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Statistical analysis of the fluctuations of an initial-state model with independently
distributed hot spots
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We determine the uncorrelated modes that characterize the fluctuations in a semi-realistic model
for the initial state of high-energy nuclear collisions, consisting of hot spots whose positions are
distributed independently. Varying the number of hot spots, their size, and the weights with which
they contribute to the initial state, we find that the parameter that has the largest influence on
the relative importance of the fluctuation modes is the source size, with more extended hot spots
leading to a more marked predominance of the principal modes.

I. INTRODUCTION

When two nuclei collide at high energy, they are
strongly Lorentz contracted, so that each of them only
sees an instantaneous snapshot of the wave function of
the other. This results in event-by-event fluctuations in
the positions of the colliding degrees of freedom, which
were shown to lead to long-range azimuthal correlations
between the emitted particles in the final state of the
dynamical evolution of the created system [IH4].

A large variety of approaches have been proposed to
describe the energy- or entropy-density profile, with the
possible addition of conserved charges, resulting from the
collision of two nuclei shortly after these have passed
through each other, and that may be used as “initial
state” for a subsequent dynamical evolution [5H22]. The
models extend from physics-agnostic parametrizations to
effective theories of quantum chromodynamics (QCD) at
high energy, relying either on nucleon or on subnucleonic
degrees of freedom, and they may involve some dynami-
cal evolution — especially at lower collision energies — or
be purely static, resulting in either two- or more recently
three-dimensional configurations.

Of paramount importance is the connection between
initial-state properties and final-state observables, mostly
in the form of multiparticle correlations [23, 24]: A sys-
tematic analysis of the latter may lead to a satisfactory
enough determination of the initial state to pinpoint the
dynamic properties of the strongly-interacting created
system. In that spirit, several characterizations of the
initial geometry have been proposed, either using some a
priori expansion [25H28], or relying on a basis of “uncor-
related fluctuation modes” depending on the set of events
under consideration [29].

In the present study, we use a toy model mimicking
several features predicted for the initial state in realistic
models, and we investigate how varying these features
affects the fluctuation modes advocated in Ref. [29]. For
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that purpose, the principle of the decomposition is first
recalled in Sec. [l We then introduce in Sec. [Tl the sim-
ple initial-state model that we use and discuss its nu-
merical implementation. The details of our simulations
together with their results are presented in Sec. [[V] and
in Appendix [A] We also include a comparison to results
from the Monte Carlo (MC) Glauber model of Ref. [29].
Eventually, the main findings are summarized and dis-
cussed in Sec. [Vl

II. INITIAL STATE FLUCTUATIONS AND
THEIR MODE DECOMPOSITION

Within a model of the initial state, one can generate an
ensemble of N, configurations {®*) (x)} — where x de-
notes the position in two or three dimensions, according
to the model — with similar characteristics: for instance,
initial energy-density profiles for a given collision system
at the same impact parameter, or corresponding to events
within a definite centrality class. It seems rather natural
to write down each configuration as the sum of an av-
erage initial state W(x), defined as the arithmetic mean
of the {®@(x)}, and the departure 6®(*)(x) from this
average:

d(x) = U(x) + 607 (x) (1)

with

Ney
U(x) = Nl Zq)(i)(x). (2)

AVA
V=1

The {§®()(x)} are referred to as the fluctuations about
the average ¥(x). The decomposition (I]) is in particular
useful to investigate the influence of different types of
initial-state fluctuations on observables in the final state
of the dynamical evolution of the system [2628] B0H34].
For such mode-by-mode studies, the customary approach
is to describe the fluctuations via their decomposition on
a predetermined basis, e.g. via a Bessel-Fourier series, as
advocated in Refs. [25] [26] for two-dimensional profiles.
Instead of using such an a-priori given basis, it was
shown in Ref. [29] that it is possible to find a basis
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of “fluctuation modes” {W;(x)} that is closely tied to
the fluctuations {6®* (x)} under study, in the following
sense. Writing each fluctuation §®(*)(x) as

300 (x) =3 et (x), (3)
l

the expansion coefficients {cl(i)} obey the conditions

1 & g
v aldl=0 @
V=1

for all [ and I # m. That is, they appear as the realiza-
tions of uncorrelated centered random variables {¢;}. In
turn, the fluctuation modes are such that

/\I/l(x)\Ilm(x) dx=0 (5)

for [ # m, which may be seen as an orthogonality con-
dition. In that sense, the overlap integral of a mode ¥;
with itself is its squared norm and will be denoted by
[ W,]|°>. According to Eq. (@), the contribution of mode
U, to the fluctuation & on the i-th configuration is the
product of the mode with the expansion coefficient cl(l).
That is, the importance of the contribution can be as-
signed either to the expansion coefficient or to the mode.
In Ref. [29] it was chosen to let the modes have differ-
ent norms and to work with expansion coefficients with
unit variance, so that the conditions , expressed for
the random variables {¢;}, become

(i) =0 and {ciem) = i, (6)
where (---) denotes the statistical average over events.
That is, the basis of fluctuation modes is not orthonor-
mal, only orthogonal, and the norm ||¥,|| = v/)\; of each
mode is a measure of its typical contribution to the fluc-
tuations.

The configurations {®()(x)}, and therefore the corre-
sponding fluctuations {§®(*)(x)}, generally have a phys-
ical dimension. Fixing the typical size of the expansion
coefficients is consistent with choosing them dimension-
less, thus leaving the physical dimension in the modes
and their norms. That is, the squared norms {\;} are
actually dimensionful. Since this means that their values
depend on a choice of units, one can alternatively charac-
terize the importance of the modes by the dimensionless
ratios
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with H\IIH the norm of the average initial state . For
consistency, we also define

(7)
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which quantifies the relative “weight” of the average ini-
tial state. Clearly, these quantities are defined such that
the sum of all w; and of w equals 1.

In Ref. [29], energy-density profiles for Pb-Pb collisions
at \/sSyy = 5.02 TeV were generated with two different
models — a MC Glauber model with energy deposition
controlled by the local numbers of participants and bi-
nary collisions [35], and a saturation-based approach. For
configurations at a fixed impact parameter, it was ob-
served that the spectra of the weights w;, ordered by
decreasing value, significantly differ within the two mod-
els: the w;-spectrum is steeper for the fluctuation modes
of the Glauber model, and this holds at two different
impact-parameter values, see Fig. 3 of Ref. [29]. Physi-
cally, this means that “higher” fluctuation modes, defined
as those with a smaller w;, contribute less to initial-state
fluctuations in the Glauber model than in the saturation-
based one. Yet no attempt was made in Ref. [29] to inves-
tigate which properties of the initial profiles are reflected
in the behavior of the w;-spectrum, which is what we ad-
dress in the present study. For that purpose, we depart
from initial-state models motivated by phenomenology,
as we now discuss.

III. INDEPENDENT HOT SPOT MODEL

We wish to use a semi-realistic toy model with well-
defined features that we may change at will—which also
means that we study setups that are obviously not real-
ized in actual collisions of nuclei. For simplicity, we only
consider transverse initial-state profiles, so that vectors,
denoted in boldface, are from now on two-dimensional.

