
Transformers Can Achieve Length
Generalization But Not Robustly
Yongchao Zhou1,2, Uri Alon1, Xinyun Chen1, Xuezhi Wang1, Rishabh Agarwal1 and Denny Zhou1
1Google DeepMind, 2University of Toronto

Length generalization, defined as the ability to extrapolate from shorter training sequences to longer
test ones, is a significant challenge for language models. This issue persists even with large-scale
Transformers handling relatively straightforward tasks. In this paper, we test the Transformer’s ability
of length generalization using the task of addition of two integers. We show that the success of length
generalization is intricately linked to the data format and the type of position encoding. Using the
right combination of data format and position encodings, we show for the first time that standard
Transformers can extrapolate to a sequence length that is 2.5× the input length. Nevertheless, unlike
in-distribution generalization, length generalization remains fragile, significantly influenced by factors
like random weight initialization and training data order, leading to large variances across different
random seeds.

1. Introduction

Transformer-based models have revolutionized natural language understanding and generation
across diverse applications (Gemini et al., 2023; OpenAI, 2023). Despite their impressive abilities
in mathematical reasoning (Lewkowycz et al., 2022), code synthesis (Li et al., 2022), and theorem
proving (Wu et al., 2022), Transformers often struggle with length generalization, an ability that
requires the model to generalize to longer sequences than seen during training (Abbe et al., 2023;
Anil et al., 2022; Zhou et al., 2023). This limitation raises an essential question: do Transformers
genuinely grasp the correct underlying algorithms for a given task, or are they merely resorting to
superficial memorization or shortcuts that fail to scale to more complex problems (Liu et al., 2023b)?

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

Our Work
Zhou et al. (2023)
Shen et al. (2023)
Kazemnejad et al. (2023)
Lee et al. (2023)

Figure 1 | Using an appropriate position encoding and data formatting, we demonstrate that Trans-
formers can generalize to 100-digit decimal addition tasks with more than 98% of accuracy when
trained up to 40-digit addition, resulting in a length extension ratio of 2.5×, which is much more than
the ratio of Lee et al. (2023) (1.0×), Kazemnejad et al. (2023) (1.125×), Shen et al. (2023) (1.1×),
and Zhou et al. (2023) (1.5×). Unfilled markers (—▼▽) denote in-distribution test results, filled markers
(—▼) denote out-of-distribution results. In Zhou et al. (2023) and Our Work, each curve is the best out
of 10 trials. For the other three methods, we report the value from their corresponding paper.

Corresponding author(s): yczhou@cs.toronto.edu

ar
X

iv
:2

40
2.

09
37

1v
1

 [
cs

.L
G

]
 1

4
Fe

b
20

24

Transformers Can Achieve Length Generalization But Not Robustly

Recent work has scrutinized Transformers’ shortcomings in length generalization across formal
language learning (Deletang et al., 2023) and algorithmic reasoning tasks (Anil et al., 2022; Dziri
et al., 2023; Veličković et al., 2022; Zhang et al., 2022). These investigations consistently indicate a
notable deficiency in length generalization capabilities. This recurring issue raises a crucial question:
Is there an inherent limitation in Transformers’ design preventing effective length generalization?

In this paper, we systematically examine the Transformer’s capability of length generalization,
specifically focusing on the 𝑁-digit decimal addition problem. We view the addition problem as a form
of synthetic language learning, which despite its relative simplicity compared to natural language,
provides valuable insights into the Transformer’s ability to internalize fundamental algorithms.
Notwithstanding its simplicity, recent work has demonstrated that Transformers exhibit limited length
generalization in this task (Kazemnejad et al., 2023; Lee et al., 2023; Shen et al., 2023).

Previous attempts to improve Transformer’s length generalization ability primarily focus on two
areas: refining position encodings (Press et al., 2022; Shen et al., 2023) and optimizing data formats
(Lee et al., 2023; Zhou et al., 2023). Therefore, we perform an extensive empirical evaluation of
combinations of widely used position encoding and various data formats, resulting in a recipe for
successful length generalization. Our final recipe consists of: FIRE position encodings (Li et al., 2023),
with randomized positions (Ruoss et al., 2023), in reversed format, with index hints (Zhou et al.,
2023).

As shown in Figure 1, when trained on only 40 digits, our model successfully extrapolates to
sequences of up to 100 digits, exceeding the input length by 2.5×. To the best of our knowledge, this
is the strongest known generalization result for text-based Transformers on addition. Nevertheless, we
observe that the robustness of this length generalization is fragile, significantly swayed by variables
such as random initialization and the training data order.

Our key contributions are summarized as follows:
(i) We demonstrate that the success in length generalization is markedly influenced by position

encoding and data format. Through careful selection of these factors, we achieved extrapolation
to lengths that are 2.5× longer than those seen during training.

(ii) Our exploration of established data formatting and augmentation techniques indicates that their
effectiveness in length generalization is primarily contingent on the choice of position encoding.

(iii) Despite remarkable generalization to lengths 2.5× longer than training, we found this general-
ization to be fragile and heavily relying on factors like random weight initialization and training
data order.

2. Position Encoding and Data Formats

Recently proposed improvements in architectural design, notably in position encoding (Kazemnejad
et al., 2023; Ruoss et al., 2023; Shen et al., 2023) and attention mechanisms (Duan and Shi, 2023;
Dubois et al., 2019), aim to address the challenge of length generalization in arithmetic computations
with Transformers. However, the effectiveness of such modifications is often constrained, either due to
their overly ad-hoc nature or their poor performance on longer sequences. Although scaling the size
of models and datasets has been recognized as a generally effective strategy to improve performance,
prior research (Anil et al., 2022; Brown et al., 2020) suggests that relying solely on scale might not be
sufficient for handling test sequences that are longer than training. Concurrently, with the rising focus
on data-centric AI (Motamedi et al., 2021), recent work has investigated refining the data format to
enhance the learning efficacy of existing Transformer models. In this section, we review some of the
most common position encodings (Section 2.1) and relevant data formats (Section 2.2)

2

Transformers Can Achieve Length Generalization But Not Robustly

2.1. Position Encoding for Length Generalization

The inability of transformers to extrapolate to longer sequences has been primarily attributed to
position encoding (PE; Shaw et al., 2018). In this section, we review existing positional encoding
approaches with an emphasis on their length generalization abilities.

Absolute Positional Encoding (APE). APE enhances Transformer models with positional
information by attaching a positional vector 𝒑𝑖 to each position 𝑖. This is achieved through a predefined
sinusoidal function (Vaswani et al., 2017) or a learnable approach (Devlin et al., 2018). Then, the
vector 𝒑𝑖 is combined with the token embedding 𝒆𝑖 before entering the transformer’s first layer.
Although straightforward, APE often struggles with generalizing to longer sequences, as observed in
both NLP (Press et al., 2022) and algorithmic tasks (Kazemnejad et al., 2023).

