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Abstract

Among the widely used parameter-efficient fine-
tuning (PEFT) methods, LoRA and its variants
have gained considerable popularity because of
avoiding additional inference costs. However,
there still often exists an accuracy gap between
these methods and full fine-tuning (FT). In this
work, we first introduce a novel weight decom-
position analysis to investigate the inherent dif-
ferences between FT and LoRA. Aiming to re-
semble the learning capacity of FT from the
findings, we propose Weight-Decomposed Low-
Rank Adaptation (DoRA). DoRA decomposes
the pre-trained weight into two components, mag-
nitude and direction, for fine-tuning, specifically
employing LoRA for directional updates to effi-
ciently minimize the number of trainable param-
eters. By employing DoRA, we enhance both
the learning capacity and training stability of
LoRA while avoiding any additional inference
overhead. DoRA consistently outperforms LoRA
on fine-tuning LLaMA, LLaVA, and VL-BART
on various downstream tasks, such as common-
sense reasoning, visual instruction tuning, and
image/video-text understanding.

1. Introduction
Models that are pre-trained with extensive general domain
datasets have demonstrated remarkable generalization abil-
ities, significantly benefiting a wide array of applications,
from natural language processing (NLP) tasks (Qin et al.,
2023; Taori et al., 2023) to multi-modal tasks (Li et al., 2022;
Liu et al., 2023a). To tailor these general models for spe-
cific downstream tasks, full fine-tuning (FT) is commonly
employed, involving the retraining of all model parameters.
Nevertheless, as the size of models and datasets expand
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Figure 1. An overview of our proposed DoRA, which decomposes
the pre-trained weight into magnitude and direction components
for fine-tuning, especially with LoRA to efficiently update the
direction component. Note that || · ||c denotes the vector-wise
norm of a matrix across each column vector.

in scale, the expense associated with fine-tuning the entire
model becomes prohibitively large.

To address this issue, parameter-efficient fine-tuning (PEFT)
methods (Houlsby et al., 2019) have been introduced to fine-
tune the pre-trained models with only a minimal number of
parameters. Among these, LoRA (Hu et al., 2022), which
does not change the model architecture, has become notably
popular for its simplicity and efficacy. Nevertheless, there
is still a capacity gap between LoRA and FT, which is often
attributed to the limited number of trainable parameters
without further exploration of other underlying causes (Hu
et al., 2022; Kopiczko et al., 2024).

Drawing on Weight Normalization (Salimans & Kingma,
2016), which achieves faster convergence via improving the
conditioning of the gradient with weight reparameterization,
we introduce a novel weight decomposition analysis that ini-
tially reparameterizes model weights into magnitude and di-
rectional components, subsequently examining the changes
in magnitude and direction introduced by LoRA and FT.
Our analysis reveals that LoRA and FT exhibit markedly
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distinct patterns of updates, leading us to surmise that these
variations mirror the learning capability of each method.
Inspired by our findings, we propose Weight-Decomposed
Low-Rank Adaptation (DoRA), which begins by decompos-
ing the pre-trained weight into its magnitude and directional
components, then fine-tunes both. Given the substantial
size of the directional component in terms of parameters,
we exploit LoRA for the directional adaptation to enable
efficient fine-tuning, as illustrated in Figure.1. Moreover,
by showing a learning behavior similar to FT both empir-
ically and mathematically, suggesting a learning capacity
closely resembling FT, we have validated DoRA across a
wide variety of tasks, from NLP to Vision-Language, and
over various backbones, including LLM and LVLM. The ex-
perimental results show that DoRA consistently outperforms
LoRA without sacrificing inference efficiency, such as com-
monsense reasoning (+3.4/+1.0 on LLaMA-7B/13B), visual
instruction tuning (+0.6 on LLaVA-7B), and image/video-
text understanding (+0.9/+1.9 on VL-BART).

The summary of our contributions is as follows:

• We introduce DoRA, a novel PEFT method that incor-
porates weight decomposition, achieving a learning
capacity closely resembling FT without any additional
inference latency over LoRA.

• We introduce a novel weight decomposition analysis
to uncover the fundamental differences in the learning
patterns of FT and different PEFT methods.

• DoRA consistently surpasses LoRA on various tasks,
from NLP to Vision-Language benchmarks and across
various backbones, including LLM and LVLM.

2. Related Works
Parameter-Efficient Fine-Tuning (PEFT) methods are de-
signed to reduce the high expense of fine-tuning large-scale
models. They achieve this by training a relatively small
subset of parameters, compared to the total number of pa-
rameters, for adapting to downstream tasks. Existing PEFT
methods can be divided into three categories. The first
category is referred to as Adapter-based methods, which
involve introducing additional trainable modules into the
original frozen backbone, such as (Houlsby et al., 2019; He
et al., 2021; Karimi Mahabadi et al., 2021; mahabadi et al.,
2021). For example, (Houlsby et al., 2019) proposes adding
linear modules in sequence to the existing layer, whereas
(He et al., 2021) advocates for integrating these modules in
parallel with the original layer to enhance performance. The
second category is Prompt-based methods. These methods
add extra soft tokens (prompts) to the initial input and fo-
cus solely on fine-tuning these trainable vectors, as seen in
works like (Lester et al., 2021; Razdaibiedina et al., 2023;

Wang et al., 2023). However, these approaches typically
face challenges due to their sensitivity to initialization, af-
fecting their overall effectiveness. These first two categories,
whether altering the model’s input or architecture, result in
increased inference latency compared to the baseline model.

LoRA (Hu et al., 2022) and its variants are among the
third category of PEFT, notable for not adding any extra
inference burden. These methods apply low-rank matrices
to approximate weight changes during fine-tuning and can
merge with pre-trained weights prior to inference. For ex-
ample, (Zhang et al., 2023) employs SVD decomposition
and prunes less significant singular values for more efficient
updates. (Hyeon-Woo et al., 2022) focuses on low-rank
Hadamard product for federated learning. (Qiu et al., 2023;
Liu et al., 2023b) exploit orthogonal factorization in fine-
tuning diffusion models. (Renduchintala et al., 2023) uses
weight tying to further reduce the trainable parameters. (Yeh
et al., 2023) introduces a unified LoRA family framework
for Stable diffusion. (Ponti et al., 2022) chooses different
combinations of LoRAs from the inventory with a routing
function for different tasks. (Kopiczko et al., 2024) imple-
ments learnable scaling vectors to adjust a shared pair of
frozen random matrices across layers. Our research also
falls within this third category, and we validate the efficacy
of our proposed method alongside LoRA and its variants
through comprehensive experimentation.