A. Description of the model

Specifically, we assume that each initial state ®(*)(x) is
a superposition of NS@ local sources, which we shall refer
to as “hot spots”. Each hot spot, labeled by a subscript
k, is distributed with some source function s,(:)

g) in the transverse plane, and it contributes

about a
position x
with a weight w,(;) to the initial profile [36] [37]:

N®

src

o@D (x) = > wst (x — x). (9)
k=1

In most of the scenarios we study hereafter, the source
function will be the same for all hot spots in all initial-
state profiles, in which case one can more compactly de-
note it by s(x— xg)), as we now do for better readability.
Our source functions are normalized to unity—possible
differences in the contributions of the hot spots are en-
coded in the weights w,(;)—, and to allow straightforward
calculations we take them to be Gaussian-distributed



with a width og.c

1 2 2

s(x — xp) = 3 o~ (%) /205, (10)
In the limit of pointlike sources, i.e. a vanishing og,., the
source function becomes s(x — x3,) = 6 (x — x;). The
source width og,.. of our toy approach corresponds to the
typical size of the transverse area over which energy is de-
posited by individual nucleon-nucleon or parton-parton
collisions in usual initial-state models for high-energy
heavy-ion collisions. In modern Bayesian analyses, this
typical size is often a free parameter, whose value has a
significant impact on the determination of other parame-
ters like the transport coefficients of the created hot and
dense QCD matter (for a short review, see Ref. [38] and
references therein).

Another ingredient in Eq. @ is the distribution of the
hot-spot positions {x,(;)} in an event. They are assumed
to be drawn from a random distribution f;(xx), which
in most scenarios investigated in this paper will be a
two-dimensional Gaussian. In a couple of cases, we shall
consider different widths o, < o, along two orthogonal
directions, see Eq. below. Yet, in most cases we
assume that f; is rotationally invariant, with a unique
width o, = 0y.

Since a single-variable distribution is used for the hot-
spot positions, they are a priori independent, which is
why we call the approach “independent hot spot model”
(IHSM). This is basically the model first introduced with
pointlike sources in Ref. [39] and further elaborated upon
in Ref. [40] (with Gaussian sources), and in Ref. [36]
(with fluctuating number of sources and weights). Due
to its relative simplicity, variants of the model — also
referred to as “independent cluster model” — were used
to compute (semi-)analytically fluctuations of (multipar-
ticle) initial-state eccentricities [37, 41H43] or correlators
of participant-plane angles from different harmonics [44].
Yet in the numerical simulations described hereafter, we
actually recenter the generated profiles ®(*) (x), which in-
duces (small) correlations between the positions.

The last element in the generation of initial profiles @D
is the weight of each source. They account for the intrin-
sic randomness in the physical mechanism — collisions
between nucleons or subnucleonic degrees of freedom —
producing the initial state. Such fluctuating weights
are implemented in the MC Glauber underlying GLIS-
SANDO [9, 45, [46] and are also included (in the thickness
function of each nucleus) in the TR ENTo generator [16].
In this paper, we assume either a constant weight, taken
equal to 1 since our initial profiles are not tailored for
phenomenology, or a value taken from a probability dis-
tribution p(w) such that the average of w over its range
of values is 1. Note that any dependence of the hot-spot
weight on position can be absorbed in the distribution
fi

With the above specifications, and assuming that the
sample average of the weights w,(;) over the Nb(rzc) sources
coincides with its statistical average, the integral of the

profile @D over the transverse plane yields the corre-
sponding number of hot spots:

/q><i>(x) d?x = N, (11)

In turn, the average initial state reads

() = (Nuse) / s—x) fula) dxi, (1)

with (Ngr) the mean number of hot spots, and where the
effect of recentering the configurations is ignoredB

To conclude this section, let us summarize the param-
eters of the model. The Gaussian source function s(x) is
entirely characterized by its width og. The (also Gaus-
sian) probability distribution f; (x) for the hot-spot cen-
ters is determined by o, and oy,. A given initial-state pro-
file is also characterized by its number of sources Ng..
Eventually, the relative importance of the hot spots is
given by weights w that may fluctuate with a probabil-
ity density p(w).

B. Numerical implementation

To determine the fluctuation modes corresponding to
the THSM with given parameters, we simulated the model
numerically. For that, we discretized the transverse plane
with a spatial grid comprising N2 = 128 x 128 sites, each
separated by a spacing a ~ 0.24 me|

To generate an initial-state profile ®(x) — where for
brevity we suppressed the superscript (i) —, we sample
iteratively the positions {xy} of the hot spot centers from
the corresponding probability distribution fi(x), using
an acceptance-rejection algorithm in the sampling pro-
cess, where the origin of coordinates lies in the middle
of the grid. The centers of the hot spots are generally
not restricted to coincide with the grid points. The only
exception is when we simulate pointlike sources, whose
specific implementation is described at the end of this
section. In Secs. [VAHIV C] the distribution of hot-spot
centers is Gaussian:

L U R

X) =
hi(x) 2no,0y 207 203
In all simulations we use 0, = 4 fm, while o, is either
4 fm, yielding a rotationally invariant distribution, or

I Repeating the calculations detailed in Appendix D of Ref. [36],
one finds that the effect of recentering is to replace o2 and 05 by
their product with 1— 1/(NSYC)2. Since we always consider of the
order of 50 hot spots or more in our simulations, the change from
recentering constitutes a relative correction by a factor smaller
than 1073, which we neglect. Note that our Eq. is Eq. (C2)
of Ref. [36] with (on average) unit weights.

2 More accurately, a = 30/(Ns — 1) fm. The length unit is strictly
speaking irrelevant, since we do not perform any phenomenology.



2 fm. Since our grid extends about 15 fm along the z-
and y-directions, hot-spot positions outside the grid are
an extremely rare occurrence, in which case we simply
discard the position and generate a new one.

For the hot-spot widths og.., we shall consider several
values: og. = 0 (pointlike sources, see later below), 0.3,
and 0.7 fm. We also performed simulations with a fluctu-
ating ogc. Given the finite extent of the grid, we cannot
simulate the whole Gaussian source function ; ac-
cordingly, we truncate it at a distance of 304 from the
center xj The values of s(x —xy,) at the grid sites within
this range are stored and summed over. Multiplying the
resulting sum with the grid-spacing squared a? amounts
to a numerical integration of the source function. This in-
tegral will generally not give 1, contrary to the analytical
model. Accordingly, we rescale the whole hot spot such
that its numerical integral does equal 1. This ensures
that, after generating the N, sources, the numerical in-
tegral of ®(x) over the whole grid is equal to Ng., in
accordance with Eq. .

The final step is to recenter the generated initial-state
profile, by translating it across the grid such that the
profile center coincides with that of the grid up to less
than a/2 along the z- and y-directions. As already stated
above, this induces (long-range) correlations between the
hot spots [36], which are however small for the setups we
consider. In fact, the overlap between neighboring finite-
size hot spots already induces correlations.

This last source of correlations disappears if the sources
are pointlike and their positions are sampled indepen-
dently of each other. Such a scenario is however difficult
to simulate with a discretized space: with a continuous
distribution like Eq. , the probability that a pointlike
hot spot falls on a grid site is essentially zero! To still
mimic the model, which will be referred to as og.c = 0, we
modify the implementation described above: After hav-
ing randomly chosen a hot-spot position xj with f;(x),
we relocate the hot spot to the nearest grid pointE| Then
we assign the value 1/a? as the local value of the source
function, to ensure that its numerical integral equals 1. It
is important to note that in this adjustment process, we
inevitably introduce a small source of correlations. Yet,
we view it as an acceptable compromise to be able to in-
vestigate numerically the model with pointlike hot spots,
in which it is easier to gain also intuitive knowledge.

