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Abstract

As Vision Transformers (ViTs) increasingly set
new benchmarks in computer vision, their practi-
cal deployment on inference engines is often hin-
dered by their significant memory bandwidth and
(on-chip) memory footprint requirements. This
paper addresses this memory limitation by intro-
ducing an activation-aware model compression
methodology that uses selective low-rank weight
tensor approximations of different layers to re-
duce the parameter count of ViTs. The key idea is
to decompose the weight tensors into a sum of two
parameter-efficient tensors while minimizing the
error between the product of the input activations
with the original weight tensor and the product
of the input activations with the approximate ten-
sor sum. This approximation is further refined by
adopting an efficient layer-wise error compensa-
tion technique that uses the gradient of the layer’s
output loss. The combination of these techniques
achieves excellent results while it avoids being
trapped in a shallow local minimum early in the
optimization process and strikes a good balance
between the model compression and output accu-
racy. Notably, the presented method significantly
reduces the parameter count of DeiT-B by 60%
with less than 1% accuracy drop on the ImageNet
dataset, overcoming the usual accuracy degrada-
tion seen in low-rank approximations. In addition
to this, the presented compression technique can
compress large DeiT/ViT models to have about
the same model size as smaller DeiT/ViT variants
while yielding up to 1.8% accuracy gain. These
results highlight the efficacy of our approach, pre-
senting a viable solution for embedding ViTs in
memory-constrained environments without com-
promising their performance.

1Department of Electrical and Computer Engineering, Univer-
sity of Southern California, Los Angeles, United States. Corre-
spondence to: Seyedarmin Azizi <seyedarm@usc.edu>.

1. Introduction
Vision Transformers (ViTs), highlighted in key studies like
(Dosovitskiy et al., 2021), are recognized for their strong
performance in various computer vision tasks. These tasks
include image classification (Dosovitskiy et al., 2021; Tou-
vron et al., 2021; Liu et al., 2021a), object detection (Carion
et al., 2020; Fang et al., 2021), semantic segmentation (Chen
et al., 2021a; Strudel et al., 2021), and multi-modal virtual
assistance (Anonymous, 2024; Liu et al., 2023; Shayegani
et al., 2023). However, the broader implementation of these
transformers is notably hampered by their extensive parame-
ter requirements, resulting in significant memory footprints.

In response to this challenge, model compression has
emerged as the quintessential strategy for facilitating the de-
ployment of models characterized by a high parameter count.
Predominant techniques in this domain encompass model
pruning (Zhu & Gupta, 2018; Zhu et al., 2021; Liu et al.,
2019; Yu et al., 2022; Chen et al., 2021b), token pruning
(Kong et al., 2022), quantization (Liu et al., 2021b; Yuan
et al., 2022), and knowledge distillation (Touvron et al.,
2021; Wu et al., 2022). These methodologies collectively
aim to reduce the computational and storage burden, thereby
enabling the efficient deployment of these advanced neural
network architectures in resource-constrained environments.

Within the array of model compression techniques, low-
rank approximation stands out as a particularly effective
strategy for model compression, due to two reasons: (1) It
has a solid theoretical foundation with proven optimality,
as shown in (Eckart & Young, 1936), and (2) Its structured
application directly translates to hardware efficiency and
implementation ease. The effectiveness of this method is
demonstrated in significant studies like (Jaderberg et al.,
2014; Noach & Goldberg, 2020; Hsu et al., 2022).

Despite its potential, the naı̈ve application of low-rank de-
composition to the weights of ViTs often leads to a sig-
nificant decline in performance, specifically when target-
ing higher compression rates. This issue arises primarily
because the parameters of transformer-based models are
typically not inherently suited to low-rank structures, as
detailed in (Hsu et al., 2022). This underscores the need for
a more nuanced and tailored approach in the application of
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low-rank approximation techniques to ViTs.

To rectify the challenges associated with the application
of low-rank decomposition to ViT weights, this paper in-
troduces an innovative method for the decomposition of
a pre-trained weight matrix. Our approach involves the
decomposition of the weight matrix into a sum of two low-
rank matrices, each contributing distinctively to the accurate
reconstruction of the original matrix. Given a pre-trained
weight matrix W , we aim to approximate it as:

W ≈ UV T +Z (1)

where U and V are low-rank matrices, and Z is also a ma-
trix with a constrained number of parameters. Importantly,
Z must be designed for efficient hardware implementation
and effective in approximating W − UV T . This config-
uration is strategically designed to maintain the aggregate
parameter count of approximation matrices significantly
lower than that of the original, pre-trained weight matrix.

