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Abstract
Several popular language models represent local contexts in an input text x as
bags of words. Such representations are naturally encoded by a sequence graph
whose vertices are the distinct words occurring in x, with edges representing the
(ordered) co-occurrence of two words within a sliding window of size w. However,
this compressed representation is not generally bijective: some may be ambiguous,
admitting several realizations as a sequence, while others may not admit any
realization.
In this paper, we study the realizability and ambiguity of sequence graphs
from a combinatorial and algorithmic point of view. We consider the existence
and enumeration of realizations of a sequence graph under multiple settings:
window size w, presence/absence of graph orientation, and presence/absence of
weights (multiplicities). When w = 2, we provide polynomial time algorithms
for realizability and enumeration in all cases except the undirected/weighted
setting, where we show the #P-hardness of enumeration. For w ≥ 3, we prove the
hardness of all variants, even when w is considered as a constant, with the notable
exception of the undirected unweighted case for which we propose XP algorithms
for both problems. We conclude with an integer program formulation to solve
the realizability problem, and a dynamic programming algorithm to solve the
enumeration problem in instances of moderate sizes. This work leaves open the
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membership to NP of both problems, a non-trivial question due to the existence
of minimum realizations having size exponential on the instance encoding.

Keywords: Graphs, Sequences, Combinatorics, Inverse problem, Computational
Complexity

1 Introduction
The construction of numerical vector representations for words and sentences (a.k.a
embeddings) has been a long-standing problem in data science and artificial intelligence.
Until the mid 2010s, most of the techniques in information retrieval and Natural
Language Processing (NLP) used pre-computed embedding as input to machine learning
algorithms. In this context, the choice and computation of the “right” embedding
constitutes a problem in its own right. Ultimately, each embedding of this type can
be thought of as a map between words to numerical vectors: each word is attributed
a static vector, hopefully encoding different types of information about the word
(semantic, spelling, ...). In a new document, this word is mapped to the same vector,
independently of the new context in which it appears. We refer the reader to [1] for a
description of these embedding techniques, such as Word2Vec, GloVe, FastText, and
others. These embeddings laid the groundwork for modern NLP techniques, by being
scalable, interpretable, and performing for several information retrieval tasks. On
the other hand, attention-based models [2], and its various implementations such as
transformers [3], adopt a different paradigm by incorporating both the embeddings
and the learning parameters in the same computational framework. Furthermore, they
allow the embedding of each word to depend on the context it appears in. This new
paradigm combined with training techniques lead to state-of-the-art methods in most
NLP tasks including complex ones that traditional embeddings were not able to handle
well, in particular translation, summarization, question answering, and natural text
understanding.

Measuring the capacity of embeddings to faithfully represent words or sentences
is a natural problem in order to understand their limitations. In particular, one may
wonder and ask about their level of ambiguity: How many changes can be made to
a sentence that would yield the same embedding? How long does a sequence need to
be such that the resulting embedding is not unique? More generally, the question of
invariance (and equivariance1) in computational linguistics – including embeddings –
has become a topic of growing interest: in a recent line of research initiated by [4, 5], the
authors introduce the idea that equivariance in embeddings and can also be a desirable
property. Namely, Gordon et al. [4] exposed a method to construct string equivariance,
which suppose some form of equivariance under ”local” permutation action. White et
al. [6] further generalize this work by restricting the range of permutations only to
some lexical classes: symmetries are only allowed to exchange words inside a given
fixed lexical class (examples of lexical classes are subsets of verbs, adjectives, nouns

1Informally, embeddings are equivariant if under some group action, changes in the input sequence should
affect the embeddings in the same manner.

2



of interchangeable semantic roles). This line of work, builds on the premise that
certain embeddings exhibit desirable properties, enabling them to emulate fundamental
cognitive abilities such as compositional generalization2 [7–9]. In turn, embeddings
sharing such properties would lead to general computational frameworks coming closer
to a true understanding of words and sentences [10].

In this article we study a family of combinatorial problems related to the first
group of context-based embeddings (including Word2Vec, Glove, FastText, ...). Some of
these problems can be naturally interpreted as determining the level of ambiguity of
these embeddings. While context-based embeddings are richer than the traditional
bag-of-words (related to Parikh vectors) in the literature, they still induce some level
of ambiguity, i.e. a given graph can represent several sequences (see Figure 1 and 2
for illustrations). The main contribution of this article is to present new complexity
results about the inverse problems quantifying such level of ambiguity. We also present
algorithms that allow to solve these problems of graphs of reasonable size, despite the
computational hardness in most variations of the problems. Our results also highlight
the potential limitations of context-based embedding to encode the whole information
of sequences of reasonable length. In the line of recent efforts on invariance and
equivariance in computational linguistics, we hope that this study can be connected
to intrinsic desirable properties of word embeddings, and serve as a stepping stone to
further understand their attention-based variants [5].

1.1 Definitions and problem statement
In the following, p is a positive integer and [p] is a shorthand for {1, ..., p}. Let x =
x1, x2, ..., xp be a finite sequence over a vocabulary X = {v1, · · · , vn}. We first formalize
the notion of sequence graph – introduced in [11] as graph-of-words – illustrated in
Figures 1 and 2.

Definition 1. Given a sequence x and a window size w ∈ N+ (w > 0), the sequence
graph of x with window size w is the graph where each vertex of G = (V,E) is the set
of distinct words appearing in the sequence, and each edge notifies the appearance of
two words in a context of size w. Formally, V = {v ∈ X | ∃i ∈ [p], v = xi} and

{u, v} ∈ E ⇐⇒ ∃(k, k′) ∈ [p]2 0 < |k − k′| ≤ w − 1, u = xk, v = xk′ (1)

A weighted sequence graph G is endowed with a weight matrix Π(G) = (πe)e∈E such
that

π{u,v} = Card {(k, k′) ∈ [p]2 | 0 < |k − k′| < w, xk = u and xk′ = v} (2)
For digraphs, the two-element set {u, v} is replaced by the pair (u, v) in Statement

(1), and the absolute values in Statements (1) and (2) are replaced with k < k′ < k+w.
Under these conditions, we say that x is a w-realization of G, or realization in the

absence of ambiguity, if G is the sequence graph of x with window size w. Finally, x is
a w-realization of (G,Π) if G is the w-sequence graph of x with Π(G) = Π.

2In a nutshell, compositional generalization is the ability to process a novel sentence and assign overall
possible meanings (e.g. “cook twice”) by composing the meanings of its individual parts (e.g. meanings of
“cook” and “twice”).
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Linux is not UNIX but

(a) Unambiguous graph (w = 3)

Linux is not UNIX but

(b) Ambiguous graph (w = 2)

Fig. 1: Sequence digraphs (or directed graphs-of-words) built for the sentence “Linux
is not UNIX but Linux” using window sizes w = 3 (a) and w = 2 respectively (b). In
the second case, the sequence graph is ambiguous, since any circular permutation of
the words admits the same representation.

a

b

c

d

r

a b r a c a d a b r a
a b r a b r a d a c a
a b r a c a b r a d a
a b r a b r a c a d a
a b r a d a b r a c a
a b r a d a c a b r a

...
(a) w = 2, G has 30 realizations

a b

c

d r

a b r a c a d a b r a
a b r a c a d b a r a
a b a r c a d a b r a
a b a r c a d b a r a
a b r a c a d a b r a
a b r a c a d b a r a

(b) w = 3, G has 6 realizations

a

b
c

d
r

a b r a c a d a b r a
a b r a c a a d b r a
a b r c a a d a b r a

(c) w = 4, G has 3 realizations

a

b
c

d
r a b r a c a d a b r a

(d) w = 5, G has one realization

Fig. 2: Sequence digraphs (or directed graphs-of-words) built for the sentence “a b r a
c a d a b r a” using window sizes 2 (a), 3 (b), 4 (c) and 5 (d).

Given w, the graph of a sequence x is unique and the natural integers π{u,v}
represent the number of co-occurrences of u and v in all windows of size w. An
algorithm to construct a weighted sequence graph is presented in Algorithm 1; the
other cases (unweighted, directed) are obtained similarly. In the unweighted case,
the map thus defined from the sequence set X⋆ to the graph set G is referred to
as ϕw : X⋆ → G, x 7→ Gw(x). Based on these definitions, we consider the following
problems:

Problem 1 (Weighted-Realizable (W-Realizable)).
Input: Graph G (directed or undirected), weight matrix Π, window size w
Output: True if (G,Π) admits a w-realization x, False otherwise.

4



Algorithm 1 Construction of Π associated to a weighted sequence graph
Parameter: Window size w ≥ 2
Input: Sequence x of length p ≥ 1 of integers in [1, n]
Output: Weighted adjacency matrix Π = (π{u,v})

1: π{u,v} ← 0 for u, v ∈ [n]2
2: for i = 1 to p− 1 do
3: for j = i+ 1 to min(i+ w − 1, p) do
4: π{xi,xj} ← π{xi,xj} + 1
5: return Π = (π{u,v})

Problem 2 (Unweighted-Realizable (U-Realizable)).
Input: Graph G (directed or undirected), window size w
Output: True if G admits a w-realization x, False otherwise.

We denote by DW-Realizable (resp. GW-) the restricted version of W-Realizable
where the input graph G is directed (resp. undirected). We define GU-Realizable and
DU-Realizable similarly. Our notations can be summarized as:

DW → (directed) Digraph, Weighted DU → (directed) Digraph, Unweighted
GW → (undirected) Graph, Weighted GU → (undirected) Graph, Unweighted

Problem 3 (Unweighted-NumRealizations (U-NumRealizations)).
Input: Graph G (directed or undirected), window size w
Output: The number of realizations of G, i.e. preimages of G through ϕw i.e.
|{x ∈ X⋆ | ϕw(x) = G}| if finite, or +∞ otherwise.

Problem 4 (Weighted-NumRealizations (W-NumRealizations)).
Input: Graph G (directed or undirected), weight matrix Π, window size w
Output: The number of realizations of G in the weighted sense.

Similarly, we use the same prefix for the directed or undirected versions (DW,DU,
GW, GU). We also denote NumRealizationsw for the case where w is a fixed positive
integer. Note that NumRealizations generalizes the previous one, as Realizable can be
solved by testing the nullity of the output of NumRealizations.