IV. RESULTS

Let us now give further details of our numerical
simulations of the THSM with different parameter sets
(Sec. . We then present results for the average ini-
tial state (Sec. [[VB]), followed by the fluctuation modes

3 The probability that the two nearest neighboring sites are at
exactly the same distance is again vanishing.

TABLE I. Summary of simulation parameters.

Parameter set Nsre Osre [fm] o0y [fm] oy [fm)]
THSM (4, 4)0-3 50 0.3 4 4
THSM (4,4)35 250 0.3 4 4
THSM(4,4)%3 750 0.3 4 4
THSM (4,4)%7 50 0.7 4 4
THSM (4,4)355 250 0.7 4 4
THSM (4,4)%5% 750 0.7 4 4
THSM(4,4)3:% 250 0.0 4 4
THSM(2,4)% 50 0.3 2 4
THSM(2, )3'5% 250 0.3 2 4
THSM (2,4)%7 50 0.7 2 4
IHSM(2 4)350 250 0.7 2 4
we=504£10 50+ 10 0.3 4 4
w=1+0.3 50 0.3 4 4
Oore = 0.340.17 50 0.340.17 4 4

and their respective importance (Sec. [[V C)). Eventually,
we attempt a comparison with results from a MC Glauber

model, by performing ITHSM simulations with a different
underlying hot-spot distribution (Sec. [IV D).

A. Simulation setup

In the present study of the IHSM, we performed several
“runs” of numerical simulations of the model, using dif-
ferent sets of parameters listed at the end of Sec. [[ITA]
to investigate their respective influence on the results.
These parameter sets are comprehensively summarized
in Table [ Throughout the paper, we use the parame-
ters to label the results shown in the figures in the form
IHSM(04, o) . (omitting the unit for the widths) for
the runs with fixed values of the hot-spot size og.. and
number Ng., and with a uniform weight @ = 1 for all
sources. Additionally, when no ambiguity arises, we dis-
pense with explicitly indicating the values of (04, 0y).

To fix ideas, the number of hot spots Ng.. can be com-
pared to that of binary nucleon-nucleon (NN) collisions
in a MC Glauber model. Using an inelastic NN cross sec-
tion of 67.6 mb for Pb-Pb collisions at /s = 5.02 TeV,
the values Ny = {50,250, 750} correspond to collisions
at impact parameters b ~ {12.5,10,7.5} fm, respec-
tivelyﬂ i.e. to peripheral to semi-peripheral centralities.

Besides the runs with fixed parameters, we also per-
formed three runs with a rotationally symmetric f; —
ie. 0, = 0y = 4 fm — in which we let either the num-
ber of sources per initial state, or their weight w, or the
widths of the hot spots fluctuate, displayed in the last
three lines of Table[l] In all three cases, the fluctuating

4 This can be for instance read off Fig. (2.1) in Ref. [47].
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FIG. 1. Density profile of the average initial state ¥ (x) for
the run THSM(4,4)%.

quantity was drawn from a uniform distribution over the
interval specified in the Table.

Each run consists of N., = 22! initial states. In each
run, we computed the average state W(x), according to
Eq. (), and the fluctuation modes {¥;(x)} with their
relative weights {w;}, to which we shall come back in

Sec. IV Cl

B. Average initial state

As an example, we display in Fig. [I] the average-state
profile for the simulation consisting of configurations with
Ngre = 50 hot spots with width ogc = 0.3 fm, whose
centers are distributed across a symmetric fi(x). The
profiles look very similar for all other runs with o, = oy,
while for the runs with o, # o, we obtain elongated
shapes (not shown), as could be expected.

Equation describing the average initial state W(x)
is readily integrated over the transverse position x: Since
both the source function s and the hot-spot-center dis-
tribution f; are normalized to 1, integrating ¥(x) yields
(Ngsre). We checked that this is indeed the case of the
average profile from our simulations in the various runs,
up to numerical precision.

When the source function has a fixed width o, since
both s(x) and the distribution of hot-spot positions f7(x)
are Gaussian, a straightforward calculation with Eq. (12))
shows that W is also a two-dimensional Gaussian, normal-
ized to (Ny.), with widths (o2 + 02.)'/?, (02 + 02 )12

src src

<NSFC>

\if =
(X) 2 2 2 2
27T (0$ + O.SYC)(O.y + Usrc)

.’172 y2

X — —
P { 2(02 +02,)  2(02+02,)

src src

» (14)

where we discard the correction due to the recentering
of the profiles, which effectively leads to a small decrease

of o, and o,. That is, the average initial state actually
extends over a (slightly) larger region than fi(x), due to
the finite size of the hot spots themselves. This is most
obvious in the extreme case of exactly localized hot-spot
centers, f1(x) = 62 (x), in which case the average state
becomes proportional to the source function s(x) and
thus has the same width.

To check how the numerical simulations approach this
formula, we computed the mean square widths {22}y,
{y?}g of the average initial states of the various runs,
where the curly brackets {---}g denote an average
weighted with . In the analytical case, Eq. , these
quantities respectively equal 02 + 02, and o7 +02,.. Nu-
merically, we find a consistent trend over all runs: At
a given geometry of the hot-spot distribution, i.e. ulti-
mately a given o,, the mean square widths {z?}g and
{y?}¢ only depend on o, increasing with the source
size, but they are independent (to two-digit accuracy,
see below) of Ng. and the possible inclusion of source
weights. The absence of a sizable dependence on the
number of hot spots shows that the correction to Eq.
due to recentering is indeed invisible within the numerical
accuracy of our simulations.

More precisely, for hot spots with oy = 0.3 fm resp.
0.7 fm, we obtain {yQ}\li,/2 = 4.00 fm resp. 4.03 fm — and

the same {xQ}\lil/ * values when o, = oy. These results
should be compared with the respective “theoretical” val-
ues (07 + 02.)"/? = 4.01 fm or 4.06 fm. In the runs with
o, = 2 fm, the simulations yield {xz}g2 = 2.03 fm resp.
2.12 fm for ogc = 0.3 fm resp. 0.7 fm, to be compared
with anticipated values (02 + 02.)'/? = 2.02 fm resp.
2.12 fm. That is, the numerical values are almost sys-
tematically smaller than those from Eq. , but one
can convince oneself that this arises from the discrete
grid: The numerical version of the integral uses the val-
ues at the grid points, instead of the continuous range
of values between successive grid points. Accordingly,
it puts more weight on the points closest to the center,
where W(x) is larger, resulting in smaller mean-square
widths. That being said, it is remarkable that the dis-
crepancy between the numerical and analytical values is
at least a factor 8 smaller than the grid spacing.

In the case of pointlike sources, for which we performed
a single run with a slightly different recipe, we obtain
{x2}‘1il/2 = {yz}‘lij/2 = 3.97 fm, smaller than the expected
value of 4 fm. The discrepancy is again due to the space
discretization but of a different origin. In this scenario,
the hot-spot contributions are shifted to the closest grid
point, which has a higher probability of being closer to
the center because f1(x) decreases with distance from the
center. Thus, there is a higher likelihood of a pointlike
source being moved closer to the center, again resulting
in smaller mean square widths.



