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Abstract

We investigate neutrinoless double-beta decay (0v33) in minimal extensions of the Stan-
dard Model of particle physics where gauge-singlet right-handed neutrinos give rise to Dirac
and Majorana neutrino mass terms. We argue that the standard treatment of these scenar-
ios, based on mass-dependent nuclear matrix elements, is missing important contributions
to the OvfB amplitude. First, new effects arise from the exchange of neutrinos with very
small (ultrasoft) momenta, for which we compute the associated nuclear matrix elements
for the decays of "Ge and '36Xe. These contributions can dominate the 0v38 rate in cases
with light sterile neutrinos. The ultrasoft terms are also relevant in the more standard
scenario of just three light Majorana neutrinos where they lead to a 10% reduction of the
total OvBB amplitude. Secondly, we highlight the importance of short-range terms associ-
ated with medium-heavy sterile neutrinos and provide explicit formulae that can be used
in phenomenological analyses. As examples we discuss impact of these new effects in sev-
eral explicit scenarios, including a realistic 3 + 2 model with two right-handed gauge-singlet
neutrinos.
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1 Introduction

Understanding the origin and nature of neutrino masses is one of the most important problems in
particle physics, which could have ramifications for other pressing open questions, ranging from
the generation of the baryon matter-antimatter asymmetry in the Universe [1,2] to the nature
of dark matter [2,3]. The Standard Model of particle physics (SM) in its original form [4-6]
contains a left-handed neutrino field (vy), as part of the lepton SU(2) doublet. As such, the SM
cannot generate a Dirac mass term for the neutrino, lacking a right handed neutrino field (vg),
while a renormalizable Majorana mass term is forbidden by the SU(2) charge of the vy, field.
The prediction of massless neutrinos is however convincingly ruled out by neutrino oscillation
experiments [7-10].

Without extending the SM field content, a vy, Majorana mass term can be included in the SM
as a non-renormalizable dimension-5 operator [11]. This operator is suppressed by one power of
a high-energy scale A > v, where v ~ 246 GeV denotes the electroweak scale, thus pointing to a
high-energy origin of neutrino masses. Alternatively, a minimal extension of the SM, sometimes
called the ¥SM [2], involves the addition of two or more vg fields, which are singlets under



the SM gauge group and have only renormalizable interactions. For m,, > eV, the vy fall in
the category of heavy neutral leptons (HNLs) [12], but we will use the term sterile neutrino in
this work. At the renormalizable level, apart from a kinetic term, the sterile neutrinos have a
Majorana mass term which for vg is not forbidden by any symmetry, and a Dirac term connecting
sterile neutrinos to the SM left-handed lepton doublet and the Higgs field.

This model has several intriguing features: 1) neutrinos generally become Majorana particles,
leading to the violation of lepton number, 2) it is possible to account for the baryon asymmetry
of the universe (BAU) [2,13-19], 3) a very light sterile neutrino can be a dark matter candidate
[2, 14, 20]. Unfortunately, only the connection to dark matter specifies a mass range, while
neutrino masses and the BAU can be accounted for with sterile neutrinos in essentially any
mass range. Although cosmological and big-bang-nucleosynthesis considerations typically require
sterile neutrinos to have masses heavier than 10-100 MeV, these limits depend on the thermal
history of the universe. We will therefore consider a broader range of masses, which we generically
denote by M (although clearly not all sterile neutrinos have to fall in the same range).

Depending on their masses, sterile neutrinos can be probed by different experiments (see
Ref. [21] for a comprehensive review). For M between ~ 10 GeV and the electroweak scale,
sterile neutrinos are constrained by direct collider searches at the LHC, LEP and, indirectly,
by electroweak or low-energy precision observables. For M between the B meson mass and the
kaon and pion masses, vp can be produced in meson decays and receive strong constraints from
experiments such as Belle, NA62 and PIENU [22-25]. Searches for kinks in the spectra of
decays of various nuclei probe the region from the M ~ MeV, via isotopes such as ?°F with
relatively high @-value, all the way down to M ~ eV, thanks to isotopes with keV-scale Q-value
such as 3H [26]. At this scale, neutrino oscillation experiments provide additional constraints.
However, for all mass ranges the search for lepton number violation (LNV) through neutrinoless
double beta decay (OvBf3) plays an important role. Limits on OvSS half lives provide the most
sensitive probe of LNV. Current limits exceed 10% years [27] and can be improved by one or
two orders of magnitude in future experiments [28-31]. For M > O(GeV), 0v3 is dominated
by the exchange of light active neutrinos. For lighter sterile neutrinos there appear additional
contributions that can both speed up or slow down the decay rate.

While the effect of sterile neutrinos on Ov3f rates have been studied before [2,32-41]|, these
works only consider a subset of the leading contributions. In fact, they effectively replace the
usual massless neutrino propagator, 1/k?, valid for three active neutrinos, by a massive neutrino
propagator, 1/(k?+ M?), to describe the v contributions. The resulting LNV potential is then
inserted into nuclear many-body computations. While these contributions are relevant, because
of the interplay between M, the mass scale of quantum chromodynamics (QCD), Ay, and the
typical scales of nuclear physics, they only capture one part of the full M dependence of the
OvBpB amplitude. The full M-dependence involves several new effects which, in turn, require
new nonperturbative input from lattice QCD (LQCD) or from models of the strong interaction,
and the calculation of new sets of nuclear matrix elements. In what follows, we dissect these
contributions using effective field theory (EFT) techniques and determine their scaling with M.
This allows us to understand the M dependence of numerical NME computations and describe
Ov3p3 rates for a wide range of neutrino masses, from M < m2/ Ay to M > A,.

Considering the great appeal of the ¥SM, due to its minimality and the potential resolution of
major SM problems, it is important to obtain state-of-the-art predictions for key observables such
as OvBp rates. The main purpose of this work is a complete calculation of the Ov35 amplitude
as function of (sterile) neutrino masses and mixing angles. A shorter version of this work was



recently published in Ref. [42] and here we provide more details on the power counting and the
EFT framework, as well as the computation of the NMEs and related uncertainties. In addition,
we present results for an additional nucleus and apply our results to explicit scenarios with two
vy fields. After discussing the general setup in Sec. 2 we derive the Ov 5 amplitude as a function
of M in Sec. 3. Our expressions involve several (new) hadronic and nuclear matrix elements and
we discuss their sizes and uncertainties in Sec. 4. We then apply our results to several models of
phenomenological interest in Sec. 5 and conclude in Sec. 6.

2 The vSM

We consider the SM Lagrangian supplemented by n gauge-singlet neutrino fields
1 _ o~
L = Lsy— [QV% MRVR—I-LHYVVR—i-h.C.] . (1)

in terms of the lepton doublet L = (v, er)?, while H = impH* with H the Higgs doublet. In

the unitary gauge
v 0
H=— ( h(z) ) ; (2)
V2 \ 14 )

where v = 246 GeV is the Higgs vacuum expectation value (vev) and h(x) is the Higgs field. vp
is a column vector of n right-handed sterile neutrinos. Y, is a 3 X n matrix of Yukawa couplings
and Mp is a symmetric n x n matrix. We define charged-conjugated fields as W¢ = CU” | in
terms of the charge conjugation matrix C = —C~! = —CT = —CT and Vir= (Yr.Rr) =
CmT = Pp V¢ with Pr 1 = (1£+5)/2. Without loss of generality we will work in the basis
where the charged leptons 627 r and quarks uZL r and diR are mass eigenstates (i = 1,2,3). The
relation between the mass and weak eigenstates for the neutrinos will be discussed below.
After electroweak symmetry breaking the mass terms can be written as

1. 0 M
m=—=N°M,N +h.c., M, = D
E 9 + C (MIT) M;) (3)

where N = (v, V%)T, Mp = %YVT . M, is a symmetric matrix that can be diagonalized by a
unitary matrix U

UTM,U = m, = diag(my, ..., m34n), N =UN,,, (4)
where U is the neutrino mixing matrix and m; are real and positive. The kinetic and mass terms

of the neutrinos can be written as

1 . 1_
L, = 517@31/ — 5V, (5)

in terms of the Majorana mass eigenstates v = N,, + NJ;, = v°. A consequence of this scenario
is that the following combination vanishes [32,43|

n+3
> UZmi = (M,);, =0, (6)
=1
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which is important for the computation of Ov3j rates.

Eq. (3) is minimal in the sense that the mass spectrum of light and heavy neutrinos is purely
determined by renormalizable interactions, at the price of the introduction of new, non-SM fields.
For comparison we will consider two other scenarios. In the first, we consider a theory with the
same field content as the SM, and we will thus refer to this scenario as “SM”. In this case, neutrino
masses only arise at dimension 5, via the Weinberg operator [11]. After electroweak symmetry
breaking, the neutrino mass Lagrangian reads

1
Loy = —iﬂiMLl/L + h.c.. (7)

M, leads to three neutrino masses, and can be fitted to reproduce the observed mass splitting
and the neutrino mixing PMNS matrix. In this case the price to pay is the introduction of non-
renormalizable interactions, which parameterize beyond-the-SM physics at energy scales much
larger than the electroweak one.

The final scenario is a natural combination of Eq. (3) and (7), and yields a mass matrix of

the form
M; M?
M, = D
’ <M;; M;) ®)

Such a mass matrix arises, for example, when one or more sterile neutrinos have masses much
larger than electroweak scale. M, then takes the form of Eq. (8), after the heavy fields are
integrated out. The main difference with Eq. (3) is that the cancellation condition no longer

holds
n+3

S UZmi = (M)}, #0. (9)
=1

We will thus refer to this as a “no cancellation” scenario.

While Egs. (3) and (8) are general, in what follows we will consider a few concrete mass
models. The baseline to which we will compare our result is the “standard mechanism” in which
Ovfp is mediated by the exchange of three light Majorana neutrinos (3-+0), corresponding to
Eq. (7). The simplest scenario with sterile neutrinos is the one in which the SM is extended by
one gauge-singlet neutrino, the so called 341 model. In the case of Eq. (3), this model leads
to two massless neutrinos, m; = mgy = 0, and thus is not realistic. It will however be useful to
illustrate the impact of the new contributions identified in this paper. The observed neutrino
spectrum can be reproduced in 3+1 models if M # 0. In this case Ov33 predictions can be
significantly affected even by very light sterile neutrinos with masses in the eV range. As a more
realistic scenario, we will examine a minimal 3+2 model with two sterile neutrinos which can
reproduce all oscillation data, if the mass of the lightest active neutrino vanishes. Finally, we
will consider pseudo-Dirac scenarios in which lepton number is an approximate symmetry. These
correspond to a subset of Eq. (3), with a specific structure for Mp and Mp. We will focus on a
142 case, with one light neutrino with sub-eV mass, and two nearly degenerate sterile neutrinos
with mass between 1 MeV and 10 GeV.

3 Contributions to 0Ovj3g3

The amplitude for Ov33 arises from the exchange of the light and heavy neutrinos and is second
order in the Fermi constant, Gp = ﬁ The general expression below the electroweak scale can



be written as

2 1N
(reahsl i) = SCEVur T D [ dtadtriciealT (esta+ /2 v e a  1/2)) 0)
4 eik-r
X/(gﬁl;kz—m%—i—z‘ OF 1T (Jule +7/2) (= r/2) ) 0]) (10)

where V,,4 >~ 0.97 is the u-d element of the quark mixing CKM matrix, J, = tr7,dr, €12 stand
for the final state electrons, and h; ; are the initial and final nuclear states, which we describe
by their total angular momentum and parity quantum numbers, 0+f The evaluation of Eq. (10)
involves several steps, the first being the matching of the quark-level Lagrangian onto Chiral
EFT (xEFT), which requires knowledge of hadronic matrix elements. After evaluating the LNV
amplitude at the nucleon level, many-body computations are needed to describe the physical
processes inside nuclei.