1.2 Related work
Sequence graphs encode the information in several models based on co-occurences [11–
13]. To the best of our knowledge, the ambiguity and realizability questions addressed
in this work were never addressed by prior work in computational linguistics. It
may seem that the inverse problems we are considering are similar to the Universal
Reconstruction of a String [14], which consists in determining the set of strings of a
fixed length having as many distinct letters as possible, satisfying substring equations
of the form: s[q1 · · · qp] = s[q′

1 · · · q′
p], · · · , s[r1 · · · rm] = s[r′

1 · · · r′
m], where s[q1 . . . qp]

refers to the substring sq1 . . . sqp and the increasing indices qi’s, q′
i’s, · · · , ri’s and
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r′
i’s, and the length of s are given as part of the input. The reconstruction problem

consists in finding a string s that verifies the given set of constraints, with a maximum
number of distinct letters. We shall see that these problems are intrinsically different;
in particular, the complexity results presented in this article imply the absence of
reduction to the reconstruction problem solvable in linear time with respect to the
length of the input string s. In a similar fashion, De Bruijn graphs [15] are directed
graphs representing overlaps between sequences of symbols. They can be seen as a
specialization of the problem in this paper, using window size 2. Given a positive
integer k, the vertices of a De Brujin graph formed from a sequence are the k-mers
(sub-sequence of k symbols) in the sequence, and edges are formed between a pair
k-mers when one appears just before another (two adjacent k-mers will share k − 1
consecutive symbols: as a suffix for the first one, and as a prefix for the other). The
main difference with our setting is that distinct size-k windows are encoded into distinct
nodes even if they share many symbols (in different orders), while our setting has a
very sparse set of nodes (one per symbol) and all context information is held by edges.

Inverse problems studied in the Distance Geometry (DG) literature also bear
some similarities. The input of a DG instance consists of a set of pairwise distances
between points, having unknown positions in a d-dimensional space. A DG problem
then consists in determining a set of positions for the points (if they exist), satisfying
the distance constraints. Since a position is fully characterized from d+ 1 neighbors,
the problem can be solved by finding a sequential order in the points, such that the
assignment of a point is always by at least d + 1 among its neighbors [16] (called
linear ordering). Therefore, finding a linear ordering shares some level of similarity
with our inverse problems since a realization for a window w = d+ 2 also represents a
linear ordering of its nodes, in which w − 1 = d+ 1 of the neighbors have lower value
with respect to the order. However, linear ordering in DG to solve our problems is
insufficient. First, each element of the sequence x is associated with a unique vertex in
the DG instance. In sequence graphs a symbol can be repeated several times, but only
one vertex is created in the graph. This implies that the vertex associated to the ith

element (i ≥ w) of x can have less than w − 1 distinct neighbors in its predecessors in
x. Second, DG graphs are essentially undirected, and loops are not considered, since
an element is at distance 0 from itself.

1.3 Paper outline
In the following section we give a complete overview of our structural and algorithmic
results: first for window size 2 (Section 2.1), then for larger window sizes (Section 2.2).
We prove results for window size 2 in Section 3, and then give detailed algorithms
and hardness reductions for larger windows in Section 4. More precisely, we first focus
on the GU variant (with an XP algorithm and W[1]-hardness proof) in Section 4.1,
then hardness proofs for other variants in Section 4.2, and finally exponential-time
algorithms for weighted variants (GW and DW) in Section 4.3. Finally, We present a
construction yielding exponential-size realizations in Section 5.
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Table 1: Complexity of variants of NumRealizations and Realizable with w = 2. The
possible number of sequences is given for each variant of NumRealizations, and a
characterization of yes-instances is given for Realizable.

NumRealizations2 Realizable2
Data Instance Complexity #Sequences Complexity Characterization

GU P {0,+∞} P G is connected
GW #P-hard N P ψ(G) is (semi-)Eulerian
DU P {0, 1,+∞} P G is a simple step
DW P N (BEST Theorem) P ψ(G) is (semi-)Eulerian

2 Results overview
In this section, we present our main theoretical results for w = 2 in Subsection 2.1 and
for w ≥ 3 in Subsection 2.2. For the sake of readability, we postpone full proofs of our
results to Sections 3 and 4 respectively. Overall, our results reveal a stark contrast
between w = 2, where all relevant problems can be solved in polynomial time, and
w ≥ 3 where most versions of our problems become hard, except for GU which admits
a slicewise polynomial (XP) algorithm parameterized by w.

2.1 Complete characterization of 2-sequence graphs (w = 2)
A graph has a 2-realization when there exists a path visiting every vertex and covering
all of its edges (at least once for the unweighted case and exactly πe times for each edge
e in the weighted case). This observation enables relatively simple characterization and
algorithmic treatment, leading to the results summarized in Table 1 and Theorem 1.
The additional definitions are given below.

Definition 2 (ψ(G)). Let (G,Π) be a weighted graph (directed or undirected). ψ(G) is
the multigraph with the same vertices as G and with multiplicity πe for each edge e ∈ E.

Definition 3 ((semi-)Eulerian). We say that a path is (semi-)Eulerian if it visits all
edges of the graph exactly once, and a graph is (semi-)Eulerian if it admits a (semi-
)Eulerian path. A (semi-)Eulerian path with identical endpoints is a Eulerian cycle,
otherwise it is a semi-Eulerian path, and this distinction extends to Eulerian and
semi-Eulerian graphs (here this distinction is only made in Proposition 4).

Definition 4 (R(G), R+(G)). Let G = (V,E) be a digraph. R(G) is the Directed
Acyclic Graph (DAG) such that: i) every strongly connected components of G is
associated to a unique node in R(G), and ii) two strongly connected components u ̸= v
in G form an edge (u, v) in R(G), provided there exists an edge (x, y) ∈ E such that
x ∈ u and y ∈ v.

R+(G) is the weighted DAG such that: i) R+(G) has the same vertices and edges
as R(G) and ii) the weight of an edge in R+(G) is the number of distinct edges between
two strongly connected components in G.
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Definition 5 (simple step graph). Let G be a digraph. G is said to be a simple step
graph (see Figure 3) if R+(G) is a directed path and its edges have weight 1.

1

2

3

4

1

2

3

4
1234

(a) G is a simple step, R+(G) contains a
single node

1

2

3

4
12 342

(b) G is not a simple step, R+(G) is a path
with a weight-2 edge

Fig. 3: Illustration of Definition 4 of graph R+(G) (drawn with brown edges and
background) and Definition 5 of a simple step graph. The graph in (a) has a single
strongly connected component (yielding a trivial graph R+(G)). The graph in (b)
has two strongly connected components connected with two distinct edges ((1,3) and
(2,4)), so they form a weight-2 edge in R+(G).

Theorem 1. A weighted graph G (directed or undirected) admits a 2-realization if and
only if ψ(G) is (semi-)Eulerian. An unweighted undirected (resp. unweighted directed)
graph admits a 2-realization if and only if it is connected (resp. simple step).

All variants of Realizable2 are in P. For NumRealizations2, the GW variant is
#P-hard, and all others are in P.

2.2 General complexity and algorithmic results (w ≥ 3)
In this subsection we present the remaining complexity results, which are summarized
in Theorem 2 and Table 2. We first show that GU-Realizablew ∈ P for any integer w ≥ 3.
Besides, for GU, the number of realizations of a graph G is either 0 (not realizable), 1
or +∞ (realizable in both cases). These three cases can be tested in polynomial time
using our algorithm (presented in Section 4), showing that GU-NumRealizationsw ∈ P ,
for any integer w ≥ 3. All proofs of the following statements are given in Section 4.

Theorem 2. For any integer w ≥ 3, the GW, DU and DW variations of
NumRealizationsw and Realizablew are NP-hard, and the GU variations are in P.

In other words, NumRealizations and Realizable parameterized by w are para-NP-
hard in the GW, DU and DW variations and slicewise polynomial (XP) in the GU
variations.

We further investigate the parameterized complexity for GU-Realizable, since an
XP algorithm, here in time O(nw), can sometimes be improved into an FPT algorithm
running in time f(w)nO(1). This is however, not the case here (under usual complexity
assumptions), as we prove the parameterized hardness of this problem.

Theorem 3. GU-Realizable is W[1]-hard for parameter w.
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Table 2: Complexity for various instances of our problems (w ≥ 3). We remind
that a para-NP-hard problem does not admit any XP algorithm unless P=NP.

Constant w, w ≥ 3 Parameter w
NumRealizationsw Realizablew NumRealizations Realizable

Variation Complexity Complexity Complexity Complexity

GU P P W[1]-hard; XP W[1]-hard; XP
GW NP-hard NP-hard para-NP-hard para-NP-hard
DU NP-hard NP-hard para-NP-hard para-NP-hard
DW NP-hard NP-hard para-NP-hard para-NP-hard

Finally, we describe in Section 4.3 an integer linear formulation of DW and GW-
Realizable, and a O(nw2w p) dynamic programming algorithm for NumRealizations.

3 The special case of window size 2 (w = 2)
In this section we present the proofs of the results gathered in Table 1 and Theorem 1.
Apart from the GU variant (Lemma 1), we use direct reductions to standard well-known
problems in graph theory. The DU variant can be treated with a reduction to simple
step graphs (cf. Definition 5, Lemma 2 and Corollary 1). The weighted cases (GW and
DW) are treated with direct reductions to the problem of existence and counting of
(semi-)Eulerian paths in a graph (Lemma 3).

3.1 Unweighted realizability in undirected (GU) and directed
(DU) graphs

The following two propositions are obtained using a simple greedy algorithm: starting
from any vertex of the graph, if an edge is not realized by a candidate sequence, append
any path from the current last vertex of the sequence to the missing edge, and repeat
until all edges are realized.

Lemma 1 (GU characterization). If G = (V,E) is unweighted and undirected, with
|V | > 1, the following are equivalent:
(i) G is connected
(ii) G has a 2-realization
(iii) G admits an infinite number of 2-realizations.

In these conditions, a 2-realization can start and end at any vertex.