C. Mode-by-mode decomposition of the IHSM

To determine the fluctuation modes {¥;(x)} such that
the expansion coefficients ¢; entering the decomposi-
tion (3)) of the fluctuations §®(x) are centered and un-
correlated, according to Eq. @, the recipe introduced in
Ref. [29] is to define numerically a “density matrix” p as

1
Nev

p= > oWt — gyt (15)

where the initial states {®()(x)} are represented by their
components on some arbitrary finite basis — which in
practice we take to be the trivial basis associated with
the grid. Since there are N2 such basis vectors, p is a
(N2 x N2)-dimensional matrix. The searched-for fluctu-
ation modes {U;} are then eigenvectors of p and their
squared norms {\;} are the respective eigenvalues.

1. Modes

The modes themselves, and how their properties affect
final-state observables at the end of a dynamical evo-
lution, are not within the scope of the present study,
since the model we used to generate the initial profiles is
at most semi-realistic. Nevertheless, we show as an ex-
ample in Fig. [2] the first sixty corresponding normalized
eigenvectors {¥;/v/\;} for the run THSM(4,4)%3, where
the modes are ordered by decreasing A;. The eigenvec-
tors look similar to those shown in Ref. [29] for realis-
tic initial-state models: there are modes with rotational
symmetry, like the average initial state in Fig. [I} modes
with more or less clearly recognizable dipole, quadrupole,
hexapole. .. shape, which come in pairs; and modes with
more complicated shapes.

In comparison to the modes reported in Ref. [29], there
are two noteworthy differences. First, here we present
fluctuation modes for initial states with only 50 hot spots,
while the central MC Glauber events of Ref. [29] typically
correspond to about Ny, ~ 2000 binary collisions, and
thus at least as many “hot spots”. The second difference
is that in the initial states considered in run THSM(4,4)%:
(and in almost all runs of Table , the number of hot
spots is fixed. Assuming momentarily to facilitate the

J

discussion that each source deposits energy, a fixed N
means (as long as all hot spots contribute the same) a
fixed total energy in the initial profile. We mentioned
above that the average initial state ¥ is normalized to
Ngpe, i.e. it contains precisely the same energy. Now
since the fluctuation modes are uncorrelated with each
other, they cannot contribute energy, otherwise, any en-
ergy excess or deficit due to the presence of one mode
would have to be exactly compensated by other modes,
which would induce correlations. Mathematically, this
requirement translates into the integral of every ¥;(x)
over position being zero. We checked numerically that
this is the case — to be more precise, the absolute value
of the integral is always smaller than 1073, to be com-
pared with the value Ny of the integral of ¥ — for the
modes in the runs with a fixed number of hot spots and
uniform weights w. In the two runs with either fluctuat-
ing Ng. or fluctuating w, a few modes do have a non-zero
integral, i.e. contribute some energy, namely those with
rotational symmetry.

Eventually, another important ingredient of the mode-
by-mode decomposition is the conditions (4)), or more ab-
stractly Eq. (@, on the expansion coefficients {¢;} of in-
dividual fluctuations over the basis of fluctuation modes.
For the sake of completeness, we present a few results on
the statistics of these coefficients in Appendix [A]

2.  Figenvalues

Let us now discuss the eigenvalues {\;} of the density
matrix p, or equivalently the relative weights {w;} of the
modes, defined in Eq. . In essence, the density matrix
is a discretized version of

pxy) = 5 32080 (y) ~ Bx)U(y).  (16)

Since W(x) is nothing but the average of the {®()(x)},
see Eq. (2), p(x,y) is actually the (auto)correlation func-
tion of the fluctuations {§®()(x)}. Viewing the latter as
realizations of a random function 6®(x), one has

p(x,y) = (62(x)dP(y)) - (17)

This is the function denoted by S(x,y) in Ref. [36]. In-
voking Eq. (C3) of that articleEl, it becomes

p(%,y) = (Nese) () / s(x = x1)s(y — x1) fu(x1) 2,

+ (Ngre(Ngre — 1)}(@)2/3()( —x1)8(y — X2) f2(x1,%x2) d®x; d*x2 — U (x)¥(y), (18)

5 The original equation has a misprint: the two-point density
f2(x1,x2) should be multiplied by a factor N(N — 1) instead

of N only.
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where fo denotes the two-point distribution function of
hot spots. For independent sources, the latter factor-
izes into the product of the single-point distributions:
fa(x1,%2) = fi1(x1)f1(x2), which we shall assume from
now on. We know that recentering induces correlations,
yet from our findings for the average state ¥ we are con-
fident that they are very small in our numerical simula-
tions. With this factorlzatlon assumption, the mtegral
involving f> in Eq. (I8) equals ¥(x)¥(y)/(Nge) thanks
to Eq. (12). Using (w) = 1, one eventually finds

Mxyr4M@@¥ykx—mn@—xnﬁ@n¥m

Nae) — 0% _ _
L))
(Nore)

(19)
where we introduced the variance 012\, of the fluctuations
in the number of hot spots. With Gaussian s(x) — i.e.
for finite-size hot spots — and fi(x), the first term on
the right-hand side is also Gaussian. We do not show
the exact form of p(x,y) in the general case, since it is
not used in the following. Yet, it is worth noting that
within the THSM, it is entirely determined by the few
parameters of the model.

The second line of Eq. is somewhat mislead-
ing: since ¥(x) is proportlonal to (Ngre), see Eq. .,
the actual dependence of the term on the number of
hot spots is given by the numerator, i.e. it scales like
(Nsre) —vam. When the number of sources is constant, so
that oy, = 0, the two-point correlation function p(x,y)
is thus proportional to Ng.. This should also hold, up
to numerical fluctuations, for its discretized version .
That is, one can expect that the eigenvalues {\;} at fixed
source-size og. and geometry of the hot-spot distribution
should be proportional to Ng.

In Fig. [3| we show the eigenvalues (top) and the rela-
tive weights {w;} of the fluctuation modes (bottom) for
the seven first runs of Table[l] i.e. the simulations with a
rotationally symmetric hot-spot distribution and no fluc-
tuation in the other parameters Ny, @ O Ogc.

Let us leave momentarily aside the results of the run
with pointlike sources. For each finite value of o, the
three runs with different N, yield {\;} spectra that look
extremely similar, up to a multiplicative factor, which ac-
cording to our previous reasoning should be Ng.. When
going to the relative weights {w; }, which are proportional
to the square roots of the eigenvalues, we expect to cancel
out the dependence on N, since both numerator and
denominator of Eq. scale like v/ Ng. This is indeed
what can be observed in the lower panel, in which the
{w;} spectra for runs with the same hot spot size o
and different Ng.. collapse together.

Discarding the trivial dependence on the number of
sources, we can now focus on other features of the eigen-
values across different hot-spot sizes og... The spectra
display distinct steps, corresponding to (almost) degen-
erate fluctuation modes. This was already observed in
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FIG. 3. Eigenvalues ); (top) and relative weights w; (bottom)
of the fluctuation modes in simulations with a rotationally
symmetric hot-spot distribution. The large marker at [ = —1
in the lower plot indicates the weight w of the average state.