The proposed method, which will be detailed later, ensures
that the product UV T and Z provide distinct yet comple-
mentary contributions to the reconstruction of W . Specif-
ically, UV T captures the principal energy of the matrix
through singular value decomposition (SVD), while Z aims
to offset the residual error from SVD using a layer-wise
gradient-based optimization process.

Our approach for low-rank decomposition of weight ma-
trices of ViTs is supported by two important observations:
(1) statistics of the input feature map for each layer play a
key role in influencing the approximation error associated
with the parameters of the layer (as also discussed in (Yu
& Wu, 2023)), and (2) layers of ViTs exhibit different sus-
ceptibilities to low-rank approximation, that is, aggressive
rank reduction in some layers results in notable performance
degradation at the model output. These insights form the
foundation of our strategy, described as activation-aware
mixed-rank compression, allowing for a smoother and
tailored reduction in the number of parameters, thereby pre-
serving the principal energy of the original ViT model’s
weight matrices. The contributions of this paper may be
summarized as follows:

• We formulate model compression as a general optimiza-
tion problem that aims to find a low-rank approximation
for each weight matrix in the ViT while minimizing the
aggregate energy loss across all weight matrices.

• Our investigation delves into the impact of activation
awareness in the application of singular value decompo-
sition (SVD). We present a practical and highly effective
methodology that incorporates input activations for the
approximation of weight matrices, enhancing the approxi-
mation quality and capturing the principal energy contents
of each layer.

• In terms of SVD implementation, we employ a strategic,
gradual rank reduction approach, which judiciously as-
signs varying ranks to different layers within the model.
The method is based on the fitness of the layers to low-rank
approximation, and picks a layer which if its approximate
tensor undergoes a parameter count reduction, the amount
of information loss is minimum.

• To address the approximation error that is inherent in
activation-aware SVD, we formulate a layer-specific
gradient-based optimization problem. This approach aims
to minimize the reconstruction error at each layer by de-
composing the original weight matrix into a combination
of the SVD result and a low parameter-count matrix, de-
noted as Z. This crucial step serves to recuperate the
energy loss encountered as a result of compression.

• We extend our methodology to various ViTs, conducting
comprehensive experiments. These experiments yield
compelling results in both accuracy and compression,
demonstrating significant parameter count reduction with-
out compromising model performance. Although our pri-
mary goal is reducing the memory footprint, we show
in appendix A that adopting low-rank approximation not
only does not hurt the computational efficiency but also
improves it. Thus, our method introduces no memory-
computation trade-off.

2. Background
A ViT architecture comprises a collection of identical blocks,
each block comprising four layers, including the atten-
tion Query-Key-Value (QKV) layer, Attention Projection
(AttnProj) layer, and two feed-forward Up Projection and
Down Projection layers realized as Multi-Layer Perceptrons
(MLP1 and MLP2).

Given a layer’s pre-trained weight matrix W ∈ Rn×d, sin-
gular value decomposition (SVD) may be used to factorize it
into W = UΣV T . Here, U ∈ Rn×n and V ∈ Rd×d rep-
resent unitary matrices comprising the left and right singular
vectors, respectively, while Σ ∈ Rn×d is a diagonal matrix
containing the singular values. To approximate W with a
rank r using SVD, the process involves retaining only the
top r largest singular values and their corresponding singu-
lar vectors, resulting in an approximation Ŵ ≈ UrΣrVr

T .
As established in (Eckart & Young, 1936), this specific rank-
r approximation is optimal, yielding minimal error amongst
all potential rank r matrices.

Aligned with previous studies on implementing low-rank
structures in neural networks (Jaderberg et al., 2014; Tai
et al., 2016; Yu et al., 2017), the linear transformation of a
layer may be approximated as follows:

O = XW + b ≈ X(UrΣrVr
T ) + b (2)
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where X is the layer’s input activation, b is the bias, and O
is the output.