Proof (i)⇒ (ii) is obtained with the greedy algorithm described above. For (ii)⇒(iii), simply
notice that any 2-realisation ending with ab can be continued with arbitrarily many additional
repeats of ab. For (iii)⇒(i), a path between any two vertices can be found using any substring
of any realization starting and ending with the two given vertices. □

The previous characterization does not extend to strongly connected digraphs.
However, we do get the following sufficient conditions, which are not necessary, as seen

9



1 2 3
(a) 1 2 3 is a 2-realization but G is not strongly
connected

1

2 34 5
(b) 3 5 3 1 2 1 2 3 2 4 is a 2-realization but the graph
is not semi-Eulerian

1 2 33 1

1

(c) G is strongly connected but is not a
2-sequence graph because of its weights

1 2

34

12

34
(d) G (left) is not a 2-sequence graph whereas
R+(G) (right) is one

Fig. 4: Some special cases for w = 2, acting as counterexamples for variants of
Propositions 1 and 3.

in Figures 4a and 4b. Furthermore, they only apply in the unweighted case, as shown
in Figure 4c.

Proposition 1. Let G = (V,E) be an unweighted digraph.
(i) If G is strongly connected then G has a 2-realization. A 2-realization can start

or end at any given vertex of G.
(ii) If G is (semi-)Eulerian then G has a 2-realization.

Proof Condition (i) is obtained using the greedy algorithm described above in the proof of
Lemma 1.

Condition (ii) follows from the definition: a (semi-)Eulerian path is a 2-realization in the
context of unweighted graphs. □

For the special case of DAGs, we have the following simple characterization of
2-sequence graphs.

Proposition 2. If G = (V,E) is a DAG, then it is a 2-sequence graph if and only if
it is a directed path, in which case G has a unique 2-realization.

Proof The backward direction (⇐) is an application of Proposition 1(ii): directed paths admit
a unique semi-Eulerian path, that yield a unique 2-realization.

For (⇒), note first that a DAG is a path if and only if it is connected with in- and out-
degree at most 1. Let us suppose G is a 2-sequence graph and is not a directed path, then we
show that it contains a cycle. Indeed, there exists a vertex v having either two children, or
two parents. In the first case, denote c1 and c2 for the two distinct children of v. Then there
exists a walk going through both (v, c1) and (v, c2) (w.l.o.g. in this order), so G also has a
path from c1 to v, which creates a cycle with (s, c1). Similarly, if v has two parents p1 and p2,
then any 2-realization yields a walk through both (p1, v) and (p2, v), and thus a cycle. □

10



We now turn to general digraphs and give a necessary conditions for G to admit a
2-realization (which is not sufficient, as shown using an example in Figures 4d).

Proposition 3. Let G = (V,E) be a digraph. If G is a 2-sequence graph then R(G) is
a 2-sequence graph.

Proof Let G be a 2-sequence graph, and for the sake of contradiction let us suppose that R(G)
is not a 2-sequence graph. Since R(G) is a (weakly) connected DAG, then using Proposition 2,
it cannot be a directed path, so R(G) has either a node having two children or two parents. Let
us assume without loss of generality that R(G) has a node v in R(G) with two children c1 and
c2. Recall that v, c1 and c2 represent three distinct connected components of G (in particular
three sets of vertices in G that have empty intersection). Hence, there exist v1, v2 ∈ V,w1 ∈ c1,
and w2 ∈ C2 such that (v1, w1) ∈ E and (v2, w2) ∈ E. Consider now the 2-realization of G,
assuming without loss of generality that (v1, w1) is realized before (v2, w2). Then there exists
a path between w1 and v2 in G, which implies that w1 belongs to the same component as v1
and v2: a contradiction. □

Based on the sufficient and necessary conditions above, we can now converge to a
complete characterization of 2-sequence graphs in the DU setting:

Lemma 2 (DU characterization). Let G = (V,E) be an unweighted digraph. G is a
2-sequence graph if and only if it is a simple step graph. This property can be verified
in linear time.

Proof If G is a 2-sequence graph, R(G) is a 2-sequence graph using Proposition 3. Proposition 2
implies that R(G) and R+(G) are directed paths. Moreover, if R+(G) has an edge with weight
greater that 1, then there would be more than one edge between two strongly connected
components c1 and c2. All these edges go in the same direction otherwise c1 ∪ c2 would form
a strongly connected component. This is a contradiction since any 2-realization would have
to go from c1 to c2 and then come back to c1 (or conversely), which would make c1 ∪ c2 a
strongly connected component.

Conversely, let us suppose R+(G) is a directed path and its weights are equal to one. By
definition, there exists a list of sets of vertices P = (c1, ..., cp) such that:

(i) the entries of P form a partition of V (G), i.e. ci ⊂ V (G) with |ci| ≥ 1,
⋃
i∈{1,··· ,p} ci =

V (G) and for any i ̸= j, ci ∩ cj = ∅.
(ii) For any i ∈ {1, · · · , p− 1}, there exists a unique edge (u, v) of G with u ∈ ci and

v ∈ ci+1.
We construct a 2-realization y for G by means of the following procedure.

Base case: c1 is a strongly connected component of G, we initialize y with any 2-realizations
of c1 (which exists by Proposition 1(i)).

For i ∈ {1, .., p − 1}: let e = (v, w) be the single edge with v ∈ ci and w ∈ ci+1. By
construction, all the edges induced by ci have already been added to y. Suppose at the
previous step the last vertex added is z ∈ ci. We first add all vertices of a walk starting at z
(excluded) and ending at v. Then, consider a walk starting at w (included) and which visits
every edge of ci+1 (again using Proposition 1(i)). We add all vertices of this walk after v.

The process stops when i = p− 1, and all edges of G are realized by y.

11



Finally, note that verifying if a graph is simple step is linear, as it directly follows from a
strongly connected components decomposition. □

A direct consequence of Lemma 2 is the following:

Corollary 1. Let G be an unweighted digraph. The possible numbers of 2-realizations
for G are only 0, 1 and +∞. Moreover, G admits a unique 2-realization if and only if
G is a directed path.

Proof First, if G is a DAG, then by Proposition 2 it has either zero or a unique 2-realization
(exactly one if it is a directed path). If G is not a DAG, G has a cycle u0u1 . . . (uℓ = u0)
(possibly with ℓ = 1 in case of self-loops) and admits a 2-realization y. Then y has at least one
occurrence of u0, and a strictly longer 2-realization y′ can be obtained by inserting u0 . . . uℓ−1
just before any occurrence of u0. Therefore G has infinitely many 2-realizations. □

3.2 Weighted realizability in undirected (GW) and directed
(DW) graphs

The weighted cases (GW and DW) cannot be treated similarly due to the weight
constraints implying that a weighted graph has a finite number of realizations (as was
seen in Figure 4c). However, in this setting, we can use (semi-)Eulerian paths to obtain
the desired result.

Theorem 4. If G is a weighted graph (possibly directed), with weight matrix Π(G),
then: G is 2-realizable if and only if ψ(G) is connected and (semi-)Eulerian.

This theorem follows from the following stronger result, that also relates the number
of 2-realizations to the number of (semi-)Eulerian paths of ψ(G).

Lemma 3. Let G = ((V,E),Π) be a weighted 2-sequence graph (possibly directed). Let
E be the set of (semi-)Eulerian paths of ψ(G) and S be the set of 2-realizations of G.
Then

|E| = |S|
∏
e∈E

πe!

Proof First note that (semi-)Eulerian paths of ψ(G) (writing h for the number of edges in
ψ(G)) can be characterized by a pair (u0u1 . . . uh, e1 . . . eh) where each ui is a vertex of
G, e1 . . . eh is a permutation of the edges of ψ(G), and ei = (ui−1, ui) (directed case) or
ei = {ui−1, ui} (undirected case). Note that u0u1 . . . uh is a 2-realization of G, and that,
conversely, a (semi-)Eulerian path can be obtained from any u0u1 . . . uh by taking ei to be
one copy of (ui−1, ui) or ei = {ui−1, ui} for each i (the path indeed goes through all πe copies
of each edge e in ψ(G) by definition of weighted 2-realizations).

Consider the map:
f : E −→ S

(u0u1 . . . uh, e1 . . . eh) 7→ (u0u1 . . . uh)
(3)

12



We have already noted that f is surjective (visiting multiple copies of the same edge in different
orders give the same 2-realization but with different (semi-)Eulerian paths). An element x ∈ E
can be seen as a list of edges of G, each appearing πe times, since each edge ψ(G) is obtained
by copying πe times every edge of G. Therefore this map is not injective, as soon as there is
one πe > 1, because one can permute the corresponding edges in the (semi-)Eulerian path,
and the corresponding 2-sequence is the same.

We thus consider the following relation ∼ on E : For two (semi-)Eulerian paths P1 and P2,
P1 ∼ P2 ⇐⇒ P1 can be obtained from P2 by permuting edges of ψ(G) that are copies of the
same edge in G. ∼ is an equivalence relation because it is symmetric, transitive and reflexive.
Let E/ ∼ be E quotiented by ∼. We have P1 ∼ P2 ⇐⇒ f(P1) = f(P2) (equivalently, P1
and P2 yield the same sequence of vertices), so |S| is the number of equivalence classes of
∼, or equivalently, |E/ ∼ |. Note that each equivalence class of ∼ has cardinality

∏
e∈E πe!

(number of permutations which are product of permutations with disjoint supports, where
each support has size πe). Therefore |S| = |E/ ∼ | = |E|(

∏
e∈E πe)

−1. □

On the one hand, counting the number of (semi-)Eulerian paths in a undirected
graph is a #P -complete problem [17]. Since G 7→ ψ(G) is bijective, counting the
number of 2-realizations is also #P -complete in the GW setting. On the other hand,
for the DW setting, counting (semi-)Eulerian paths of a weighted digraph is in P, and
can be derived using the following proposition (writing degψ(G)(v) for the indegree of
a vertex v in ψ(G), i.e. degψ(G)(v) =

∑
u∈V π(u,v)):

Proposition 4. Let G = (V,E) be a weighted digraph, with Π(G) an n× n matrix of
integers. Then, the number p2 of 2-realizations is given by

-If ψ(G) is Eulerian, p2 = t(ψ(G))∏
e∈E πe!

∏
v∈V

(
degψ(G)(ψ(v))− 1

)
! (4)

where t(G) is the number of spanning trees of a graph G. If L is the Laplacian matrix
of G and Sp(L) the set of eigenvalues of L, then

t(G) =
∏

λi∈Sp(L)
λi ̸=0

λi

- If ψ(G) is semi-Eulerian, make it Eulerian by adding one arc (u, v) between the
two vertices with unbalanced degrees (u is the one with the least outdegree, v has the
least indegree). Then apply Formula 4 to ψ̃(G) := ψ(G) + (u, v), and divide the output
by the number of vertices |V |.