Ref. [29]: as discussed there, it is, for instance, clear that
the two “dipole” modes I = 1 and 2 of Fig. [2| that differ
only by a rotation by /2, should be exactly degenerate
in a model with rotational symmetry. A novelty here
is when we compare simulations at different og..: the
quasi-degeneracy steps seem to be similar — with the
same length, possibly up to one mode — at the two val-
ues of the hot-spot size. We have no explanation for this
feature, which is all the most remarkable when we come
to the last point, namely the significant difference in the
drop-off of the spectra according to the hot-spot size.
Indeed, one sees that the spectra of eigenvalues or rel-
ative weights are steeper for simulations with larger hot
spots (osre = 0.7 fm) than for the runs with smaller ones
(0sre = 0.3 fm), while the spectra become almost flat
for pointlike sourcesﬁ In parallel, one sees in the lower

6 To correct the visual impression, let us quote a few values: with



panel of Fig. |3 that the relative weight w of the average
initial state is higher (approximately 10%) for the runs
with larger sources, than for those with smaller hot spots
(about 2% for o4 = 0.3 fm and slightly less for point-
like sources). This means that higher fluctuation modes
W; become less and less important when the hot-spot size
grows. Now, in the ITHSM (with finite o) of the present
study as well as the two more realistic models of Ref. [29],
the modes with higher index [ are those with structure
on increasingly shorter length scales. That such fluctua-
tion modes contribute less when the source size increases,
and thus induce correlations of increasing wavelength, is
not surprising. In turn, the almost flat spectrum in the
simulations with pointlike hot spots suggests that fluctu-
ations at all (subnuclear) length scales are almost equally
important in that scenario.

Similar trends are found in the spectra of eigenvalues
and relative weights, shown in Fig.[4] in simulations with
elongated hot-spot distribution. Here as well, the depen-
dence on the number of sources is an overall factor in
the {\;}, that disappears when going to the {w;}. And
again one finds that the spectra are steeper for larger
hot spots. A small difference with the results of Fig.
is that the “quasi-degenerate” plateaus generally involve
fewer fluctuation modes. This is consistent with the fact
that rotational symmetry is now explicitly broken so that
the degeneracy between pairs of modes with the same ge-
ometry rotated by a fraction of 7 is lifted.

Before we present the results of the simulations in
which we let one of the parameters fluctuate, let us
come back to the two-point correlation function. Besides
the scaling behavior with the number of hot spots, one
can further exploit Eq. in its generality for a spe-
cial case, namely x = y. Indeed, the equation gives at
once p(x,x), which can then be integrated over all trans-
verse positions x. With finite-size Gaussian hot spots,
the calculation is straightforward: The squared profile
function is Gaussian with width o/ v/2 and nor-
malized to 1/4wo2 . Integrating first over x gives this
normalization, and the integral over x; in Eq. is
then trivial. In turn, ¥(x)? is also Gaussian, normalized
to (Nuwe) /[47(02 + 02)/2(02 + 02,,)/?]. Allin all, one
thus finds

2

) [<w2> - (1 - <J\ijs:>) \/(ag—i—a;j S;C(a§+a2 )

. (20)

src src

Note that this expression diverges in the limit og.. — 0
of pointlike sources. This can easily be traced back to

pointlike hot spots, the relative weight is wo ~ 0.551 x 10~3 for
the “dominant” mode, wia7 ~ 0.511 x 10~3 for the last mode
shown in Fig. |3] and w255 ~ 0.476 X 103 for the 256th mode.
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FIG. 4. Same as Fig. [] for the simulations with an elliptic
hot-spot distribution.

the fact that the term s(x — x1)s(y — x1) in the inte-
grand of Eq. becomes an ill-defined squared (two-
dimensional) §-distribution when x =y.

The interest of the integral is that it represents, up
to a factor a? corresponding to the area of an elementary
cell of our spatial grid, the trace of the matrix p:

/p(x7 x) d?x = Tr(p) a®. (21)

Now, in our numerical simulations, we can clearly com-
pute the trace of the matrix defined by Eq. , yielding
a first determination of this trace, which we denote by
Tr(p) .- We checked that summing over the N2 com-
puted eigenvalues gives consistent values. On the other
side, we can also calculate the analytical prediction for
the trace using Eq. (20) with the input parameters of the
simulations and Eq. (21)) with the known grid spacing:
this yields a value Tr(p),,. We list the corresponding
values for our different runs in Table [[} including the
scenarios that we shall discuss shortly.

The agreement between the analytically and numer-
ically determined traces is generally excellent across all



TABLE II. Trace of the density matrix p computed from the
analytical expression Egs. f and from the numerical
simulations.

Parameter set Tr(p),.. Tr(0) jum.
THSM (4,4)5 787.86 789.04
THSM (4,4)%:% 3939.28 3945.51
THSM(4,4)%:% 11817.83 11836.24
THSM(4,4) %y 141.20 141.96
THSM (4,4)%55 705.99 709.89
THSM (4,4)%5% 2117.97 2129.28
THSM (4,4)9:% divergent 249.93
THSM(2,4)253 783.50 784.71
THSM (2,4)%:% 3917.49 3923.63
THSM(2,4)%" 137.24 137.97
THSM(2,4)%5% 686.18 689.99
Nere = 50 £ 10 791.11 792.23
w=1£03 811.62 812.94
Osre = 0.3 £0.17 1162.61 1184.57

simulations, mostly at the 1% level or better. This makes
us confident that the computer implementation of the toy
model is not plagued by large numerical errors. Inter-
estingly, Tr(p) . is systematically larger than Tr(p),,
(when defined). We did not attempt to track the pre-
cise origin of the discrepancy between the two sets of
values. However, it is clear that the matrix p should ide-
ally contain a number of zero values on the diagonal —
for instance, at the points at the edges of our grid, at
a distance of at least 15 fm from the center — which
are finite and positive in the numerical implementation,
thereby biasing the trace.

As stated above, Eq. yields a divergent result
in the limit oz — 0 of pointlike sources. This diver-
gence cannot occur in the numerical determination, with
a finite-dimensional density matrix p, whose diagonaliza-
tion yields N2 finite eigenvalues (and their eigenvectors)
and thus a well-defined trace.

Let us now discuss the three runs in which we let one
of the model parameters fluctuate, either event-to-event
(fluctuations in Ng.), or from one hot spot to the next
(fluctuating weights @ and source sizes o). In Fig.[f|we
display the eigenvalues for the run with exactly Ny, = 50
hot spots, unit weights, and oy = 0.3 fm (with a ro-
tationally symmetric hot-spot distribution), and for the
simulations in which we allow for uniformly distributed
fluctuations about the values of this “reference” run.

The run with fluctuations Ny = 50 & 10 in the hot-
spot numbe]| yields fluctuation modes whose associated
eigenvalues are almost the same as in the run with fixed
Ngre, up to an important exception, namely the class of

7 This results in 6% = ANge(1 4+ ANgc)/3 with ANge = 10
for Egs. and .
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FIG. 5. Eigenvalues A; for the simulations with rotationally
symmetric hot-spot distribution, Ng. = 50, ogc = 0.3 fm,
and unit source weights o = 1 (IHSMZ;®), and runs in which
either Ngre, Osre, or w fluctuate about these values.

“rotationally symmetric” modes, which appear to have
a consistently higher A\; when Ng. is allowed to fluc-
tuate. We have already mentioned that these specific
modes have a non-vanishing integral over the transverse
plane when Ng.. can fluctuate, in contrast to the fixed-
Nge case. It is interesting to observe that this difference
is accompanied by a sizable change in the relative impor-
tance of the modes.