Additive Relative Positional Encoding (RPE). Shaw et al. (2018) pioneered the additive RPEs,
diverging from standard input-level integration by modifying keys and, optionally, values in each
attention layer. This concept was advanced by T5, which employed scalar biases to directly affect
pre-softmax attention logits, a method noted for its simplicity yet criticized for limited efficiency and
positional differentiation in long sequences (Press et al., 2022; Raffel et al., 2020). Later approaches
such as Alibi (Press et al., 2022), Kerple (Chi et al., 2022) and FIRE (Li et al., 2023) build on the idea
of learned additive bias, proposing different functions to model the scalar bias as a function of the
key- and query-indices. Most pre-softmax attention logits of additive RPEs can be generally written as
(Li et al., 2023):

𝑨RPE(𝑿) = 𝑿𝑾𝑄 (𝑿𝑾𝐾)⊤ + 𝑩, (1)
where 𝑿,𝑾𝑄,𝑾𝐾 denote the input and weight matrices for queries and keys. The bias matrix 𝑩 ∈ ℝ𝑛×𝑛

is induced by the position encoding function 𝑏 : ℕ∗2 → ℝ, with its (𝑖, 𝑗)-th entry defined as 𝑏(𝑖, 𝑗).
Instances of 𝑏(𝑖, 𝑗) include:
• T5 (Raffel et al., 2020): 𝑏(𝑖, 𝑗) = 𝑟𝑚𝑖𝑛{𝑖 − 𝑗, 𝐾}, where 𝐾 is a hyperparameter and 𝑟𝑖 are learned

scalars.
• Alibi (Press et al., 2022): 𝑏(𝑖, 𝑗) = −𝑟 |𝑖 − 𝑗|, where 𝑟 > 0 is a hyperparameter.
• KerpleLog (Chi et al., 2022): 𝑏(𝑖, 𝑗) = −𝑟1 log(1 + 𝑟2 |𝑖 − 𝑗|), where 𝑟1, 𝑟2 > 0 are learnable scalars.
• FIRE (Li et al., 2023): 𝑏(𝑖, 𝑗) = 𝑓𝜃

(
𝜓(𝑖− 𝑗)

𝜓(max{𝐿,𝑖})
)
, where 𝑓𝜃 : ℝ → ℝ is a learnable MLP parameterized

by 𝜃, 𝜓 : ℕ → ℝ+ is 𝜓 (𝑥)) = 𝑙𝑜𝑔 (𝑐𝑥 + 1) and 𝑐 > 0, 𝐿 > 0 are learnable scalars.
Additional background on additive RPEs is provided in Appendix A.1

Rotary Positional Encoding (RoPE). RoPE (Su et al., 2024) encodes position information in
attention logits through rotational encoding of query and key vectors based on their relative positions.
Despite being simple and effective, RoPE exhibits limited length generalization (Kazemnejad et al.,
2023; Press et al., 2022). While extensions like Position Interpolation Chen et al. (2023); Peng
et al. (2023); Su (2023) enhance RoPE’s context length, they do not necessarily improve length
generalization on algorithmic tasks where learning the underlying algorithm is crucial.

No Positional Encoding (NoPE). While encoder-only Transformers (e.g., BERT (Devlin et al.,
2018)) are permutation equivariant without positional encodings, decoder-only counterparts with
causal attention, as shown by Haviv et al. (2022), acquire positional understanding autonomously,
even without explicit PE. Interestingly, recent findings by Kazemnejad et al. (2023) further reveal
that a model without PE outperforms those with specialized PEs on simple algorithmic tasks.

Randomized Position Encoding. Ruoss et al. (2023) introduced Randomized PE to enhance
existing PEs by randomly sampling encodings from a range exceeding test-time lengths while pre-

3

Transformers Can Achieve Length Generalization But Not Robustly

Position Encoding (PE) & Data Formatting

Lee et al.

Kazemnejad et al.

Shen et al.

Zhou et al.

Our Work

Raw Data 576+361=937

675+163=739APE

NoPE 675+163=739

6 75+16 3=739NoPE

NoPE

FIRE + Randomized PE a6b7c5+a1b6c3=a7b3c9

Method PE

a6b7c5+a1b6c3=a7b3c9

Data Format

Figure 2 | Comparative overview of PEs and data formats: While most related studies focus on APE or
NoPE, our approach integrates FIRE (Li et al., 2023) and Randomized PE (Ruoss et al., 2023). All
studies utilize a reversed format. Shen et al. (2023) enhance this with random space augmentation,
and both Zhou et al. (2023) and Our Work incorporate index hints.

serving the order. Transformers trained this way adapt to larger positional encodings, effectively
eliminating OOD position encodings during testing.

2.2. Data Formats

Data format plays a pivotal role in enhancing Transformers’ length generalization capabilities, primarily
by transforming the data into a format that could be more easily learned. We give an overview of the
existing techniques below.

Reversed Format. Computing addition in an algorithmic way (as taught in elementary school)
requires starting with the least significant digit (LSD) and proceeds to the most significant digit
(MSD). This sequence contrasts with the standard printed format (𝐴3𝐴2𝐴1 + 𝐵3𝐵2𝐵1 = 𝐶3𝐶2𝐶1, where
𝐴1 and 𝐵1 are the LSDs, which is not ideally suited for autoregressive models due to their outputting
the MSD first. However, the reversed format (𝐴1𝐴2𝐴3 + 𝐵1𝐵2𝐵3 = 𝐶1𝐶2𝐶3) aligns better with these
the natural order of computing the digits. It simplifies the learning task to a function that depends
only on the two corresponding operand digits and the carry from the previous step (Lee et al., 2023;
Shen et al., 2023; Zhou et al., 2023).

Index Hints. Zhou et al. (2023) introduced “index hints” in both the query and response of
arithmetic tasks. For example, 42 + 39 = 81 is represented as 𝑎4𝑏2 + 𝑎3𝑏9 = 𝑎8𝑏1 during training and
inference, enabling transformers to execute indexing via induction heads (Olsson et al., 2022).

Random Space Augmentation. Shen et al. (2023) explored the impact of random spacing
between digits in addition, aiming to disrupt the model’s reliance on absolute positional information.
Their results show successful generalization from 10-digit to 11-digit addition, but falters with longer
sequences.

Figure 2 lists the position encodings and data formats used in some of the most related work to
ours.

3. A Recipe for Length Generalization in Decimal Addition

The task of decimal addition is composed of two critical subtasks: (a) the identification of the right
operands to add; and (b) the summation of these operands with the preceding carry. While the

4

Transformers Can Achieve Length Generalization But Not Robustly

summation step ((b)) is relatively easier because it has a finite set of possible inputs, the primary
generalization challenge lies in the operand identification ((a)), where precise positional access is
crucial.

Our best model, which leads to the results in Figure 1, uses the following combination:
1. FIRE position encodings (Li et al., 2023): We believe that FIRE position encodings are helpful

for length generalization because they are more expressive than other PEs, as shown by Li et al.
(2023).

2. Randomized position encodings (Ruoss et al., 2023): We believe that randomized position
encodings are crucial to avoid overfitting on the position indices and index differences that were
seen during training.

