples of the multi-concept images and the segmentation maps for
individual concepts are displayed in Figure 9.

Figure 8. Samples of the single-concept images of each concept in the dataset

B. Complementary Experimental Results
Due to space constraints, only a summary of the experimental results is provided in Section 4. For a more in-depth
examination, detailed experimental results and analysis are presented in this section.

B.1. Single-concept generation

The CLIP-I, CLIP-T, KID, and LPIPS scores for our method and the baseline models on each single concept are detailed in
Table 3 to Table 6. Notably, DreamBooth fine-tuned on single-concept images achieves the highest image fidelity, securing
the top CLIP-I score on all single concepts except for the headphone (where it obtains the second-best score) and the
lowest KID score across all single concepts. Interestingly, DreamBooth fine-tuned on multi-concept images obtains the
second-best CLIP-I and KID scores. This suggests that fine-tuning more parameters can be advantageous for learning visual
representation from input images. However, a trade-off between acquiring visual representation and losing prior semantic
knowledge is evident, as both variants of DreamBooth generally yield lower CLIP-T and LPIPS scores compared to other
methods. As evident in Figure 3 and Figure 10, DreamBooth struggles to fully capture semantic information from text
prompts.

Comparatively, when assessing our method against Custom Diffusion, both the hard guidance variant and soft guidance
variant outperform Custom Diffusion fine-tuned on multi-concept images across all evaluation metrics. This superiority can
be attributed to Custom Diffusion having a tendency to generate all concepts from multi-concept images, impacting the
image fidelity and image-text alignment of the generated images. Examples of generating all input concepts are illustrated in
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Figure 9. Samples of the multi-concept images with segmentation maps of individual concepts

Figure 3 and Figure 10. In contrast, our method can precisely specify the target concept, resulting in improved performance.
While the CLIP-I and KID scores of our method closely align with those of Custom Diffusion fine-tuned on single-concept
images, the CLIP-T and LPIPS scores are higher.

B.2. Multi-concept generation

The CLIP-I, CLIP-T, KID, and LPIPS scores for our method and the baseline models on multi-concept groups are detailed
in Table 3 to Table 6. In multi-concept generation, the hard guidance variant of our method achieves superior image fidelity
compared to the baseline models in three groups. Notably, the hard guidance variant outperforms the soft guidance variant
on all multi-concept groups, suggesting that hard guidance can introduce more visual representation to the model. The
cross-attention map in Figure 5 further illustrates that only the hard guidance variant aligns with the position of the target
concepts in generated images, whereas the soft guidance variant outlines only a part of the target concept, and the attention
distribution does not correspond to the respective concepts in multi-concept generation. Hence, we conclude that hard
guidance is favorable for multi-concept generation.

Additionally, Custom Diffusion trained on single-concept images achieves the highest CLIP-T score, but its image fidelity is
low. As evident in Figure 4 and Figure 11, properties of the two input concepts are infused in the generated images. This
property infusion is also observed in the images generated by DreamBooth fine-tuned on single-concept images. It’s worth
noting that property infusion does not always occur when jointly training on single-concept images, as evidenced by some
successful cases presented in Figure 11. However, for better results in multi-concept generation, we recommend training on
multi-concept images using our method, which avoids property infusion and enhances generation quality.

B.3. Ablation study

In the ablation study, we explore the performance of our method when optimizing different parameter sets to identify the
optimal trainable parameter set. Specifically, we test three parameter sets from the cross-attention layers in the UNet:
WQ +WK +WV , WQ +WV , and WK +WV . In the cross-attention layers, the WQ matrix handles information from the
image, while the WK and WV matrices deal with information from text prompts. Moreover, the WQ and WK matrices are
involved in the calculation of cross-attention maps, while the WV matrix carries the most semantic information from text
prompts. Consequently, the rates of weight change of the WV matrix are most significant, as shown in Figure 6. The values
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Table 3. Comparison of CLIP-I value between our method and baseline models on each concept in the dataset (Bold indicates the best
value, underline represents the second-best value)

Target Concept
Multi-concept Input Single-concept Input

Ours Ours Custom DreamBooth Custom DreamBooth(hard guidance) (soft guidance) Diffusion Diffusion

pot 0.4191 0.4114 0.4355 0.6192 0.5002 0.7431
penbag 0.4839 0.4852 0.4673 0.6123 0.4950 0.6522
helmet 0.5619 0.5514 0.5711 0.6598 0.6037 0.6743
headphone 0.6783 0.6347 0.5229 0.7290 0.6954 0.6901
bucket 0.4420 0.4529 0.3990 0.5287 0.4618 0.5657
doll 0.5012 0.4575 0.4421 0.6091 0.5456 0.6979
robot toy 0.5167 0.5285 0.5073 0.5148 0.5558 0.5905
dinosaur toy 0.6433 0.6257 0.6010 0.7060 0.6470 0.7270
cup 0.4210 0.4059 0.4187 0.4677 0.4601 0.6270
cat figurine 0.5592 0.5234 0.5181 0.5531 0.5608 0.6122

pot & penbag 0.4548 0.4504 0.4538 0.5913 0.4182 0.5189
helmet & headphone 0.4964 0.4493 0.4729 0.5500 0.4296 0.5227
bucket & doll 0.6006 0.5557 0.5791 0.5236 0.5072 0.5556
robot toy & dinosaur toy 0.5583 0.5201 0.5174 0.3931 0.5222 0.5150
cup & cat figurine 0.5427 0.4999 0.4304 0.4590 0.4285 0.4776