Turning now to the initial states with hot spots with
fluctuating weight, @ = 1+ 0.3, the eigenvalue spectrum
in Fig. [f] appears to parallel exactly that of the run with
a fixed weight, up to a constant multiplicative factor.
Equation shows that with 0,0y > 10 04, as in our
simulations with symmetric fi(x), the term in (w?) in
Eq. is typically larger than the other by a factor
of order 100. This then results in eigenvalues of p that
approximately scale linearly with (w?), leading to the
observed behavior in the present run where (ww?) = 1.03,
instead of 1 in the case of fixed unit weights.

The profiles with fluctuations oy = (0.3 £0.17) fm in
the source size are somewhat special because the corre-
sponding average initial state W(x) slightly differs from
the other runs, since the source function s(x) entering
Eq. does not depend linearly on og... As ogc re-
mains significantly smaller than the width o, = o of the
hot spot distribution, this change is however minimal, so
we did not attempt to optimize the interval over which
o4 fluctuates to try and keep the properties of ¥(x) un-
changedﬂ In Fig. 5| one sees that these fluctuations lead
to the greatest difference with the reference run, which is

8 For this run, we computed Tr(p),, in Table by averaging
numerically the trace values given by the analytical formula at
fixed ogre.
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(normalized to unity) for the ITHSM (dashed) and the MC
Glauber model (full line).

possibly not a surprise since Figs. [3]and [d] already showed
the marked influence of the hot-spot size. More precisely,
we see that the “quasi-degenerate steps” of the eigenvalue
spectrum are less flat than at fixed g, but are now siz-
ably slanted, which means less degeneracy. In addition,
the eigenvalues of the higher fluctuation modes are larger
than in the reference run, i.e. those modes are compara-
tively more important. This can safely be attributed to
the at times smaller hot spots generated in the present
run, which result as above in more frequent, and thus
more important, fluctuations with smaller wavelengths.

D. Comparison of the IHSM with the MC Glauber
model

In Ref. [36], the eccentricity and size fluctuations com-
puted for Pb-Pb collisions at b = 0 in the MC Glauber
from GLISSANDO [9] were compared to results from the
THSM. For such observables, integrated over the whole
transverse area of the initial state, a good agreement
was found between both approaches, although the MC
Glauber includes (intra)nuclear correlations. In this Sec-
tion, we pursue the same idea and compare the fluctu-
ation modes and respective relative weights w; from a
MC Glauber code, already presented in Ref. [29], with
those from THSM simulations with similar global charac-
teristics. More specifically, we now used hot spots with
a width ogc = 0.4 fm, which is the smearing radius used
in the MC Glauber simulations [29]. We also tuned the
hot-spot-center distribution fi(x) in the IHSM such that
the resulting average initial state W(x) is the same as
computed in the MC Glauber for Pb-Pb collisions at
5.02 TeV. This is shown in Fig. |6} in which the normalized
radial profiles Cg (r) = ¥(|x|)/|| ¥ of ¥(x) computed in
both models are compared, and indeed almost coincide.

A significant difference between the parameters of the
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FIG. 7. Relative weights w; of the fluctuation modes in sim-
ulations with the IHSM (stars) and the MC Glauber model
(squares). The large markers at [ = —1 indicate the weight @
of the average state.

two sets of simulations we now compare is the number of
hot spots. In the MC Glauber model, it fluctuates event
by event, with a mean value of order 2500 hot spots. In
contrast, we simulated only Ny, = 250 sources in the
THSM, to accelerate the event generation. According to
our findings in Sec. this difference in the (mean)
number of sources should have a negligible impact on the
relative weights w;, since the eigenvalues \; scale with
Ngre. The only significant influence is that the fluctu-
ations in Ng.. in the MC Glauber mean that the total
energy in the initial states is not constant: as we argued
above when looking at the IHSM with Ng.. = 50 4+ 10
sources, there should be a few modes that are responsible
for these energy fluctuations, and the associated relative
weight w; may differ from the case with fixed Ngc.

The relative weights w; of the fluctuation modes for
both simulations are shown in Fig. [7] where the results
of the THSM are labeled IHSM(Glauber)3: to keep track
of the parameters used to generate the initial statesEI
The spectrum for the IHSM is clearly steeper, although
the difference in slope with the MC Glauber results is
less marked than when changing the hot spot size from
0.3 to 0.7 fm in Fig. 3] or Fig. @ The spectra really
cross around mode [ ~ 115: beyond [ = 125, the relative
weights for the MC Glauber model are larger than in the
THSM. When looking in detail, one sees that the degen-
eracy patterns in both sets differ, although not much —
indeed, the steps that are clearly marked in the THSM
can also be recognized in the MC Glauber at the same
[ values. As in Fig. [3] the relative weight of the average
state W is about a factor 2 larger than the relative weight

9 The fluctuation modes for the THSM are shown in Fig. in
Appendix[B] while those for the MC Glauber model can be found
in Fig. 30 of Ref. [29].



of the “dominant mode” wq in the THSM, while they dif-
fer by a factor 10 in the MC Glauber initial states.

The latter observation is a clear hint that there is a sig-
nificant difference between both models, even with sim-
ilar parameters (apart from Ng., whose role we believe
to be unimportant). There exist “short range correla-
tions” in the MC Glauber model, that are not present in
the IHSM. An example is the repulsive core implemented
for the positions of nucleons in the colliding nuclei. But
it may possibly be more important that each nucleon-
nucleon collision actually results in three correlated hot
spots: one at each nucleon-center position at a maximal
distance /oy, /m ~ 1.47 fm, and one inbetween It
would be tempting to speculate that these three hot spots
effectively act as a single larger and elongated source,
but this would lead to the opposite behavior to that of
Fig. [7} namely a steeper spectrum for the MC Glauber
model! From that, we conclude that correlations do af-
fect the spectrum of eigenvalues of the fluctuation modes
in a non-trivial manner. However, one should note that
in the present case the influence is rather small: com-
paring with Fig. [Jor [} the difference in spectrum slope
that we attribute to the correlations in the MC Glauber
model are comparable to that which would be induced
by a change in o4 by 0.1 fm or less, although we did
not attempt to quantitatively assess which value of og.c
would yield the same slope.

V. DISCUSSION

We used a semi-realistic model for the initial state of
nuclear collisions, described as a superposition of inde-
pendently distributed hot spots, to investigate the impact
of different parameters — the number of hot spots, their
size, and the influence of hot-spot weights — on the rela-
tive importance of modes characterizing the fluctuations
of initial-state configurations about an average profile.
Our main finding is that the greatest influence is that
of the hot-spot size: a larger source width oy results
in a steeper spectrum of the eigenvalues {\;} character-
izing the relative importance of the mode contributions
to typical fluctuations, which means that fewer modes
contribute significantly. In contrast, the number of hot
spots Ng has little to no influence on the steepness of
the spectra: N only affects (multiplicatively) the ab-
solute value of the eigenstates, but this is paralleled by
a similar increase of the average initial state ¥(x). Let-
ting the hot spots contribute with different weights to
the initial states also has a small impact.