3. Reversed format: The reversed format makes it easier for the model to decompose the long
computation to local, “markovian”, steps that depend only on the single previous step.

4. Index hints (Zhou et al., 2023): We believe that index hints are useful because they ease the task
of operand identification (discussed in (b)), of matching the right operands to add at a certain
step.
We ablate each of these decisions and some other alternative choices in Section 4.

4. Experiments

4.1. Setup

Data. As shown in Figure 2, we adopt the reversed format with index hints as our default data
format. During training, we randomly sample consecutive index hints from a pre-defined ordered
set of hints with 102 symbols, thereby enhancing the learning of hint sequences and their order. We
generated a dataset comprising 30M examples on input lengths 1-40 for training and 1,000 examples
per input length for testing.

Model. Our base model, following Zhou et al. (2023), is a 25M parameter Transformer featuring
6 blocks, a 512 hidden size, and a feedforward layer with a hidden dimension of 2048. We also adopt
RMSNorm, integrating both PreNorm and PostNorm layers, following the Primer architecture (So
et al., 2021). We use the AdamW optimizer (Loshchilov and Hutter, 2017) to train the model with a
weight decay value of 0.1 and no dropout, for 50,000 steps. The learning rate schedule incorporates
an initial 500-step linear warm-up, followed by a cosine decay, starting at 3e-4. The hyperparameters
are chosen based on Appendix C.10.

Randomized PE and Random Space Augmentation. As will be demonstrated in Figures 7
and 8, the success of these techniques is markedly PE-dependent. Hence, we tailor the default
hyperparameter choice to best suit each PE. Further, instead of using random spaces, we use another
special token to prevent automatic merging by the tokenizer.

Due to the high variance (which we discuss in the next section), we repeat each experiment five
times unless mentioned otherwise. More implementation details are provided in Appendix B.

4.2. Results

FIRE enables significantly better length generalization. Figure 3 compares the length gener-
alization capabilities of four positional encodings in the best of 10 trials (See Appendix C.1 for all
trials). Trained exclusively on sequences of lengths 1-40, the best trial of FIRE exhibit near-perfect

5

Transformers Can Achieve Length Generalization But Not Robustly

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE
NoPE
KerpleLog
RoPE

Figure 3 | EM accuracy (best of 10 trials), trained
exclusively on sequences of lengths 1 to 40, the
best trials involving FIRE exhibit near-perfect
generalization on 100-digit addition.

0 20 40 60 80 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE
NoPE
KerpleLog
RoPE

w/ Hint
w/o Hint
w/ Hint
w/o Hint

Figure 4 | EM accuracy of models trained with
and without index hints (best of 10 trials): With-
out index hints, all PE methods fail in general-
ization, both within and beyond trained lengths.

generalization to sequences up to the length of 100. In contrast, other PEs show a visible degradation
in generalization accuracy beyond the sequence length of 60. This finding counters the findings of
Kazemnejad et al. (2023) that no positional encoding (NoPE) surpasses complex PE techniques for
length generalization. Our findings suggest that a well-designed PE, such as FIRE, is essential for
optimal length generalization.

Index hints are crucial. We compare models trained with and without index hints. As shown
in Figure 4, index hints significantly enhance length generalization across various PEs, corroborating
the findings of Zhou et al. (2023). Notably, without index hints, NoPE and FIRE demonstrate
poor in-distribution generalization for 40-digit additions, a marked deviation from their reasonable
performance when trained on 10-digits, as shown in Figure C.8(a). Figure D.1 shows that this
phenomenon occurs across all random seeds. Conversely, RoPE and KerpleLog exhibit moderate
in-distribution generalization but falter in out-of-distribution scenarios. Appendices D.1 and D.2 shows
the training loss and test accuracy of these runs.

Analyzing errors in 11-digit additions from models trained on 10-digits revealed a common
misalignment issue: the Transformer often adds operands adjacent to the correct ones. An attempt to
rectify this by reformatting addition (𝐴1𝐵1, 𝐴2𝐵2, 𝐴3𝐵3 = 𝐶1𝐶2𝐶3, with 1 as the least significant bit)
failed to improve length generalization, merely shifting the error to adjacent output positions. This
highlights the Transformer’s inherent limitations in precise position identification.

Standard format vs reversed format. As shown in Figure 5, standard formatting shows limited
length generalization in all PEs compared to the reversed format. FIRE excels in length generalization
even with the standard format, even matching RoPE in reverse format. However, FIRE’s performance
(with standard format) declines beyond 60-digit additions, likely due to increased carry propagation
challenges exceeding the model’s capacity.

Looking at the training loss and training next-token accuracy in both formats also shows interesting
differences. As shown in Figures 6 and C.3, the standard format training leads to gradual improvement,
whereas reverse format yields a sharp performance transition. This transition, which is a reminiscent
of “grokking” phenomenon Power et al. (2022), shows in this case the “Eureka moment” in which the
Transformer learns the right addition algorithm.

Random space augmentation and randomized position encoding. Figure 7 reveals divergent
impacts of random space augmentation on four PEs. The augmentation’s efficacy is notably contingent
upon the chosen PE. While Random Spaces marginally enhances RoPE and KerpleLog’s performance,

6

Transformers Can Achieve Length Generalization But Not Robustly

0 20 40 60 80 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE
NoPE
KerpleLog
RoPE

Reverse
Standard
Reverse
Standard

Figure 5 | EM accuracy of the standard vs. the
reversed format: Consistently with prior studies,
the reversed format excels over the standard for-
mat across all PEs.

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

Figure 6 | The reversed format shows distinct
grokking during training, unlike the gradual en-
hancement in the standard format. This phe-
nomenon is observed across all PEs (Figure C.3)

RoPE
 (N=50)

KerpleLog
(N=50)

NoPE
(N=70)

FIRE
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
)

RS Aug
False
True

Figure 7 | Effects of Random Space Augmenta-
tion (RS Aug): Random space augmentation
is beneficial for RoPE and KerpleLog; adverse
for NoPE and FIRE.

KerpleLog
(N=70)

FIRE
(N=100)

0

20

40

60

80

100
EM

 A
cc

ur
ac

y
at

 L
en

gt
h

N
(%

) Randomized PE
False
True

Figure 8 | Effects of Ran-
domized PE: Random-
ized PE enhances FIRE
but degrades KerpleLog

Input w/ Carry

51.5%

Input w/o Carry

48.5%

Figure 9 | Error Distri-
bution: Errors appear
almost equally with
and without carry.

it markedly deteriorates NoPE and FIRE. A similar PE-specific pattern is evident in Randomized PE,
as Figure 8 demonstrates. Randomized PE significantly degrades KerpleLog’s effectiveness, yet it
substantially boosts FIRE. See Appendices D.4 and D.5 for training loss and EM accuracy for all trials
in each setting.