3. Pattern Analysis of LoRA and FT
3.1. Low-Rank Adaptation (LoRA)

Building upon the hypothesis that updates made during the
fine-tuning exhibit a low “intrinsic rank”, LoRA (Hu et al.,
2022) proposes using the product of two low-rank matri-
ces to update the pre-trained weights incrementally. For a
pre-trained weight matrix W0 ∈ Rd×k, LoRA models the
weight update ∆W ∈ Rd×k utilizing a low-rank decompo-
sition, expressed as BA, where B ∈ Rd×r and A ∈ Rr×k

represent two low-rank matrices, with r ≪ min(d, k). Con-
sequently, the fine-tuned weight W ′ can be represented as:

W ′ = W0 +∆W = W0 +BA (1)

where W0 remains static during the fine-tuning process,
and the underlined parameters are being trained. The ma-
trix A is initialized with uniform Kaiming distribution (He
et al., 2015), while B is initially set to zero, resulting in
∆W = BA being zero at the start of training. Notably,
this decomposition of ∆W can be substituted with other
LoRA variants, such as VeRA (Kopiczko et al., 2024). Ad-
ditionally, based on Eq. (1), we can merge the learned ∆W
with the pre-trained weight W0 and obtain W ′ in advance
of deployment, and given that both W ′ and W0 both fall
within the dimensionality of Rd×k, LoRA and its related
variants do not introduce any extra latency during the infer-

2



ence compared to the original model.

3.2. Weight Decomposition Analysis

The study presented in LoRA (Hu et al., 2022) suggests that
LoRA can be considered a general approximation of full
fine-tuning. By gradually increasing the rank r of LoRA
to align with the rank of pre-trained weights, LoRA can
attain a level of expressiveness akin to that of FT. Con-
sequently, many previous studies have attributed the dis-
crepancy in accuracy between LoRA and FT primarily to
the limited number of trainable parameters, often without
further analysis (Hu et al., 2022; Kopiczko et al., 2024).
Drawing inspiration from Weight Normalization (Salimans
& Kingma, 2016), which reparameterizes the weight matrix
into magnitude and direction for accelerating optimization,
we introduce an innovative weight decomposition analysis.
Our analysis restructures the weight matrix into two sep-
arate components, magnitude and direction, to reveal the
inherent differences in LoRA and FT learning patterns.

Analysis Method: This analysis examines the updates in
both magnitude and direction of the LoRA and FT weights
relative to the pre-trained weights to reveal the fundamental
differences in the learning behaviors of both. The weight
decomposition of W ∈ Rd×k can be formulated as:

W = m
V

||V ||c
= ||W ||c

W

||W ||c
(2)

where m ∈ R1×k is the magnitude vector, V ∈ Rd×k is the
directional matrix, with || · ||c being the vector-wise norm of
a matrix across each column. This decomposition ensures
that each column of V/||V ||c remains a unit vector, and the
corresponding scalar in m defines the magnitude of each
vector.

For our weight decomposition analysis, we select the VL-
BART model fine-tuned on four image-text tasks as outlined
in (Sung et al., 2022) for a case study. Following (Sung et al.,
2022), which applies LoRA only to the query/value weight
matrix in the self-attention module. We decompose the pre-
trained weight W0, the full fine-tuned weight WFT, and the
merged LoRA weight WLoRA of query/value weight matrix
using Eq. (2). The magnitude and directional variations
between W0 and WFT can be defined as follows:

∆M t
FT =

∑k
n=1 |m

n,t
FT −mn

0 |
k

(3)

∆Dt
FT =

∑k
n=1(1− cos(V n,t

FT ,Wn
0 ))

k
(4)

Here, ∆M t
FT and and ∆Dt

FT represent the magnitude dif-
ference and directional difference between W0 and WFT at
t training step respectively, with cos(·, ·) being the cosine
similarity function. Mn,t

FT and Mn
0 are the nth scalars in

their respective magnitude vectors, while V n,t
FT and Wn

0 are
the nth columns in V t

FT and W0. The magnitude and direc-
tional differences between WLoRA and W0 are calculated
similarly, as per Eq. (3) and Eq. (4). We select checkpoints
from four different training steps for analysis, comprising
three intermediate steps and the final checkpoint from both
FT and LoRA, and we perform weight decomposition anal-
ysis on each of these checkpoints to determine the ∆M and
∆D throughout different layers.

Analysis Results: Figure 2 (a) and (b) illustrate the alter-
ations in the query weight matrix of FT and LoRA, with
each point representing a (∆Dt, ∆M t) pair from query
weight matrices across different layers and training steps.
Similarly, Figure 5 in the appendix displays the value weight
matrix modifications. It is noticeable that LoRA exhibits a
consistent positive slope trend across all the intermediate
steps, signifying a proportional relationship between the
changes in direction and magnitude. In contrast, the FT
displays a more varied learning pattern with a relatively neg-
ative slope. This distinction between FT and LoRA likely
mirrors their respective learning capability. While LoRA
tends to either increase or decrease the magnitude and direc-
tion updates proportionally, it lacks the nuanced capability
for more subtle adjustments. Specifically, LoRA does not
show proficiency in executing slight directional changes
alongside more significant magnitude alterations, or vice
versa, a feature more characteristic of the FT method. We
suspect that such limitation of LoRA might stem from the
challenge of concurrent learning both magnitude and direc-
tional adaptation, which could be overly complex for LoRA.
Consequently, in this work, we aim to propose a variant of
LoRA that exhibits a learning pattern more closely resem-
bling that of FT, and can improve the learning capacity over
LoRA.

4. Method
4.1. Weight-Decomposed Low-Rank Adaptation

Drawing from the insights of our weight decomposition
analysis, we introduce Weight-Decomposed Low-Rank
Adaptation (DoRA). DoRA initially decomposes the pre-
trained weight into its magnitude and directional compo-
nents and finetunes both of them. Because the directional
component is large in terms of parameter numbers, we fur-
ther decompose it with LoRA for efficient finetuning.