According to that view, the difference, mentioned at
the end of Sec. in the slopes of the spectra of eigen-
values between the two initial-state models considered in

10 The hot spots at the participant positions all contribute the same
amount of energy, even when a nucleon participates in several
collisions.
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Ref. [29] could reflect a difference in the size of the “hot
spots” produced in the two models. In the MC Glauber
model, this source size is easily found: it is the smearing
radius of 0.4 fm used for the energy density profile. In the
saturation model of Ref. [29], the energy density, given
by Eq. (21) of the article, is roughly proportional to the
third power of the saturation scale (Q, 4,z) in the collid-
ing nuclei. Then the square of each Q) is proportional to
the “proton thickness function”, which introduces a typ-
ical length scale /Bg = 2 GeV~! ~ 0.39 fm. Since Q,
is raised to the power 3/2 in the expression of the energy
density, the variance Bg of the proton thickness func-
tion is effectively multiplied by 2/3, which means that
the typical size of the hot spots created in the model is
approximately /2B¢g/3 ~ 0.32 fm. This is smaller than
the hot-spot size in the Glauber model, and can thus ex-
plain, to some extent, why the spectrum of eigenvalues
{\i} (or equivalently of weights {w;}) is flatter in the
saturation model than in the MC Glauber simulations at
both values of the impact parameter studied in Ref. [29].

Admittedly, the previous discussion ignores the effect
of correlations in the initial state that are inherent in
the models. We have not studied such correlations here
and reserve their detailed investigation for future work.
The authors of Ref. [36] concluded that the correlations
they considered have a subleading impact on “global” ob-
servables like the geometry in the MC Glauber modelE
Yet we found in Sec. [V D] that the correlations present
in the MC Glauber model lead to a sizable difference in
the spectrum slope compared to IHSM simulations with
the same average initial state and hot-spot size. Intu-
ition suggests that the correlations, being rather short-
range, should affect the fluctuation modes with structure
on shorter wavelengths, which are typically the modes
with a smaller contribution to the initial states (with
larger [ in our notations). At first sight, this expectation
is not borne out by the results reported in Fig. since
the whole spectrum is affected. One needs however to
beware that the relative weights w; of the modes and w
have to sum up to 1 by construction, so that a change
for high-l modes might entail a compensating shift in the
small-l modes — unless the difference is absorbed by the
average initial state. To test the impact of correlations
more rigorously, one has to be able to turn them on and
off in a well-controlled manner, for instance in a refined
version of the hot-spot model used here.

In the present article, we mostly focused on the eigen-
values {\;} associated with the modes {¥;(x)}, but the
latter were little discussed. As stated above, the find-
ings across the various runs were quite similar, and thus
Fig.[2|represents the generic case, up to a few exceptions.

11 Tn contrast, a close connection between correlations between nu-
cleons in the initial state and multiparticle correlations in the
final state was exhibited in Ref. [24], arguing for a detailed ex-
perimental and phenomenological study of the latter to assess
nuclear structure.



First, the modes in the run with pointlike hot spots (not
shown) are totally different. Instead of displaying regu-
lar features (rotational symmetry, dipole, quadrupole. . .)
like the modes with extended sources, they are extremely
chaotic, jumping wildly from positive to negative with-
out any recognizable pattern from one cell of the dis-
cretized transverse plane to the next. This is consistent
with the observation (Fig. that the eigenvalues are
extremely close to each other: since the modes are de-
generate, modes with different symmetries mix, resulting
in wildly looking modes. The only conspicuous trend is
that the points where ¥;(x) takes sizable values are close
to the center for low [ and tend to extend further away
as [ increases — which is actually also the case for the
modes of all runs, and can be seen in Fig. |3|and ascribed
to the higher probability to have fluctuations where the
hot-spot-center density fi(x) is larger.

We already mentioned the second difference in behav-
ior observed across the different runs, related to the in-
tegral of U;(x) over the transverse plane, which for the
sake of discussion we shall call the energy of the mode.
This energy is vanishing (numerically: very small) for all
modes in runs with a fixed number of hot spots Ng.. and
fixed source weights w, i.e. for all runs in which all ini-
tial configurations have exactly the same energy, which
is then entirely contributed by the average initial state
U(x). Only in the runs with fluctuating Ny or w do
a few modes have a finite energy. We recapitulate this
here to further discuss the implications. Fixing the ini-
tial energy is what approximately happens when selecting
events within a very narrow centrality class (as given by
the multiplicity or the total energy at the end of a dy-
namical evolution), which is why we studied initial pro-
files with this constraint in this article. But we wish to
emphasize that is not a fully innocuous constraint, since
it actually induces small correlations between hot spots,
even if the positions of the hot spots are independent
(up to recentering). Indeed, intuition may suggest that
a single hot spot might represent a fluctuation mode, in
particular in the pointlike case. This is however ruled out
by the energy constraint, since a mode consisting of a sin-
gle source would have a non-zero energy, so that at least
a second hot spot with an opposite-sign contribution to
the energy is required.

To recover the intuition that single pointlike sources
are the uncorrelated fluctuation modes {¥;(x)}, a possi-
bility is to consider configurations with unit weights and
a fluctuating number of hot spots Ny, such that the
latter obeys Poisson statistics. In that case, the autocor-
relation function simplifies to

p(x,y) = (Nac) f1(x)0P) (x—y) = ¥(x)5? (x—y), (22)

where we used Eq. in the second identity. One im-
mediately checks that 6(?) (x —x},) is an eigenvector of this
function, with the eigenvalue \; = ¥(z). In that sce-
nario, the Poissonian distribution of the hot-spot number
means that the energy varies from event to event, lifting
the corresponding constraint on the fluctuation modes.
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Appendix A: Statistics of the expansion coefficients

In this Appendix, we present a few illustrative results
from one of our sets of simulations — the “reference” run
with rotationally symmetric hot-spot density, Ng.. = 50
sources with width og. = 0.3 fm and unit weights —
pertaining to the coefficients {¢;} in the expansion of
fluctuations on a basis of modes.

For that purpose, we randomly selected 27 configura-
tions among the 22! of the run, and decomposed their
fluctuation part 6®(*) over the basis of eigenstates (de-
termined from the whole run), to obtain the expansion

coefficients {cl(z)}. In Fig. We show histograms of the ob-
served ¢; distributions of a few fluctuation modes, namely
the most important ones (small ), and three higher
modes. By construction, the average value of a given
c; should be zero and its variance unity. But one can
see that the probability distribution is to a good approx-
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FIG. 8. Frequency histograms of the expansion coefficients
¢ for a few modes of run THSM(4,4)%, compared with a
standard Gaussian distribution.
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imation Gaussian, except for a small skewness, which be-
comes marked for the mode [ = 0 — for which we have
no clear explanation.

In Fig. |§| we display the cross-correlation (cicm); s,
of the expansion coefficients along different fluctuation
modesE The values of those averages are systemati-
cally smaller than 10~2, much smaller than the averages
(cf) ~ 1, which shows that we indeed obtained uncorre-
lated modes, Eq. (6]).

Appendix B: Fluctuation modes for the run
THSM (Glauber)J:

In this Appendix we present the first 60 orthonormal
eigenvectors corresponding to the fluctuation modes for
the run THSM(Glauber)9:t described in Sec. These
should be compared to those from MC Glauber simula-
tions at b = 0 displayed in Fig. 30 of Ref. [29].
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FIG. 11. Density profile of the average initial state ¥(x) for the runs THSM(4,4)%, (left) and THSM(4,4)3: (right).
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Here, we display the density profile of the average initial state W(x) for three sample runs, namely two with a
rotationally symmetric distribution of hot spots (Figs. and one with an elongated distribution (Fig. .