The application of the EFT framework can essentially be seen as dividing up the neutrino-
momentum integral in Eq. (10) into various regions. The integral receives contributions from
several momentum regions, which are set by the relevant scales in the problem. For each mo-
mentum region, we make use of the hierarchy between the different scales and the method of
regions [44] to expand the integrand in small ratios of k/A < 1 or m/k < 1, where A (m) is a
large (small) scale. The EFT approach thereby allows one to consider one scale at a time. In
our case Eq. (10) receives contributions from the following momentum regions:

e Hard neutrinos with momenta ky ~ |k| ~ A,. As we will see below, this region leads to
short-distance interactions in the yEFT Lagrangian.

e Soft neutrinos whose momenta scale as kg ~ |k| ~ m, . These neutrinos contribute to loop
diagrams involving nucleons and pions within yEFT.

e Potential neutrinos with momenta, kg ~ |k|?/my ~ k%/my, where kp ~ m, is the Fermi
momentum of the nucleons and my the nucleon mass. This region can be described by the
LNV potentials between nucleons that are usually considered in calculations of Ov38.

e Ultrasoft neutrinos with momenta that scale as ko ~ |k| ~ k%/my. These neutrinos can
be described as coupling to the nucleus as a whole, instead of individual nucleons.

We start by briefly recalling the contributions due to the exchange of the light SM neutrinos
that appear in this EFT framework, before discussing the effects from sterile neutrinos as a
function of their mass.

3.1 Contributions from active Majorana neutrinos

We first discuss the effects due to the usual active neutrinos. After matching of the quark-level
interactions onto YEFT, there are two types of leading-order (LO) contributions due to the
SM neutrinos. We first have the exchange of neutrinos between nucleons, which results from
hadronizing the quark-level weak currents. At LO this contribution is captured by replacing

1.
Jyp = Ty = §NT+ (gvvy —294S,) N, (11)



in Eq. (10), where N = (pn)? is the nucleon doublet, 7+ = % is an isospin ladder operator
with 7; the Pauli matrices, and v* = (1,0) and S* = (0,0/2) are the nucleon velocity and
spin, while gy (g4) is the (axial-)vector charge of the nucleon. We will use gy ~ 1 up to tiny
corrections and g4 = 1.2754 £0.0013 [10]. After including the effects of pions and neglecting the
difference between the lepton momenta, this leads to the well-known long-range potential [30,45]
arising from the exchange of three neutrinos with masses m; < kg

2.0,
Uzm;

3
VPo(k) = @O« (1GEV2) e

i=1

a 2m3r + k2 a — c
o [1 ) (,,( ). o® _ ma ) ko® -k) ]U(pl)PRU (p2), (12)

where (a,b) label the nucleons and u(p; 2) are the electron spinors.

Apart from the exchange of ‘potential’ neutrinos, with three-momenta similar to the Fermi
momentum, ky < |k| ~ krp ~ m,, substantial contributions arise from the exchange of ‘hard’
neutrinos with momenta ko ~ |k| ~ A, [46,47|. The latter induces a contact interaction between
nucleons and electrons in the chiral Lagrangian which generates the following potential

3
Viad(k) = @O 5 (4GTVE) x > [-200NUZms) x a(p1)Pruc(p2) . (13)
=1

Here gVV is a low-energy constant (LEC) that is in principle amenable to LQCD determinations
[48-51], however, so far only phenomenological estimates are available [52-54], giving gV =

O(1/kf).

The inverse OB half life arising from light neutrino exchange can then be expressed as

(T1/2> = QAG01’ Z V2 Uz imi 4 27 140

where Gp; is a phase-space factor arising from the integral over the electron momenta. We use
Go1 = 1.5- 1071 yr=! for 1¥6Xe and Go; = 2.2- 10715 yr~! for "Ge [55,56]. We define!

hard Mp.s
Al/ - A(VpOt) + A(V ard) = /\;712; - MGT - MT - 29NN 2 gi 4 Mlong + Mshort ) (15)

where M, are the total Fermi (F), Gamow-Teller (GT) and tensor (T) nuclear matrix elements
(NMEs). These combine into the usual long-range NME, Mjqpn,, whereas Mp 4, which is nor-
malized such that it is O(1) [57], drives the short-range NME, Mgport. See e.g. Ref. [30] for an
overview 2. In these expressions we have neglected the dependence of the NMEs on the mass of
the exchanged active neutrino which is a minuscule effect.

'Here A, is related to the potential by

dg];g 6ik~r |:Vy(pot) + Vy(hard)] |0:r> )

9124Vu2dG2F 2 _ c (pot) (hard) +
PV Ut P )| [46°)+ 48] = 0]
TRA ~—
M sq corresponds to Mg, in the notation of Ref. [30], as short-distance NMEs are sometimes identified
with heavy particle exchange. Likewise, the same correspondence between the notation for subindices “sd” in this
work and “h” in Ref. [30] holds across the manuscript.



At next-to-next-to-leading order (N2LO) one encounters 77, 7NN and momentum-dependent
NN counterterms [47, 58|, corrections to the axial and vector currents 7, and loops involving
‘soft’ neutrinos with momenta kg ~ k ~ kp [58], which lead to a correction to the potential
amplitude, A,(,p0t’2). At the same order, there are contributions which depend on the intermediate
nuclear states due to the exchange of ‘ultrasoft’ neutrinos, with momenta ko ~ [k| ~ k% /my.
This additional contribution to A, can be obtained from the chiral version of Eq. (10) by replacing

the quark currents with their hadronic counterparts and expanding in |k|/kr < 1,

R dd*lk. 1
A(usoft) ) = mhA + LY (1 770 /
v (m) 8 9124 Zn:<0f|~7/l’ n>< n|j ‘Oz ) (27‘(’)d_1 E, [EV+AE1—i€]
H(AB, - ABy), (16)

where |1;7) indicates a complete set of intermediate states denoted by their total angular momen-
tum and parity as 1,7. E, = {/k? + mf ~ k|, AE; 2 = E1 2+ E,, — E;, with E; and E,, denoting
the energies of the initial and intermediate states (Ey indicates the energy of the final state),
while Ey 2 stand for the electron energies. The nuclear radius R4 ~ 1.2 A3 fm appears due to
the conventional normalization of Go; and the NMEs in Eq. (14). Because these terms explicitly
depend on the intermediate states, they represent the first corrections to the so-called “closure”
approximation in YEFT [58]. The integral in Eq. (16) is UV divergent, but the dependence on
the ultrasoft cut-off scale is cancelled by a term in the N2LO potential [58].

Scenarios involving sterile neutrinos generate the same types of contributions as those dis-
cussed above. Several of these have not been considered in the literature before. First, it has
been convincingly demonstrated that the usual long-range Ov3/ potential (Eq. (12)) has to be
supplemented by the additional short-range interaction in Eq. (13) that arises from the exchange
of light neutrinos with large virtual momenta. In the standard mechanism (the exchange of three
light Majorana neutrinos) these contributions have been found to enhance Ov 3/ rates by a factor
two-to-three for light (e.g. 12Be), medium (**Ca), to heavy isotopes (e.g. 0Ge and 36Xe) [59-62].
Although the uncertainties are still sizable, mainly due to poor knowledge of the associated QCD
matrix element g)¥», LQCD efforts can pave the way towards more reliable predictions [48-51].
In case of sterile neutrinos with M < A, ~ GeV, similar contributions proportional to this matrix
element appear, but now with an additional M dependence, g)¥V (M) [63]. These effects appear
at leading order. Second, several of the effects that appear at N2LO in the YEFT expansion in
€y = my /Ay in the standard mechanism, can become important in specific scenarios. Here we
highlight the case when all sterile neutrinos have masses below the pion mass in the minimal
extension of the SM. The leading contributions are then strongly suppressed [32] due to the
cancellation in Eq. (6) and the formally subleading terms become dominant. In particular, as
we discuss below, contributions from the ultrasoft region become significant.

3.2 Contributions from sterile neutrinos

In this section we discuss the contributions from sterile neutrinos for different mass ranges. Before
describing our approach, we briefly discuss what is presently done in most of the literature. The
standard procedure is to modify the neutrino potential in Eq. (12) to include heavier states by
effectively replacing

3 3 +3
Z Uzm; N Uzimi n nz Uzmi (17)
, k? ; k? —~ k2 +m?’
=1 i=1 i=4 i
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Figure 1: NMEs in Eq. (18) for 13Xe (left panel) and "*Ge (right panel) as a function of the neutrino
mass (in blue), as well as the difference M(0) — M(m;) (in red). The circles show the numerical results
of the nuclear shell model calculation described in Sec. 4, while the solid lines depict the interpolation
formula of Eq. (36).

for essentially any value of m; and where n denotes the number of sterile neutrinos. The contri-
bution from hard neutrinos, which appears at LO, is not considered but would lead to a mass
dependent LEC ¢'"(m;). The modified potential is then evaluated between the initial and
final nuclear states leading to mass-dependent NMEs. Figure 1 shows an example of this m;
dependence for ¥Xe and "Ge, where the blue circles correspond to shell-model results for the
amplitude

Mg = (HE — () — Matmi) ) (18)
A
for a range of m;. The main features of this line are easy to understand. For light m,; the
NMEs are almost mass independent, whereas for heavy m; the NMEs scale as mi_2 due to the
massive neutrino propagator. These arguments have led to interpolation formulae that are used
in effectively all analyses in the literature, see e.g. Refs. [21,36,41,64,65]. These formulae take
the form
(r?)

M(m;) :M((])Wa

(19)
ensuring the appropriate scalings at ml2 < (p?) and ml2 > (p?). A fit to the nuclear shell
model results discussed in Sec. 4, and shown in Fig. 1, gives (p?) ~ (175MeV)? for 35Xe and
(p?) ~ (160.5MeV)? for ®Ge. Thus ~ m2 ~ k% is of the expected size.

With this description it is possible to compute the contribution of a sterile neutrino with mass
m; and mixing angle Ug;. If we assume no cancellation with other contributions, as we expect
for example in the scenario decribed by Eq. (8), the above description allows us to constrain the
mixing angle U,; as a function of m;. The resulting constraints are depicted in the left panel of
Fig. 2 using the current KamLAND-Zen [27] limit for 136Xe, Tyjp > 2.3 x 1026 yr, and the reach
of next-generation experiments assuming a lower bound 7}/, > 10%% yr. The blue line depicts

the naive seesaw expectation for the size of the mixing angle, Uey = /mg3/my, where we set
mg = 0.05 eV. These limits are in good agreement with Ref. [64].



While this approach seems reasonable, the above description of Ov 50 rates from massive sterile
neutrinos comes with several shortcomings:

e The meaning of the NMEs becomes unclear for m; > my ~ 1 GeV (my is the nucleon mass)
as the yEFT expansion, used to obtain Eq. (12), no longer converges when m; /A, 2 1. A
more appropriate description for sterile neutrinos in this mass range is to integrate them
out at the quark level, before hadronization. This leads to a local LNV dimension-nine
operator containing four quarks and two charged leptons which, after renormalization-group
evolution from m; to my, can be matched to LNV hadronic operators. This procedure has
been worked out in Ref. [63].

e For sterile neutrino masses m; S A, there are leading-order contributions from hard neu-
trino exchange. These are captured by the mass-dependent g2V (m;) LEC. We will argue
that these terms can have sizeable impact on Ov5f3 rates in the vSM.

e In minimal models in which Eq. (6) holds and all sterile neutrinos have masses m; < kp
the total OvfBQ3 rate is strongly suppressed. The commonly used parametrization in the
light-m; regime gives

M(mi):M(O)< g% ) (20)

Considering the simple 3 + 1 model then leads to (ignoring again the gV contributions
which are affected by the same cancellation)

(z2)

4 2 ] 2
= giGm‘ ZVquU;Z;LmZM(O) (1 L ) ‘2

e

my<Lkp

- gAGm(Z e (21)

’2
where in the second equality we applied the identity in Eq. (6). In the right panel of Fig. 2
we demonstrate this cancellation by computing the 26Xe half-life by considering only
the contribution from my (this contribution becomes mass independent at small energies
because m4U624 ~ mg3) and by the sum of all contributions. For m4 < kp the cancellation
is severe, leading to extremely suppressed decay rates. Within this approach the first
corrections to the amplitude scale as U, émg’, but, as we will show in more detail below, a
more careful analysis of the various contributions leads to new terms related to ultrasoft
neutrino exchange that scale more favourably, as U ;m? or Ugim? logm;. We anticipate
these findings by depicting the solid red line in the right panel of Fig. 2, that includes these
corrections. Clearly, the commonly used parametrization in Eq. (19) is unable to capture
the correct m; dependence in these scenarios.

In what follows we discuss how one can improve upon the method described in this section.