Our intuitions are two-fold. Firstly, we believe that limiting
LoRA to concentrate exclusively on directional adaptation
while also allowing the magnitude component to be tun-
able simplifies the task compared to the original approach,
where LoRA is required to learn adjustments in both mag-
nitude and direction. Secondly, the process of optimizing
directional updates is made more stable through weight
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Figure 2. Magnitude and direction updates of (a) FT, (b) LoRA, and (c) DoRA of the query matrices across different layers and intermediate
steps. Different markers represent matrices of different training steps and different colors represent the matrices of each layer.

decomposition, which we delve into more thoroughly in
Section.4.2. It is important to highlight that the main distinc-
tion between DoRA and weight normalization (Salimans
& Kingma, 2016) lies in their training approaches. Weight
normalization trains both components from scratch, mak-
ing the method sensitive to different initializations. Con-
versely, DoRA avoids such initialization concerns since both
components begin with pre-trained weights. We initialize
DoRA with pre-trained weight W0 as outlined in Eq. (2),
where m = ||W0||c and V = W0 after initialization. We
then keep V frozen and m a trainable vector. The directional
component is then updated through LoRA. DoRA can be
formulated similar to Eq. (1) as:

W ′ = m
V +∆V

||V +∆V ||c
= m

W0 +BA

||W0 +BA||c
(5)

where ∆V is the incremental directional update learned
by multiplying two low-rank matrices B and A, and the
underlined parameters denote the trainable parameters. The
matrices B ∈ Rd×r and A ∈ Rr×k are initialized in line
with LoRA’s strategy to ensure that W ′ equals W0 before
the finetuning. Furthermore, DoRA can be merged with the
pre-trained weight before inference, thereby not introducing
any additional latency.

We visualize the magnitude and directional differences of
the query weight matrix between the merged DoRA weight
and W0 in the same setting as for FT and LoRA in Figure 2
(c) and leave the visualization of the value weight matrix
in the appendix. From the regression line for (∆D,∆M)
of both DoRA and FT, we reveal that in contrast to LoRA’s
pattern, DoRA, and FT are characterized by a distinct neg-
ative slope. We reason that FT tends towards a negative
slope because pre-trained weights already possess substan-
tial knowledge suitable for various downstream tasks. There-
fore, when provided with adequate learning capacity, having
a larger magnitude or direction alteration alone is sufficient
enough for downstream adaptation. We additionally com-
pute the correlation between ∆D and ∆M for FT, LoRA,
and DoRA, and we found that both FT and DoRA exhibit

negative correlation values of -0.62 and -0.31, respectively.
In contrast, LoRA shows a positive correlation with a value
of 0.83. In conclusion, the fact that DoRA demonstrates
the ability to make only substantial directional adjustments
with relatively minimal changes in magnitude or the reverse
while showing learning patterns closer to FT’s signifies its
superior learning capacity over LoRA.

4.2. Gradient Analysis of DoRA

In this section, we first derive the gradient of DoRA and
illustrate how our proposed decomposition benefits the opti-
mization of ∆V . Subsequently, we analyze from the gradi-
ent’s perspective to explicate the learning pattern of DoRA,
which tends to have a negative slope.

From Eq. (5), we can obtain the gradient of Loss L with
respect to m and V ′ = V +∆V as:

∇V ′L =
m

||V ′||c

(
I − V ′V ′T

||V ′||2c

)
∇W ′L (6)

∇mL =
∇W ′L · V ′

||V ′||c
(7)

Eq. (6) reveals that the weight gradient ∇W ′L is scaled by
m/||V ′||c and is projected away from the current weight
matrix. These two effects contribute to aligning the gra-
dient’s covariance matrix more closely with the identity
matrix, which is advantageous for optimization (Salimans
& Kingma, 2016). Additionally, given that V ′ = V +∆V ,
the gradient ∇V ′L is equivalent to ∇∆V L. Therefore, the
optimization benefits derived from this decomposition are
fully transferred to ∆V , enhancing the learning stability of
LoRA.

We can gain further insight into the learning pattern of
DoRA by referring to Eq. (7). In the subsequent dis-
cussion, we represent vectors using lower-case letters in-
stead of the previous matrix form notation. Consider
w′′ = w′ + ∆w as the parameter update for a weight
vector, where ∆w ∝ ∇w′L. In two hypothetical update
scenarios, S1 and S2, S1 involves a smaller directional
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update (∆DS1), while S2 involves a larger one (∆DS2).
Assuming ||∆wS1|| = ||∆wS2||, and at time 0, we have
∆v = 0 and v′ = v. From ∆DS1 < ∆DS2, it follows
that |cos(∆wS1, w

′)| > |cos(∆wS2, w
′)|. Since ∆w ∝

∇w′L, it implies |cos(∇S1
w′L, w′)| > |cos(∇S2

w′L, w′)|.
From Sec 4.1, with v initialized as v0 and w′ = w0 at
time 0, we get |cos(∇w′L, w′)| = |cos(∇w′L, v′)| =
|cos(∇w′L, v)|. Using the cosine similarity equation with
∆v = 0:

cos(∇w′L, v′) = cos(∇w′L, v) = ∇w′L · v
||∇w′L||||v||

(8)

denote m∗ as the magnitude scalar of vector w′ then Eq. (7)
w.r.t m∗ can be rewritten to:

∇m∗L =
∇w′L · v′

||v′||
= ||∇w′L|| · cos(∇w′L, v) (9)

Given that ||∆wS1|| = ||∆wS2|| for S1 and S2, and
||∇S1

w′L|| = ||∇S2
w′L||. Therefore, with:

||∇S1
w′L|| · |cos(∇S1

w′L, v)| > ||∇S2
w′L|| · |cos(∇S2

w′L, v)|
(10)

it can be inferred that |∇S1
m∗

L| > |∇S2
m∗

L| which indicate
that S1 has larger magnitude updates over S2 while having
smaller directional alteration than that of S2. Our conclu-
sion generally holds in practice, as evidenced by Figure 2 (c).
Consequently, we have effectively shown how DoRA can
be utilized to adjust the learning pattern, diverging from that
of LoRA and aligning more closely with the pattern of FT.