Table 4. Comparison of CLIP-T value between our method and baseline models on each concept in the dataset (Bold indicates the best
value, underline represents the second-best value)

Target Concept
Multi-concept Input Single-concept Input

Ours Ours Custom DreamBooth Custom DreamBooth(hard guidance) (soft guidance) Diffusion Diffusion

pot 0.2354 0.2328 0.2267 0.1611 0.2341 0.1498
penbag 0.2478 0.2628 0.2354 0.2054 0.2492 0.2191
helmet 0.2795 0.2800 0.2752 0.2175 0.2617 0.2214
headphone 0.2658 0.2675 0.2519 0.2266 0.2612 0.2319
bucket 0.2798 0.2827 0.2781 0.2504 0.2815 0.2583
doll 0.2413 0.2532 0.2398 0.1591 0.2346 0.1549
robot toy 0.2921 0.2884 0.2904 0.2230 0.2923 0.2615
dinosaur toy 0.3008 0.2991 0.2957 0.2679 0.3066 0.2614
cup 0.2523 0.2475 0.2449 0.2129 0.2540 0.2034
cat figurine 0.2748 0.2658 0.2745 0.1754 0.2700 0.1993

pot & penbag 0.2451 0.2369 0.2265 0.1913 0.2684 0.2106
helmet & headphone 0.2765 0.2697 0.2713 0.2062 0.2918 0.1570
bucket & doll 0.2621 0.2604 0.2551 0.1588 0.2671 0.1939
robot toy & dinosaur toy 0.2847 0.2796 0.2808 0.2300 0.3074 0.2269
cup & cat figurine 0.2803 0.2726 0.2407 0.2819 0.3106 0.1970

of CLIP-I, CLIP-T, KID, and LPIPS metrics for each experiment are presented in Table 7 and Table 8.

The detailed results reveal that optimizing WQ+WK +WV is advantageous for achieving better image fidelity, as it obtains
the best CLIP-I and KID scores for most target concepts. However, its performance on CLIP-T and LPIPS is inferior to
the other sets. This observation aligns with the comparison between DreamBooth and Custom Diffusion, highlighting the
trade-off between the acquisition of visual representations and the loss of prior semantic knowledge. Furthermore, there
is no significant theoretical distinction between applying WQ +WV or WK +WV . However, based on the experimental
results, WK +WV yields better performance than WQ +WV . Considering the overall performance across all evaluation
metrics, WK +WV is deemed the optimal choice for trainable parameters.
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Table 5. Comparison of KID value between our method and baseline models on each concept in the dataset (Bold indicates the best value,
underline represents the second-best value)

Target Concept
Multi-concept Input Single-concept Input

Ours Ours Custom DreamBooth Custom DreamBooth(hard guidance) (soft guidance) Diffusion Diffusion

pot 0.1695 0.2026 0.1609 0.0737 0.1621 0.0528
penbag 0.2269 0.2326 0.2118 0.1347 0.1984 0.0877
helmet 0.1305 0.1505 0.1328 0.1473 0.1163 0.0618
headphone 0.2173 0.2462 0.2885 0.1268 0.1306 0.1257
bucket 0.2171 0.2165 0.2337 0.1718 0.1991 0.1672
doll 0.1515 0.1565 0.1601 0.1010 0.1270 0.0724
robot toy 0.3108 0.3083 0.3124 0.3501 0.2739 0.2468
dinosaur toy 0.1554 0.1410 0.1709 0.1200 0.1505 0.0964
cup 0.0895 0.1105 0.1029 0.1152 0.0954 0.0537
cat figurine 0.4239 0.4406 0.4544 0.6443 0.4120 0.3320

pot & penbag 0.2259 0.2541 0.2170 0.1195 0.3051 0.2612
helmet & headphone 0.1174 0.1155 0.1140 0.1098 0.1666 0.1132
bucket & doll 0.1088 0.1028 0.1125 0.0890 0.1436 0.1370
robot toy & dinosaur toy 0.2484 0.3074 0.2942 0.3788 0.3302 0.3389
cup & cat figurine 0.1039 0.1110 0.1339 0.1156 0.1438 0.1255

Table 6. Comparison of LPIPS value between our method and baseline models on each concept in the dataset (Bold indicates the best
value, underline represents the second-best value)