3.2.1 Region 1: m; > A,

An EFT approach to this region has been extensively discussed in the literature, starting from
Refs. [66,67|. Here the heavy neutrino can be integrated out at the quark-gluon level, which
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Figure 2: Left: Limits on U2, as function of m,4 assuming the Ov3f3 rate is dominated by a single sterile
neutrino, for current (solid black line) and future (dashed red line) experimental limits, compared to
the naive seesaw expectation (blue line). Right: 13¢Xe half-life considering contributions only from my,
(black) and all neutrinos (blue) using Eq. (19) in the 3+1 model. The red line denotes the half-life by
using Eq. (42) including the new ultrasoft contributions.

gives rise to a LNV dimension-nine operator containing four quarks and two electrons. At the
scale pg ~ 2 GeV we have

ﬁ(g) = CL(,LLo)ﬂLﬁ/’udLﬂL’yudLéLecL, (22)

with Cr, (o) = n(po, mi)Cr(p = mi) = —n(po, ms) V%GF UZ. Here 1(po,m;) takes into account

the QCD renormalization-group evolution from the scale m; to the QCD scale [57,68, 69|,

as(mi) 6/25 o
as(10) mi = Mbottom
s (Mot 6/25 s (M 6/23
(o, my) = | ((2epoten) )T (_pslm) ) Mbottom < Mi < Miop » (23)

(w)ﬁ/% (O:Y(S(Lop)f/% <%)2/7 M > miop

O‘S(NO) mbottom) As (mtop

in terms of the bottom and top quark masses mpottom and myop, and where, at one loop, the
li i = — 2 with By = 11 — 2n;. Together with
strong coupling can be written as a;(u) Bo Tog(n/A0F) with By sny. logether wit

as(mz) = 0.1179 [10], this gives A6 ~ {119, 87, 43} MeV.

Matching the interaction in Eq. (22) onto YEFT leads to LNV 7rée¢, w(pn)ée, and (pn)2eec
vertices [57,66,70]. The resulting neutrino potential is

b 2 o VeUd
Vok) = —87@OFr®F (g, m;) g% G % u(p1)Pru‘(p2)
5 k2 TN 9
@ . kg® .k (2477 __9 NN 24
) [“ 7 (691 (12 + m2)? k2+m%> e ] o

where g7™, gi'™, and gV denote the LECs, evaluated at the scale u = 2 GeV, corresponding to
the 7w, N, and NN interactions, which are expected to be O(1). So far only the pionic coupling
has been determined using LQCD calculations [71-73], which give ¢7™ = 0.36 &+ 0.019 [71] and

T = 0.17 £ 0.016 [73|. Taking the results at face value there is a disagreement between the
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two determinations, however, they both confirm the O(1) expectation from naive dimensional
analysis (NDA). They also show that QCD corrections cause significant deviations from the
naive factorization results, g™ = 0.6. We expect similar O(1) deviations for g7V and gi¥». The
potential in Eq. (24) leads to the amplitude

m2 [5

TN
g 2
A = =200, m) 5 |Gl (MGTa + Mia) + 75 (M0 + M2) = 300" Miaal 1(25)
A

where the NMEs, Ref. [57] and Ref. [30], are also normalized such that they are expected to be
O(1). We discuss their values in Sec. 4.

3.2.2 Region 2: kr <m; <A,

In this mass region the sterile neutrino cannot be integrated out at the quark level, so that its
contributions can no longer be described by A,(,g). The sterile neutrino now has to be kept as an

explicit degree of freedom in YEFT. Its effects are more similar to that of the light SM neutrinos

and can partially be captured by including the m; dependence of V,,(pOt) and V,,(hard)
Vv pot) p yhard) — (@F - OF 5 (4GRV2) > UZmyu(p) Pru® (pe) (26)
i=1
1 2 o 2mitk b NN

Similar to Eq. (15) this gives,

A,(,pOt)(mz') + Al(jhard)(mi) — M _ MGT(mi) _ MT(ml) . 2g,]/VN(mi)m3er;sd, (27)
gA 9a

where the m; dependence of these amplitudes now becomes significant and is expected to scale
NN

2V, these terms are similar

2
as % With the exception of the contributions proportional to g

those captured by the literature approach in Eq. (19). Evaluating these contributions requires
knowledge of the NMEs and the LEC ¢)¥V as a function of m;, motivating nuclear-structure and
LQCD determinations.

In addition, there are contributions from loops involving soft sterile neutrinos, leading to
a correction to the potential, Af,pOt’2). Although such contributions appear at N2LO for light
neutrinos, they can give rise to terms scaling as m? / Ai for the sterile neutrinos. These effects
lead to a breakdown of the YEFT expansion when m; approaches the QCD scale, so that our
estimates become unreliable for m; ~ A,. Finally, similar to the region m; > A,, there are
no contributions from ultrasoft sterile neutrinos since m; > k, so that the integrals vanish in

dimensional regularization once we expand the integrand of Eq. (16) in terms of k/m; and k/kp.

3.2.3 Region 3: m; < kg

Sterile neutrinos in this regime look even more similar to the usual SM neutrinos and contribute
to A(VpOt), Al(,hard), Al(,USOft), Af,pOt’2), although with different relative importance than the SM neu-

trinos. We organize the discussion by these different momentum regions.
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Hard and potential neutrinos

As before, the evaluation of the m; dependence for the Al(,pOt) and Al(,hard) terms requires non-
perturbative many-body and LQCD methods. Naively, the neutrino potential is again given by
Eq. (26). However, to be able to treat the different momentum regions separately and avoid
double counting, we employ the method of regions [44] and expand the k integrand whenever
small ratios of scales appear. This implies that Eq. (26) should be expanded in m? /k? when-
ever m; is in the ultrasoft domain, m; ~ k:?7 /my. This procedure of expanding can be seen as
a matching calculation between theories with and without potential neutrinos. This matching
can be computed by subtracting the terms from the low-energy theory, which only involves ul-
trasoft neutrinos, from the contributions from the full theory (including potential and ultrasoft

neutrinos). The contributions from potential neutrinos then lead to

VPO(k) = 7@ @GRV Y Udmiu(pr) Prut(pe)

i=1
1 m? 2m2 + k2
X <k2 - (k232> 1-g4 <U(a) o) — ma(“) kol ~k> ] (28)
The corrections from the potential thus scale as m? / k:l%,, for m; <« kp. Traditionally, the potential
is not expanded in m; in many-body calculations, leading to a mismatch between the definition
of the potential contributions used here — employing Eq. (28) — and the NME results in the
literature — using Eq. (26). The difference is that NMEs obtained from the unexpanded potential
have an m} term, which is absent when using Eq. (28). This is most easily seen from the Fourier

transforms of Egs. (26) and (28), where O(m3), the difference of the unexpanded and expanded
potentials in coordinate space behaves like

V Vi ~ (1= 4@ - o) (‘3_ _ [1 N 1mgTD ~ i (1-ghe@ o). (20)

T r 2

To connect our definition of the potential contributions to the usually determined NMEs, we
thus have to correct for the additional linear term. We have

APoLS) (my) = — [M(mi) —m; [ d M(mi)] mz:o] ; (30)

dm;

where the < label of the amplitude denotes that it applies in the m; < kp region and M (m;),
defined in Eq. (18), correspond to the NMEs computed from the unexpanded potential in Eq.
(26). The derivative term in Eq. (30) removes the m! term, which does not appear when starting
from Eq. (28).

After expanding the hard-neutrino contributions we have 3
- d

vhard) = o @t O 5 (4GRVE) Y T UZmiti(p1) Pru‘(p2) X <gVNN(0) i g,,NN>(31)
=1 7

3In principle, the LEC ¢2" could have a linear dependence on m;. However, g)¥ " arises from contributions

2
to Eq. (10) in the ko ~ k ~ A, region, where ﬁ o~ k% [1 + %] is a good approximation and no linear m;

dependence should appear.
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which leads to J o
hard NN 2 NN 2 VW Fsd
AP 2 (N(0) + N 2 (32)
(2
where only the hadronic matrix element, and not the NME, is m; dependent. The resulting m?
term is hard to compute from first principles, but we will argue below that it scales as mz2 / Ai
and thus only provides a small next-to-next-to-leading-order correction.

Ultrasoft neutrinos

A new effect appears due to ultrasoft sterile neutrinos. When kr > m;, we can evaluate the usoft
terms by performing the integrals of Eq. (16) in the MS scheme, which leads to the following
expression

uso R
Af = 225 S ORI NG00 (Fmis ABY) + i, AB)) . (33)
A
with
—2|E(1+1loghe) +vV/m?2 — E2 (2 —tan~! —£— )|, ifm>F,
f(ij) _ ( m ) (2 m27E2>i| (34)

-2 E(l—i—log%)—sz—leogmj Vg_”ﬂ}, ifm<FE.

Egs. (33) and (34) depend on the ultrasoft renormalization scale s and require knowledge of
the intermediate state energies, E,, as well as the nuclear matrix elements, <0;{\‘7M|1:{ ), which
appear in first-order single-8 decays and only involve one-body operators. The m;-dependent
contributions scale as

2 A
Al(,“SOft) ~ 47TATZ711 i log AnEl‘Zl = for m; < AE1 2 < kp . (35)
A power-counting estimate AFE;5 ~ kp/4m gives AI(,USOft) ~ m?/k%log Agiz’ similar to the

scaling of the potential-neutrino contributions. However, this underestimates the contributions
from the lowest-lying states with AE;2 < 1MeV < kp/4m, see Table 4, and in practice the
ultrasoft contributions dominate. For kp > m; > AFE; 2, there is a region where ultrasoft
neutrinos induce contributions that are linear in m; and scale as A, ~ m;/kp. Comparing the
m;-dependent terms to those resulting from the potential and hard contributions, one finds that,
in this region, the ultrasoft contributions can give LO contributions in minimal scenarios where
Eq. (6) holds.

As mentioned above, the unexpanded and expanded potentials in Eqgs. (26) and (28) dif-
fer by a term ~ mz1
we do not subtract the contributions of the ultrasoft neutrinos in the matching calculation.
As a result, the ultrasoft contributions in Eq. (34) involve an m} dependence, which can be
shown to be related to the linear term that would result from Eq. (26). It may seem surprising
that the potential NMEs are related to the ultrasoft contributions, as only the latter involve
excited state information. However, in the m; > AF regime the m} term in Eq. (34) is in-
dependent of E, and we can perform the sum over the complete set of intermediate states,
Zn<0?|j"|1:{><12‘|‘7u|0j> ~ <O;{|T+T+(1 — g4o - a|0f), leaving just the dependence on the ini-
tial and final states. Likewise, in coordinate space, the m} term arising from Eq. (26) multiplies
an r-independent potential, which leads to the same NME. The correspondence between the sum

This linear term is related to ultrasoft neutrinos as it appears when
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m; < k%/mpy k%/mn <m; <kp | krp <m; <Ay | Ay <my
hard ko ~ [k| ~ Ay 1 1 L -
potential ko ~ n’ji ~ % 1 1 Tkj‘% -
ultrasoft ko ~ |k| ~ 7]7% ﬁ—fp ~ (4# o - -
soft ko ~ || ~ kp - e T -
perturbative ko ~ |kl > A, - - - %
S mU% =0 m; < k% /my k¥/mn <m; <kp | krp <m; <Ay | Ay <my
hard 1o 1rm L73 -

X X 7
potential 1+ :L—: 1+ 7,:272' k?‘; -
2F s F %
ultrasoft @t % Tr ) i
soft ot (471r>2%? @t ﬁ% ﬁz )
perturbative - - - %

Table 1: The expected scaling of the contributions of a neutrino with mass m; to 4, (m;). The contri-
butions are shown separately for different ranges of m,; (the columns) and are organized by the neutrino
momentum regions that induced them (the rows). The lower panel shows the same information as the
top panel, but assumes a minimal scenario in which Eq. (6) holds. For each m; region, the parts of the
amplitude that are expected to be leading are shown in red. The order-of-magnitude estimates for terms

that cancel in the total amplitude, due to Y, m;U2 = 0, are shown in gray.

of the product of the two first-order matrix elements and the linear term in the NMEs (computed
with the unexpanded potential) allows for a consistency check, which we discuss in more detail
in Sec. 4.