All runs with the same underlying hot-spot-density are almost indistinguishable by eye, as illustrated by the two
examples of Fig. [11] (see also Fig. : On the left is the result for the run with configurations consisting of Ny, = 750
sources with width oy = 0.7 fm, and on the right is the result for the run with configurations with 250 pointlike
sources, yet one can hardly recognize that the former profile is slightly broader than the latter, as indicated by the
mean square widths reported in Sec.

In turn, the average initial states of all four runs with an elongated hot-spot density look almost the same as that
shown in Fig.

Fluctuation modes

In Figs. we display the first sixty normalized eigenvectors W¥;/1/)\; associated with the fluctuation modes for
the runs listed in Table [l In the runs with finite-size sources and rotationally symmetric distribution of hot spots,
the modes are qualitatively similar to those of Fig. [2| of the article, even when one of the simulation parameters is
fluctuating (Figs. .

Then the modes for runs with an elongated distribution of hot spots (Figs. also show some recognizable
elements of symmetry, although the z- and y-directions now clearly play a special role.

Eventually, the modes for the run with configurations consisting of Ny, = 50 pointlike hot spots (Fig. are quite
different, which is due to their approximate degeneracy, as discussed in the text of the article.
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FIG. 13. Density plots of the first 60 orthonormal eigenvectors for the run THSM(4,4)%:5. Both axes are in units of fm.
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104 1=0 I=1 1=2] 1=3 l=4 =5
- . v .
01 - s o . -
710- .
10+ 1=6 1=7 1=8] 1=9 =10 I=11
™ -
0 ‘" ¢ .
- .
0 | | | | 0.08
107 I = 12] I=13 I = 14] I = 15] I = 16] 1=17
07 0.06
_10_
104 =18 =19 =20 l=21 =22 =23
O- . : | | o | | | -0.04
_]_0- - - 4 - ]
10 [ = 24 [ = 25| L— 26| =97 L= 28] 1=29 | too2
01 . ’
—10- ! ! ! ! ! L0.00
101 1 = 30] = & 37| T—cE - 3] =35
0 ' .
¢ - - —0.02
_10- ] j i .
10+ I = 36 T ] = 38] I — 39] i A0] ] =41
01 l l l l l L _0.04
_10- - ] j i .
104 | = 49] 1 = 43] | = 44] e 45] i 16] 1 =47
. _ —0.06
0 1 . .
_]_O- - - 4 - ]
104 L= 48] o] T Tl p— 52| =53 —0.08
O_
i]_O_
107 | =54 TS = 56 & 57 =58 [ 59
0- .
_10_

10 0 1810 0 1610 0 1610 0 1610 O 1810 0 10

FIG. 15. Density plots of the first 60 orthonormal eigenvectors for the run THSM(4,4)%y . Both axes are in units of fm.



104 1=0 I=1 1=2] 1=3 l=4 =5
- Y . .
01 . .' - .- ® ¢. -
710- .
10+ 1=6 1=7 1=28] 1=9 [ =10 I=11
. . .
01 ' ’ . — : . .
0 | | | | 0.08
107 I = 12] l=13 I = 14] I =15] 1 = 16] [=17
0 L] s L] .
- o' ! . . 0.06
_10_
104 =18 [=19 =20 [ =21 [ =922 [ =23
N ' . " L0.04
- .
_]_0- - . 4 . ]
10 = [ = 25| | = 26| =97 1= 28] 1=29 | too2
O_
—10- ! ! ! ! | L0.00
104 3] TG TEED) i 33] i 3] T
01 .
L _0.02
_10- ] j i .
10+ L= 36 g a7 I = 38] g0 i 0] ] — 41
01 l l | l | L _0.04
_10- - ] j i .
104 o = 49] 431 | = 44] e 45] le 46] 17
: —0.06
O_
_]_O- - . 4 . ]
104 | = 48] L= 49] =50 g1 = 52| b= 53 —0.08
O_
i]_O_
107 e 54 55 & 56 a7 [ =58 I =59
0- .
_10_

10 0 1810 0 1610 0 1610 0 1610 O 1810 0 10
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FIG. 17. Density plots of the first 60 orthonormal eigenvectors for the run THSM(4,4)%:,. Both axes are in units of fm.
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FIG. 21. Density plots of the first 60 orthonormal eigenvectors for the run THSM(2,4)5y . Both axes are in units of fm.
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FIG. 22. Density plots of the first 60 orthonormal eigenvectors for the run THSM(2,4)%;5. Both axes are in units of fm.
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FIG. 23. Density plots of the first 60 orthonormal eigenvectors for the run Ng. = 50 + 10. Both axes are in units of fm.
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FIG. 24. Density plots of the first 60 orthonormal eigenvectors for the run @ = 1 + 0.3. Both axes are in units of fm.



30

104 1=0 I=1 1=2] 1=3 l=4 =5

0+ . ' — 2 ~~ .
710- .

10+ 1=6 1=7 1=28] 1=9 =10 I=11

0' "‘i : X ) v (]
—10- ]

107 =12 I=13 I = 14] 1=15 1=16 1=17

0.10

0' . A o Y
_10_

104 =18 I=19 =20 I=21 [ =922 =23

01 Z% 1 S | ¥ % | L0.05
_10_

107 | =24 =95 =26 =97 =98 1=29

0_ -
—10- ! ! ! ! | L0.00
104 I = 30] I = 31] ] = 39] ] = 33 [ = 34] 1=35

0_
_10- ] j i .

10+ I =36 1 = 37] I — 38] I = 39] [ = 40] [ =41

L _0.05

0_
_10- - ] j i .

104 | = 49] | = 43] | = 44] I = 45] [ = 46] [ =47

01 ~0.10
~10- |

104 [ — 48 I = 49 I = 50] =51 =52 [=53

O_
i]_O_

107 | =54 I =55 =56 =57 I =58 [ =59

0_
_10_

10 0 1810 0 1610 0 1610 0 1610 0 1010 0 10

FIG. 25. Density plots of the first 60 orthonormal eigenvectors for the run o = 0.3 £ 0.17 fm. Both axes are in units of fm.
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Eigenvalues

Eventually, we gather in Fig. the eigenvalues {)\; } of the fluctuation modes for the runs with initial configurations
with N = 50 or 250 and o = 0.3 or 0.7 fm for both rotationally symmetric (already shown in Fig. [3| top panel)
and elongated (Fig. @ top panel) hot-spot distributions. This allows one to visualize at once the influence on the {\;}
of the underlying geometry.

102
- ® THSM(4,4)%7 ® THSM(2,4)

0
5
bl 0.7 0
2

7
0
. * THSM(4,4)%7 » THSM(2,4)%7

50

101 o wm T

Al
/
231
!

1004 e, Tesore Termsaressssins

1071.

0 20 40 60 80 100 120

FIG. 26. Eigenvalues \; of the fluctuation modes in simulations with a rotationally symmetric or elongated hot-spot distribu-
tions.

As already mentioned in the article, the “quasi-degenerate plateaus” involve fewer modes when the geometry is no
longer rotationally symmetric, and the plateaus are less flat, consistent with the degeneracy lifting due to symmetry
breaking.

Another trend is that, at fixed Ng. and og.c, the A\j-spectrum is steeper in the run with an elongated hot-spot
distribution. This behavior can be ascribed to the fact that the sources overlap more in that case than in the
rotationally symmetric scenario. Indeed, due to the smaller area over which the hot spots are distributed, their
number density is higher. Effectively, this has the same consequence as increasing the hot-spot size, namely, this
suppresses fluctuation modes with smaller wavelengths.
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