Proof The case of ψ(G) being Eulerian is a direct consequence of Lemma 3, BEST Theorem [18]
and Matrix Tree Theorem [19].

When ψ(G) is semi-Eulerian, this follows from the fact that ψ(G) is semi-Eulerian if and
only if ψ(G) + (u, v) is Eulerian where: u is the the vertex whose outdegree is less than its
indegree, and v is the vertex whose indegree is less than its outdegree. In that case, the number
of semi-Eulerian paths of ψ(G) is exactly the number of Eulerian paths of ψ(G)+(u, v) divided

13



by |ψ(G)| = |V | (since for one semi-Eulerian path in ψ(G) there are exactly |V | Eulerian
paths in ψ(G) + (u, v)). □

Corollary 2. Let G be a weighted graph (directed or undirected). For every non-negative
integer n, there exists a sequence graph having n 2-realizations.

Proof Let n ≥ 0 be an integer. The case n = 0 and n = 1 are trivial, so we suppose now that
n > 1. In the directed case, simply consider the oriented cycle Cn on n vertices where all
edges have weight 1. Then, Cn has exactly n realizations where each sequence is determined
by one of the n starting vertices.

In the undirected case, if n is even, the (undirected) cycle with unit weights Cn
2

gives
n 2-realizations (both directions are now allowed). If n = 2p + 1 with p ∈ N, consider the
sequences defined as follows and their reverse:

v1v2 · · · vp xx vp · · · v2v1 (1)
vi+1vi · · · v2v1v2 · · · vp xx vp · · · vi+1 ∀i ∈ [p− 1] (2)
x vpvp−1 · · · v2v1v2 · · · vp xx (3)

This represents a total of 1 + 2(p− 1) + 2 = n sequences (since (1) is its own reverse). First
observe that all these sequences yield the same sequence graph G, shown below

G x vp vp−1 ... v1

1

2 2 2 2

Thus G admits at least n 2-realizations. It remains to show that every 2-realization of G
is of one of the forms (1), (2), (3) above. This is based on the observation that the vertex x
must appear twice or three times.

If x appears exactly twice, it has to appear next to itself and next to vp twice, so the
sequence contains the subsequence vp xx vp. We are exactly in case (1) or (2) as the rest of
the sequence has to verify the adjacency constraints between the vi’s.

If x appears exactly three times, then it has one occurrence as the first element and
another as the last element. Moreover, it has to appear next to itself as xx (either for the
first or last occurrence). The rest of the sequence is then entirely determined by the adjacency
constraints and we are in case (3). □

4 Complexity and algorithms for general window sizes
(w ≥ 3)

The characterization of general sequence graphs differs from the one of 2-sequence
graphs: the undirected graph in Figure 5a satisfies the conditions of Lemma 1 but has
no 3-realization, and similarly in a directed setting the graph in Figure 5b satisfies the
conditions of Lemma 9 but is not 3-realizable.

In fact, there is no simple characterization of realizable graphs for larger window
size, and most variants of Realizable are already NP-hard for window size 3 (Section 4.2).
However, we do get a polynomial-time algorithm for the GU variant for any fixed
window size that we present first in Section 4.1.1, matched with a parameterized
complexity lower bound shown in Section 4.1.2.
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1 2 3
(a) G is connected but
not a 3-sequence graph

1 2 3
(b) G is strongly con-
nected but is not a 3-
sequence graph

Fig. 5: Non-realizable graphs for window size 3. Indeed, any 3-realization of length at
least 3 in an undirected (resp. directed ) graph yields either a self-edge (resp. self-loop)
or a clique (resp. tournament) of size 3, and these graphs have neither.

4.1 Parameterized results for undirected unweighted graphs
(GU)

For undirected unweighted graphs (GU), we describe the construction of a size-nw
auxiliary graph reducing the question of realizability to mere connexity, thus giving a
slicewise polynomial (XP) algorithm for the w parameter. We then show that such nw
factor in the complexity is unavoidable due to a W[1]-hardness reduction from Clique.

4.1.1 Slicewise polynomial (XP) algorithm for GU-Realizable
We introduce the following auxiliary graph used in our polynomial time algorithm for
GU-Realizablew. See Figure 6 for an example.

Definition 6. Let G = (V,E) be an undirected graph and k ≥ 2. We write v1:k as
a shorthand for a length-k string of nodes v1 . . . vk. Let Hk(G) = (V (k), E(k)) be the
undirected graph with

V (k) = {v1:k | ∀1 ≤ i < j ≤ k, {vi, vj} ∈ E}}
E(k) = {{u1:k, v1:k} | u2:k = v1:k−1 and {u1, vk} ∈ E}
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1

2

3
(a) G

11

13 31

2112

(b) H(2)

131
311 113

111
211

121
112

(c) H(3)

111 211 121 112 111 111 113 131 311 111

1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 3 1 1 1
(d) A walk visiting all arcs of (the single connected component of) H(3)

and its underlying string that is a 4-realization of G by Lemma 5.

Fig. 6: Top: example of construction of the auxiliary graphs H(k) for k = 2 and k = 3.
Bottom: conversion of a walk in H(3) into a 4-realization of G.

We now show that finding a w-realization of G is equivalent to finding a connected
component of the auxiliary graph that covers all edges, as defined below. With this
step we remove the need to consider long permutations of vertices, thus reducing the
combinatorics to the size of H (that is, nO(w)).

Definition 7. An edge {x, x′} of G is covered by a vertex y ∈ V (k) if x = yi and
x′ = yj for some 1 ≤ i < j ≤ k; it is covered by an edge {y, y′} in E(k) if y = x1:k,
y′ = x′

1:k with x = x1, x′ = x′
k and x2:k = x′

1,k−1. Edge {x, x′} is covered by a subgraph
of H(k) if it is covered by at least one vertex or one edge in this subgraph.

Lemma 4. If G has a w-realization, then H(w−1) has a connected component covering
all edges.

Proof Write k = w − 1. Let P = x1:ℓ be a w-realization of G. For each i ∈ [ℓ − k + 1], let
yi = xi:i+k−1. Since P is a w-realization, we have {xp, xq} ∈ E for each i ≤ p < q ≤ i+w− 1,
so yi is a vertex of V (k) for each i ∈ [ℓ − k + 1] and (yi, yi+1) is an edge of E(k) for each
i ∈ [ℓ − k]. Thus, V ′ = {y1, . . . , yℓ−k+1} induces a connected subgraph of H(k). Moreover,
each edge {x, x′} is realized in P with x = xi and x′ = xj , i+1 ≤ j ≤ i+w−1. We distinguish
three cases: (a) if j ≤ i + k − 1 = i + w − 2 and i ≤ ℓ − k + 1, then {x, x′} is covered by
vertex yi ∈ V ′. (b) if j = i+ w − 1, then {x, x′} is covered by {yi, yi+1} in H(k)[V ′]. (c) if
i > ℓ− k + 1, then {x, x′} is covered by vertex yℓ−k+1 ∈ V ′.

Overall, {x, x′} is covered by the connected subgraph H(k)[V ′], so some connected
component of H(k) covers all edges of G. □

The following definition gives the main algorithmic tool to build a w-realization
from any walk in the auxiliary graph.
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Definition 8. Let {y, y′} ∈ E(k) with y = x1:k, y′ = x′
1:k and x2:k = x′

1:k−1. The
addition ay(y′) of y′ with respect to y is the single-character string x′

k. The addition
ay′(y) of y with respect to y′ is the length-k string x1:k. Given a walk P = (y1, . . . , yℓ)
of H(k), the underlying sequence of P , denoted SP is the concatenation y1 · ay1(y2) ·
ay2(y3) · · · ayℓ−1(yℓ).

Lemma 5. For a path P , the underlying sequence of P realizes (with window size
k + 1) exactly the edges covered by the subgraph H(k)[P ].

Proof We first prove the following claim: for any {y, y′} ∈ E(k), the string y · ay(y′) ends
with y′, and realizes exactly the edges covered by y, y′ and {y, y′} with window k + 1.

Let x1:k = y and x′
1:k = y′. We distinguish the forward case with x2:k = x′

1:k−1 from the
backward case with x′

1:k−1 = x2:k.
First note that string y ·ay(y′) starts with y (by construction) and ends with y′ (this is clear

in the backward case, and follows from x2:k = x′
1:k−1 in the forward case). Thus, the first size-

k window of y · ay(y′) realizes edges {xi, xj | 1 ≤ i < j ≤ k} which are exactly edges covered
by y. Similarly, the last size-k window of y · ay(y′) realizes edges {x′

i, x
′
j | 1 ≤ i < j ≤ k}

which are exactly edges covered by y′.
We now enumerate the remaining edges realized by size-(k + 1) windows of y · ay(y′). In

the forward case, {x1, x
′
k} is the only such remaining edge, and it is the one covered by {y, y′}.

In the backward case, the remaining edges are those of the form {xi, x′
j} with 1 ≤ j < i ≤ k.

For i = k and j = 1, {xi, x′
j} is the edge covered by {y, y′}. For j > 1, {xi, x′

j} = {xi, xj−1}
is covered by y, and finally for i < k, {xi, x′

j} = {x′
i+1, x

′
j} is covered by y′. Overall, the edges

realized by all size-(k + 1) windows of y · ay(y′) are exactly those covered by y, y′ and {y, y′}.
This completes the proof of the claim.

Now for the Lemma statement, let P = (y1, . . . , yℓ) and SP be the underlying sequence of
P . Note that SP contains all yiayi (yi+1) as substrings by construction and each size-(k + 1)
widows of SP appear as a size-(k + 1) window of some yiayi (yi+1). Thus Sp realizes (with
window size k + 1) exactly the edges realized by some yiayi (yi+1), which in turn are exactly
the edges covered by vertices yi, 1 ≤ i ≤ ℓ and edges {yi, yi+1}, i.e. edges covered by the
subgraph H(k)[P ]. □

Lemma 6. A graph G = (V,E) is w-realizable if and only if H(w−1) has a connected
component covering all edges. Moreover, a realization (if any) can be computed in time
O(nw).