Length generalization is not robust to neither weight initialization nor training data order.
Figure 10 illustrates the varying performance of 10 FIRE trials using identical training data order
but distinct weight initializations. Notably, while all trials achieve similar close-to-zero training
losses after 10K training steps (Figure C.2) and exhibit perfect in-distribution generalization, their
out-of-distribution (OOD) length generalization shows significant variance. Moreover, the length gen-
eralization performance fluctuates significantly across training steps (Appendix C.3). This observation
contrasts with earlier studies suggesting in-distribution loss as a reliable OOD generalization predictor
(Nagarajan et al., 2020).

We further examine 15 unique combinations, resulting from 3 weight initialization seeds and 5
data input orders. As shown in Figure 11, there is significant variance across training data orders even
when the weight initialization is constant. Intriguingly, certain weight initializations demonstrate
remarkable resilience to changes in data input order. This observation is reminiscent of the Lottery
Ticket Hypothesis (Frankle and Carbin, 2018), which posits the existence of a sparse, equally effective
sub-network within a larger neural network. Our findings suggest the presence of “fortunate” weight

7

Transformers Can Achieve Length Generalization But Not Robustly

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure 10 | Exact match across 10 trials us-
ing FIRE. While transformers can achieve near-
perfect accuracy in 100-digit addition, the vari-
ance across different random seeds is high.

20 30 40 50 60 70 80 90 100
Digit Length

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

Weight Seed 1
Weight Seed 2
Weight Seed 3

Figure 11 | Effects of weight initialization and
data input order: 15 models trained on a com-
bination of three weight initialization seeds and
five data input order seeds.

configurations that exhibit robust length generalization, akin to a “lucky weight ticket.”
While Anil et al. (2022) also noticed similar in-distribution accuracy but marked differences in OOD

behavior on parity tasks, their OOD performance was quite poor across all runs. Moreover, contrary
to the findings of Anil et al. (2022) on the impact of hyperparameter variation, our experiments
reveal considerable performance fluctuations even with different random seeds. This inconsistency
appears unrelated to position encoding (refer to Figure C.1 for different PEs), and is more likely due
to variations in random weight initialization and data order.

5. Analysis

Error analysis. In examining Transformers’ error characteristics, we classified erroneous predictions
into two categories: those with and without carry. Figure 9 shows no significant difference between
these categories, thus carry propagation does not majorly impede length generalization.

Additionally, we analyzed the error distribution in 100-digit addition using FIRE, illustrated in
Figure C.10. As shown, Figure C.10 indicates an overall uniform error distribution across all indices,
despite some individual model checkpoints showing errors at specific positions. Excluding two near-
zero accuracy runs, over 90% of errors in incorrect examples are single-digit mistakes, following an
exponential distribution. Additional results are shown in Figures C.11 and C.12.

Despite the imperfect calculation, the FIRE model does not show any systematic error. Random
errors may stem from phenomena such as attention glitches Liu et al. (2023a). Conversely, other PEs
systematically fail to identify the start or end of addition, leading to premature termination.

Performance evolution during training. Figure 12 shows that while transformers achieve
near-perfect in-distribution accuracy early in training, they explore different extrapolation strategies.
This ability is remarkable considering the inherent unpredictability and architecture-dependent
nature of OOD accuracy. Notably, transformers with FIRE exhibit a generally steady increase in OOD
accuracy during training, suggesting that FIRE’s inductive bias may be helpful in finding solutions that
generalize to different lengths. In contrast, other PE methods display more volatile OOD performance.
Interestingly, some methods exhibit a “grokking-like” phenomenon, where there is a sudden surge in
the OOD accuracy despite no change in in-distribution accuracy.

Sequence length during training. We trained separate models for addition involving up to 10,

8

Transformers Can Achieve Length Generalization But Not Robustly

10000 20000 30000 40000 50000
Train Steps

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

In-Dist
OOD

FIRE
NoPE
KerpleLog
RoPE

In-Dist
OOD

Figure 12 | Comparison of In-Distribution (30-
digit addition) and Out-of-Distribution General-
ization (90-digit addition, except for RoPE at
70-digit addition).

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

Figure 13 | Different training lengths: Increasing
the training length significantly improves length
generalization in FIRE, achieving near-perfect
accuracy at length 100.

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=70)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(a) RoPE

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=90)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(b) NoPE

1 to 10
(N=14)

1 to 20
(N=38)

1 to 30
(N=70)

1 to 40
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(c) FIRE

Figure 14 | Scaling model size inconsistently affects length generalization performance. While
consistently enhancing performance in shorter length regimes (1-10, 1-20) across four PEs, this trend
does not hold for larger regimes (1-30, 1-40). For instance, larger models outperform smaller ones
with RoPE and KerpleLog (Figure C.14), but underperform with NoPE and FIRE. Moreover, increasing
model size doesn’t noticeably decrease performance variance, suggesting size scaling isn’t vital for
length generalization.

20, 30, and 40 digits, and evaluated them on addition of up to 100 digits. As depicted in Figures 13
and C.13, training length crucially improves performance in longer length generalizations across
different PEs. Notably, not only that models that were trained on 40 digits generalize better than
models that were trained on shorter sequences, the generalization factor is also increasing: the model
that was trained on 40 digits generalizes to 100 digits (2.5×), while the model that was trained on up
to 30 digits generalizes to 45 digits (1.5×), the model that was trained on up to 20 digits generalizes
to 25 digits (1.25×), and the model that was trained on up to 10 digits does not generalize beyond
training lengths (1.0×).

Scaling model size. The scaling of model size is crucial for improving large language models
(Chowdhery et al., 2023; Thoppilan et al., 2022). To assess its effect on length generalization, we
contrasted models with 25M and 268M parameters. We find that model size variation has a minor
effect on length generalization. Figure 14 shows that larger models slightly improve generalization in
short digit regimes (1 to 10 and 1 to 20 digit additions) but yield mixed results in longer regimes.
While RoPE and KerpleLog show improvements, NoPE and FIRE experience performance degradation
with a larger model, indicating model size may not be the primary factor in length generalization.

9

Transformers Can Achieve Length Generalization But Not Robustly

1 to 10
(N=14)

1 to 20
(N=38)

1 to 30
(N=70)

1 to 40
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 2M 5M 25M 268M

Figure 15 | Effect of different model sizes with FIRE as the
position encoding.

1e-6 1e-4 1e-2 3e-2 1e-1 3e-1 5e-1 1e-0
Weight Decay

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Figure 16 | Effect of weight decay
with FIRE as the position encoding.

The efficacy of length generalization in the 25M model prompted us to explore the capabilities
of smaller models. Specifically, we trained models with 2M and 5M parameters. As Figures 15
and C.15 illustrate, the 2M model’s performance deteriorates with longer sequences, indicating
limited model capacity as a potential performance bottleneck. Intriguingly, this model outperforms
its larger counterparts (5M and 25M models) in tasks involving 1 to 10 digit addition. Furthermore,
the 5M model remarkably achieves 80% accuracy in 100 digit addition, trained only on 1 to 40 digit
tasks, surpassing the 268M model’s performance.