4.3. Reduction of Training Overhead

In Eq. (1), the gradients of W ′ and ∆W are the same. How-
ever, with DoRA, which redirects the low-rank adaptation
towards the directional component, the gradient of the low-
rank updates differs from that of W ′, as illustrated in Eq. (6).
This divergence necessitates extra memory during backprop-
agation. To address this, we suggest treating ||V +∆V ||c in
Eq. (5) as a constant, thereby detaching it from the gradient
graph. This means that while ||V + ∆V ||c dynamically
reflects the updates of ∆V , it won’t receive any gradient
during backpropagation. With this modification, the gra-
dient w.r.t m remains unchanged, and ∇V ′L is redefined
as:

∇V ′L =
m

C
∇W ′L where C = ||V ′||c (11)

This approach reduces the gradient graph memory consump-
tion drastically without a noticeable difference in accuracy.
We conduct an ablation study to evaluate the impact of the
proposed modification on fine-tuning LLaMA-7B and VL-
BART. The results indicate that the modification leads to
a training memory reduction of approximately 24.4% in
fine-tuning LLaMA and 12.4% in VL-BART. Furthermore,

the accuracy of DoRA with the modification remains un-
changed for VL-BART and shows a negligible difference
of only 0.2 compared to DoRA without the modification
on LLaMA. For a comprehensive comparison of training
memory usage and accuracy differences, please see Table 7
in the appendix. Consequently, all subsequent experiments
with DoRA incorporate this adjustment.

5. Experiments
We conduct a variety of experiments to showcase the effi-
cacy of DoRA on various tasks including language, image,
and video domains. Firstly, we evaluate DoRA against sev-
eral Parameter-Efficient Fine-Tuning (PEFT) methods by
fine-tuning LLaMA-7B/13B on commonsense reasoning
tasks. Subsequently, we extend from single modality to
multimodality. We compare DoRA with LoRA across multi-
task image/video-text understanding tasks using VL-BART
and visual instruction tuning with LLaVA-1.5-7B. Follow-
ing this, we explore the compatibility of DoRA with LoRA
and VeRA (Kopiczko et al., 2024) for instruction-tuning on
LLaMA-7B and LLaMA2-7B. Furthermore, we perform a
series of ablation studies to illustrate that DoRA surpasses
LoRA in performance, irrespective of the number of fine-
tuning training samples and rank variations. Lastly, We
analyze the tuning granularity of DoRA, and show that
DoRA can achieve better accuracy than LoRA with fewer
trainable parameters by selectively updating only the direc-
tional components of certain modules.

5.1. Commonsense Reasoning

We evaluate DoRA against LoRA and several baseline meth-
ods which include Prompt learning (Prefix) (Li & Liang,
2021), Series adapter (Series) (Houlsby et al., 2019), and
Parallel adapter (Parallel) (He et al., 2021) on LLaMA-
7B/13B (Touvron et al., 2023) for commonsense reasoning
tasks. We also include ChatGPT’s accuracy obtained with
gpt-3.5-turbo API using a zero-shot Chain of Thought (Ope-
nAI, 2023; Wei et al., 2022).

The commonsense reasoning tasks comprise 8 sub-tasks,
each with a predefined training and testing set. We follow
the setting of (Hu et al., 2023) and amalgamate the training
datasets from all 8 tasks to create the final training dataset
and conduct evaluations on the individual testing dataset
for each task. To ensure a fair comparison, we initially
fine-tuned models with DoRA following the LoRA config-
uration, maintaining the same rank while adjusting only
the learning rate. The marginal increase of 0.01% in the
number of trainable parameters for DoRA over LoRA, as
detailed in Table 1, arises from the inclusion of learnable
magnitude components (parameter of size 1× k). Then, we
further halve the rank used in DoRA compared to LoRA
and denote this adjusted configuration as DoRA†. See Table
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Table 1. Accuracy comparison of LLaMA 7B/13B with various PEFT methods on eight commonsense reasoning datasets. Results of all
the baseline methods are taken from (Hu et al., 2023). DoRA†: the adjusted version of DoRA with the rank halved.

Model PEFT Method # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
ChatGPT - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA-7B

Prefix 0.11 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 0.99 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8

Parallel 3.54 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.2
LoRA 0.83 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

DoRA† (Ours) 0.43 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
DoRA (Ours) 0.84 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1

LLaMA-13B

Prefix 0.03 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
Series 0.80 71.8 83 79.2 88.1 82.4 82.5 67.3 81.8 79.5

Parallel 2.89 72.5 84.9 79.8 92.1 84.7 84.2 71.2 82.4 81.4
LoRA 0.67 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5

DoRA† (Ours) 0.35 72.5 85.3 79.9 90.1 82.9 82.7 69.7 83.6 80.8
DoRA (Ours) 0.68 72.4 84.9 81.5 92.4 84.2 84.2 69.6 82.8 81.5

8 for details on the hyperparameters used.

Table 1 demonstrates that DoRA consistently surpasses all
baseline methods across both LLaMA-7B and 13B models.
Notably, in the LLaMA-7B model, where LoRA exceeds
the performance of other baselines, DoRA further enhances
accuracy by 3.4%, outstripping ChatGPT’s accuracy levels.
Conversely, for LLaMA-13B, where LoRA’s effectiveness
is inferior to the Parallel adapter, DoRA achieves superior
accuracy over LoRA by 1% and comparable accuracy to the
Parallel adapter, with only a quarter of the trainable parame-
ters required by the Parallel adapter and without adding any
extra inference overhead as the Parallel adapter. Further-
more, DoRA† exceeds LoRA’s performance on LLaMA-7B
by 2.8% and on LLaMA-13B by 1%, even though it pos-
sesses only half the trainable parameters compared to LoRA.
This outcome suggests that the integration of DoRA en-
hances the learning capability of LoRA, thereby reducing
the need for a higher rank to surpass LoRA in terms of
accuracy.

5.2. Image/Video-Text Understanding

Table 2. The multi-task evaluation results on VQA, GQA, NVLR2

and COCO Caption with the VL-BART backbone.

Method # Params (%) VQAv2 GQA NVLR2 COCO Cap Avg.