Proof The forward direction is proven in Lemma 4. The reverse follows from Lemma 5:
pick such a connected component of H(w−1), and let P be a walk covering all edges of this
component: the underlying sequence of P is a w-realization of G. Walk P can be computed
with a DFS, by visiting all edges incident to each successive node, which can be performed
linearly with respect to the number of edges in H. There are at most nw such edges (with
n = |V |) since each edge involves at most w distinct vertices of G, so we obtain the desired
time bound. □

Remark 1. For digraphs, the aforementioned procedure can easily be translated using
a directed definition of graph H(k), where edge {u1:k, v1:k} is replaces by arc (u1:k, v1:k)
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1 2

34
(a) G

31

24
23

43

42

41
34

32

(b) H(2)

31

2443

41 32

34234

(c) R(H(2))

Fig. 7: Adaptation of the algorithm for GU-Realizablew to DU-Realizablew, here with
w = 3 (see Remark 1). The walk 34234, 41 in R(H(2)) gives a 3-realization: 3 4 2 3 4 1.
However, finding such a walk takes exponential time in the directed case.

•a

•v •x

•b

•y

•u

Fig. 8: Illustration of the reduction for Theorem 3, with w = 4. The source graph G
has vertices {u, v, x, y} with the bold edges. Vertices a and b and thin edges are added
in the reduction. A realization follows a path visiting both vertices a and b: the first w
vertices of the transition between a and b (highlighted in red) must form a clique in
the graph, yielding a (w − 1)-clique in the original graph.

in Definition 6. See Figure 7. One then needs to produce a directed walk visiting
strongly connected components and covering all edges of G. However, there can be
exponentially many walks between components in the auxiliary graph, and the choice
of which components to visit leads to an exponential blow-up in the complexity of the
problem.

4.1.2 Complexity lower bound for parameter w

We now prove Theorem 3, restated below, using a polynomial time parameterized
reduction from Clique (decide whether a graph contains k vertices inducing all possible(
k
2
)

edges). See Figure 8 for an illustration.

Theorem 3. GU-Realizable is W[1]-hard for parameter w.

Proof Let G = (V,E) be a simple graph. Let G′ be a graph constructed from G by adding
two nodes a and b with self loops, such that a and b are connected to each vertex of G. Let k
be a positive integer and w = k + 1. We will show that G has a k-clique if and only if G′ is
w-realizable.

18



First, let us suppose that G has a k-clique. Let C be an arbitrary sequence of the vertices
of one of its k-cliques. Let v1, . . . , v|V | be the vertices of G and {u1, u

′
1}, . . . , {u|E|, u

′
|E|} be

its edges. We write A (resp. B) for the string containing w successive copies of a (resp. b).
Then, the following sequence is a w-realization of G′:

A u1 u
′
1 A u2 u

′
2 A . . . A u|E| u

′
|E| A C B v1 B v2 B . . . B v|V |

Now let us suppose that G′ is w-realizable and let x = x1, . . . , xp be a w-realization of
G′. Without loss of generality, we can suppose a appears before b in x. Let ib be the index
of the first appearance of b and let ia be the largest index of the appearance of a before ib.
Then ib − ia ≥ w, since there is no edge between a and b. Furthermore, since G is simple,
there cannot be two repetitions of a vertex in the sequence xia+1, . . . , xia+w−1. Due to the
definition of a sequence graph, all vertices {xia+1, . . . , xia+w−1} are connected, forming a
clique in G of size w − 1 = k, which ends the proof. □

4.2 NP-hardness of directed and weighted variants for constant
window size w ≥ 3

We prove in this section the NP-hardness of the remaining three variants (DU, GW,
DW) for constant window size greater than 3.

Proposition 5. DU-Realizablew, GW-Realizablew, and DW-Realizablew are all NP-
hard for any w ≥ 3.

We prove each case directly or indirectly by reduction from restricted versions of
Hamiltonian Path. We first verify the NP-hardness of these variants (see Lemma 7 below).
We then give the reduction for the unweighted case (see Lemma 9 in Section 4.2.1),
for which we introduce an intermediate variant with optional arcs. Finally we give a
reduction for both weighted cases in Section 4.2.2, using the same construction for
both directed and undirected cases (simply ignoring arc orientations in the latter case,
see Lemma 10).

We consider slightly constrained versions of Hamiltonian Path where we require
that the input graph contains up to two degree-one vertices. More formally, we reduce
from the following restrictions, which are known to be NP-hard (these are folklore
results, included here for completeness):

Lemma 7. Hamiltonian Path is NP-hard even on the graph classes defined by the
following restrictions:
• HP1: The input graph has no self-loop, is directed and has a source vertex s (i.e.

with in-degree 0)
• HP2: The input graph has no self-loop, is undirected and has two degree-1 vertices
s and t.

Proof The reduction to HP1 is from Hamiltonian Cycle in directed graphs: pick any vertex
v and duplicate it into v1, v2. Each arc (v, u) becomes (v1, u) and each arc (u, v) becomes
(u, v2). Then v1 is a source vertex and any cycle in the original graph is equivalent to a path
from v1 to v2 in the new graph.
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The reduction to HP2 is from Hamiltonian Cycle in undirected graphs: pick any vertex v and
duplicate it into v1, v2. Each edge {u, v} becomes two edges {u, v1} and {u, v2}. Add pending
vertices s and t connected to v1 and v2 respectively. Then any cycle in the original graph is
equivalent to a path in the new graph with {s, v1} at one end and {t, v2} at the other. □

4.2.1 Reduction for DU-Realizable
In the directed and unweighted setting, we use the following intermediate generalization
which allows some arcs to be ignored in the realization. For convenience in the final
reduction, we further assume that the first w− 1 elements of the sequence are given in
input.

Problem 5 (OptionalRealizablew).
Input: directed unweighted graph D = (V,A) without self-loops, a subset Ac ⊆ A of
compulsory arcs, a starting sequence P = (s1, . . . , sw−1) of w−1 distinguished vertices
of V .
Output: True if there is a sequence S, starting with P , such that the graph of S with
window size w contains only arcs in A and (at least) all arcs in Ac; False otherwise.

Note the following similarity between OptionalRealizable2 and Hamiltonian Path:
in the former some arcs are optional and other are compulsory, while in the latter
all arcs are optional but vertices are compulsory. This constraint is easily imple-
mented in OptionalRealizable2 by duplicating each vertex and adding a compulsory arc
between the two copies. Intuitively, this is the main building block of our reduction
for OptionalRealizablew (Lemma 8 below). With w ≥ 3, we further introduce w − 2
padding vertices that will take place between any two consecutive vertices of the path,
so that the window overlaps successive pairs of vertices along the path. These padding
vertices also help enforce that no vertex is visited more than once.

Lemma 8. For any fixed w ≥ 3, OptionalRealizablew is NP-hard.

Proof By reduction from Hamiltonian Path (see Lemma 7, HP1). Given a directed graph
G = (V,A) with a source vertex s and no self-loop, build an instance of OptionalRealizablew
with directed unweighted graph G′ = (V ′, A′), compulsory arcs A′

c and starting sequence P
as follows (see Figure 9 for an example).

We introduce vertices denoted v0, v1 for each vertex v of the original graph, as well as a
grid of vertices xip for each p ∈ [2n+ 1], i ∈ [w − 2]. The overall vertex set is thus

V ′ = {xip | p ∈ [2n+ 1], i ∈ [w − 2]} ∪
⋃
v∈V

{v0, v1}

The set of compulsory arcs is A′
c = {(v0, v1) | v ∈ V }. We further introduce the following

optional arcs:

• arc (u1, v0) for each (u, v) in A
• arcs (xi2p−1, v0), (v0, x

i
2p), (xi2p, v1), (v1, x

i
2p+1) for each v ∈ V , p ∈ [n], i ∈ [w − 2].

• arc (xip, xjp) for i < j and p ∈ [2n+ 1];
• arc (xip, x

j
p+1) for j ≤ i and p ∈ [2n]
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Fig. 9: Left: an instance G of Hamiltonian Path with a source vertex s and solution
(s, a, b, c). Right: the corresponding instance G′ of OptionalRealizable6. Heavy (red) arcs
are compulsory, light (blue) arcs are a solution path in the graph, dashed (green) arcs
are optional arcs issued from the intput graph. Other optional arcs are not depicted.
Three size-6 windows are overlined: A window using v0 and v1 realizes the compulsory
arc for vertex v, a window using u1 and v0 enforce that the arc (u, v) exists in G, other
windows with w − 1 separator vertices xip help structure the whole sequence.

The starting sequence is defined as P = (x1
1, . . . , x

w−2
1 , s0). Note that the resulting graph has

no self-loop.

Claim 1. (G′, P,A′
c) is a yes-instance for OptionalRealizablew ⇔ G admits an Hamiltonian

path

⇐ Let v1, v2, . . . , vn be an Hamiltonian path of G, so that vp0 , v
p
1 are the corresponding

vertices in G′, p ∈ [n]. Without loss of generality, since s has degree 1, v1 = s. Define the
following sequences:

Xp = x1
2p−1 . . . x

w−2
2p−1v

p
0x

1
2p . . . x

w−2
2p vp1 for p ∈ [n]

Xn+1 = x1
2n . . . x

w−2
2n

S = X1 . . . XnXn+1

We show that S is a solution for OptionalRealizablew(G′, P,Ac). By construction S starts
with P . Further, for each compulsory arc (v0, v1), v is part of the Hamiltonian path so there
is p such that v = vp: then compulsory arc (v0, v1) is realized in subsequence Xp. Finally,
it can be checked that the graph of S contains only arcs of A′. Indeed, the sequence uses
the following arcs: (v0, v1) for each v (which are compulsory arcs), arcs (vp1 , v

p+1
0 ) for each

arc (vp, vp+1) of the Hamiltonian path, so (vp, vp+1) ∈ A and (vp1 , v
p+1
0 ) ∈ A′, arcs with an

endpoint vi and an endpoint xjp (which satisfy the parity conditions so they belong to A′),
and finally arcs of the form (xpi , x

q
j ), either with q = p (in which case i < j) or with q = p+ 1

(in which case by the window size we have j ≤ i): both kinds are also in A′.
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⇒ Consider a sequence S solution for OptionalRealizablew(G′, P,Ac). We first show that
for each occurrence of xip in S (except for p = 2n + 1), the next w − 1 characters in S are
necessarily xi+1

p . . . xw−2
p vqx

1
p+1 . . . x

i
p+1 for some vq with ∈ V and q ∈ {1, 2}. To this end,

consider some size-w window xS′ in S, where x = xip for some i ∈ [w− 2], p ∈ [2n] (note that
p ̸= 2n+ 1). Let T = xi+1

p . . . xw−2
p and U = x1

p+1 . . . x
i
p+1 (note that T is possibly empty). T

and U are seen both as strings and as sets of vertices. The out-neighborhood of xip contains all
vertices of T ∪ U , as well as all vertices vq for v ∈ V , where q = 0 if p is odd and q = 1 if p is
even. Since there are k− 2 vertices in T ∪U , and no vertex has a self-loop, then by the pigeon-
hole principle string S′ must contain at least one vertex vq, v ∈ V . Since there are no arc
(aq, bq) for a, b ∈ V , S′ contains exactly one such vertex vq, thus it also contains all vertices
of T ∪ U . Based on the direction of the arcs in T ∪ U ∪ {vq}, it follows that S′ = T · vq · U .