Following the methodology in (Hsu et al., 2022), the sin-
gular values can be integrated into the left and right sin-
gular vectors. This integration results in a total post-
approximation parameter count of n×r+d×r. Throughout
the paper we use the nl and dl to refer to the dimensions
of the original weight matrix of layer l.

The exploration of low-rank approximation, particularly
within the realms of transformers and ViTs, has been an
active area of research. For instance, (Hsu et al., 2022)
effectively utilized Fisher Information as a means to evalu-
ate the significance of the weight matrices in transformers,
subsequently refining the objective of SVD to incorporate
gradient awareness, thereby boosting its efficacy in model
compression. Further advancements in this field are evident
in the work of (Yu & Wu, 2023), where eigendecomposi-
tion is applied to the covariance of the layer’s output, re-
vealing its enhanced suitability for low-rank approximation.
Lastly, (Kumar, 2022) introduced a hybrid methodology that
combines pruning techniques for feed-forward layers with
low-rank decomposition for attention blocks, showcasing
an innovative approach to model compression.

Despite these advancements, a common challenge persists
across these methods: a significant drop in accuracy when
high levels of compression are applied through low-rank
structures, such as a 50% reduction in parameter count. This
accuracy decline is largely attributed to the inability of these
approaches to adequately compensate for the perturbations
and energy loss induced by low-rank approximation. This
highlights the necessity for more refined techniques that can
effectively balance the trade-off between model compres-
sion and performance retention.

Another related work (Li et al., 2023) approximates the pre-
trained weight matrix as a summation of a low-rank and
sparse matrix, where the low-rank matrix captures the co-
herent part of the matrix, and a sparse matrix approximates
the remaining incoherent residual; they demonstrated that
this decoupling makes the matrix easy to prune. Despite
this, since the SVD decomposition is directly applied to
the weight matrix, they suffer from considerable energy
losses (removals of large singular values), which results in
noticeable performance degradation in high compression
rates, highlighting the need for more sophisticated methods
that can preserve the essential characteristics of the weight
matrix.

3. Problem Formulation and Solution
Methodology

In our setting, given a pre-trained neural network model
M, which has L layers, each represented by a weight

matrix Wl, we are looking for a configuration of ranks
r = [r1, r2, · · · , rL] such that when each layer l is approxi-
mated by rank rl, the summation of the layers’ normalized
errors across model M (denoted by Err(M)) is minimized:

Err(M) = min
r

∑
l

min
Ŵl

EXl

[
∥ XlŴl −XlWl ∥2F

∥ XlWl ∥2F

]
s.t. ρ(Ŵl) ≤ rl ∀l,

ψ(M, r) ≥ α
(3)

Here, Xl denotes the input activation for a layer l, Wl

denotes the layer’s pre-trained weight matrix, Ŵl is the
low-rank approximation of the weight matrix, constrained
from above by rank rl, ρ() denotes a function that returns
the rank of the input matrix, EXl

() denotes the expecta-
tion value over the set of all Xl activations, and the function
ψ(M, r) computes the ratio of parameter count reduction of
the model M after approximating each original weight ma-
trix Wl by a low-rank matrix Ŵl of rank rl. The main differ-
entiating point between this formulation and prior work that
deal with layer-wise output reconstruction (e.g., (Hubara
et al., 2021; Frantar & Alistarh, 2022; Nagel et al., 2020)) is
the incorporation of the sum of total normalized reconstruc-
tion errors across all layers, which effectively accounts for
the interaction of layers in terms of compressibility.

If we define the quantity inside inner minimization as

εl = minŴl
EXl

[(
∥XlŴl−XlWl∥2

F

)(
∥XlWl∥2

F

) ]
, then εl captures

at layer l the Frobenius norm of the output difference be-
tween the compressed representation and its uncompressed
counterpart in a normalized sense. The Frobenius norm
∥A∥2F is defined as

∑
i,j a

2
ij and is equivalent to the sum of

the squares of the singular values σi of A (Horn & Johnson,
2012), representing the energy of the matrix.