FT 100 66.9 56.7 73.7 112.0 77.3
LoRA 5.93 65.2 53.6 71.9 115.3 76.5

DoRA (Ours) 5.96 65.8 54.7 73.1 115.9 77.4

Table 3. The multi-task evaluation results on TVQA, How2QA,
TVC, and YC2C with the VL-BART backbone.

Method # Params (%) TVQA How2QA TVC YC2C Avg.

FT 100 76.3 73.9 45.7 154 87.5
LoRA 5.17 75.5 72.9 44.6 140.9 83.5

DoRA (Ours) 5.19 76.3 74.1 45.8 145.4 85.4

Having shown that DoRA can consistently achieve bet-
ter accuracy on fine-tuning LLM, we would like to see
if DoRA can remain competitive on multi-modality fine-
tuning tasks. We compare DoRA with LoRA and full fine-
tuning on VL-BART which comprises a vision encoder
(CLIP-ResNet101 (Radford et al., 2021)) and an encoder-
decoder language model (BARTBase (Lewis et al., 2020))
across four different image-text tasks: VQAv2 (Goyal et al.,
2017) and GQA (Hudson & Manning, 2019) for visual ques-
tion answering, NLVR2 (Suhr et al., 2019) for visual reason-
ing, and MSCOCO (Chen et al., 2015) for image captioning,
and four different video-text tasks from the VALUE (Li
et al., 2021) Benchmark: TVQA (Lei et al., 2018) and
How2QA (Li et al., 2020) for video question answering,
TVC (Lei et al., 2020) and YC2C (Zhou et al., 2018) for
video captioning.

We follow the same framework as (Sung et al., 2022) and
fine-tuned VL-BART within a multi-task framework for
both image/video-text tasks. We adopt the same setup
as that of LoRA outlined in (Sung et al., 2022) when ap-
plying DoRA. See Table 9 for the complete hyperparam-
eters. The result of LoRA and FT for both image/video-
text tasks is directly quoted from (Sung et al., 2022). We
can see that DoRA uniformly surpasses LoRA in accuracy
while maintaining a similar count of trainable parameters
in both Table 2 and Table 3. In particular, DoRA exceeds
LoRA’s performance by nearly 1% in image-text under-
standing tasks, reaching the accuracy level of FT. Moreover,
DoRA achieves roughly 2% higher accuracy than LoRA in
video-text understanding tasks.

5.3. Visual Instruction Tuning

We further scale up the model size and compare DoRA to
LoRA and FT on the visual instruction tuning tasks with
LLaVA-1.5-7B (Liu et al., 2023a) which is composed of a
language model, Vicuna-1.5-7B (Peng et al., 2023), and a
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Table 4. Visual instruction tuning evaluation results for LLaVA-
1.5-7B on a wide range of seven vision-language tasks. We directly
use checkpoints from (Liu et al., 2023a) to reproduce their results.

Method # Params(%) Avg.

FT 100 66.5
LoRA 4.61 66.9

DoRA (Ours) 4.63 67.6

vision encoder, CLIP ViT-L/336px (Radford et al., 2021).
The training datasets contain several datasets from VQA
(Goyal et al., 2017; Hudson & Manning, 2019; Marino
et al., 2019; Schwenk et al., 2022), OCR (Mishra et al.,
2019; Sidorov et al., 2020), region-level VQA (Kazemzadeh
et al., 2014; Krishna et al., 2017; Mao et al., 2016), visual
conversation (Liu et al., 2023a), and language conversation
data. We follow the setting of (Liu et al., 2023a) to filter the
training data and construct the tunning prompt format. For
a fair comparison, DoRA follows the same configuration
as the LoRA configuration provided by (Liu et al., 2023a).
The fine-tuned models are then evaluated on seven vision-
language benchmarks: VQAv2 (Goyal et al., 2017), GQA
(Hudson & Manning, 2019), VisWiz (Gurari et al., 2018)
SQA (Lu et al., 2022), VQAT (Singh et al., 2019), POPE
(Li et al., 2023), and MMBench (Liu et al., 2023c).

From Table 4, we can observe that the average accuracy
of LoRA already surpasses FT, which could imply that FT
might be experiencing issues with overfitting. Given that
DoRA is designed to enhance LoRA’s performance to more
closely resemble that of FT, in scenarios where FT is infe-
rior to LoRA, DoRA’s improvement over LoRA might not
be as pronounced as observed in other experiments where
FT usually outperforms LoRA. Nonetheless, DoRA still
demonstrates superior performance over both LoRA and FT,
with an average improvement of 0.7% over LoRA and 1.1%
over FT. See Table 10 for the hyperparameters setting and
Table 12 for the score of each evaluation benchmark.

5.4. Compatibility of DoRA with other LoRA variants

Table 5. Average scores on MT-Bench assigned by GPT-4 to the
answers generated by fine-tuned LLaMA-7B/LLaMA2-7B.

Model PEFT Method # Params (%) Score

LLaMA-7B

LoRA 2.31 5.1
DoRA (Ours) 2.33 5.5

VeRA 0.02 4.3
DVoRA (Ours) 0.04 5.0

LLaMA2-7B

LoRA 2.31 5.7
DoRA (Ours) 2.33 6.0

VeRA 0.02 5.5
DVoRA (Ours) 0.04 6.0

Recall from Equation.(1) that ∆W can be adapted by differ-
ent LoRA variants. With DoRA, the concept of incremental
directional update ∆V introduced in Equation.(5) can like-
wise be replaced with alternative LoRA variants. In this
section, we select VeRA (Kopiczko et al., 2024) as a case
study to explore DoRA’s compatibility with other LoRA
variants. VeRA suggests freezing a unique pair of random
low-rank matrices to be shared across all layers, employ-
ing only minimal layer-specific trainable scaling vectors to
capture each layer’s incremental updates. This approach
allows VeRA to reduce trainable parameters significantly
by 10x compared to LoRA, with only a minimal impact
on accuracy. We apply VeRA for the directional update in
DoRA and name such combination DVoRA. We assess the
effectiveness of both DVoRA and DoRA compared to VeRA
and LoRA across LLaMA-7B and LLaMA2-7B, focusing
on instruction tuning with the 10K subset of cleaned Alpaca
dataset (Taori et al., 2023). We utilize the official imple-
mentation of VeRA to obtain the results of VeRA and LoRA
and fine-tune the model with DVoRA and DoRA using the
identical training settings as VeRA and LoRA (see Table 11
in the appendix for more details). The performance of the
fine-tuned models is then evaluated on the MT-Bench bench-
mark (Zheng et al., 2023) by generating model responses
to a pre-defined set of 80 multi-turn questions. These re-
sponses are then evaluated by GPT-4, which reviews each
answer and assigns a numerical score out of 10.