Soft neutrinos

Finally, there are again effects due to loops involving soft sterile neutrinos. In fact, it can be
shown that the dependence on p,s above cancels in the total amplitude when taking into account
loop contributions to the potential [58]. Including these effects would require the computation
of NMEs due to V, 2 of Ref. [58], modified to include the m; dependence. As the relevant NMEs
have only been estimated in light nuclei [59], here we will estimate part of the terms due to V;,2
by setting p,s = m, in Eq. (33) and neglecting the remaining contributions.

3.2.4 Summary

Table 1 summarizes the scaling of the contributions of a neutrino with mass m;, induced by the
different momentum regions. The top panel shows the scenario assuming no cancellations, while
the bottom panel focuses on the terms that survive when taking into account » ;" ; m;U, 621 =0.
Here the columns show the different ranges of m;, while the rows show the contributions due
to a particular neutrino-momentum region. We first focus on the top panel for which the usual

Al(jpot,hard)

expressions dominate, namely, , while the ultrasoft contributions provide comparable

14



m; [MeV] ) 6 7 8 9 10 20 30 40
M(m;) | 2.62 260 2.59 257 255 2.54 24 23 21
m; [MeV] | 50 60 70 80 90 100 200 300 400
M(m;) 20 19 18 17 16 1.5 0.94 0.61 0.42
m; [MeV] | 500 600 700 800 900 1000 2000
M(m;) 031 023 0.18 0.14 0.11 0.094 0.025

Table 2: Shell-model 033 NMEs for '*6Xe as a function of the neutrino mass.

m;[MeV] | 5 6 7 8 9 10 20 30 40
M(m;) | 326 324 321 319 3.16 314 29 27 25
m;[MeV] | 50 60 70 80 90 100 200 300 400
M(m;) | 24 22 21 20 19 18 1.1 069 047
m; [MeV] | 500 600 700 800 900 1000 2000
M(m;) | 034 025 020 015 0.3 010 0.027

Table 3: Shell-model 033 NMEs for Ge as a function of the neutrino mass.

corrections if m; lies somewhat below kp. This picture changes drastically once we assume the
minimal ultraviolet completion of the ¥SM for which Eq. (6) holds. Now the usually dominant
terms are only nonzero after taking into account the m; dependence of the NMEs and the LEC
g,]jv N (m;). Other contributions to the amplitude, which would otherwise appear at sub-leading
orders, now give leading contributions. In particular, the contributions due to ultrasoft neutrinos
become significant or even dominant in the range m; < kp, while loop diagrams involving soft
neutrinos can be relevant for m; < A,. Although the latter have not been computed so far, and
would be hard to control for m; ~ A, the ultrasoft contributions can be estimated reliably.

4 Nuclear and hadronic matrix elements

Computing all the contributions identified above requires knowledge of various hadronic and nu-
clear matrix elements. For relatively light sterile neutrinos, M < A,, these matrix elements are
non-trivial functions of the sterile neutrino mass. In this work, we use a single nuclear framework
in which we can compute all NMEs consistently, the nuclear shell model [74]. Note that only
many-body methods which can calculate 838-decay NMEs beyond the closure approximation,
such as the nuclear shell model or the quasiparticle random-phase approximation |75, 76|, can
provide ultrasoft NMEs. We further focus on 0v33 in 6Xe and "Ge, which presently give some
of the most stringent limits on neutrino Majorana masses, and are also expected to do so for
next-generation experiments [30]. It is worthwhile to consider other nuclear many-body methods
and isotopes, but our main goal here is to assess the newly identified contributions with respect
to traditional contributions for representative experimentally relevant isotopes.

Nuclear shell model NME calculations

We perform a nuclear shell-model study of the decays of the ground-state to ground-state transi-
tion of 13Xe into 36Ba and "®Ge into "Se. For the ultrasoft NMEs, in addition to these initial
and final states, we also need to calculate a set of states of the intermediate nuclei %Cs and "6 As.
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BBl ler o) [0fler 115)] [ [adler oD [0F ot 11h)] [ [0fler 105 [(0F o 1)
0.17 1. 0.13 3.3 0.39 -0.0013 9.1 0.8 0.0038
0.63 -0.19 -0.0063 3.6 0.39 0.0021 9.4 0.59 0.0014
0.89 -0.25 -0.016 3.8 0.45 -0.013 9.8 -0.5 0.0027
1.02 0.3 0.036 4.0 -0.44 -0.0032 10.1 0.35 -0.0027
1.05 0.23 0.025 4.3 -0.35 -0.0038 10.5 0.26 -0.00053
1.1 -0.13 -0.00076 4.6 -0.36 -0.0067 10.9 -0.22 -0.00021
1.2 0.12 -0.0052 4.8 0.44 0.0083 11.3 0.17 -0.00037
1.3 0.16 -0.0028 5.1 0.44 0.0066 11.7 -0.16 -0.00054
1.4 -0.23 -0.0098 5.4 -0.55 -0.0093 12.0 -0.16 -0.001
1.5 0.2 -0.012 5.7 0.63 0.012 12.4 0.14 0.00092
1.6 -0.36 0.0084 6.1 0.85 0.013 12.8 0.12 -0.00014
1.7 -0.24 0.00058 6.3 -1.2 -0.016 13.1 0.092 -0.0004
1.9 0.22 0.011 6.7 -1.3 -0.014 13.5 -0.079 -0.00019
2.0 0.34 0.007 7.0 -1.9 -0.016 13.9 0.071 -0.00026
2.2 0.35 0.006 7.3 3.1 0.023 14.2 -0.07 0.000031
2.3 -0.49 -0.0086 7.5 -4. -0.028 14.6 -0.035 0.00021
2.6 0.62 0.021 7.7 2.6 0.017 15.1 -0.051 -0.00015
2.7 -0.91 -0.024 8.1 1.4 0.0091 16.2 -0.039 0.00011
2.9 0.37 0.0064 8.4 -1. -0.0057 17.3 -0.043 -0.000091
3.1 0.3 0.0013 8.8 -0.93 -0.0064 17.7 0.11 -0.000029

Table 4: Values of the first-order nuclear matrix elements in Eq. (40), that enter the Ov33 of 136Xe.

The initial and final states are well converged by the diagonalization of the Hamiltonian in the
configuration spaces given below. However, for the set of intermediate states, we use the Lanczos
strength function method [74], which gives a set of approximate eigenstates. Nonetheless, we
have checked that with the ~ sixty approximate eigenstates kept, for which we give results in
Tables 4 and 5, the ultrasoft NMEs for both isotopes are well converged.

For the germanium decay, we use a configuration space consisting of the 1pz/s, 0f5/2, 1p1/2
and Ogg /o single-particle orbitals for protons and neutrons, with a %Ni inert core. As in previ-
ous shell-model studies |77], we use the GCN2850 effective Hamiltonian [78]. For the decay of
xenon, the configuration space of our calculations comprises the 1ds/5, Og7/2, 281/, 1d3/2 and
Ohyy /9 single-particle orbitals for protons and neutrons, on top of a 100Sn core. Here we use the
GCN5082 shell-model interaction [78], also in line with previous works [77]. We use the shell-
model codes ANTOINE [74,79] and NATHAN [74] to obtain the nuclear states and to evaluate
the NMEs.

LECs and NMEs from potential and hard neutrinos

Let us begin by discussing the required matrix elements induced by potential neutrinos, which ap-
pear in the linear combination M (m;) defined in Eq. (18). For very light masses, m; < kp, these
NMEs have been calculated for many isotopes with a broad range of nuclear many-body meth-
ods [30], but the explicit mass dependence has only been considered in a handful of works [32,37].
Here we use the shell-model results depicted in Fig. 1, with the numerical values given in Ta-
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P (Lo [05) [(OF [or* 1) | | Bt (L lo T 10F) [(0Flor* (1) | | Bt | (Lalo 7 |0F) [ (0F |or*|1])
0.5 -0.33 -0.11 7.4 0.92 -0.0089 25.1 0.031 0.00016
0.7 0.67 0.29 8.0 0.81 -0.011 26.0 0.025 -0.00017
0.8 -0.024 -0.052 8.6 0.71 -0.0075 27.0 0.022 0.00014
0.8 -0.5 -0.14 9.3 0.6 -0.0075 28.0 0.017 -0.00015
1.2 0.075 0.017 9.9 0.52 -0.0046 29.0 0.014 0.00014
1.3 -0.14 -0.22 10.6 0.46 -0.0059 29.9 0.0099 -0.00015
1.5 0.55 0.18 11.3 0.41 -0.0032 31.0 0.0073 0.00014
1.8 0.18 0.016 12.1 0.34 -0.0033 32.0 0.0057 -0.00013
2.1 -0.28 -0.088 12.9 0.32 -0.000093 33.0 0.0044 0.000125
2.3 0.35 0.019 13.6 0.28 -0.0017 34.0 0.0032 -0.00013
2.8 0.65 0.11 14.4 0.24 -0.0002 35.1 -0.0024 -0.00012
3.0 1.12 0.091 15.2 0.2 -0.0004 36.1 -0.0018 0.00011
3.3 0.9 0.098 16.0 0.17 0.00021 37.1 -0.0013 -0.00011
3.7 1.059 0.078 16.9 0.15 -0.00016 38.2 -0.00096 0.00011
4.0 1.005 0.075 17.7 0.14 0.00022 39.2 0.00071 0.000105
4.4 1.19 0.078 18.6 0.12 -0.00019 40.3 0.00052 -0.0001
4.9 1.29 0.055 19.5 0.1 0.00018 41.3 0.00038 0.0001
5.4 1.4 0.05 20.4 0.086 -0.00024 42.4 -0.00028 0.000097
5.9 1.45 0.023 21.3 0.07 0.00017 43.4 0.00021 0.000094
6.3 1.25 0.0065 22.2 0.058 -0.0002 44.5 -0.00017 0.00009
6.9 1.09 -0.0026 23.1 0.049 0.00017 45.5 0.00014 0.000088

24.1 0.037 -0.00018

Table 5: Values of the first-order nuclear matrix elements in Eq. (40), that enter the 0v33 of ““Ge.

bles 2 and 3. Note that for lighter neutrino masses m; < 5 MeV the difference between the NMEs
shown in Fig. 1 requires very precise calculation of the corresponding neutrino potentials.

Not surprisingly, Fig. 1 shows that for light m; < kr the NMEs become roughly constant,
while they scale as m;Q for heavy m; ~ A,. The description in terms of NMEs no longer applies
for masses m; > pp = 2 GeV, as we integrate out the heavy neutrinos at the quark level in this
case, see Sec. 3.2.1. In practice, it is useful to have an interpolation formula that describes the
shell-model results for m; < 2 GeV. As they include a linear m; dependence in the light mass
regime, see the discussions below Eqs. (28) and (34), we use the functional form

1

Ming(mi) = M(0) L+m;/mg + (mi/mp)?’

(36)

where M(0) = 2.7 for 136Xe and 3.4 for Ge. For these decays, we set m, = 157 MeV (117
MeV) for 136Xe ("°Ge) which is the prediction of the linear slope from ultrasoft corrections
as explained in more detail below, and perform a y?-fit to the NMEs in the mass range of
2 MeV < m; < 2000 MeV to obtain m; = 221 MeV (218 MeV) for 13Xe ("5Ge). The resulting
curve fits the data points in this range to about 5% accuracy, well within the expected theoretical
uncertainty 4.

*If we perform a x2-fit to the NMEs keeping both my as fit parameters we obtain m, = 192(157) MeV and
mp = 208(202) MeV for *Xe ("®Ge). Assuming a conservative flat 10% theoretical uncertainty on the NMEs,
the total x? of the two fits are very similar.
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MF,sd MGT sd MGT sd MT sd MT sd
6Ge | -2.21 -2.26 0.82 -0.05 0.02
136Xe | -1.94 -1.99 0.74 0.05 -0.02

Table 6: Shell-model determinations from Refs. [77,80] of the relevant short-distance NMEs for “5Ge
and 13¢Xe.