This optimization seeks a rank configuration vector r as-
signing ranks to layers, which minimizes the summation of
normalized energy losses across all layers. The Min-Sum-
Min nature of this optimization problem aims to achieve a
balanced, minimal energy loss landscape across all layers,
thus preserving the model’s inherent characteristics. This is
a challenging optimization problem because the objective
function is non-convex. Moreover, since the rank of each
layer can be any integer number, the total number of possi-
ble configurations r that achieve the desired compression
ratio α is exponentially large. Essentially, any configuration
meeting the following condition is a feasible candidate:

ψ(M, r) =

∑
l nl × dl∑

l(nl × rl + dl × rl)
≥ α. (4)

This problem, in its general form, is NP-hard, indicating a
high level of complexity and computational challenge.
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To efficiently solve this problem, we have developed a
multi-step heuristic flow, as explained below. Section 3.1
presents an Activation-Aware Low-Rank Approximation
technique where, for a given rank configuration vector r
and layer l, the inner minimization of (3) is solved. That
is, we compute the minimum energy loss εl and the corre-
sponding optimized low-rank weight matrices Ul and Vl.
This aspect of the framework leverages the characteristics of
each layer’s input activations to determine the most effective
low-rank approximation.

Section 3.2 introduces a Mixed-Rank Compression tech-
nique. To solve the outer minimization in (3), this strategy
defines the rank configuration vector r through a methodical,
greedy local neighborhood search. It continuously integrates
feedback from the activation-aware SVD process, ensuring
that the rank distribution across layers is optimally aligned
with their remaining compression potential and performance
constraints.

Finally, section 3.3 proposes a Layer-wise Error Com-
pensation technique, whose goal is to balance the residual
errors introduced by the SVD. By employing a layer-wise
gradient-based optimization technique, this technique finds
a new matrix Zl to be added to the product of Ul and Vl

for each layer l, further refining the low-rank approximation
and enhancing the overall quality of the approximation.

3.1. Activation-Aware Low-Rank Approximation

First and foremost, we reformulate the reconstruction error
based on our proposed approach:

εl = min
Ul,Vl,Zl

EXl

[(
∥ Xl(UlV

T
l +Zl)−XlWl ∥2F

)(
∥ XlWl ∥2F

) ]
(5)

Given the challenges in directly computing the expectation,
we follow a methodology similar to (Frantar & Alistarh,
2022) by constructing a proxy dataset. This dataset com-
prises samples of input activations for each layer, and we
approximate the expectation with the average over these
samples in the proxy dataset. A critical insight we’ve ob-
served is the importance of considering the input activa-
tion during the application of singular value decomposition
(SVD) to maximally preserve a layer’s output, as targeted
in (5).

Re-examining Problem 5, if we initially set Zl to zero
and the value of rl is predetermined, then for a single
input image Xi

l , the problem can be reformulated as
minUl,Vl

∥Xi
l (UlV

T
l )−Xi

lWl∥2F (notice that the denom-
inator is not a function of Ul or Vl). For this special case,
we can find the optimal Ul and Vl that minimize the recon-
struction error as follows:

Xi
lUlV

T
l = SV Drl(X

i
lWl) = U∗

l Σ
∗
l V

∗
l

T (6)

In this context, SV Dk denotes the application of SVD while
retaining the largest k singular values Σ∗

l and their associ-
ated left and right singular vectors (U∗

l ,V
∗
l ), respectively.

A feasible solution for U and V could be as follows:

Ul = Xi
l

†
U∗

l

√
Σl, Vl =

√
ΣlV

∗
l , (7)

where Xi†

l denotes the pseudo-inverse of the input activa-
tion.

This formulation considers the influence of single input
activation. When utilizing a proxy dataset comprising N
samples extracted from the original dataset rather than a
single image, it becomes necessary to generate a represen-
tative input Xrep for the application of (7). To simplify
this process, one practical approach is to use the average
of the samples in the proxy dataset. This representative
sample Xrep can be calculated as Xrep = 1

N

∑N
i=1 X

i.
This method ensures that Xrep effectively captures the char-
acteristics of the proxy dataset, providing a more holistic
representation for the application of SVD. Then, we can use
Xrep in (7) to obtain U and V .