Target Concept
Multi-concept Input Single-concept Input

Ours Ours Custom DreamBooth Custom DreamBooth(hard guidance) (soft guidance) Diffusion Diffusion

pot 0.6578 0.6702 0.6697 0.6059 0.6456 0.4382
penbag 0.6669 0.6631 0.6659 0.6598 0.6488 0.6229
helmet 0.6651 0.6544 0.6543 0.6021 0.6313 0.6505
headphone 0.6172 0.6266 0.6349 0.5825 0.5583 0.4841
bucket 0.6968 0.6909 0.6874 0.6894 0.6669 0.6407
doll 0.7006 0.7037 0.6896 0.6819 0.6776 0.6596
robot toy 0.6802 0.6833 0.6561 0.6085 0.6336 0.5734
dinosaur toy 0.6130 0.6338 0.6109 0.6308 0.6278 0.6022
cup 0.6805 0.6841 0.6803 0.6186 0.6572 0.5958
cat figurine 0.6767 0.6744 0.6461 0.4825 0.6084 0.6169

pot & penbag 0.6672 0.6643 0.6459 0.5514 0.6523 0.6613
helmet & headphone 0.6662 0.6710 0.6636 0.5854 0.6780 0.6566
bucket & doll 0.5816 0.6204 0.5941 0.6301 0.6268 0.5292
robot toy & dinosaur toy 0.6242 0.6448 0.6162 0.6464 0.6318 0.6258
cup & cat figurine 0.6268 0.6539 0.4252 0.6048 0.6536 0.5129
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Figure 10. Complementary result of qualitative comparison in single-concept generation
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Figure 11. Complementary result of qualitative comparison in multi-concept generation

Table 7. Comparison of CLIP-I and CLIP-T value between different parameter sets for optimization (Bold indicates the best value,
underline represents the second-best value)

Target Concept CLIP-I ↑ CLIP-T ↑
WQ +WK +WV WQ +WV WK +WV WQ +WK +WV WQ +WV WK +WV

pot 0.4313 0.4201 0.4191 0.2345 0.2335 0.2354
penbag 0.4930 0.4934 0.4839 0.2405 0.2523 0.2478
helmet 0.5573 0.5557 0.5619 0.2722 0.2791 0.2795
headphone 0.6674 0.6483 0.6783 0.2626 0.2629 0.2658
bucket 0.4400 0.4398 0.4420 0.2780 0.2797 0.2798
doll 0.5149 0.4989 0.5012 0.2447 0.2441 0.2413
robot toy 0.5247 0.5345 0.5167 0.2982 0.2951 0.2921
dinosaur toy 0.6495 0.6410 0.6433 0.2948 0.2999 0.3008
cup 0.4365 0.4010 0.4210 0.2428 0.2479 0.2523
cat figurine 0.5732 0.5091 0.5592 0.2602 0.2639 0.2748

pot & penbag 0.4733 0.4742 0.4548 0.2380 0.2331 0.2451
helmet & headphone 0.4981 0.4626 0.4964 0.2762 0.2739 0.2765
bucket & doll 0.6135 0.5760 0.6006 0.2600 0.2560 0.2621
robot toy & dinosaur toy 0.5346 0.5513 0.5583 0.2821 0.2869 0.2847
cup & cat figurine 0.4924 0.5019 0.5427 0.2659 0.2794 0.2803
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Table 8. Comparison of KID and LPIPS value between different parameter sets for optimization (Bold indicates the best value, underline
represents the second-best value)

Target Concept KID ↓ LPIPS ↑
WQ +WK +WV WQ +WV WK +WV WQ +WK +WV WQ +WV WK +WV

pot 0.1461 0.1570 0.1695 0.6659 0.6517 0.6578
penbag 0.1675 0.2091 0.2269 0.6645 0.6616 0.6669
helmet 0.1292 0.1355 0.1305 0.6649 0.6606 0.6651
headphone 0.2018 0.2094 0.2173 0.6089 0.6218 0.6172
bucket 0.2208 0.2269 0.2171 0.6874 0.6871 0.6968
doll 0.1477 0.1424 0.1515 0.6954 0.7100 0.7006
robot toy 0.2982 0.2940 0.3108 0.6768 0.6747 0.6802
dinosaur toy 0.1720 0.1799 0.1554 0.6087 0.6086 0.6130
cup 0.0892 0.0988 0.0895 0.6592 0.6605 0.6805
cat figurine 0.4128 0.4508 0.4239 0.6550 0.6646 0.6767

pot & penbag 0.1823 0.1967 0.2259 0.6610 0.6593 0.6672
helmet & headphone 0.1120 0.1112 0.1174 0.6734 0.6728 0.6662
bucket & doll 0.1068 0.1090 0.1088 0.5637 0.5738 0.5816
robot toy & dinosaur toy 0.2478 0.2459 0.2484 0.6271 0.6214 0.6242
cup & cat figurine 0.1075 0.1289 0.1039 0.6314 0.6244 0.6268
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