The potential contributions always appear in combination with hard contributions

Qmigi\’ N(m

MtOt(mi) = Mine(mi) + > >MF,Sd . (37)
A

The hard contributions depend on a hadronic and a nuclear matrix element Mpggq x g2 (m;)
and, in fact, it is only the combination with My (m;) in Eq. (37) that is independent of regulators
used in nuclear computations [46]. As g2V has not been determined using LQCD methods yet,
only model-dependent estimates are available. It was pointed out in Ref. [47] that g)Y™V(0) is
connected to charge-indepedence-breaking (CIB) nucleon-nucleon interactions that are known up
to N.-suppressed corrections [54], where N, = 3 denotes the number of colors in QCD. The value
provided by the CIB strategy is in reasonable agreement with a model estimate of g™V (0) [52,53].
As we are using the nuclear shell model results for the NMEs, here we take advantage of the
connection to CIB and follow Ref. [80] which gives a range of values for g)¥ " (0) based on various
nucleon-nucleon potentials. For this work, we pick the intermediate value

g¥N(0) = —1.01 fm?, (38)

with the corresponding NMEs shown in Table 6.

The hadronic matrix element g2™V(m;) has a non-trivial mass dependence of which little is
known. Around m; ~ A, the sum of the potential and hard contributions in Eq. (37) should
match to the description provided by Eq. (25) which scales as m; 2. Because M (m;) has the same
scaling, this requires g2V (m; ~ A,) ~ n"f2 ab well. In the opposite limit, m; < kp, we would
expect the form gV (m;) ~ g¥N(0) + gVQ m?, see Sec. 3.2.3. Although the renormalization-
group invariance of the nn — pp+ee amplitude requires gVN(0) = O(F-?), where F is the pion
decay constant, to appear at leading order [46], no such argument exists for the enhancement of
m?-dependent LECs, leading to an estimate of gl],VQN = O(F;2A?) (see App. B). We therefore
assume the functional form

1+ (mi/me)? sign(mfl)

NN m;) = NN
gy " (mi) = g, (0)1+(mi/mc)2(mz’/|md!>2

(39)

where sign(m2) = m?2/|m?|, while |mg4| appears in the denominator in order to avoid possible
poles. This generalizes the interpolation constructed in Ref. [63], which overestimates the m;
dependence in the small m; regime. We set m, = 1 GeV as expected from the NDA estimate
of g . We subsequently tune myg such that Eq (37) matches Eq. (25) at a scale m; = py = 2
GeV This last step requires values of ¢g]™, g1 , and g{v N the latter two of which are cur-
rently poorly known. To get a reasonable estimate we only consider the contributions from
gV and g™, for which we use gi'V = (1 + 3¢%)/4, inspired by the factorization estimate,
and ¢7™ = 0.36 [71]. The corresponding short-distance NMEs we use are collected in Table 6.
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We then obtain mg ~ 146(139) MeV for 36Xe ("Ge). It is encouraging that the value of my
obtained in this way is mostly independent of the applied nucleus as g¥V (m;) is related to a
two-nucleon matrix element. Clearly, our estimates of these LECs and their m; dependence come
with sizable uncertainties. Future LQCD determinations of ng’NN and g™ (m;) will allow one

to verify the functional form of Eq. (39) and reduce the current uncertainties.

NMEs from ultrasoft neutrinos
For the ultrasoft contributions in Eqgs. (16) and (33) we require the intermediate-state energies,
E,,, and first-order NMEs of the form

1

A oc g OF [ L) (L7 107) = A 0F I ol 1) - (1 o0

2
g
~ _ZA<0;yr+ay1;> (1F |t elo)y, (40)

where we neglected Fermi transitions because they vanish up to tiny isospin-breaking corrections.
We include excited states up to £, —F; = 18 MeV as higher-states provide negligible contributions
to the first-order matrix elements in our shell-model calculations. We approximate the electron
energies by Ey ~ Ey ~ Qpg/2 + m., where the Q-value is Qgg = E; — E; —2m, ~ 2.5 MeV for
136X e and likewise Qpp ~ 2.0 MeV for "6Ge 5. We tabulate the corresponding first-order matrix
elements for the decay of 136Xe and "®Ge in, respectively, Tables 4 and 5. The results for %Xe
were presented earlier in Ref. [42].

As mentioned in Sec. 3.2.3, the linear m; dependence appearing in the NMEs, M (m;), should

correspond to the linear term in A,(,USOft), allowing for a consistency check. In the regime AFE <

m; < kp, the linear term in the ultrasoft expression in Eq. (34) is given by

L7 136Xe
A(Vusoft)’ml — Ram Z<O}r|7.+o.|1:> . <17-il-|7-+0-|();r> + O(AE/m;) ~ {58Me\/ (41)

m; 76Ge

n 35 MeV

where the last result sums over the shell-model contributions for '36Xe and “Ge presented in
Tables 4 and 5, which are the values used for m, in Eq. (36). These values are in pretty good
agreement with fits of m, to the NMEs in Fig. 1 in the same regime, m,/M(0) ~ 71 MeV and
ma/M(0) ~ 46 MeV for '35Xe and "Ge, respectively (see footnote 4). This confirms that the
usual definition of the NMEs includes part of the ultrasoft contributions.

4.1 A practical formula

Having discussed all contributions, we finally need to construct an effective formula that connects
the various regions. A very useful parametrization for the contribution from a neutrino of mass
m; to the Ovf3 amplitude is given by

A(Vp0t7<)(mi)+A(yhard)(mi)+A£uS0ft)(mi)7 mi < 100 MeV ,

Ay (mi) = { AP (my) + AP (my) 100 MeV < m; <2 GeV,  (42)
A (m;), 2 GeV <m;.

5Since A,(,uSOft) is even in AF; < AFE», corrections to the approximation F; = Es scale like ~ where

52
AE?
0= % and || < Qpp/2. For typical intermediate states with E, — E; = (5 — 10) MeV, such corrections are
at the percent level at most.
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The needed input to these amplitudes is given by

e The potential contributions require the interpolation of the NMEs Eq. (36). For m; > kp

the relation of the NMEs to A(VpOt) is given by Eq. (27), while in the m; < kp region the
expression for A,(,p °t<) g given by Eq. (30). The latter subtracts the derivative with respect
to m; to avoid double counting the linear terms that appear both in the usual definition of

the mass dependent NMEs and the ultrasoft expression.

e The hard contributions require the interpolation formula for ¢ in Eq. (39) and the NME
M sq in Table (6).

e The ultrasoft contributions involve the first-order NMEs and intermediate-state energies
listed in Tables 4 and 5.

e Finally, A,(jg) requires knowledge of the LECs ¢7™, g7V, ¢giV¥, and several short-distance

NMEs. Since several of the LECs are currently unknown, we approximate this region by
using gV = (1+43¢%)/4, g™ = 0.36, combined with the short-distance NMEs from Table
(6). The QCD evolution factors are given by Eq. (23).

To get a sense of the behavior of the amplitude in various m; regions, Fig. 3 shows |4, |
for 136Xe, as induced by a single sterile neutrino. The top-left panel shows our result for the
amplitude over a wide range of neutrino masses in solid black, compared to the commonly
used parametrization of Eq. (19) in red (dashed). Overall the shape is similar, but, as we will
discuss below, the differences are important in specific scenarios. The top-right panel illus-
trates A, in the heavy mj-region (m; > po = 2 GeV) with (solid black) and without (dotted
red) QCD renormalization-group evolution which is a minor effect. For instance, the ratio of
A, (100 GeV) /AR RGE (100 GeV) = 0.81 implying a 20% reduction of the amplitude. For m; = 1
TeV, the reduction grows to 25%.

The bottom-left panel depicts the 100 MeV < m; < po regime. The solid black line again
denotes the total amplitude whereas the red and blue line denote, respectively, the potential and
hard contribution. We also show the red dashed line for the commonly used parametrization. In
this window of neutrino masses, the hard regime provides O(100%) contributions, with the same
sign, with respect to the usually considered potential contributions leading to faster Ov343 rates.

In the bottom-right panel we zoom in on the small m;-regime, m; < 100 MeV. Here we show
in black the total amplitude, in red the potential contribution, in blue the hard contributions
(which are essentially mass independent in this regime), and in orange (dashed) the ultrasoft
contributions. We see that the latter are relatively small for small my, as predicted by power
counting, and add destructively to the hard and potential regime. Despite being subleading,
when considering contributions from a single vg, they will play an important role when we
consider the minimal ¥SM in which Eq. (6) holds.

4.2 Current uncertainties and future improvements

While it correctly describes the leading contributions to Ov3S rates, Eq. (42) involves several
sources of uncertainty. In all mass regions, the amplitude depends on both hadronic and nuclear
matrix elements (LECs and NMEs). Starting with the former, so far the only LEC that has
been determined on the lattice is g™ [71-73|, which appears in the m; > 2 GeV region. In the
same mass range there appear two other LECs, g{rN and g{v N TInstead, below m; < 2 GeV,
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Figure 3: Contributions to the OvS3 amplitude from a neutrino with mass my. Top-left: total con-
tribution derived here (black) compared to the literature result (dashed red). Top-right: amplitude in
the heavy mass regime with (black) and without (dashed red) QCD renormalization group evolution.
Bottom-left: total (black) amplitude in the intermediate-mass regime arising from potential (red) and
hard (blue) neutrino exchange. The literature result for the total amplitude is shown by the dashed red
curve. Bottom-right: total (black) amplitude in the light-mass regime consisting of potential (red), hard
(blue), and ultrasoft (dashed orange) contributions.
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Figure 4: Uncertainties in |4, | and its constituents obtained by varying gi¥". The lines are the same
as in the left panel of Fig. 3, and the bands represent their variation when gV is varied between 50%
and 150% of (1 + 3¢%)/4.
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the amplitude depends on a single LEC, g2V, which has a nontrivial m; dependence unlike g7™,
ng , and gi¥N. Although there are model- and NDA-estimates of g™V (0), ng , and gi¥N | these
LECs currently come with an O(1) uncertainty. As a subset of the LECs appears for any m;,
these hadronic uncertainties in principle affect all mass regions. However, in cases where Eq. (6)
holds, we see from Table 1 that these poorly known matrix elements have a smaller impact for
m; < kp, as the hard-neutrino contributions are expected to be subleading in this mass range.
Future LQCD determinations could significantly reduce the hadronic uncertainties, especially
for m; > 2 GeV, where all contributions come with LECs, and kr < m; < 2 GeV where the
hard-neutrino contributions are a leading effect. Although the m;-independent LECs ng , g{V N
and ¢gYV(0) are not yet within reach of LQCD computations, their determination is part of a
large ongoing effort, see e.g. Refs. [81,82] for an overview. Recent lattice studies have started to
consider the m; dependence of LECs as well, although, so far, only in the meson sector [83].

Consider, as a demonstration, the effect of uncertainties on the amplitude A, by varying gi¥
Using Eq. (39), we vary gl¥ between 0.5(1 + 3¢%)/4 and 1.5(1 + 3g%)/4 while keeping all other
parameters unchanged. The results shown in Fig. 4 may now be compared with the left panel
of Fig. 3. The variation affects only the dim-9 and hard (via mg) contributions. The lines show
the values considered previously, and the bands show the “uncertainty” in the amplitudes when
g{v N is varied within the range mentioned above.

Likewise, NMEs are necessary in all mass regions. It is well known that many-body determina-
tions of, for example the NMEs in the ‘standard scenario’ of light-neutrino exchange, M(m; = 0),
can vary by a factor of O(1) between different methods, see e.g. Refs. [30,75], and estimated
uncertainties within particular many-body methods are at least about 50% [84]. The nuclear
uncertainties are similar for m;-dependent NMEs [30] and therefore affect our results at the same
level. Recently, several ab-inito determinations have been able to reach the heavy isotopes that
are used in experiments [60,62,85-88|. Further developments in this direction could provide
calculations of NMEs with controlled error estimates [30,82]. Given the current uncertainties,
such results would significantly improve the accuracy of our estimates in all mass regions.