Let Xp be the string x1
p . . . x

w−2
p . From the arguments above, and the fact that S starts

with X1 (since P uses vertices of X1), there exist vertices u1, . . . u2n in
⋃
v∈V {v0, v1} such

that
S = X1u1X2u2X3u3 . . . u2nX2n+1

From the window size w, there must exist an arc (up, up+1) for each p ∈ [2n−1]. So if up = v0
for some p ∈ [2n − 1] and v ∈ V , then up+1 = v1 (for the same v). Moreover, if up = v1
for some p ∈ [2n − 1] and v ∈ V , then up+1 = v′

0 for some vertex v′ ∈ V with (v, v′) ∈ A.
Overall vertices ui alternate between {v0 | v ∈ V } and {v1 | v ∈ V }, starting with u1 = s0
(by the starting sequence constraint), so there are vertices (v1, . . . , vn) such that u2p−1 = vp0 ,
u2p = vp1 , and (v1, . . . , vn) is a walk of G.

Furthermore, arcs (v0, v1) are compulsory for each vertex v ∈ V , so (v1, . . . , vn) must
visit all n vertices of G: Thus, (v1, . . . , vn) is an Hamiltonian path in G. □

We can now prove that DU-Realizablew is NP-hard by reduction from
OptionalRealizablew. The main idea of the reduction is to attach a gadget to the graph,
that allows to visit each optional arc in some order; this becomes a prescribed pre-
fix of any realization (denoted Z in the proof). Then, the end of a realization must
visit all remaining (compulsory) arcs, but can still use any optional arc thanks to the
unweighted setting. The gadget is heavily constrained to enforce that the prescribed
prefix Z is indeed visited “as is” (in particular, without realizing any compulsory arc),
and that vertices of the gadget are no longer accessible once Z is over.

Lemma 9. For any fixed w ≥ 3, DU-Realizablew is NP-hard.

Proof Assume that we are given a directed unweighted graph G = (V,A), a subset Ac ⊆ A
of compulsory arcs (let Ao = A \ Ac be the set of optional arcs), and a starting sequence
P = (s1 . . . sw−1) of vertices of V . The following reduction is illustrated in Figure 10.

Let m = |Ao|, and write Ao = {(u1, v1), . . . , (um, vm)}. Create G′ by adding w(m+1)+m
separator vertices: w(m+ 1) vertices yip with 1 ≤ p ≤ m+ 1 and 1 ≤ i ≤ w, and m vertices
zp for 1 ≤ p ≤ m. Build the following strings (using the product operator for concatenation)

Z =

(
m∏
p=1

(y1
p . . . y

w
p upzpvp)

)
y1
m+1 . . . y

w
m+1Z

′ = Zs1 . . . sw−1

The arc set can be concisely defined as follows : take the set A and insert all arcs realized
by Z′ involving at least one separator vertex. In details, the additional arcs in G′ are the
following (where indices i, j, p necessarily satisfy i ∈ [w], j ∈ [w] and p ∈ [m]):
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◦ ◦ ◦ ◦

◦

◦

◦

◦
s1

s2

• • • • • • • • • • •
y1

1 y2
1 y3

1 y1
2 y2

2 y3
2 y1

3 y2
3 y3

3z1 z2

Fig. 10: Reduction from OptionalRealizablew to DU-Realizablew with w = 3. The input
instance is the highlighted graph with white vertices (including two optional dashed
blue arcs), as well as the starting sequence (s1, s2). The reduction adds the black
vertices yip and zp, and the corresponding black and grey arcs. Any solution is thus
forced to first realize all optional arcs, and then realize the rest of the graph starting
with s1, s2, and including all compulsory arcs and, as needed, some of the optional
arcs again.

• (yip, yjp) for i < j and (yip, y
j
p+1) for j ≤ i− 4,

• (yim+1, y
j
m+1) for i < j and (yim+1, sj) for j < i,

• (yip, up) for 2 ≤ i and (up, yjp+1) for j ≤ w − 3,
• (yip, zp) for 3 ≤ i and (zp, yjp+1) for j ≤ w − 2,
• (yip, vp) for 4 ≤ i and (vp, yjp+1) for j ≤ w − 1,
• (up, zp) and (zp, vp).

Claim 2. G has a w-realization with optional arcs ⇔ G′ has a w-realization

⇒ Build a realization for G′ by concatenating Z with the realization for G starting with
s1 . . . sw−1. All optional arcs of G′ are realized in Z, all compulsory arcs of G′ are realized
in the suffix (the realization of G′), and all arcs involving a separator are realized in Z′. No
forbidden arc is realized.

⇐ Let S be a realization of G′. We prove by induction on q, for 1 ≤ q ≤ |Z|, that (i) S
and Z′ have the same prefix of length-(q + w − 1) and (ii) any separator in Z[1, . . . , q] may
only appear in S[1, . . . , q].

For q = 1, this is obtained by the fact that Z[1] = y1
1 has in-degree 0 in G′ (so S starts

with y1
1 and y1

1 does not appear again in S) and its out-neighborhood forms a size-(w − 1)
tournament corresponding to Z[2...w], so the length-w prefix of S is Z[1...w]. Consider now
1 < q ≤ |Z|. By induction S and Z′ have the same prefix of length-(q+w− 2), and separators
up to position q − 1 in Z do not have any other occurrence in S. Let q′ = q if S[q] is a
separator (case A), and q′ = q + 1 otherwise (case B). In both cases, S[q′] is a separator,
its in-neighborhood contains at least one separator Z[q − 1] or Z[q − 2], so in particular
vertex S[q′] may not have any other occurrence in the sequence (otherwise Z[q − 1] and/or
Z[q − 2] would also have two occurrences). Furthermore, the out-neighborhood of S[q′] is
N = {Z′[q′ + 1], . . . , Z′[q′ + w − 1]} without self-loops, so S[q′ + 1, . . . , q′ + w − 1] is a
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permutation of N . In case A, w − 2 vertices of N are already accounted for (by induction) in
S[q′ + 1, . . . , q′ +w− 2], so the remaining vertex Z′[q′ +w− 1] must be in position q′ +w− 1
in S. In case B, elements of N are all in Z, so they form a tournament and, again, the next
w − 1 positions in S and Z′ must be equal.

Overall, we have S = ZS′ with the following properties: the length-(w − 1) prefix of S′ is
the starting sequence P , and no separator appears in S′. Thus S′ realizes only arcs from G.
Moreover no compulsory arc of G is realized in Z, nor with one vertex in Z and one in S′

(since such arcs start with a separator), so all compulsory arcs are realized in S′. Overall, G
is a yes-instance of OptionalRealizablew with sequence S′.

□

4.2.2 Reduction for weighted problems
Now, let us prove that GW-Realizablew and DW-Realizablew are NP-hard for all w ≥ 3,
by reduction from the undirected variant of HP2 of Hamiltonian Path (cf Lemma 7).
We focus on the directed case first, DW-Realizablew, the undirected case will simply
use the underlying graph introduced in this reduction.

Lemma 10. For any fixed w ≥ 3, DW-Realizablew and GW-Realizablew are NP-hard.

Reduction for DW-Realizable.
Given G = (V,E) undirected with degree-1 vertices s and t, write du for the degree of
each vertex u ∈ V , and k = w − 2 (note that k ≥ 1 since we chose w ≥ 3). We write
δins = ds and δinu = du−1 for u ∈ V \{s}; and δoutt = dt and δoutu = du−1 for u ∈ V \{t}
(δinu and δoutu can be seen as the remaining in- and out-degree in the oriented graph
where edges are replaced by double arcs after removing an Hamiltonian s− t path).
We write δu = δinu + δoutu . Build a directed weighted graph G′ = (V ′, A) as follows.
For each u ∈ V , add u and a new vertex denoted u′ to V ′. Create additional dummy
vertices s0, s′

0, a and b. The overall vertex set is thus V ′ := {a, b, s0, s
′
0}∪

⋃
u∈V {u, u′}.

The arcs of A are given in Figure 11, as the union of the start gadget, the queue
gadget, and the vertex and edge gadgets respectively for each vertex and edge of G.
An example realization is given in Figure 12.

Reduction for GW-Realizable.
Build the directed graph G′ as above, and let G′

u be the undirected version of G′:
remove arc orientations, for u ̸= v the weight of {u, v} is the sum of the weight of
(u, v) and (v, u) in G′ (the weight of loops is unchanged).

Correctness of the reduction.
We prove the following three claims:

Claim 3. G Hamiltonian ⇒ G′ has a realization

Claim 4. G′ has a realization ⇒ G′
u has a realization

Claim 5. G′
u has a realization ⇒ G is Hamiltonian
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Start Gadget:

s0

s′
0

a

s

k
(
k
2
)
k

1

(
k+1

2
)

Queue Gadget:

a

t

b(
k+1

2
)

k + 1

(m− n+ 1)
(
w
2
)

+ 2(m− n)

Vertex Gadget
(for each vertex u, including s and t):

a bu

u′

(δu + 2)
(
k
2
)

+
(
k+1

2
)

k

k

1

δoutu (
(
w
2
)
− 1) + δinu k

δinu (
(
w
2
)
− 1) + δoutu k

Edge Gadget
(for each {u, v}):

u v(
k+1

2
)

Fig. 11: Subgraphs used in the reduction from Hamiltonian Path to DW-Realizable3.
Weights on double arcs apply to both directions. Note that arcs (t, b) appear in two
different gadgets, so their weights should be summed.