Table 5 presents the average scores for DVoRA, DoRA,
VeRA, and LoRA, demonstrating that our proposed method
exhibits consistent improvements over VeRA and LoRA for
both LLaMA-7B and LLaMA2-7B. This effectively show-
cases the compatibility of DoRA with VeRA. In particular,
DVoRA merges the advantageous qualities of DoRA and
VeRA, attaining scores that are on par with or even sur-
pass those of LoRA, yet with significantly fewer parame-
ters. For example, DVoRA outperforms VeRA by 0.7/0.5
points and achieves the same level of accuracy as LoRA on
LLaMA-7B and DoRA on LLaMA2-7B, respectively. Ad-
ditionally, we present a selection of questions chosen from
MT-Bench, accompanied by the responses from LLaMA2-
7B fine-tuned using DVoRA and VeRA in the appendix
(Table 13 and 14) where we can observe that the answers
given by DVoRA tend to be more precise and structural.

Next, to further assess DoRA’s ability to remain competitive
under varying amounts of training data, considering that in
practical situations, access to extensive fine-tuning datasets
is frequently limited. We compare DoRA to LoRA and
DVoRA to VeRA for fine-tuning LLaMA2-7B/LLaMA-7B
with a range of instruction-tuning sample sizes, specifically
1000, 4000, 7000, 10000, with 10000 being the setting of
(Kopiczko et al., 2024). We visualize the average perfor-
mance of each method on LLaMA2-7B in Figure 3, and on
LLaMA-7B in Figure 6 in the appendix. The result shows
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Figure 3. Performance of fine-tuned LLaMA2-7B on MT-Bench
using different numbers of Alpaca training samples.

that DoRA and DVoRA consistently outperform LoRA
and VeRA across all training sample sizes. For instance,
with 7000 training samples, DoRA and DVoRA surpass
LoRA and VeRA by margins of 0.3 and 0.33, respectively.
Even when the sample size is reduced to 1000, DoRA and
DVoRA maintain their lead with advantages of 0.29 and
0.22 over LoRA and VeRA, respectively. This demonstrates
that our methods persistently enhance performance over
LoRA and VeRA, regardless of the training sample volume.

5.5. Robustness of DoRA towards different rank settings
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Figure 4. Average accuracy of LoRA and DoRA for varying ranks
for LLaMA-7B on the commonsense reasoning tasks.

This section explores the impact of various rank configura-
tions on DoRA and LoRA by adjusting r within the set {4, 8,
16, 32, 64} and assessing the performance of the fine-tuned
LLaMA-7B on commonsense reasoning tasks as outlined in
Sec 5.1. The average accuracies of LoRA and DoRA across
different ranks are depicted in Figure 4, with detailed num-
bers presented in Table 15. From Figure 4, we can observe
that DoRA consistently surpasses LoRA across all rank con-
figurations. Notably, the performance gap widens for ranks
below 8, where LoRA’s average accuracies drop to 40.74%
for r = 8 and 39.49% for r = 4. In contrast, DoRA retains
a notable accuracy of 77.96% for r = 8 and 61.89% for

Table 6. Accuracy comparison of LLaMA 7B/13B with two differ-
ent tuning granularity of DoRA. Columns m and V designate the
modules with tunable magnitude and directional components, re-
spectively. Each module is represented by its first letter as follows:
(Q)uery, (K)ey, (V)alue, (O)utput, (G)ate, (U)p, (D)own.

Model PEFT Method# Params (%) m V Avg.

LLaMA-7B
LoRA 0.83 - - 74.7

DoRA (Ours) 0.84 QKVUD QKVUD 78.1
DoRA (Ours) 0.39 QKVOGUD QKV 77.5

LLaMA-13B
LoRA 0.67 - - 80.5

DoRA (Ours) 0.68 QKVUD QKVUD 81.5
DoRA (Ours) 0.31 QKVOGUD QKV 81.3

r = 4, demonstrating its resilience and consistently superior
performance over LoRA regardless of the rank setting.

5.6. Tuning Granularity Analysis

The visualization in Figure 2 indicates that significant
changes in magnitude often result in relatively smaller di-
rectional changes. Given this observation and the fact that
directional updates account for most of the trainable param-
eters, it prompts an investigation into whether it is possible
to decrease the number of trainable parameters by updating
only the magnitude components of specific modules while
continuing to update both the magnitude and directional
components for the remaining linear modules.

Our findings indicate that, in contrast to the original con-
figuration suggested for LoRA in (Hu et al., 2023), which
requires updates to both the Multi-head Attention and MLP
layers for optimal performance, DoRA can already achieve
superior accuracy by updating only the directional and mag-
nitude components of the multi-head layers and the magni-
tude of the MLP layers. Specifically, as shown in Table 6,
by updating the directional and magnitude components of
the QKV modules and only the magnitude of the rest of the
layers, DoRA surpasses LoRA by 2.8% on LLaMA-7B and
0.8% on LLaMA-13B, while utilizing only less than half of
the trainable parameters compared to LoRA.

6. Conclusion
In this work, we first conduct a novel weight decomposi-
tion analysis to reveal the distinct learning patterns between
LoRA and FT. Building on these insights, we introduce
DoRA, a fine-tuning method that is compatible with LoRA
and its variants and exhibits a closer resemblance to FT’s
learning behavior. DoRA consistently outperforms LoRA
across various fine-tuning tasks and model architectures.
Specifically, DoRA improves upon LoRA in commonsense
reasoning and visual instruction tuning tasks. Furthermore,
DoRA also shows compatibility with VeRA on the Alpaca
instruction tuning task. Moreover, DoRA can be consid-
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ered as a costless alternative to LoRA, as its decomposed
magnitude and direction components can be merged back
into the pre-trained weight after the training, ensuring that
there is no extra inference overhead. For future work, we
wish to explore the generalizability of DoRA in domains
beyond language and vision, particularly in the field of au-
dio. Additionally, it would be intriguing to investigate the
potential of DoRA in various other applications, such as
Stable Diffusion text-to-image fine-tuning.