The approach we have taken in applying SVD aligns with
the findings of (Yu & Wu, 2023), particularly regarding the
layer’s output being more amenable to low-rank approxima-
tion compared to its weights. The matrix energy, as defined
above, serves as a critical metric in this context. In Fig. 1,
we analyze the energy loss in various layers of the DeiT-
B model, comparing our activation-aware SVD approach
to the direct application of SVD on weight matrices. Re-
sults indicate that activation-aware SVD is more effective
in preserving the matrix energy, especially for higher rank
reduction factors.

3.2. Mixed-Rank Model Compression

To achieve a specific model compression factor α, regard-
less of the type of low-rank approximation employed (i.e.,
whether it is activation-aware or conventional SVD), it is
possible to assign the ranks non-uniformly across the layers.
This approach allows for a more flexible and potentially
more effective compression strategy.

In Fig. 2, we present the relative decrease in energy of the
weight matrices as the number of retained ranks in their
spectrum is reduced. This figure points to the necessity
of assigning different ranks to various transformer blocks
and even to individual layers within each block to preserve
the model’s performance effectively. This differentiation in
rank allocation is crucial for maintaining a balance between
model compression and performance retention. This phe-
nomenon also aligns with the findings of the other domains
of compression, including mixed-precision quantization,
where layers of the model are differently sensitive to low
bit-width quantization (Wang et al., 2019; Azizi et al., 2023;
Dong et al., 2019).
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Figure 1. Impact of SVD-based rank reduction on energy level of
different matrices in the first block of DeiT-B.
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Figure 2. Impact of rank reduction on top-1 ImageNet accuracy

Considering Problem (3), our goal is to identify an optimal
rank configuration r, which not only reduces the model’s
parameter count by a factor of α but also minimizes the sum
of energy losses observed across all layers of the model.
As discussed in section 3.1, we have already presented a
technique that, for a given rank rl, calculates the optimal
energy loss εl at the output of each layer l. So, we can
simplify the formulation of (3) as follows:

Err(M) = min
r

∑
l

εl

s.t. ψ(M, r) ≥ α

(8)

As we discussed earlier in section 3, this is still an NP-hard
problem. To address this, we propose an efficient greedy
solution based on local neighborhood search. Instead of a
drastic, single-step reduction in ranks and parameters, we

adopt a gradual optimization strategy. This method involves
incremental steps, each of which slightly reduces the number
of parameters in line with a pre-defined compression rate
scheduling policy. For each step of parameter reduction,
we select the layer whose (further) rank reduction yields the
minimum normalized energy loss compared to its uncom-
pressed counterpart, and reduce its rank to meet the target
parameter count reduction. This iterative process avoids dis-
proportionate normalized energy loss at any individual layer,
thus greedily minimizing the sum of normalized energy loss
across all layers (see (3)).

Algorithm 1 details this process where function Activa-
tionAwareSVD() is what we developed in section 3.1 for
approximating εl, and τ is the rate scheduling function that
sets the rate of rank reduction. We adopt an exponential of
the form below:

τ(M, iter, α) = Ntarget + (N0 −Ntarget) exp (−
iter

γ
)

(9)
in which N0 is the initial number of parameters, Ntarget is
our desired number of parameters, and γ is the decaying
rate of the schedule. The exponential nature of the schedule
encourages significant parameter reduction in the initial
stages, primarily targeting layers that are less sensitive to
rank reduction. As the process progresses, the required
rate of parameter reduction is decreased like an annealing
schedule. Consequently, this approach minimizes the impact
on layers that are more sensitive to rank reduction. The
function ComputeEnergyLoss(), which is called for each
layer l and in each iteration t of algorithm, computes the
ratio of the lost energy for layer l and its original total energy
if it only retains mt[l] of its singular values.

A key aspect of Algorithm 1 is its efficiency in handling
the Singular Value Decomposition (SVD) of each layer.
Notably, the SVD for each layer needs to be computed only
once. After this initial computation, we store the singular
values obtained from the decomposition. Subsequently, all
optimization processes leverage these stored singular values.
This approach significantly reduces computational overhead,
as it eliminates the need for repeated SVD computations for
each layer during the optimization steps.