G

ss

uu

vv

ww

tt

G′

ss
s′s′ uu

u′u′

vv
v′v′

ww

w′w′
tt

t′t′

s0s0
s′

0s
′
0

a

G′

ss
s′s′ uu

u′u′

vv
v′v′

ww

w′w′
tt

t′t′

s0s0
s′

0s
′
0

b

Fig. 12: Reduction from Hamiltonian Path to DW-Realizable. Left: the input graph
G with degree-one vertices s and t (and Hamiltonian Path (s, u, v, w, t)). Each edge
becomes two arcs (in each direction) in the edge gadgets of the resulting graph G′.
Center: the first part of the path realizing most edges of G′ (in particular those
involving vertex a and primed versions of vertices), following the Hamiltonian path.
In particular, bold arcs from the input graph are realized. Right: the remaining arcs
(such as (u,w), but also (w, u), (u, s), (v, u), etc.) are realized using a succession of
round-trips with vertex b. Self-loops represent iterations of k = w−2 or w occurrences.
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xkayk → x y

ak k

(
k+1

2
)

(
k
2
) (

k
2
)

bxkbw → x b

(
w
2
)
− 1

k
(
k
2
) (

w
2
)

+ 1

bwxkb→ x b

k

(
w
2
)
− 1

(
k
2
) (

w
2
)

+ 1

Fig. 13: Sequence graphs for strings of the form xkayk, bwxkb or bxkbw for any
x, y, a, b, with window size w = k + 2.

Proof of Claim 3 Assume that G has an Hamiltonian path and denote its vertices as
u1, u2, . . . un according to their position along the path (wlog., u1 = s and un = t). Let
(v1, w1), . . . (vm′ , wm′ ) be the pairs of connected vertices in G that are not consecutive ver-
tices of the Hamiltonian path (formally, it corresponds to the set

⋃
{u,v}∈E{(u, v), (v, u)} \

{(ui, ui+1) | 1 ≤ i < n}). Note that there are m′ = 2m − (n − 1) such pairs. We now show
that the sequence S defined as follows is a realization of G (recall that k = w − 2).

S := SinitSpathSqueue with

Sinit := s′
0 s
k
0

Spath := a sk s′ sk a uk2 u
′
2 u

k
2 a . . . a u

k
n−1 u

′
n−1 u

k
n−1 a t

k t′ tk a

Squeue := bw vk1 bw
k
1 b

w vk2 bw
k
2 . . . b

w vkm−n bw
k
m−n b

w

We verify for each gadget that all arcs are indeed realized with the correct weight3,
Figure 13 helps compute the weights of short string fragments. The start gadget corresponds
exactly to arcs in Sinit or overlapping Sinit and Spath. Regarding the vertex gadget for
u ∈ V , Spath realizes all arcs involving two distinct vertices among a, u, u′. Spath also yields(
k
2
)

+
(
k+1

2
)

self-loops for u, and Squeue yields the remaining δu
(
k
2
)

self-loops (since each
vertex appears δu times there). Squeue also realizes all arcs between u and b. For an edge
gadget {u, v} if uv (resp. vu) is part of the Hamiltonian path, then the arc (u, v) (resp. (v, u))
is realized in Spath, otherwise it is realized in Squeue. Finally, the arcs in the queue gadget
are realized either in Squeue, either as overlapping arcs between Spath and Squeue. □

Proof of Claim 4 Clearly, any realization for G′ is a realization for G′
u. □

3For most arcs, the weights are not actually relevant and are only computed since they must be part of
the input. Only weights of arcs incident to s′

0, a and vertices u′ are used in the rest of the proof (proof of
Claim 5). The central point here is that the sequence graph of S is the same for any sequence S obtained
from an Hamiltonian path of G.
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Proof of Claim 5 Pick a realization S of G′
u. Define the weight of a vertex in Gu as the sum

of the weights of its incident edges (counting loops twice). From the construction, we obtain
the following weights for a selection of vertices:

• s′
0 has weight k + 1 = w − 1

• u′ has weight 2(w − 1) for u ∈ V
• a has weight 2(n+ 1)(w − 1)

From the weight of s′
0, it follows that this vertex must be an endpoint of S (wlog, S

starts with s′
0). Then that for any other vertex v with weight 2i(w − 1), v must have exactly

i occurrences in S (in general it can be either i or i+ 1, but if v has i+ 1 occurrences it must
be both the first and last character of S, i.e. v = s′

0: a contradiction). Thus each u′ occurs
once and a occurs n+ 1 times in S.

Each u′ occurs once, so order vertices of V according to their occurrence in S (i.e.
V = {u1, . . . , un} with u′

1 appearing before u′
2, etc.). For each i, the neighborhood of u′

i in S
contains a twice, one a on each side (since there is no (a, a) loop). Other neighbors of u′

i may
only be occurrences of ui, so each u′

i belongs to a factor, denoted Xi, of the form au∗
i u

′
iu

∗
i a.

Two consecutive factors Xi, Xi+1 may overlap by at most one character (a), and if they do,
then there exists an arc (ui, ui+1) in A , hence an edge {ui, ui+1} (since w ≥ 3) in E. There
are n such factors Xui , and only n+ 1 occurrences of a, so all as except extreme ones belong
to the overlap of two consecutive Xis, and there exists an edge {ui, ui+1} for each i. Thus
(u1, . . . , un) is an Hamiltonian path of G. □

All together, claims 3, 4 and 5 show the correctness of the reductions for both
GW-Realizableand DW-Realizablef rom Hamiltonian Path (HP2) since they yield :

G is Hamiltonian ⇔ G′ has a realization
G is Hamiltonian ⇔ G′

u has a realization

This completes the proof of Lemma 10.

4.3 Exponential algorithms for weighted problems
In spite of its NP-hardness, the weighted version of Realizable can be solved exactly for
moderate instance sizes. In this section, we provide two complementary exponential-
time algorithms, respectively based on Integer Linear Programming and Dynamic
Programming, to effectively solve our problem in the context of tame instances. The
latter runs in O(nw 2wp), and produces the total number of realizations.

4.3.1 Linear integer programming formulation for DW- and
GW-Realizablew

Let G = (V,E) be a graph with integer weights πe∈E . We consider first the directed
case DW, and show how our results extend to GW at the end of this section. In our
model, we represent a sequence x over a size-n alphabet V è, as a boolean matrix
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X ∈Mn,p({0, 1}) encoding the sequence x:

Xv,j =
{

1 if xj = v

0 otherwise

The length-p sequences over V are thus in bijection with the boolean matrices such
that ∀j ∈ [p],

∑
v∈V Xv,j = 1.

In order to encode sliding window constraints, we define the set C of all pairs of
positions occurring together in a size-w window, C = {(i, j) | i, j ∈ [p], i < j < i+ w}.
We use an intermediary slack variable yei,j ∈ {0, 1} for each (i, j) ∈ C and e = (v1, v2) ∈
E to model the appearance of v1, v2 together at indices i, j in a size-w window, i.e. yei,j
is equal to 1 when v1 is located at position j and v2 at position j + i, and 0 otherwise.
This is achieved with the following linear constraints

−Xv1,i + yei,j ≤ 0
−Xv2,j + yei,j ≤ 0

Xv1,i +Xv2,j − yei,j ≤ 1

For a length-p sequence, the number of possible position pairs (i, j) ∈ C is given by:

|C| =
w−1∑
d=1

(p− d) = p(w − 1)− w(w − 1)
2 = (w − 1)(p− w

2 )

We also need to forbid missing pairs not forming edges in the graph, which give
the following constraint for each (v1, v2) /∈ E and every (i, j) ∈ C

Xv1,i +Xv2,j ≤ 1

It is worth noting that the value of p can be directly computed from the input, since
the weight matrix and window size entirely constraints the realization size. More
precisely, p is such that |C| =

∑
e∈E πe, which gives

p = w

2 +
∑
e∈E πe

w − 1

Then, DW-Realizablew can be formulated as an integer linear program:

min
X∈{0,1}p×n

y∈{0,1}|E|×|C|

∑
e∈E

∑
i,j∈C

yei,j

such that ∀j ∈ [p]
n∑
v=1

Xv,j = 1
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∀e = (v1, v2) ∈ E
∀(i, j) ∈ C


−Xv1,i + yei,j ≤ 0

−Xv2,j + yei,j ≤ 0
Xv1,i +Xv2,j − yei,j ≤ 1

∀e′ = (v′
1, v

′
2) /∈ E

∀(i, j) ∈ C
Xv′

1,i
+Xv′

2,j
≤ 1

and ∀e ∈ E
∑

(i,j)∈C

yei,j ≥ πe

If the objective function reaches
∑
e∈E πe at its minimum then the output of

DW-Realizablew(G,Π) is True, and False otherwise.
For the undirected variant, for each edge e = {u, v} with u ̸= v we build the ILP

as if we had two directed edges (u, v) and (v, u). The only specificity is for the edge
weight verification, that becomes the following:

∀e = {u, v} ∈ E,
∑

(i,j)∈C

y
(u,v)
i,j + y

(v,u)
i,j ≥ πe.

This ensures that arcs (u, v) and (v, u) get a total weight of πe, that can be shared in
any way. We thus get an ILP for GW-Realizablew.

4.3.2 Dynamic programming algorithm for DW- and
GW-NumRealizationsw

We present here a baseline dynamic programming algorithm which, despite having
punishing complexity, allows to compute the number of realizations for modest instances
of the weighted directed and undirected cases.

The recursion proceeds by extending a partial sequence, initially set to be empty,
keeping track along the way of represented edges and of the vertices appearing in
the last window. Namely, consider Nw[Π, p,u] to be the number of w-realizations of
length p for the graph G = (V,E), respecting a weight matrix Π = (πe)e∈E , preceded
by a sequence of nodes u := (u1, . . . , u|u|) ∈ V ⋆. It can be shown that, for all p ≥ 1,
Π ∈ N|E| and u ∈ V ≤w, Nw[Π, p,u] obeys the following formula in the directed case:

Nw [Π, p,u] =
∑
v∈V

Nw
[
Π′

(u,v), p− 1, (u1, ..., u|u|, v)
]

if |u| < w − 1

Nw

[
Π′

(u,v), p− 1, (u2, ..., uw−1, v)
]

if |u| = w − 1

with Π′
(u,v) := (π′

e)e∈E

π′
e := πe − |{k ∈ [1, |u|] | e = (uk, v)}|

The base case of this recurrence corresponds to p = 0, and is defined as

∀ Π, Nw[Π, 0,u] =
{

1 if Π = (0)(i,j)∈V 2

0 otherwise.
(5)
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The total number of realizations is then found in Nw[Π, p, ε], i.e. setting u to the
empty prefix ε, allowing the sequence to start from any node.