As another example, we consider the impact of varying several hadronic and nuclear matrix
elements in the case of a 3+ 1 scenario, discussed in Section 5.3 below. This scenario implements
the cancellation in Eq. (6), which allows us to study the impact of uncertainties in a minimal
extension of the SM. We again vary the LEC gi¥/V, related to the dim-9 and hard regions, the
parameter my, related to the potential contributions in Eq. (36), and the first-order nuclear
matrix elements, needed for the ultrasoft contributions in Eq. (33). To illustrate the impact of
uncertainties from the different neutrino-momentum regions we show the relative change in the
amplitude for 36Xe after varying a parameter as a function of the sterile neutrinos mass, my,
in Fig. 5. The y-axis shows the total modified amplitude, o |, |'/2, obtained after varying
the input parameters, relative to the original amplitude, o |T' Ou|1/ 2 which can be written as
R = |To,/To,|'/2. The impact of varying gy, mZ, and the first-order NMEs by 20% is shown
in green, blue, and red, respectively. For illustration, all parameters were varied by the same
amount. While the uncertainty on g{v N is most likely larger than 20%, an estimate of the
uncertainties in the potential and ultrasoft regions can be obtained from the consistency check
discussed around Eq. (41), which is consistent with an O(20%) uncertainty. As one might expect,
these variations lead to a ~ 20% effect at the level of the amplitude and peak in the region
between kr < m4 < A, for the uncertainties related to my; and g{v N , while the uncertainties in
the first-order NMEs are most noticeable for small m4 < kp. The main purpose of Fig. 5 is to
illustrate which hadronic or nuclear matrix elements are important in which mass region. We

N
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Figure 5: The relative change in the amplitude, R, obtained by varying several hadronic and nuclear
inputs in the 3 + 1 scenario discussed in Section 5.3. Here R = |To,/To,|"/? where T, is the original
decay rate, while Lo, is obtained by varying the indicated hadronic or nuclear parameter. The green,
blue, and red bands are related to uncertainties in the hard, potential, and ultrasoft contributions. They
are obtained by varying the LEC g{'" in Eq. (25), mj in Eq. (36), and the NMEs (07| 7#[1;}7)(1,}7,10;")
in Eq. (33), by ~ 20% respectively.

therefore stress that it does not capture the significant theoretical uncertainties related to the
NMEs and LECs required for the case of three active Majorana neutrinos, namely M(0) and
9 ™ (0).

Finally, there are in principle errors due to missing higher orders in the YEFT expansion.
In particular, the current work does not include the contributions from A,(,pOt’Q), which involves
additional NMEs and LECs. The induced corrections to the potential are known for m; = 0
[58] and have so far been estimated only in light nuclei [59]. From Table 1 we expect these
contributions to be most relevant when Ay 2 m; 2 kr and Eq. (6) holds.

The main purpose of this work has been the systematic derivation of Eq. (42) which describes
the largest Ov35 contributions in the ¥SM in terms of well-defined QCD and nuclear matrix
elements. It will be straightforward to update the expressions once more refined calculations of
these matrix elements exist.

5 Phenomenology

5.1 3+0

We begin with the standard mechanism through the exchange of three light Majorana neutrinos
(see Eq. (7)). Unlike the »SM, this scenario assumes that the masses of the neutrinos are
generated by heavy beyond-the-SM fields that have been integrated out. This leads to Majorana
masses for the active neutrinos without a cancellation mechanism as in Eq. (6). The total
amplitude is then given by the sum of Egs. (15) and (16)

A, = APV (0) + AP (0) + AP0 (0) (43)
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Figure 6: Predicted *Xe (left panel) and "Ge (right panel) Ov33 half-life in the normal (blue) and
inverted (red) neutrino-mass hierarchy as function of the lightest neutrino mass, marginalized with respect
to the Majorana phases. The half-life includes contributions from potential, hard, and ultrasoft neutrino
exchange calculated with the nuclear shell model. The current lower bounds on the half-life is shown in
gray [27,92], along with future prospects [28,29,93].

and we can safely neglect the mass dependence of A,. The three terms can be read from the
bottom-right panel of Fig. 3. The potential contribution, usually the only term considered in
the literature, indeed provides the largest piece, Al(,pOt)(O) = —2.7 and —3.4 for 135Xe and "6Ge,

respectively. The hard-neutrino exchange mechanism [46, 47| provides a constructive 45(41)%

correction in 136Xe ("Ge), given by Al(,hard)(()) = —1.2(—1.4), and has been considered in various

modern Ov(3/ computations [60,61,80,84].

The last term is new and provides a smaller, destructive, 10% correction Aot (0) = 0.23(0.28)
for 136Xe ("%Ge). While small, the contribution is somewhat larger than expected from power
counting (see Table 1) due to the large logarithms in Eq. (34), log(m./(2AE1 2)), which are re-
sponsible for ~ 70% of the ultrasoft amplitude. Nonetheless, this contribution has the same sign
and is of similar size as usual contributions to 0vS38 beyond the closure approximation [89-91],
which are related to the ultrasoft term as discussed in Sec. 3. As far as we are aware, this is the
first calculation and analysis of the ultrasoft contributions to Ov33.

Using the usual parametrization of the PMNS matrix,

1 0 0 C13 0 813672’5 C12 si2 O 1 0 0
Upvins = | 0 co3  so3 | - 0 1 0 -l —s12 c12 0] -]10 et 0 ,(44)
0 —S823 (€23 —Slgei(S 0 C13 0 0 1 0 0 eia?

where s;; = sin6;; and ¢;; = cos6;;, and the PDG determinations of the mixing angles ¢;; and
CP-violating phase ¢ [10], we obtain predictions for the half-life of 136Xe and "*Ge. Figure 6
shows the results for the normal (NH) and inverted (IH) neutrino-mass hierarchy in blue and red,
respectively. The width of the bands mostly arises from the variation of the Majorana phases,
a1.2. Searches involving 13Xe are currently more sensitive; the figure shows that, assuming our
calculated shell-model NMEs and neglecting theory uncertainties, the most recent KamLAND-
Zen measurement is approaching the lower edge of the IH band. Future bounds promise to probe
the entirety of the IH band for both isotopes.
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Figure 7: Limits on U2 as function of m, assuming the Ov33 rate is dominated by a single sterile
neutrino. The black line corresponds to our result, while the dashed line corresponds to the usual
procedure in the literature following Eq. (19). The blue line denotes the naive seesaw relation U2, =
(0.05eV)/my.

5.2 Limits on U?

Before moving on to the ¥SM, we consider a 4th sterile neutrino and assume its contribution
saturates the Ov 583 amplitude, i.e. we assume there are no cancellations with the active neutrinos.
Such scenarios, without the cancellation mechanism in Eq. (6), are possible when going beyond
minimal extensions of the SM, and are represented by Eq. (8). The resulting limit (from 36Xe)
on U2 as a function of my is depicted by the solid line in Fig. 7, while the approach followed in
the literature using Eq. (19) is shown by the dashed line. Our approach leads to tighter limits
(up to a factor 2 around my4 = 300 MeV), especially in the MeV-GeV regime of my, because of
hard-neutrino-exchange contributions. The limits reach the naive seesaw expectations (indicated
by the blue line) for m4 < 10 MeV.

This assumption of the sterile contribution saturating the Ov58 amplitude breaks down for
light sterile neutrino masses, where the sterile contribution can be of same size as that of active
neutrinos. In this region, there can be cancellations between the contributions, leading to the
possibility of new “funnels” in the Qv 3 rate. Consider a scenario with one light sterile neutrino,
and where the neutrinos acquire a mass through an unspecified UV mechanism. The relevant
elements of the mixing matrix can be parametrized as

Uet =ci2cizcia, Uea =cracizsige™, Ues =ciasize™, Ues =514, (45)

where ¢;; and s;; are cos(6;;) and sin(6;;) respectively. As shown in Fig. 8 for NH, the decay rate
can go to zero at certain values of the sterile mass which is determined by the strength of the
coupling Ug4 and the mass of the lightest neutrino. The region beyond which the sterile neutrino
starts to dominate the amplitude can also be clearly seen, as the bands (the width of which is
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Figure 8: Predicted '*Xe and "°Ge Ov$ half-life in NH as a function of the light sterile neutrino mass
my for lightest active neutrino mass m; = 0 (blue) and 0.15 €V (red), for two different values of the
coupling strength |U.4|. New funnels appear as the sterile contribution can contribute destructively to

the decay rate. The current and future limits on Ov33 lifetime are shown in gray (dashed and dotted for
136Xe and "®Ge respectively) [27-29,92].

given by the phases in the mixing matrix) shrink to a line. Smaller values of |Ug4| cause the
effect of the sterile contribution to kick in only at larger my4. We also see that the m; = 0.15 eV
case is ruled out (as expected from Fig. 6) for either value of |Ue4| unless there is a significant
destructive contribution from the sterile neutrino, that is, until a funnel appears.
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Figure 9: Bounds in the Am3, — |UZ2,| plane for m; = 0 (dashed line) and m; = 0.15 eV (solid lines)
for light sterile neutrinos, assuming NH. The region to the right of the dashed line is excluded by current
OvSp3 limits for a massless lightest neutrino, while a scenario with m; = 0.15 eV is allowed by Ov/3 limits
only within the shaded region.

With this in mind, we show in Fig. 9 the bounds on |Ues|? as a function of Am?; = m3 —m3,
assuming NH, for m; = 0 (dashed line) as well as m; = 0.15 eV (solid lines). The bounds are
obtained by assuming that the active neutrino contributions to the decay rate add up with the
same phase, while the sterile neutrino contributes with an opposite sign, thus making the upper
bounds conservative. In case of m; = 0.15 eV we also obtain a lower bound on top of an upper
limit (thus restricting the allowed region to the shaded area in Fig. 9) since the Ov3f rate gets
oversaturated unless there is a partial cancellation from the sterile neutrino contribution, while
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only an upper bound can be drawn for m; = 0. This plane is often studied in the context of
neutrino oscillation anomalies [94-96]. It is seen that with the assumption that neutrinos are
Majorana particles, current Ov3S limits can rule out chunks of the preferred parameter region
outlined in Refs. [94,95].

5.3 3+1

In this section we discuss the 3+1 scenario with 3 light left-handed neutrinos and one sterile
neutrino. This model is not realistic as it predicts two massless neutrinos, m; = mo = 0, but
serves as a useful toy model to illustrate the importance of the newly identified contributions in
scenarios where Eq. (6) holds. We consider a mass matrix

0 0 0 MB,I

0 0 0 M1*7,2

0 0 0 MB:,) ’
MB,l MB,Q MB,?; Mk

M, = (46)

and set for simplicity My, ; = M}, , = M}, 5 = Mj,. We diagonalize the mass matrix to obtain
the PMNS matrix, which we parametrize as [96]

U = D R¥R¥MRBRURBW2D,
D, = ei(aD+OzR/2)diag(17 1,1, e*i(azﬁaD)) Dp = diag(1,1,4,1), (47)

where [Wab(eaba(sab)]ij = 5@'3’ + (5ia5jbei5ab _ 5ib6ja€7i6ab)sab + (5ia5ja + 5ib5jb)(cab - 1) and
R®(0q) = W®(f4,0) and ap,r = Arg Mp r. We can now read off the relevant mixing an-
gles for Ov@s

U2 _ - _ = i(2aD+aR) . 48

e3 ms ed 3m3+m46 ( )

The phases ap and apr drop out in the decay rate and can be effectively set to zero. In this
model we have

mgg = maU% + maU2 =0, (49)

and we need to consider the mass dependence of the hadronic and nuclear matrix elements in
order to get a non-zero Ov3p3 rate. For small my < kr the non-vanishing combination of mixing
angles and masses can be written as

m3UZA,(0) + maUZ Ay (ms) = m3UZ [A,(0) — Ay (my)] = —mgmaUZAL(0), (50)

and depends on the derivative of the amplitude as function of the neutrino mass.

We set m3z ~ 0.05 eV, treating it as a light active neutrino, and vary my4. The resulting
lifetime is shown in Fig. 10 where the right panel focuses on my4 > 100 MeV. The red dashed
lines correspond to the approach in the literature using the parametrization of the NMEs in
Eq. (19). For light my this leads to a decay rate that scales as |m3U%|? ~ mj such that the
half-life grows as mfl. The black solid line instead corresponds to the expressions obtained in
this work leading to significantly shorter half-lives in the light m,4 regime because of the larger
derivative arising from the ultrasoft term. The differences for m4 > 100 MeV are less profound.
In this case, A,(m4) < A,(0) and only A, (0) matters. The main difference then is our inclusion
of hard neutrino exchange contributions leading to decay rate that is faster by about a factor of
2, as illustrated in the right panel.
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Figure 10: 0v3g3 half-life of 136Xe as a function of my, in the 3-+-1 model. In the left panel, the half-life
is obtained by using the NMEs in Eqs. (19) (dashed red) and (42) (black). The right panel zooms in the
heavy my4 region.