7. Impact Statements
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Weight decomposition analysis on the value weight matrix

In this section, we illustrate the changes in magnitude and direction within the value weight matrix for FT, LoRA, and
DoRA across different training steps and layers, as shown in Figure 5. This reveals patterns similar to those seen in the
query weight matrix depicted in Figure 2, indicating that DoRA is capable of displaying learning behaviors that closely
mirror those of FT across various modules.
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Figure 5. Magnitude and Directional changes of FT (a), LoRA (b), and DoRA (c) of the V weight matrices across different layers and
intermediate steps.

A.2. Ablation study for the modification to reduce DoRA training cost

Table 7 presents the GPU cost and the average accuracy of DoRA with and without the proposed modification for
commonsense reasoning tasks and image-text understanding tasks. The results indicate that the modification leads to a
training memory reduction of approximately 24.4% in fine-tuning LLaMA and 12.4% in VL-BART. Furthermore, the
accuracy of DoRA with the modification remains unchanged for VL-BART and shows a negligible difference of only 0.2
compared to DoRA without the modification on LLaMA.

Table 7. GPU cost and accuracy of DoRA with or without the modification on the commonsense reasoning tasks and image-text
understanding tasks.

Model PEFT Method Accumulation steps Batch Size GPU Memory Cost (GB) # Params (%) Avg.

LLaMA-7B DoRA w/o modification 4 16 37.3 0.84 78.3
DoRA 28.2 (-24.4%) 0.84 78.1

VL-BART DoRA w/o modification - 300 23.4 5.96 77.3
DoRA 20.5 (-12.4%) 5.96 77.4
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A.3. Hyperparameters

Table 8. Hyperparameter configurations of DoRA for LLaMA-7B/13B on the commonsense reasoning tasks.

Hyperparameters (DoRA) LLaMA-7B LLaMA-13B

Rank r 16 32 16 32
α 32 64 32 64

Dropout 0.05
Optimizer AdamW

LR 2e-4 2e-4 3e-4 2e-4
LR Scheduler Linear

Batch size 16
Warmup Steps 100

Epochs 3
Where Q,K,V,Up,Down

Table 9. Hyperparameter configurations of DoRA for fine-tuning VL-Bart on image/video-text tasks.

Hyperparameters (DoRA) image-text video-text

Rank r 128
α 128

Dropout 0.0
Optimizer AdamW

LR 1e-3 3e-4
LR Scheduler Linear

Batch size 300 40
Warmup ratio 0.1

Epochs 20 7
Where Q,K

Table 10. Hyperparameter configurations of DoRA and LoRA for fine-tuning LLaVA-1.5-7B with visual instruction tuning datasets.

Hyperparameters DoRA LoRA

Rank r 128
α 256

Dropout 0.05
Optimizer AdamW

LR 2e-4
LR Scheduler Cosine decay

Batch size 16
Warmup ratio 0.03

Epochs 1
Where Q,K,V,O,Up,Down,Gate
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Table 11. Hyperparameter configurations of DoRA and DVoRA for fine-tuning LLaMA-7B and LLaMA2-7B with cleaned Alpaca dataset.

Hyperparameters (DoRA) LLaMA-7B LLaMA2-7B

Rank r 64
Dropout 0.0

Optimizer AdamW
LR 4e-4

LR Scheduler Cosine
Batch size 4

Accumulation Steps 4
Warmup ratio 0.1

Epochs 1
Where Q,K,V,O,Up,Down,Gate

Hyperparameters (DVoRA) LLaMA-7B LLaMA2-7B

Rank r 1024
Dropout 0.0

Optimizer AdamW
LR 4e-3

LR Scheduler Cosine
Batch size 4

Accumulation Steps 4
Warmup ratio 0.1

Epochs 1
Where Q,K,V,O,Up,Down,Gate
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A.4. Visual instruction tuning evaluation result

Table 12 presents the evaluation result of LLaVA-1.5-7B fine-tuned using DoRA, LoRA, and FT with visual instruction
tuning data. The evaluation is conducted on an array of seven different vision-language benchmarks. From the table, we can
see that DoRA consistently outmatch FT, and can achieve an average accuracy better than LoRA.

Table 12. Visual instruction tuning evaluation result of DoRA, LoRA, and FT for LLaVA-1.5-7B on a wide range of 7 vision-language
tasks.

Method # Params (%) VQAv2 GQA VisWiz SQA VQAT POPE MMBench Avg.

FT 100 78.5 61.9 50.0 66.8 58.2 85.9 64.3 66.5
LoRA 4.61 79.1 62.9 47.8 68.4 58.2 86.4 66.1 66.9

DoRA (Ours) 4.63 78.6 62.9 52.2 69.9 57 87.2 66.1 67.6
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A.5. Instruction-tuning evaluation examples

We sample two questions from the MT-Bench question set and present the respective responses from DVoRA and VeRA,
including the scores and comments provided by GPT-4. From these examples, we can observe that responses from
DVoRA are generally more accurate and well-organized compared to those from VeRA. For instance, in response to Question
24, DVoRA leverages a well-known superhero story that is familiar to children, whereas VeRA’s response begins with an
uncertain tone, potentially making it less engaging than DVoRA’s reply.

Table 13. Question 24 from MT-Bench alongside with response from LLaMA2-7B fine-tuned with DVoRA and VeRA, and the evaluation
provided by GPT-4.

Question 24 As a superhero, how would you explain your origin story to a curious child?

VeRA Well, I’m not really sure where I come from. All I know is that one day, I woke up with special
powers and abilities that allowed me to help people. I decided to use my powers to fight crime and
protect the innocent, and that’s how I became a superhero

DVoRA As a superhero, I have the ability to use my super powers to protect people and fight against evil. My
origin story begins when I was just a regular kid like you, but one day, I was bitten by a radioactive
spider, and it gave me incredible powers. I could climb walls, shoot webs, and see in the dark. I
decided to use my powers to help people, and that’s how I became your friendly neighborhood
Spider-Man.