Does stronger regularization reduce variance? To mitigate performance variance, we
investigated standard regularization techniques, including weight decay and dropout. As depicted in
Figure 16, higher weight decay values (e.g., 0.1, 0.3) slightly enhance the likelihood of achieving
effective length generalization. Nonetheless, non-trivial length generalization remains attainable with
either very low (e.g., 1e-6) or high (e.g., 1.0) weight decay values, evidenced by approximately 80%
accuracy in 100 digit addition trained on 40-digit sequences. Conversely, Figure C.17 shows that
substantial dropout values (e.g., 0.2) severely impair length generalization. Dropout rates of 0.0 or
0.1, however, do not show statistically significant improvements over their counterparts. Overall,
while regularization can modestly decrease performance variability, it falls short in ensuring robust
length generalization. The variance in performance is still significantly influenced by the randomness
of weights initialization and the training data order (Figures 10 and 11).

6. Related Work

Length generalization remains a significant challenge in neural networks, underscored by substan-
tial research (Deletang et al., 2023; Dziri et al., 2023; Graves et al., 2016; Hupkes et al., 2020;
Schwarzschild et al., 2021; Zhang et al., 2022). Despite their advanced reasoning capabilities,
Transformer-based large language models (LLMs) (Chowdhery et al., 2023; Thoppilan et al., 2022)
struggle with processing sequences beyond their training scope Anil et al. (2022). Enhancements in
length generalization, especially in the addition task, primarily focus on two areas: refining positional
encoding and optimizing data format.

Position Encoding for Length Generalization The inability of Transformers to extrapolate
to longer sequences has been primarily attributed to Position Encoding (PE) Shaw et al. (2018).
Various studies have suggested alternatives, such as relative positional encodings, which focus on
the relative distances between tokens (Dai et al., 2019), the implementation of randomized position
encoding (Ruoss et al., 2023), or the adoption of weighted attention mechanisms in place of position
embeddings (Chi et al., 2022; Li et al., 2023; Press et al., 2022; Raffel et al., 2020). These approaches
have shown promise in natural language processing (NLP). However, Kazemnejad et al. (2023) found

10

Transformers Can Achieve Length Generalization But Not Robustly

that omitting position encoding entirely yields better results for algorithmic tasks. In contrast, our
experiments indicate that an effectively designed PE, such as the FIRE, is crucial for achieving optimal
length generalization (Figure 3). Moreover, we show that a synergistic approach to consider both PE
and data design markedly enhances length generalization capabilities.

Data format for Length Generalization A range of heuristic-based data formatting meth-
ods have been introduced, particularly for pretrained LLMs. These methods, including the use of
scratchpads and the chain of thoughts approach, aim to facilitate arithmetic learning either through
in-context learning or fine-tuning Anil et al. (2022); Zhou et al. (2022). Conversely, there is a body
of research focused on Transformers trained from scratch. This research indicates that employing
techniques such as reversed formatting and scratch pads can significantly boost length generalization
performance Lee et al. (2023); Shen et al. (2023). Furthermore, it has been observed that both the
data distribution and the sampling strategies can profoundly influence generalization Lee et al. (2023).
Awasthi and Gupta (2023) further demonstrates the benefits of incorporating a simpler auxiliary task
(e.g., identifying the successor element) in supporting the primary task (e.g., sorting). In contrast,
Jelassi et al. (2023) finds that train set priming enables length generalization for a encoder-only
Transformer model. In contrast, our good length generalization performance achieved with naive
random sampling approach suggesting that sophisticated data sampling might be redundant.

7. Conclusion

Length generalization in Transformers has been a long-standing challenge. We evaluate the ability
of Transformers to generalize to longer test sequences using the decimal addition task. Through
extensive experiments, we find that there is no inherent limitation in Transformers’ design preventing
effective length generalization. Instead, the missing ingredient is the right combination of data format
and position encoding. We demonstrate that Transformers can achieve almost perfect generalization
on sequences up to 2.5× the training length, given appropriate data formatting and position encoding.

Our thorough empirical analysis of common length generalization techniques reveals a significant
dependency between the type of position encoding and the data format. This underscores the impor-
tance of synergizing data format with model architecture for optimal generalization. Despite these
advancements, robust length generalization in Transformers remains elusive, even with meticulously
finetuned regularization hyperparameters.

References

E. Abbe, S. Bengio, A. Lotfi, and K. Rizk. Generalization on the unseen, logic reasoning and degree
curriculum. arXiv preprint arXiv:2301.13105, 2023.

C. Anil, Y. Wu, A. Andreassen, A. Lewkowycz, V. Misra, V. Ramasesh, A. Slone, G. Gur-Ari, E. Dyer,
and B. Neyshabur. Exploring length generalization in large language models. Advances in Neural
Information Processing Systems, 35:38546–38556, 2022.

P. Awasthi and A. Gupta. Improving length-generalization in transformers via task hinting. arXiv
preprint arXiv:2310.00726, 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

S. Chen, S. Wong, L. Chen, and Y. Tian. Extending context window of large language models via
positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

11

Transformers Can Achieve Length Generalization But Not Robustly

T.-C. Chi, T.-H. Fan, P. J. Ramadge, and A. Rudnicky. Kerple: Kernelized relative positional embedding
for length extrapolation. Advances in Neural Information Processing Systems, 35:8386–8399, 2022.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. Journal of Machine
Learning Research, 24(240):1–113, 2023.

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl: Attentive
language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

G. Deletang, A. Ruoss, J. Grau-Moya, T. Genewein, L. K. Wenliang, E. Catt, C. Cundy, M. Hutter,
S. Legg, J. Veness, and P. A. Ortega. Neural networks and the chomsky hierarchy. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=WbxHAzkeQcn.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805, 2018.

S. Duan and Y. Shi. From interpolation to extrapolation: Complete length generalization for arithmetic
transformers. arXiv preprint arXiv:2310.11984, 2023.

Y. Dubois, G. Dagan, D. Hupkes, and E. Bruni. Location attention for extrapolation to longer sequences.
arXiv preprint arXiv:1911.03872, 2019.

N. Dziri, X. Lu, M. Sclar, X. L. Li, L. Jian, B. Y. Lin, P. West, C. Bhagavatula, R. L. Bras, J. D. Hwang,
et al. Faith and fate: Limits of transformers on compositionality. arXiv preprint arXiv:2305.18654,
2023.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Gemini, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth,
et al. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska, S. G. Colmenarejo,
E. Grefenstette, T. Ramalho, J. P. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski,
A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis. Hybrid computing
using a neural network with dynamic external memory. Nat., 538(7626):471–476, 2016. doi:
10.1038/NATURE20101. URL https://doi.org/10.1038/nature20101.

A. Haviv, O. Ram, O. Press, P. Izsak, and O. Levy. Transformer language models without positional
encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

D. Hupkes, V. Dankers, M. Mul, and E. Bruni. Compositionality decomposed: How do neural networks
generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

S. Jelassi, S. d’Ascoli, C. Domingo-Enrich, Y. Wu, Y. Li, and F. Charton. Length generalization in
arithmetic transformers. arXiv preprint arXiv:2306.15400, 2023.