5.4 A pseudo-Dirac scenario

Another interesting way to generate neutrino masses is through the inverse seesaw mechanism
[97-99]. This model and its generalizations |64, 100, 101] add two types of singlets to the SM,
leading to a neutrino mass matrix of the form,

0 mp 0
M, = mr{) wx ms |, (51)
0 m§ ps

which is a special case of Eq. (3), with the upper right part (m D O) = M7, and the lower right

block with px, pug, mg, and mg forming M;{2 Assuming we add the same number, ng, of each
type of singlet, the block matrices in M, become a 3 X ng matrix in the case of mp, while ux,
mg, and pg are ng X ng matrices. The minimal inverse seesaw scenario additionally assumes
ux = 0, which, together with the hierarchy mg > mp, ug, leads to the following mass matrix
for the active neutrinos

My light = —mD(mg)_lﬂsmglsz) . (52)

Unlike the usual seesaw scenario, where the active neutrinos masses are inversely proportional
to the Majorana mass of the sterile neutrinos, here the light neutrino masses are proportional
to a small LNV parameter, ug. The new singlets lead to states that can be organized in pairs;
each pair consists of two Majorana neutrinos with O(mg) masses and an O(ug) mass splitting.
The assumption mg > mp, px,s implies that lepton number is an approximate symmetry. This
case is often referred to as pseudo-Dirac, as it reduces to a scenario with purely Dirac neutrinos
in the limit of ux s — 0. Variants of these models appear in scenarios of low-scale leptogenesis,
see e.g. Refs. [15,19,102] and references therein.

Given the small mass splitting between the added neutrinos in these scenarios, it is useful to
note that the contributions to Ov 33 simplify whenever the sterile neutrinos are nearly degenerate.
To see this, we can rewrite the effective amplitude relevant for Ov33 by using 2?213 Ufimi =0
and Taylor-expanding the sterile contributions around their common mass scale. In cases with
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Figure 11: Limits on the mixing angles, |Uei|? + [Ue2|?, as a function of M, in the pseudo-Dirac
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T{)/”z > 10%yr) constraints, obtained using Eq. (19) (dashed red) or Eq. (42) (black).
n nearly-degenerate sterile neutrinos, this leads to

3 n+3
Ag = > UZmiA,(0) + ) UZmiA,(m;)
i=1 i=4

3 n+3
= D UZm; [A,(0) — A (My)] + My Y UZAGAL (M) + O(A), (53)
=1 i=4

where we introduced M; = m;13 for the masses of the sterile neutrinos, A; 3 = M; — M7 < My,
and A!,(M;) denotes (dA,(m)/dm)|m=ns,. As the first term scales with the light neutrino masses,
the second term can dominate if the mixing angles are not too small. Thus, whenever the sterile
neutrinos are nearly degenerate and dominate over the active contributions, the decay rate is
determined by the derivative of A,, instead of the OvBS amplitude itself, and scales with the
mass differences A;.

In order to assess the impact of our determination of A, on these scenarios, we specify to a
toy model with a single active neutrino and nxy = ng = 1 [64| which captures the main features
of a pseudo-Dirac sterile neutrino pair. The resulting mass matrix can be parametrized as

M, = U*diag(m,,, My, My) U, (54)

with m, and M 2 the masses of the light and sterile neutrinos, respectively, and

1 0 0 Ce2 0 Sege™® Cel  Se1 O 10 0
U= 0 C12 S12 . 0 1 0 . —Sel  Cel 0] -0 e 0 s (55)
0 —S12 C12 *Segeid 0 Ce2 0 0 1 0 0 Bi(a2+6)

in terms of three mixing angles, 612, 01, and 6.2 and three phases, J, a1 2. M, is then made up of
nine parameters (three masses with six angles and phases), which are subject to four constraints
(My)y; = (My)y331 = (My)gy = 0 in the pseudo-Dirac case. Here we focus on a scenario with
the benchmark values

my, = 2.6 x1073eV, a; =0, o =17/2, (56)
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where the choice of ag induces a relative sign between the contributions of the two sterile neu-
trinos, allowing them to act as a pseudo-Dirac pair. The constraint (M,);; = 0 can be used
to eliminate the combination s, — s2, in favor of |Ue|? + |Uea|? ~ 2, + s2, = s% and M o,
which gives 2, ~ s2, up to O(m,/M;) and O(A/M;) corrections. As we assume the sterile
neutrinos to be nearly degenerate we can use Eq. (53) with A = A5 = My — M;, Ay = 0, and
U2 ~ —s?2, ~ —s% /2, which allows us to set constraints on s as a function of M; and A.

Together with the current lower limit on the half life of 35Xe [27], the above gives rise to
Fig. 11 which shows the constraints on s, + s2, as a function of the sterile neutrino mass, M.
Here the left and right panels depict scenarios with different mass splittings, MQM;QM =10"2 and
MQM;QMI = 107%, respectively. The black lines show the current and projected limits obtained
using the approach discussed in this work, while the red lines again depict the results using Eq.
(19). The blue regions are excluded by other laboratory constraints [64]. Below the kaon mass,
the strongest limits come from missing energy experiments which probe |U,|? through invisible
decays of the pion or kaon [24,103], and inverse beta decays [104,105]. At higher masses, the
limits come from displaced vertex searches which probe long-lived sterile neutrinos via their
decay to SM particles [106,107]. The gray region shows the part of parameter space that does
not satisfy the inverse seesaw expectation, (M, )qy ~ (M)35 = O(Mz — My), and corresponds
to | (My)g | = x| > 3(Ma — Mj). These results can be obtained by using the constraint
(M,)5 = 0 to determine si2 and 0, after which (M, ),, and (M, ), are fixed for a given point in
Fig. 11. We find that the expectation (M, )y ~ (M,)q3 = O(Mz — M), can roughly be satisfied
whenever s2 > M;’i”Ml.

The parametric dependence of the limits in Fig. 11 can be understood from Eq. (53). Assuming
the m,, terms can be neglected, we have

2
Ag = —%MlAAf,(Ml) +O(A2, my). (57)
The limit on the Ovf3( rate then sets a bound on si as function of M; and A through
9 2me 1 1

< X ,
+ giVuzd GOlTlo/V2 MlA ’A;/(Mlﬂ

s (58)

which agrees well with the bounds we find numerically. This form explains the A™! scaling seen
in Fig. 11. Second, the limits depend on the derivative of the neutrino amplitude with respect
to the sterile neutrino mass. We already saw in the 3 + 1 analysis that the ultrasoft corrections
identified in this work lead to a larger slope compared to the usual approach, explaining the
significantly tighter limits, about an order of magnitude for M; = 1 MeV. For larger masses
M; > 200 MeV we again obtain stronger limits (roughly a factor 2.5 for M; = 400 MeV), mainly
because of the hard-neutrino-exchange contributions. As mentioned above, this analysis is not
specific for the 14141 toy model discussed here and the dependence on A/, rather than A, holds
for more general scenarios involving pseudo-Dirac sterile neutrino pairs. The main conclusion
here is that ultrasoft and hard contributions can have a significant impact on Ov 30 rates in the
vSM including well-motivated variants involving low-scale leptogenesis.

5.5 3+2 model

A more realistic model from a phenomenological point of view is a scenario with two right-handed
neutrinos, such that it can explain neutrino oscillations (and thus their light masses), as well as
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address the matter-antimatter asymmetry of the universe via leptogenesis. However, the presence
of two sterile neutrinos allows only two light neutrino masses, so that the lightest neutrino is
necessarily massless in this case. One option that can reproduce the light neutrino masses is the
hierarchical limit, in which the heavy neutrino masses are required to be > 10° GeV [108]. Here
we will instead consider scenarios where the sterile neutrinos are pseudo-degenerate in mass,
which allows for much lower mass scales compatible with leptogenesis.

The neutrino oscillation data are most easily implemented in this scenario with the Casas-
Ibarra (CI) parametrisation [109], in which the Yukawa coupling matrix between the left-handed
lepton doublet and the right-handed neutrino is given by

Y, o Upyngy/mid R VM, (59)

4 is a diagonal matrix of light neutrino masses and M? is a diagonal matrix of the (two)

heavy neutrino masses. R is a complex orthogonal matrix given by

where m

0 0 cos(w)  sin(w)
RNu = cos(w) sin(w) |, Rm=| —sin(w) cos(w) |, (60)
—sin(w) cos(w) 0 0

with w € C for normal and inverted hierarchies respectively. The PMNS matrix is parametrised
as before, but with only one effective Majorana phase given by n = %(0421 — ag1) for NH and
n= %agl for IH. With this, the active-sterile mixing angles can be approximated to be, assuming
NH,

6.2 x 10_10 2Im(w)

U..12 ~ 61
where the NuFIT central values for light neutrino masses and mixing angles have been used [110,
111], and we have picked Re(w) =n =0, = 37“ These parameters enter the effective amplitude

as arguments of oscillating functions and thus can only play a limited role in enhancing the rate;
see Eq. (62) below.

In the pseudo-degenerate regime, we can trade M; and M, for the average mass My =
(My + Ms)/2 and the mass difference AM = (My — M;)/2. Since the active-sterile mixing
angles depend exponentially on Im(w), it is clear that this parameter plays a major part in the
possibility of 0v33 rate enhancement. However, at O(AM?), Im(w) does not enter the effective
amplitude and sterile neutrino exchange only suppresses the rate. For example, the effective
amplitude in NH is given by

Aeg ~ masin?(013)e 20t (A, (m3) — A, (My)] + mgsin®(012) cos?(613) [A, (ma) — A, (My)]
+AMA, (My)e~20+n).

[cosh(—Ziw) (mz cos?(013) sin?(012)e® 0+ — myg sin? (913))
— 2ie’ ) fmgms sin®(012) sin?(013) cos? (613) sinh(—2iw)] , (62)

where we explicitly show the dependence of the amplitude in Eq. (53) on CI parameters. Clearly,
Im(w) comes into play at first order in AM, and thus there is an interplay of these parameters
that dictate the Ov50 lifetime.
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Figure 12: 0v3p lifetime using Eq. (42) as a function of the averaged heavy sterile mass (M) and the
mass splitting (AM) for the pseudo-degenerate 3+2 NH scenario discussed in Sec. 5.5. The parameters
chosen are § = 37/2, n = Re(w) = 0, Im(w) = 4.5. The yellow lines correspond to the current and
projected (solid and dashed respectively) limits on the lifetime calculated using Eq. (42), and in white
are the results obtained when Eq. (19) is used. The shaded regions are the bands in Fig. 6.

Given that there are quite stringent bounds on the mixing angles across a wide range of heavy
neutrino masses, we must be careful when choosing a value for Im(w). The strongest bounds
are set for masses around My ~ 300 MeV, where values of Im(w) ~ 3 can be excluded [64].
Nevertheless, we can safely have larger values for Im(w) for other values of heavy neutrino
masses, as the bounds sharply weaken away from My ~ 300 MeV. To illustrate our results we
therefore set Im(w) ~ 4.5. Note that this essentially fixes the strength of Ue; for a sterile neutrino
of a given mass.

By fixing the parameters appearing in the R matrix and the unknown phases (a more com-
prehensive scan and the interplay with low-scale leptogenesis is work in progress [112]), we can
study the Qv lifetime as a function of My and AM. Such an example for NH is shown in
Fig. 12, where we have picked § = 37/2, n = Re(w) = 0, Im(w) = 4.5. The solid (dashed) yel-
low lines are the current (predicted) limits on the Ov33 lifetime of ¥6Xe (from KamLAND-Zen
and nEXO, respectively), calculated using Eq. (42). The points are color coded and show the
lifetimes calculated using the same expression. For comparison, we show in white the limits one
would obtain using Eq. (19) instead.

The regions above the solid (dashed) lines are (will be) excluded by current (future) Ovgg3
constraints. It is seen that the new effects included in Eq. (42) give rather interesting differences,
especially away from My ~ 300 MeV. Although the new formula enhances the decay rates at
large masses, allowing us to probe smaller mass splittings, the slope is very similar to the white
lines. Similar to Sec. 5.4, we find that our approach differs by about a factor of 2 from that of
the literature in the large My limit for this particular set of parameters. For smaller My the
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slopes differ significantly due to the ultrasoft contributions.