3.3. Layer-Wise Error Compensation

Using the combination of the techniques developed in sec-
tions 3.1 and 3.2 we able to come up with the low-rank
approximation matrices U and V for each layer, with the
ranks specific to each layer. However, applying SVD and
removing some of the singular vectors would unavoidably
introduce some energy loss. In mixed-rank compression we
managed to create a balanced distribution of energy losses
across all layers. In this section, we present a novel and effi-
cient method to compensate for the energy loss experienced

5
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Algorithm 1 Mixed-Rank Compression
Input: Model M, proxy dataset D, Compression ratio α
Output: List of ranks r

1: Singular Values S = ActivationAwareSVD(M,D)
2: Initialize ptot = pcur =

∑
l nl × dl // # of param.

3: Initialize r0 = min(nl, dl) ∀l // hidden dim. in ViT
4: t = 1
5: repeat
6: pt = τ(M, t, α) // # of param. to remove at step t
7: ℓ = [] // vector for keeping energy losses
8: mt = [] // vector for keeping temporary ranks
9: rt = rt−1

10: for l = 1 to L do

11: mt[l] = rt−1[l]−
pt

nl + dl
// # of ranks to keep

12: ℓ[l] = ComputeEnergyLoss(S[l],mt[l])
13: end for
14: l∗ = argminl ℓ // layer with minimum energy loss
15: rt[l∗] = mt[l∗]
16: pcur = pcur − pt

17: t = t+ 1
18: until pcur ≤ ptot

α
19: return rt

by all layers effectively. Revisiting (5), we are looking for
an auxiliary matrix Z that is efficient in terms of the number
of parameters and can compensate for the residual error
introduced by activation-aware SVD.

We investigate four distinct configurations for the Z matrix:
(1, 2) Sparse matrix (both structured and unstructured) in a
manner similar to (Li et al., 2023), where sparse matrices
were utilized for capturing the uncorrelated components
of the approximation’s residual; (3) Diagonal matrix; (4)
Low-rank matrix, with a rank substantially smaller than that
of U and V . Table 1 compares these strategies in terms
of the parameter count overhead and normalized remaining
residual error after the layer-wise error compensation. Low-
rank matrix is a compelling option regarding both metrics,
thus we introduce GY T as the matrix for capturing the
residual error, where G ∈ Rn×q and Y ∈ Rd×q have a
rank much smaller than that of U and V (q ≪ rl ∀l).

Table 1. Comparison of different approaches for residual error com-
pensation via Z.
↑ and ↓ indicates relatively high and low values, respectively.

Approach Parameter Count Average
Overhead Residual Error

Sparse (unstructured) ↑ 0.11 ↓
Sparse (structured) ↓ 0.23 ↑
Diagonal ↓ 0.27 ↑
Low-Rank ↓ 0.13 ↓

The introduction of G and Y serves as a key innovation
for addressing the energy loss inherent in the SVD process.
By starting with these matrices as zero and progressively
updating them, we are able to fine-tune the approximation in
a way that specifically targets the reconstruction errors and
energy deficiencies resulting from the initial SVD. Firstly,
let’s revisit (5) with a slight modification. In this iteration,
we maintain U and V as fixed, based on the values obtained
from the activation-aware low-rank approximation (section
3.1). Additionally, we substitute the expectation term in the
equation with a summation over the samples in the proxy
dataset. This adjustment aligns with our earlier discussion
about the computational challenges of directly computing
the expectation and the practical solution of using a proxy
dataset D for approximation:

εl = min
Gl,Yl

1

|D|
∑
i

[
∥ Xi

l (GlY
T
l )−Xi

l (Wl −UlV
T
l ) ∥2F(

∥ Xi
lWl ∥2F

) ]
(10)

To simplify the implementation process, we choose to fix
the rank q for each layer statically. This approach entails
setting the total number of parameters in Gl and Yl to a
pre-defined percentage of the parameters in Wl. We opt for
this percentage to be 5%.