A. Kazemnejad, I. Padhi, K. N. Ramamurthy, P. Das, and S. Reddy. The impact of positional encoding
on length generalization in transformers. arXiv preprint arXiv:2305.19466, 2023.

N. Lee, K. Sreenivasan, J. D. Lee, K. Lee, and D. Papailiopoulos. Teaching arithmetic to small
transformers. arXiv preprint arXiv:2307.03381, 2023.

12

https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://doi.org/10.1038/nature20101

Transformers Can Achieve Length Generalization But Not Robustly

A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil,
I. Schlag, T. Gutman-Solo, et al. Solving quantitative reasoning problems with language models.
Advances in Neural Information Processing Systems, 35:3843–3857, 2022.

S. Li, C. You, G. Guruganesh, J. Ainslie, S. Ontanon, M. Zaheer, S. Sanghai, Y. Yang, S. Kumar, and
S. Bhojanapalli. Functional interpolation for relative positions improves long context transformers.
arXiv preprint arXiv:2310.04418, 2023.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. Dal Lago, et al. Competition-level code generation with alphacode. Science, 378(6624):1092–
1097, 2022.

B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Exposing attention glitches with flip-flop
language modeling. arXiv preprint arXiv:2306.00946, 2023a.

B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to automata.
In The Eleventh International Conference on Learning Representations, 2023b. URL https://
openreview.net/forum?id=De4FYqjFueZ.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

M. Motamedi, N. Sakharnykh, and T. Kaldewey. A data-centric approach for training deep neural
networks with less data. arXiv preprint arXiv:2110.03613, 2021.

V. Nagarajan, A. Andreassen, and B. Neyshabur. Understanding the failure modes of out-of-distribution
generalization. arXiv preprint arXiv:2010.15775, 2020.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai,
A. Chen, et al. In-context learning and induction heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Yarn: Efficient context window extension of large
language models. arXiv preprint arXiv:2309.00071, 2023.

A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra. Grokking: Generalization beyond
overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

O. Press, N. Smith, and M. Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485–5551, 2020.

A. Ruoss, G. Delétang, T. Genewein, J. Grau-Moya, R. Csordás, M. Bennani, S. Legg, and J. Veness.
Randomized positional encodings boost length generalization of transformers. arXiv preprint
arXiv:2305.16843, 2023.

A. Schwarzschild, E. Borgnia, A. Gupta, F. Huang, U. Vishkin, M. Goldblum, and T. Goldstein. Can you
learn an algorithm? generalizing from easy to hard problems with recurrent networks. Advances in
Neural Information Processing Systems, 34:6695–6706, 2021.

13

https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://openreview.net/forum?id=R8sQPpGCv0

Transformers Can Achieve Length Generalization But Not Robustly

P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations. arXiv
preprint arXiv:1803.02155, 2018.

N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

R. Shen, S. Bubeck, R. Eldan, Y. T. Lee, Y. Li, and Y. Zhang. Positional description matters for
transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

D. R. So, W. Mańke, H. Liu, Z. Dai, N. Shazeer, and Q. V. Le. Primer: Searching for efficient transformers
for language modeling. arXiv preprint arXiv:2109.08668, 2021.

J. Su. Rectified rotary position embeddings. https://github.com/bojone/rerope, 2023.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568:127063, 2024.

R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker,
Y. Du, et al. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239,
2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Dashevskiy, R. Hadsell, and C. Blundell.
The clrs algorithmic reasoning benchmark. In International Conference on Machine Learning, pages
22084–22102. PMLR, 2022.

Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and C. Szegedy. Autoformalization with
large language models. Advances in Neural Information Processing Systems, 35:32353–32368, 2022.

Y. Zhang, A. Backurs, S. Bubeck, R. Eldan, S. Gunasekar, and T. Wagner. Unveiling transformers with
lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301, 2022.

H. Zhou, A. Nova, H. Larochelle, A. Courville, B. Neyshabur, and H. Sedghi. Teaching algorithmic
reasoning via in-context learning. arXiv preprint arXiv:2211.09066, 2022.

H. Zhou, A. Bradley, E. Littwin, N. Razin, O. Saremi, J. Susskind, S. Bengio, and P. Nakkiran. What al-
gorithms can transformers learn? a study in length generalization. arXiv preprint arXiv:2310.16028,
2023.

14

https://github.com/bojone/rerope

Transformers Can Achieve Length Generalization But Not Robustly

A. Positional Encoding

A.1. Additive Relative Positional Encoding (RPE)

Shaw et al. (2018) pioneered additive RPE by integrating position encodings into the attention layer’s
key, and optionally the value, rather than the input. This concept was further simplified in T5 (Raffel
et al., 2020), where the vector representations of relative positions are simplified to scalar biases
added to pre-softmax attention logits. Subsequent advancements in additive RPE, aimed at enhancing
length generalization and computational efficiency, include notable methods like Alibi (Press et al.,
2022), Kerple (Chi et al., 2022), and FIRE (Li et al., 2023). A commonality among these methods is
the unified computation formula for pre-softmax attention logits, as outlined by Li et al. (2023):

𝑨RPE(𝑿) = 𝑿𝑾𝑄 (𝑿𝑾𝐾)⊤ + 𝑩, (A.1)

where the bias matrix 𝑩 ∈ ℝ𝑛×𝑛 is induced by the position encoding function 𝑏 : ℕ∗2 → ℝ, has
its (𝑖, 𝑗)-th entry defined as 𝑏(𝑖, 𝑗). Variations in 𝑏’s formulations and parameterizations give rise to
diverse RPE variants.

• T5 (Raffel et al., 2020): T5’s RPE segments relative distances into distinct buckets with a
logarithmic scale, each associated with a unique parameter. With 𝐾 + 1 buckets and a pre-
defined distance 𝐿1, the attention bias is calculated as (assuming 𝐾 + 1 is even)

𝑏(𝑖, 𝑗) =


𝑟𝑖− 𝑗 0 ≤ 𝑖 − 𝑗 < 𝐾+1

2
𝑟 𝐾+1

2 +⌊ 𝐾+12 log
(2(𝑖− 𝑗)

𝐾+1
)
/log

(2𝐿1
𝐾+1

)
⌋

𝐾+1
2 ≤ 𝑖 − 𝑗 < 𝐿1

𝑟𝐾 𝑖 − 𝑗 ≥ 𝐿1

. (A.2)

• Alibi (Press et al., 2022): 𝑏(𝑖, 𝑗) = −𝑟 |𝑖 − 𝑗|, where 𝑟 > 0 is a hyper-parameter.
• Kerple (Chi et al., 2022): 𝑏(𝑖, 𝑗) = −𝑟1 log(1+ 𝑟2 |𝑖− 𝑗|) (logarithmic variant) or −𝑟1 |𝑖− 𝑗|𝑟2 (power

variant), where 𝑟1, 𝑟2 > 0 are learnable scalars.
• FIRE (Li et al., 2023): 𝑏(𝑖, 𝑗) = 𝑓𝜃

(
𝜓(𝑖− 𝑗)

𝜓(max{𝐿,𝑖})
)
, where 𝑓𝜃 : ℝ → ℝ is a learnable MLP parameter-

ized by 𝜃, 𝜓 : ℕ → ℝ+ is monotonically increasing and 𝐿 > 0 is a learnable scalar.