GPT-4 Evaluation Score: 5 7. Assistant 1’s response starts with an uncertain tone, which might not be very engaging
for a child. The explanation is quite vague and doesn’t offer a clear or imaginative origin story that
could captivate a child’s interest. It does, however, maintain the theme of using powers for good,
which is a positive message. Assistant 2’s response is more detailed and uses a familiar superhero
origin story (Spider-Man’s) that many children can relate to and understand. It’s engaging and
provides a clear narrative of how an ordinary person can become a superhero. However, it directly
references Spider-Man, which is not an original origin story and could be misleading if the assistant
is supposed to be a unique superhero. Despite this, the response is more likely to resonate with a
child due to its clarity and reliability. Both responses could be improved by providing an original
and imaginative origin story that doesn’t rely on existing superhero narratives. They should also
ensure that the story is simple enough for a child to understand while being engaging and inspiring.
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Table 14. Question 33 from MT-Bench alongside with response from LLaMA2-7B fine-tuned with DVoRA and VeRA, and the evaluation
provided by GPT-4.

Question 33 Why might someone choose to use a paper map or ask for directions instead of relying on a GPS
device or smartphone app?

VeRA There are several reasons why someone might choose to use a paper map or ask for directions
instead of relying on a GPS device or smartphone app. Some people may prefer the physical act of
navigating with a paper map, as it can be more tactile and interactive. Others may prefer to have a
hard copy of the map in case the GPS or app fails or the battery dies. Additionally, some people
may not have access to a GPS device or smartphone, or may not want to rely on technology for
navigation. Finally, some people may simply prefer the security and peace of mind that comes with
knowing exactly where they are and how to get to their destination

DVoRA There are several reasons why someone might choose to use a paper map or ask for directions
instead of relying on a GPS device or smartphone app. Here are some of them: 1. Navigation
accuracy: GPS devices and smartphone apps rely on satellite signals to pinpoint your location, but
this technology is not foolproof. GPS signals can be blocked by tall buildings, tunnels, or other
obstacles, resulting in inaccurate or missing information. Paper maps, on the other hand, are based
on accurate, up-to-date information that is not subject to these limitations. 2. Cost: GPS devices
and smartphone apps can be expensive to purchase and maintain. Paper maps are free to use and
do not require an ongoing subscription or data plan. 3. Personal preference: Some people prefer
the tactile experience of using a paper map, which can be easier to read and navigate than a screen.
Others enjoy the challenge of navigating without technology, which can help them learn more about
the area they are visiting. 4. Battery life: GPS devices and smartphone apps can drain batteries
quickly, especially when used for navigation. Paper maps do not require power, so they can be used
for extended periods without recharging. 5. Offline use: GPS devices and smartphone apps rely
on an internet connection to function properly. If there is no signal, the device will not be able to
provide accurate information. Paper maps, on the other hand, can be used offline, making them ideal
for use in remote or unpopulated areas. In summary, there are several reasons why someone might
choose to use a paper map or ask for directions instead of relying on a GPS device or smartphone
app. These include navigation accuracy, cost, personal preference, battery life, and offline use.

GPT-4 Evaluation Score: 6 8. Assistant 1’s response is somewhat brief and lacks specific details that could be helpful
to the user. It mentions the tactile nature of paper maps, the possibility of technology failure, lack
of access to technology, and a general preference for security and peace of mind. However, it
does not delve into the practical considerations such as GPS signal limitations, cost, battery life, or
offline use, which are important factors in deciding between paper maps and digital navigation tools.
Assistant 2’s response is more comprehensive and provides a structured list of reasons, including
navigation accuracy, cost, personal preference, battery life, and offline use. Each point is explained
clearly, giving the user a better understanding of the potential advantages of paper maps over GPS
devices or smartphone apps. The response is relevant, accurate, and detailed, making it more helpful
to the user. Both assistants provided relevant and accurate information, but Assistant 2’s answer is
more detailed and structured, which is why it receives a higher score. The scores reflect the level of
detail and the usefulness of the information provided to the user, with Assistant 2 offering a more
complete answer to the question
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A.6. Robustness towards different numbers of instruction tunning examples

Figure 6 depicts the score of DoRA, LoRA, DVoRA, and VeRA for fine-tuning LLaMA-7B with varying instruction-tuning
sample sizes, including 1000, 4000, 7000, and 10000. From the figure, we can observe that similar to that of the result on
LLaMA2-7B, both DoRA and DVoRA consistently outperform LoRA and VeRA across the entire range of training sample
sizes.
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Figure 6. Performance of LLaMA-7B fine-tuned with LoRA, DoRA, VeRA, and DVoRA on MT-Bench using different numbers of training
samples from Alpaca dataset (Taori et al., 2023).
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A.7. Robustness of DoRA towards different rank

Table 15 shows a comparison of the average accuracy between LoRA and DoRA method across various rank settings
for commonsense reasoning tasks. DoRA consistently outperforms LoRA at all rank settings, with the performance gap
widening as the rank decreases. This suggests that our method effectively enhances the learning capacity of LoRA, enabling
it to achieve better accuracy with fewer trainable parameters.

Table 15. Accuracy comparison of LoRA and DoRA with varying ranks for LLaMA-7B on the commonsense reasoning tasks.

PEFT Method rank r # Params (%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

LoRA

4 0.10 2.3 46.1 18.3 19.7 55.2 65.4 51.9 57 39.5
8 0.21 31.3 57.0 44.0 11.8 43.3 45.7 39.2 53.8 40.7

16 0.42 69.9 77.8 75.1 72.1 55.8 77.1 62.2 78.0 70.9
32 0.83 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7
64 1.64 66.7 79.1 75.7 17.6 78.8 73.3 59.6 75.2 65.8

DoRA (Ours)

4 0.11 51.3 42.2 77.8 25.4 78.8 78.7 62.5 78.6 61.9
8 0.22 69.9 81.8 79.7 85.2 80.1 81.5 65.7 79.8 77.9

16 0.43 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
32 0.84 68.5 82.9 79.6 84.8 80.8 81.4 65.8 81.0 78.1
64 1.65 69.9 81.4 79.1 40.7 80.0 80.9 65.5 79.4 72.1
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