With the dimensions of these low-rank matrices Gl and
Yl fixed, the problem essentially transforms into a regres-
sion task. For each layer l, we define Ai

l =
Xi

l(
∥Xi

lWl∥2
F

) ,

Bi
l =

Xi
l (Wl−UlV

T
l )(

∥Xi
lWl∥2

F

) , and the loss function Ll =

1
|D|

∑
i ∥Ai

l(GlY
T
l ) − Bi

l∥2F . This setting forms the ba-
sis of our optimization problem. A crucial observation is
that this optimization process can be conducted for each
layer of the model independently. As a result, the optimiza-
tion tasks for different layers can be executed in parallel.
This parallelization greatly enhances the efficiency of the op-
timization process, allowing for simultaneous adjustments
across multiple layers. Although there is no closed-form
solution, this problem can be solved using gradient descent
since the gradient of the loss function with respect to G and
Y can be easily computed as below:

∂L
∂G

=
1

|D|
∑
i

2AiT (AiGY T −Bi)Y (11)

∂L
∂Y

=
1

|D|
∑
i

2(AiGY T −Bi)TAG (12)

Intuitively, the XUV T component is designed to capture
the main components and a substantial portion of the energy
of XW via activation-aware SVD. Consequently, XGY T

endeavors to minimize the residual error left by the SVD,
utilizing the relatively small matrices G and Y . This dual
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approach aims to ensure a thorough and efficient approxi-
mation of the original weight matrices.

To demonstrate the effectiveness of this addition, we analyze
the Frobenius norm error of the attention projection module
in DeiT-B model. This analysis is conducted post-activation-
aware SVD, following the gradient-based optimization on an
unseen (validation) proxy dataset. The results, illustrated in
Fig. 3, highlight the impact of our approach on these layers,
showcasing the reduction in reconstruction error achieved
through our optimization process. The activation-aware
SVD achieves an almost uniform distribution of error across
the layers. This outcome aligns perfectly with the primary
objective of our problem; on top of that, the gradient-based
optimization reduces the layer-wise error as much as pos-
sible. If we omit the gradient-based error compensation
and instead allocate the parameter budget of G and Y to
U and V , the error reduction would be a lot less than the
residual error reduction through G and Y . This scenario
highlights the critical role of error compensation, as evi-
denced by the comparative results. An important aspect
of this optimization is that UlV

T
l remains constant while

optimizing GlY
T
l . Given that the dimensions of G and Y

are significantly smaller than those of U and V , there is a
minimal risk of overfitting to the calibration dataset, thus
providing more generalizability and robustness.

4. Results and Discussions
In this section, we thoroughly evaluate our compression
framework.

4.1. Experimental Setup

In our experimental setup, we have carefully selected spe-
cific hyperparameters to optimize the performance of our
model. Here is an overview of the key settings:
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Figure 3. Normalized Frobenius norm of the error at the output of
the AttnProj layer in DeiT-B

1. Proxy Dataset Creation: For both activation-aware SVD
and gradient-based optimization, we construct the proxy
dataset using 1024 samples randomly selected from the
dataset. This sample size is chosen to provide a representa-
tive subset of the original data.

2. Rank Setting for G and Y : The rank q for the matrices G
and Y is determined so that these matrices together account
for 5% of the parameters in each layer.

3. Mixed-Rank Gradual Compression: In this approach, we
set the decay rate γ at 80 and the iterative algorithm for this
compression is run for 500 iterations.

4. Layer-wise Error Compensation Settings (Section 3.3):
During the gradient-based optimization phase, we set the
learning rate for updating G and Y to 10−3. This process
involves running Mini-Batch gradient descent for 2000 itera-
tions with a batch size of 64. Since this optimization is done
in a layer-wise manner, no backpropagation is involved, and
layers can be processed in parallel; thus, it is very fast.

5. As the final step, we fine-tune the uncompressed param-
eters of the model, including the LayeNorm parameters,
head, biases, and the patch embedding module on the stan-
dard ImageNet dataset. This partial fine-tuning is done
for 20 epochs with a learning rate of 10−4 and a cosine
scheduling. Since almost 2% of the network parameters are
being fine-tuned and the weight matrices are freezed (they
are already optimized using our flow), this step is very fast
and efficient.

6. Library and Hardware: We utilize pre-trained models
from the timm library (Wightman, 2019) and implement our
model optimization using PyTorch (Paszke et al., 2019). All
experiments are conducted on NVIDIA A6000 GPUs.

4.2. ImageNet Classification

We assess our framework’s effectiveness in compressing
various Vision Transformer architectures, including ViT
(Dosovitskiy et al., 2021), DeiT (Touvron et al., 2021), and
Swin Transformer (Liu et al., 2021a), on the ImageNet
dataset. The detailed results are presented in table 2. The
table includes Params, indicating both the absolute number
of parameters and the percentage of reduction relative to the
baseline model. We evaluate the models at three different
levels of parameter count reduction: -40%, -50%, and -60%,
and correspondingly report the Top-1 validation accuracy.