The gray-shaded regions correspond to lifetimes predicted by the 3 light Majorana-neutrino
case shown in Fig. 6. In this region, the effects of the pseudo-degenerate neutrino species on the
Ovp s will thus be difficult to disentangle from the active neutrino contribution. In the bottom
right region, for higher My and small mass splittings, the sterile neutrinos start to decouple and
the lifetime begins to fall into the aforementioned band. For the NH, the gray bands will not
be probed in the near future, and any signal would thus point towards the existence of sterile
neutrinos.

Instead of either dominating (e.g., in the case of large mass splittings and Im(w)) or having a
sub-leading effect (much smaller compared to the active neutrino contribution) on 0v3/, sterile
neutrinos can also contribute destructively to the Ov3( rate; i.e., the contribution of sterile
neutrinos to A.g can be of similar size to the contribution of active neutrinos, but opposite
in sign. This is emphasized by the thin curve of yellow-to-white points below the gray band,
which indicate a very large half-life. This curve represent a new “funnel” where Ov3j is strongly
suppressed even when the lightest active neutrino is massless. The amount of cancellation is
highly dependent on the parameters that have been fixed in Fig. 12, and again we point out that
this is not a comprehensive study of this scenario, but rather an illustration of the importance
of newly-identified contributions to Ov3p.

6 Conclusions

The Standard Model extended with several gauge-singlet right-handed neutrinos (the ¥SM) is a
very promising framework that can solve several of the shortcomings of the vanilla SM. Right-
handed neutrinos can account for neutrino masses through the seesaw mechanism while, at the
same time, accommodating the universal matter/anti-matter asymmetry through leptogenesis.
The possibility of low-scale leptogenesis has led to an increased interest in the search for relatively
light sterile neutrinos at the GeV scale. One of the generic features of the ¥SM is the violation
of lepton number which can be detected in Ov35 experiments. Essentially all analyses of Ov503
are based on the same computational framework, in which the effect of sterile neutrino masses
is incorporated by modifying the propagator of the neutrino that is exchanged between two
neutrons in a nucleus. As these modifications are only made in the LNV potentials used in
nuclear many-body calculations, they capture the contributions from neutrinos with momenta
of potential scaling, ko < |k| ~ kr. The resulting NMEs depend on the sterile neutrino mass,
which are assumed to take a simple functional form, see Eq. (19).

Considering the interest in detecting sterile neutrinos, in this work, we have taken a fresh look
at these computations using a recently developed EFT framework for Ov35. We find several im-
portant new contributions that can significantly alter the Qv rates in seesaw models involving
light sterile neutrinos. The most important findings and applications of our work are:

e Our main result is a practical, and relatively easy-to-use, formula for the Ov 35 contribution
from a sterile neutrino of any mass m; given in Eq. (42). This formula includes the effects of
potential, hard, and ultrasoft modes for m; < 2 GeV, and the correct QCD renormalization-
group-evolution and matching to hadronic scales for m; = 2 GeV. We advocate the use of
this formula for all Ov58 analyses of sterile neutrino models. Although we have focused
on the isotopes ¥Xe and "®Ge using shell-model NMEs, the same expressions can be

straightforwardly extended to other isotopes and many-body approaches. We stress that
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the addition of potential, hard, and ultrasoft contributions only makes sense within a single
nuclear many-body framework as regulators have to be applied consistently.

e As a byproduct of this expression, we presented up-to-date nuclear Shell Model predictions
for the 36Xe 0v33 and "®Ge half-lives in the standard light-neutrino exchange mechanism
for both the normal and inverted neutrino-mass hierarchy in Sec. 5.1. Our results indicate
that the current KamLAND-Zen limit reaches the bottom edge of the IH band. These
predictions include potential, hard, and ultrasoft contributions. As far as we are aware,
this is the first time the latter have been estimated, which we find to give 10% destructive
corrections.

e The same expression applies to contributions from sterile neutrinos allowing us to apply
our Ov3p3 formula to several simplified scenarios, such as the 3 + 1 model and a case with
one active and a single pseudo-Dirac vy pair, as well as the realistic 3+ 2 model in Secs. 5.3,
5.4, and 5.5. In all cases we find significant differences in the Ov 3 predictions compared to
the traditional approach, which can lead to enhancements of up to two orders of magnitude
depending on the neutrino mass. The formula in Eq. (42) can serve as the basis for the
analysis of Ov5 in models of low-scale leptogenesis to update predictions in, for example,
Refs. [17,102,113].

The main difference of our approach to the traditional literature is the systematic application
of YEFT and the associated power counting to identify the dominant contributions to the Ov5g3
amplitude for different regimes of sterile neutrino masses. We list the most important newly
identified effects as well as the required input from LQCD and nuclear many-body calculations
to obtain more accurate predictions:

e Ov(3f contributions from sterile neutrinos with masses m; 2 2 GeV cannot be obtained from
naively extrapolating NME results to heavy neutrino masses through Eq. (19). Instead, as
discussed in Sec. 3.2.1, heavy sterile neutrinos must be integrated out at the quark level
leading to lepton-number-violating dimension-9 operators. After evolving the effective LNV
operators to low energies where QCD becomes nonperturbative, they can be matched to

LNV hadronic operators without neutrinos.

e For a sterile neutrino with a mass m; < 2 GeV there are, in addition to the usually con-
sidered potential contributions, leading-order contributions associated to the exchange of
hard neutrinos, with momenta kg ~ |k| ~ A, see Secs. 3.2.2 and 3.2.3. Hard contributions
are nowadays considered in modern Qv3f calculations for the exchange of very light Majo-
rana neutrinos, but they can play an even bigger role for massive sterile neutrinos, see the
analyses in Sec. 5.

e In the final region, for light sterile neutrino masses, m; < krp ~ 100 MeV, we have identified
important new contributions associated with the exchange of neutrinos with ultrasoft mo-
menta, ko ~ |k| < kg, in Sec. 3.2.3. While they formally appear at next-to-next-to-leading
order in the yEFT power counting, they can become dominant in minimal seesaw models,
due to the cancellation of Eq. (6) affecting the leading-order terms. The inclusion of the
ultrasoft contributions requires new NMEs, involving a set of excited states of the inter-
mediate nucleus of the decay. These ultrasoft modes can lead to an enhancement of Ov3j3
rates up to two orders of magnitude compared to the usually included potential modes, in
parts of parameter space.

34



e As always, Ov33 computations involve uncertainties which are traditionally estimated by
differences between NMEs obtained with different nuclear many-body methods [30, 75].
The sterile neutrino contributions involve additional hadronic and nuclear matrix elements
that are not always (accurately) known. The most important targets for improvements,
for example through LQCD calculations, consist of the sterile neutrino mass dependence of
gNN(m;), and the mass-independent low-energy constants ng and g{v N Future determi-
nations of these matrix elements can be directly inserted into Eq. (42) and would allow one
to improve the accuracy of the estimates presented here. Likewise, significant reductions
in the uncertainty of the NMEs could be achieved by future nuclear ab-initio calculations
or by measuring processes related to Ov33 [114-116|, which would allow one to update
Eq. (42) as well. Finally, it would be good to confirm the values of the matrix elements
in Tables 4 and 5, associated to the ultrasoft contributions, with other nuclear many-body
approaches, and to evaluate these NMEs for additional isotopes.
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A Neutrino potential in coordinate space

Starting from the neutrino potential as given in Eq. (26), which is typically used in the literature
for the evaluation of sterile neutrino corrections to Ov(3g, it is possible to show that the term
linear in the sterile neutrino mass can be expressed as the NME of a potential independent of

Tab

d Ry, o 2 _(a) (®)\ ~(a)+ - (b)+ |0+
; — E 1 . Yy
dmiM(m ) mi=0  29% (071 ab ( gag e ) T (63)

For the experimentally relevant transitions where the initial and final nuclei are in different isospin
multiplets with AT = 2, the Fermi component of this NME vanishes, up to isospin-breaking
corrections. The Gamow-Teller piece, proportional to the double Gamow-Teller NME [114], is
in general non-zero, even though it is suppressed in calculations with approximate SU(4) spin-
isospin symmetry. It can be determined by computing the normalization of the Gamow-Teller
density, typically a byproduct of standard NME calculations, and therefore Eq. (63) offers an
alternative way of subtracting the linear m; dependence from A,(})Ot).

To avoid the spurious linear dependence, it might be convenient to evaluate Eq. (28) directly

in coordinate space.

2 1
AP (my) = APOY(0) — <2M(F?> +ME)+ M¥)> , (64)
ma ga
with
MP = Ra(0F| S V2 (rp) r @+ 0% o) | (65)
a,b
ME) = Ra(0F S VR (rap)o @ - a O 7@+ 0+ o) (66)
a,b
M = Ra(0F1 Y Vi (rap) S 7% 0F) (67)
a,b

with % = 3¢(®) . rag(@) . b — (@) . 5()  The radial functions are given by

Vi) = —ma, (68)
VG(QT) (r)=—mgy (; — 6%: (e7?(4+2) — 4)) ; (69)

e ? (6+4z+z2) +22—06
623 ’

VT(Q) (r)=mg (34 2)

where z = m,r.

B Neutrino mass dependence of gi\f N

We comment here on the neutrino mass dependence of g2V". Short distance contributions to
Ovp3p are captured, at lowest order, by the Lagrangian

o, = - (2\/§Gpvud)2 mgserCef i [(NTPE N) (NTP N)| +He+ .., (7)
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where . .. denote terms with two or more pion fields, which are required by chiral symmetry, and
Pliso = ( P}SO + inSO) /2 are projectors in the 1.5y wave,

1
a 2 _a 2
PlSo_%TTU’ (72)
Multiple insertions of neutrino masses do not change the chiral properties of the operator, and
thus can be captured by allowing ¢)¥V to depend on m;. For m; < Ay, we can write

gp N (mi) = gbld’ + mig)y + ... (73)

According to the rules of naive dimensional analysis [117|, the scaling of the short-distance
operators is given by

1 1
NN NN
91,0 ‘NDA =0 <A§> s 9v,2 ‘NDA =0 <A§‘<> ) (74)

with each additional power of m; compensated by A,. A gi\fé\f of this size is needed to absorb
divergences in loop corrections to the neutrino potential [58]. Refs. [46] and [47] pointed out that
the renormalization of LO LNV scattering amplitudes require the promotion of gl%v to leading

order, that is
1
g0 =0 (F2> : (75)

The arguments in Refs. [46,47] were derived keeping only linear terms in m; (leading to the
factor of mgg in Eq. (71)), but can be generalized to a massive neutrino propagator. It is easy
to see that the LO logarithmic divergence does not have m; dependence beyond an overall m}
factor. At NLO, there appear additional linearly divergent integrals [47], but again additional
factors of m; only change the finite pieces and do not affect the structure of the divergence.
From these results, we can argue that gl],VQN < (F?AX)_l. A full N2LO analysis of LNV scattering
amplitudes in chiral or pionless EFT has so far not been performed, and is beyond the scope
of this paper. To estimate the scaling of glj,\gv here we focus on the corrections to the neutrino
potential mediated by the weak magnetic moment gps

Ueim; k2 1 N
mag _ _(a)+ _(b)+ 2 172 e’y 2 (a) . ~(b) 4 ~ qab
ymas — p(a)+ -0+ (4GFVud)Zi: 2 < It G <0' o+ 28 (k))) . (76)
with gpy = 4.7, and Sab(f{) is the momentum-space version of the tensor operator defined in
Section A. Eq. (76) is the only N?LO contribution proportional to gjs, and can thus be considered
in isolation, without carrying out a full N2LO calculation. The tensor component does not
contribute in the 1Sy channel. The GT contribution shifts the value of gi\fév

2
NN NN Im
9v,0 - 9vo — 4m%\[7 (77)

and gives rise to a Yukawa-like potential of the form

Ueim,; m
VVmag _ 7_(a)-&-T(b)-*- % (4G%Vu2d) § e 9%4 4 O'(a) . o-(b) . (78)
k2 + m? Gm?\, < )

i
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When evaluated on 1S) wavefunctions, this potential leads to logarithmic divergences propor-
tional to m?. These need to be absorbed by giVQN , which thus scales as

NN _ 2 ClSO ? =0 1 (79)
gl/,2 9m A FT%Ai )

where Cig, = O(F; 2) is the leading order strong interaction short-range coupling in the 1S,
channel. Eq. (79) justifies the scaling assumed in the main text.
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