15

Transformers Can Achieve Length Generalization But Not Robustly

B. Implementation Details

B.1. Data Generation

As shown in Figure 2, we adopt the reversed format with index hints as our default data format.
During training, we randomly sample a consecutive index hints from a pre-defined ordered index
set with 102 distinct symbols, thereby enhancing the learning of hint sequences and their order. At
inference, the same hint sampling strategy is applied to questions, prompting the model for answers.

To generate addition examples, we opt for a naive random sampling approach instead of structured
data sampling Lee et al. (2023), as our analysis indicates that carry operations are not a major
hindrance to length generalization (See Figure 9). Our approach involves uniformly selecting the
number’s length from 1 to the maximum training length, followed by independent sampling of two
operands based on this length, with an additional zero padding to accommodate potential carry-
induced extra digits. For training, datasets comprising 30M, 40M, 60M, and 120M examples are
generated for number lengths 1-40, 1-30, 1-20, and 1-10, respectively. In contrast, the test set consists
of 1,000 examples per digit length.

B.2. Training Details

Our base model, following Zhou et al. (2023), is a 25M parameter Transformer featuring 6 blocks,
a 512 hidden size, a feedforward layer with a hidden dimension of 2048 using GeGLU activation
(Shazeer, 2020), and an 8-head attention mechanism. We also adopt RMSNorm, integrating both
PreNorm and PostNorm layers, following the Primer architecture (So et al., 2021). Additionally, our
preliminary investigations underscore the significance of employing causal language modeling when
applying the index hint technique. Conversely, attempts to leverage prefix language modeling paired
with bidirectional attention in model inputs consistently falter in length generalization. Our three
other model variants with size [2M, 5M, 268M] consist of [2, 4, 16] blocks, a [256, 256, 1024] hidden
size, a feedforward layer with a hidden dimension of [1024, 1024, 4096], and a [4, 4, 16]-head
attention mechanism, respectively.

In our implementation of FIRE Li et al. (2023), we employ layerwise sharing of attention bias
across all attention blocks to enhance training efficiency. The paraterization of FIRE consists of a
2-layer MLP with a 32-unit hidden layer, utilizing ReLU activation.

We use the AdamW optimizer (Loshchilov and Hutter, 2017) to train the model with a weight
decay value of 0.1 and dropout rate of 0.0. The learning rate schedule incorporates an initial 500-step
linear warm-up, followed by a cosine decay, starting at 3e-4. We train the model with sequence
packing, a batch size of 128, and a sequence length of 2048, over 50,000 steps. We use greedy
decoding to generate the model output during evaluation. We summarize the hyperparameters in
Table B.1.

16

Transformers Can Achieve Length Generalization But Not Robustly

Table B.1 | Hyperparameters Summary for Length Generalization

Hyperparameter Value

Language Model Type Causal
Activation Functions GeGLU
Normalization Layer RMSNorm
Normalization Type PreNorm and PostNorm
Optimizer AdamW
Training Steps 50,000
Batch size 128
Weight Decay 0.1
Dropout 0.0
Learning Rate (LR) 0.0003
LR Warmup Steps 500
LR Cooldown (Begin, End) (500, 50,000)
Warmup Schedule Linear (from 0 to LR)
Cooldown Schedule Cosine Decay (from LR to 0.1LR)
Training Sequence Length 2048
Evaluation Greedy

17

Transformers Can Achieve Length Generalization But Not Robustly

C. Additional Results

C.1. Training Loss and Sequence Exact Match Accuracy of Reverse Format with Index Hint
trained up to 40

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure C.1 | Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure C.2 | Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

18

Transformers Can Achieve Length Generalization But Not Robustly

C.2. Training Loss and Next-token Prediction Accuracy of Standard and Reverse Format

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(a) Training Loss using RoPE

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(b) Next-token Prediction Accuracy using RoPE

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(c) Training Loss using KerpleLog

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(d) Next-token Prediction Accuracy using
KerpleLog

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(e) Training Loss using NoPE

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(f) Next-token Prediction Accuracy using NoPE

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(g) Training Loss using FIRE

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(h) Next-token Prediction Accuracy using FIRE
Figure C.3 | Training log perplexity and next-token prediction accuracy over 10 trials in standard versus
reverse formats using RoPE, KerpleLog, NoPE and FIRE. Reverse format shows distinct grokking during training,
unlike the gradual enhancement in standard format.

19

Transformers Can Achieve Length Generalization But Not Robustly

C.3. The evolution of EM Accuracy during training in reverse format using 4 PEs

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

RoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

RoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

RoPE

10000 20000 30000 40000 50000
Train_Steps

0.00

0.05

0.10

0.15

0.20

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

RoPE

Figure C.4 | Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using RoPE.

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

KerpleLog

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

KerpleLog

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

KerpleLog

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

KerpleLog

Figure C.5 | Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using KerpleLog.

20

Transformers Can Achieve Length Generalization But Not Robustly

10000 20000 30000 40000 50000
Train_Steps

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

NoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

NoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

NoPE

10000 20000 30000 40000 50000
Train_Steps

0

10

20

30

40

50

60

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

NoPE

Figure C.6 | Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using NoPE.

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

FIRE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

FIRE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

FIRE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

FIRE

Figure C.7 | Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using FIRE.

21

Transformers Can Achieve Length Generalization But Not Robustly

C.4. Effect of Index Hint

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE
KerpleLog
FIRE
NoPE

(a) Models trained up to 10-digit addition

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE
KerpleLog
FIRE
NoPE

(b) Models trained up to 40-digit addition
Figure C.8 | Best sequence exact match accuracy over five trials without index hint, trained upto length
10. All position encoding methods fail to generalize beyond trivial lengths and struggle with in-distribution
generalization, highlighting the crucial role of index hints in length generalization. See the performance of
each run in Appendix D.2 and Appendix D.1 for trained up to 10-digit and 40-digit addition.

C.5. Source of Variance

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

Weight Seed 1
Weight Seed 2

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

Weight Seed 1
Weight Seed 2

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

Weight Seed 1
Weight Seed 2

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Weight Seed 1
Weight Seed 2

Figure C.9 | Exact match accuracy on [30, 50, 70, 100] digit addition of all 10 trials (2 weight seeds x 5 data
seeds) trained on up to 40-digit addition with index hint and reverse format using FIRE.