A similar dynamic programming scheme holds in the undirected case, through a
minor modification (e = {uk, v} in the definition of π′

e).
The overall recurrence for sequence length p can be computed in time O(|V |w ×∏

e∈E(πe + 1)) using memorization. This complexity can be refined by noting that:

πe + 1 ≤ 2πe

and
∑
e∈E

πe ≤ w × p

so
∏
e∈E

(πe + 1) ≤
∏
e∈E

2πe

≤ 2w p.

We thus obtain an overall complexity in O(nw2w p), improving on the trivial O(np)
enumeration algorithm whenever n > 2w. Then, despite the apparently high complexity
of our algorithm, it is still possible to compute Nw[Π, p, u1:w] for “reasonable” values
of p and w. Precisely, succinct experiments showed that the table could be computed
in less than a minute for values up to |V | = 20, p = 100 and w = 3. See Figure 14 for
an instance and the resulting sequences obtained by our algorithm.

5 Exponential lower bound on the size of realizations
We have established in Section 4.2 the NP-hardness of several versions of realizability,
yet have left open the question of their membership to NP. Such a property is usually
proven by exhibiting a non-deterministic Turing machine which guesses a solution in
polynomial time, and tests each of them in polynomial-time. This strategy requires
that the (minimal) size of a solution grows only polynomially with the input length.
Unfortunately, we find that the minimal size of a realization can grow exponentially
larger that the input size, as formally stated below.

Proposition 6. For any positive integers n and k, there exists a graph of size 3kn+ 1
such that any DU-realization with a window of size k + 1 has length at least 2knk.

Proof See Figure 15 for an example. Our construction uses three sets of vertices A, B and
C of size k × n each (vertices are labeled respectively ai,j , bi,j and ci,j with i ∈ [k] and
0 ≤ j < n), plus an additional start vertex s. A vertex ai,j ∈ A has rank i and value j. A
vertex bi,j ∈ B or ci,j ∈ C has rank i+ k and value j. Vertex s has rank and value 0. Ranks
are counted in Z/2kZ.

We consider k-tuples T = (j1, . . . , jk) with values in [0, n− 1]. They are ordered according
to the lexicographic order from (0, . . . , 0), (0, . . . , 1) to (n − 1, . . . n − 1). In particular, the
successor of T is the k-tuple T ′ = (j1, . . . , jx−1, jx + 1, 0, . . . , 0) where x is the largest index
such that jx < n− 1.

We build a DAG on vertex set A ∪ B ∪ C ∪ {s} with the following arcs. Vertex s has
outgoing arcs to each of ai,0 for all i. Each vertex ai,j with 1 ≤ i ≤ k and 0 ≤ j < n has an
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(a) Sequence graph

0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 1 1 0 1 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 1
1 2 1 2 0 1 2 1 2 2 1 0 1 0
0 0 1 1 0 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 1
0 1 1 2 0 1 0 1 1 1 0 0 0 0
0 0 0 0 1 0 1 0 1 0 1 0 0 0
1 0 1 1 1 1 1 0 1 0 1 1 0 1
0 1 0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0




(b) Weights matrix Π

3 12 3 6 9 3 1 7 8 10 4 6 8 3 2 5 0 8 13 11
3 12 3 6 9 3 1 7 8 10 4 6 3 8 2 5 0 8 13 11

(c) Different realizations with w = 5

Fig. 14: Example of realizations in the DW variant, as obtained using our dynamic
programming algorithm: (a) a 5-sequence graph on |V | = 14 (vertices are labelled with
integers from 0 to 13). (b) the corresponding weight matrix Π of size 14× 14. (c) two
possible realizations of length p = 20.

outgoing arc to each ai′,j′ with i′ > i, to each bi′,j′ with i′ < i, to bi,j and to ci,j+1 mod n.
Each vertex bi,j with 1 ≤ i ≤ k and 0 ≤ j < n has an outgoing arc to each bi′,j′ with i′ > i,
to each ai′,j′ with i′ < i and to ai,j . Finally, each ci,j with 1 ≤ i ≤ k and 0 ≤ j < n has an
outgoing arc to ci′,0 for i′ > i, to each ai′,j′ with i′ < i and to ai,j .

Let S be a realization of G with window size k+ 1. Clearly S necessarily starts with s (the
only vertex with in-degree 0). Let 1 ≤ p ≤ |S| − k. Consider the substring S′ = S[p . . . p+ k].
Note that by construction a vertex of rank r only has outgoing arcs to vertices with rank r+ i
with 0 < i ≤ k. In particular, two vertices of the same rank cannot be in S′. Thus, let r be
the rank of S[p], then all other vertices of S′ have rank in [r + 1, r + k]. In particular, the
second vertex S[p+ 1] in S′ has out-going arcs to k − 1 vertices with distinct ranks among
[r + 1, r + k], which is only possible for vertices of rank r − 1, r, or r + 1. Thus S[p + 1]
has necessarily rank r + 1. Hence, since S[1] = s has rank 0, then S[i] has rank i − 1 for
1 ≤ i ≤ |S| − k. In particular, S[1, . . . , k + 1] = sa0,0 . . . ak,0.

Let ai,j ∈ A and p such that S[p] = ai,j . Then S[p + k] is one of bi,j , ci,j+1. For
S[p] = bi,j ∈ B or S[p] = ci,j ∈ C then S[p + k] = ai,j . Thus, in most cases, the value
of S[p] and S[p + k] are equal, except in the case where S[p] = ai,j and S[p + k] = ci,j+1.
Then by the outgoing arcs of ci,j+1, necessarily S[p + k + i′ − i] = ci′,0 for all i < i′ ≤ k.
Let p be a position such that S[p] has rank 1, let T = (j1, . . . , jk) be the tuple of values of
S[p] . . . S[p+ k − 1], let T ′ be the tuple of values of S[p+ k] . . . S[p+ 2k − 1], and T ′′ be the
tuple of values of S[p+ 2k] . . . S[p+ 2k− 1]. Then if S[p+ k] . . . S[p+ 2k− 1] does not contain
any vertex in C, then T = T ′ = T ′′. Otherwise, T ′ = (j1, . . . , jx−1, (jx + 1 mod n), 0, . . . , 0)
with x the smallest index such that S[p + k + x] ∈ C. In particular, S[p + k + i′] = ci′,0
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. . .. . .

(A) (A) (A)

(B)

(C)

(B)

(C)

2 0 1 3 3 2 2 0 1 3 3 3 2 0 1 3 3 3 2 0 2 0 0 0 2 0 2 0 0 0

Fig. 15: Illustration of the construction in Proposition 6 for a graph with an exponen-
tially long realization, with n = 4 and k = 6. Top: a fragment of the path, starting
with the substring a1,2a2,0a3,1a4,3a5,3a6,2: in a correct realization, such a fragment
(with value (2, 0, 1, 3, 3, 2)) must be followed by the highlighted vertices with successive
values (2, 0, 1, 3, 3, 3) and (2, 0, 2, 0, 0, 0). Vertices are drawn multiple times, to avoid
overlappings in the drawing, but there are indeed only n× k vertices in each of A, B
an C. This counting behavior must be repeated from (0, 0, 0, 0, 0, 0) to (3, 3, 3, 3, 3, 3),
yielding a path of length at least 46. Bottom: example of arcs outgoing from two A
vertices that enforce this behavior. Each vertex in A is connected to a single vertex
in the corresponding column in each of B and C, where B is used to keep the same
value and C is used to increment a column.

and S[p + i′] = ai′,n−1 for each i′ with x < i′ < k. If jx = n − 1, then T ′ is before T in
lexicographic order (same prefix, and all values in an entire suffix is reset to 0). Otherwise
jx < n− 1 so x is the largest index such that jx < n− 1 and T ′ is the successor of T

To conclude, S contains a0,0 . . . ak,0, i.e. a substring with tuple of values (0, . . . , 0). It also
uses the arc (a1,n−1, c1,0), which implies that S also contains a1,n−1 . . . ak,n−1c1,0 . . . ck,0,
hence S contains a substring with value tuple (n− 1 . . . n− 1). For any two successive value
tuples T, T ′ either T ′ is lower (or equal) to T in lexicographical order, either T ′ is the successor
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of T , so overall S must use every possible tuple at least once (for substrings with ranks 1 to
k). Thus S has length at least (2k)nk.

Note that the above proof does not guarantee the actual existence of such a realization. How-
ever, the construction can be adapted to this end, by providing an exponential-length sequence
using only arcs from the DAG (starting with sa1,0 . . . ak,0 and ending with a1,n−1 . . . ak,n−1),
and filtering out those edges that are not realized. Thus, any sequence realizing the resulting
graph still requires an exponential length, and the graph is realizable by construction. □

6 Discussion
In this study, we have formalized a new series of inverse problems to assert the
(un)ambiguity of popular word embeddings. We have provided a comprehensive char-
acterization of their complexity, leaving only open their general membership in NP
whenever w ≥ 3. Indeed, given a sequence, computing its sequence graph represen-
tation can be done in O(d2 + p), if p is the length of the sequence and d the size of
the vocabulary. However, this does not prove that Realizable nor NumRealizations are
in NP, because the said realization could be exponentially large with respect to the
number of vertices or the window size. Although we cannot settle this question in
general, we proved that this situation occurs in the directed case (DU and DW), for
which some graphs have minimal realizations whose length scales exponentially with
the window size. This is formally stated in Proposition 6 for DU-Realizable.

Given the success of Large Language Models (LLMs), it would be of interest to
consider similar inverse problems for LLM embeddings. In particular, this may lead
to a better understand the ability of the LLMs to encode syntactic and semantic
information. We think that the ones studied in this article would probably need to be
adapted in order to gain some meaningful insights. Due to their over-parametrization,
we suspect that the map between sequences and embeddings in that case is injective
(for sequences up to a few thousand of symbols). In particular, NumRealizations would
become equivalent to Realizable. More broadly, a challenging question of interest
suggested by this study are the potential connections between the computational
complexity of (well-chosen) inverse problems of embeddings (such as NumRealizations,
Realizable, or variants thereof) and the capacity of the considered embedding to
faithfully capture syntactic and semantic properties of natural language.
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