22

Transformers Can Achieve Length Generalization But Not Robustly

C.6. Error Analysis

0 20 40 60 80 100
Error Index

0

1

2

3

4

5

6

Pe
rc

et
ag

e
(%

)

1 2 3 4 5 6
Number of Errors

10 1

100

101

102

Pe
rc

et
ag

e
(%

)

Figure C.10 | (Left) Average error position distribution over 10 runs, showing a broad error spread across
all positions. Specific checkpoints exhibit a propensity for errors at certain positions (refer to Figure C.12).
(Right) Notably, in successful generalizations, more than 90% of errors are confined to single-digit inaccuracies,
exhibiting an exponential distribution.

1.0 1.5 2.0
0

5

10

15

20

Co
un

t

2 4 6
0

100

200

300

Co
un

t

1.0 1.5 2.0
0

5

10

15

Co
un

t

1 2 3 4
0

100

200

300

400

500

Co
un

t

2 4 6
0

100

200

300

Co
un

t

1 2 3 4
0

50

100

150

200

Co
un

t

1 2 3
0

10

20

30

40

Co
un

t

0 20 40
0

50

100

150

200

250

Co
un

t

10 20 30
0

25

50

75

100

Co
un

t

1 2 3 4
0

50

100

150

200

250

Co
un

t

Figure C.11 | Error count distribution

30 35 40
0

5

10

15

20

Co
un

t

20 40 60
0

100

200

300

Co
un

t

20 40 60
0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

25 50 75 100
0

100

200

300

400

Co
un

t

0 50 100
0

100

200

300

400

500

Co
un

t

0 25 50 75
0

25

50

75

100

125

Co
un

t

60 80
0

10

20

30

Co
un

t

25 50 75
0

500

1000

1500

Co
un

t

0 50 100
0

500

1000

1500

Co
un

t

40 60 80
0

50

100

150

200

Co
un

t

Figure C.12 | Error position distribution (FIRE)

23

Transformers Can Achieve Length Generalization But Not Robustly

C.7. Training Digit Length Effect

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(a) EM accuracy of a 25M model using RoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(b) EM accuracy of a 268M model using RoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(c) EM accuracy of a 25M model using KerpleLog

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(d) EM accuracy of a 268M model using
KerpleLog

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(e) EM accuracy of a 25M model using NoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(f) EM accuracy of a 268M model using NoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(g) EM accuracy of a 25M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(h) EM accuracy of a 268M model using FIRE
Figure C.13 | Best sequence exact match accuracy of 5 trials with two model sizes (i.e., 25M and 268M),
trained on up to 10, 20, 30 and 40 digit length using 4 PEs.

24

Transformers Can Achieve Length Generalization But Not Robustly

C.8. Model Size Effect

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=70)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(a) RoPE

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=90)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(b) KerpleLog

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=90)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(c) NoPE

1 to 10
(N=14)

1 to 20
(N=38)

1 to 30
(N=70)

1 to 40
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(d) FIRE
Figure C.14 | Scaling model size inconsistently affects length generalization performance. While
consistently enhancing performance in shorter length regimes (1-10, 1-20) across four position
encodings, this trend does not hold for larger regimes (1-30, 1-40). For instance, larger models
outperform smaller ones with RoPE and KerpleLog encodings, but underperform with NoPE and FIRE.
Moreover, increasing model size doesn’t noticeably decrease performance variance, suggesting size
scaling isn’t vital for length generalization.

25

Transformers Can Achieve Length Generalization But Not Robustly

C.9. FIRE Related Scaling

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(a) EM accuracy of a 2M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(b) EM accuracy of a 5M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(c) EM accuracy of a 25M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(d) EM accuracy of a 268M model using FIRE
Figure C.15 | Best sequence exact match accuracy of 5 trials with four model sizes (i.e., 2M, 5M, 25M and
268M), trained on up to 10, 20, 30 and 40 digit length using FIRE.

26

Transformers Can Achieve Length Generalization But Not Robustly

C.10. Hyperparameter Study

1e-4 3e-4 1e-3
Learning Rate

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Weight Decay
1e-1
3e-1

Figure C.16 | Sequence exact match accuracy for test digit length 100, trained on digit lengths 1-40.
3e-4 seems to be the optimal learning rate.

0.0 0.1 0.2
Dropout

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Weight Decay
1e-1
3e-1
5e-1
1e-0

Figure C.17 | Sequence exact match accuracy for test digit length 100, trained on digit lengths 1-40.
A higher dropout rate markedly impedes length generalization, whereas a lower rate shows negligible
impact.

27

Transformers Can Achieve Length Generalization But Not Robustly

D. Training Loss and Sequence Exact Match Accuracy

D.1. Reverse Format without Index Hint trained up to 40-digit addition

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure D.1 | Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure D.2 | Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

28

Transformers Can Achieve Length Generalization But Not Robustly

D.2. Reverse Format without Index Hint trained up to 10-digit addition

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure D.3 | Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 10-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure D.4 | Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

29

Transformers Can Achieve Length Generalization But Not Robustly

D.3. Standard Format with Index Hint trained up to 40

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure D.5 | Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure D.6 | Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

30

Transformers Can Achieve Length Generalization But Not Robustly

D.4. Random Space Augmentation with Reverse Format with Index Hint trained up to 40-digit
addition

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure D.7 | (Left) With Random Space Augmentation. (Right) Without Random Space Augmentation.
Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit addition
with index hint and reverse format using four different position encodings.

31

Transformers Can Achieve Length Generalization But Not Robustly

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure D.8 | (Left) Without Random Space Augmentation. (Right) With Random Space Augmentation.
Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity losses across
runs after 10K training steps, different runs exhibit very different length generalization.

32

Transformers Can Achieve Length Generalization But Not Robustly

D.5. Randomized Position Encoding with Reverse Format with Index Hint trained up to 40-digit
addition

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure D.9 | (Left) Without Randomized Position Encoding (Right) With Randomized Position En-
coding. Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure D.10 | (Left) Without Randomized Position Encoding (Right) With Randomized Position
Encoding. Training loss over 10 trials in reverse formats.

33

	Introduction
	Position Encoding and Data Formats
	Position Encoding for Length Generalization
	Data Formats

	A Recipe for Length Generalization in Decimal Addition
	Experiments
	Setup
	Results

	Analysis
	Related Work
	Conclusion
	Positional Encoding
	Additive Relative Positional Encoding (RPE)

	Implementation Details
	Data Generation
	Training Details

	Additional Results
	Training Loss and Sequence Exact Match Accuracy of Reverse Format with Index Hint trained up to 40
	Training Loss and Next-token Prediction Accuracy of Standard and Reverse Format
	The evolution of EM Accuracy during training in reverse format using 4 PEs
	Effect of Index Hint
	Source of Variance
	Error Analysis
	Training Digit Length Effect
	Model Size Effect
	FIRE Related Scaling
	Hyperparameter Study

	Training Loss and Sequence Exact Match Accuracy
	Reverse Format without Index Hint trained up to 40-digit addition
	Reverse Format without Index Hint trained up to 10-digit addition
	Standard Format with Index Hint trained up to 40
	Random Space Augmentation with Reverse Format with Index Hint trained up to 40-digit addition
	Randomized Position Encoding with Reverse Format with Index Hint trained up to 40-digit addition