Our results demonstrate that we can achieve a 50% reduc-
tion in the parameter count of DeiT-B without any loss in
accuracy. Furthermore, we accomplish a 60% reduction in
parameters with less than a 1% drop in accuracy, showcasing
the efficacy of our compression framework across different
levels of parameter reduction. It can be seen that our model
outperforms the previous compression approaches in accu-
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Table 2. Comparison of the parameter count and top-1 ImageNet
accuracy for different compression methods and ViT architectures.
FT stands for fine-tuning.
The results of other methods are directly sourced from their respective papers (where
available): AAFM (Yu & Wu, 2023), WDPruning (Yu et al., 2022), SPViT (Kong
et al., 2022), S2ViTE (Chen et al., 2021b), and VTP (Zhu et al., 2021);

Architecture Method # Params Top-1
(Millions) Accuracy (%)

DeiT-B

Baseline 86.6 81.80

AAFM 51.9(-40%) 81.28
WDPruning 60.6(-30%) 81.10
S2ViTE 56.8(-35%) 82.20
SPViT 62.3(-28%) 81.60
Vanilla SVD + FT 52.0(-40%) 77.30
Ours 52.0(-40%) 81.80
Ours 43.3(-50%) 81.35
Ours 34.6(-60%) 81.10

DeiT-S

Baseline 22.1 79.80

WDPruning 15.0(-32%) 78.60
S2ViTE 14.6(-34%) 79.20
SPViT 16.4(-26%) 78.30
Vanilla SVD + FT 13.2(-40%) 75.20
Ours 13.2(-40%) 79.60
Ours 11.1(-50%) 79.34
Ours 8.9(-60%) 78.60

ViT-B

Baseline 86.5 84.55

VTP 48.0(-45%) 80.70
Vanilla SVD + FT 42.3(-50%) 78.50
Ours 52.9(-40%) 84.20
Ours 42.3(-50%) 83.70
Ours 34.6(-60%) 83.10

Swin-B

Baseline 88.1 85.45

AAFM 60.2(-33%) 82.68
SPViT 68.0(-24%) 83.20
Vanilla SVD + FT 52.9(-40%) 79.10
Ours 52.9(-40%) 83.90
Ours 44.1(-50%) 83.65
Ours 35.3(-60%) 83.14

racy, compression, or both.

To demonstrate our method’s capabilities, we undertake
extreme compression cases: compressing ViT-L to match
DeiT-B’s size, DeiT-B to DeiT-S’s size, and DeiT-S to DeiT-
T’s size. This tests our method’s efficacy in significantly
reducing model sizes while maintaining performance. The
outcomes of these compression experiments are detailed in
table 3. The data shows that our compressed models, despite
having a similar number of parameters, outperform the pre-
trained models they are compared against, highlighting the
effectiveness of our compression method.

4.3. Compatibility with Weight Quantization

To illustrate the compatibility of the presented approach
with weight quantization, we apply post-training quantiza-
tion (PTQ) to weight matrices U , V , G, and Y . For this

Table 3. Comparison of the top-1 ImageNet accuracy on models
with approximately the same size.

Architecture # Params Top-1
(Millions) Accuracy (%)

ViT-B 86.6 81.8
Compressed ViT-L 86.0 (-72%) 83.1

DeiT-S 22.1 79.8
Compressed DeiT-B 21.7 (-75%) 80.3

DeiT-T 5.0 72.2
Compressed DeiT-S 5.0 (-77%) 74.0

Table 4. Compatibility of the presented compression approach with
weight quantization.

Method Model Top-1
Size (MiB) Accuracy (%)

DeiT-B baseline (FP16) 165.2 81.80
DeiT-B 50% compressed (FP16) 82.6 81.35
DeiT-B 50% compressed + 8-bit PTQ 41.7 81.15
DeiT-B baseline + 4-bit PTQ 42.2 80.72

purpose, we employ 8-bit, channel-wise, round-to-nearest
quantization, targeting only the weights (the details of the
quantization function applied can be found in appendix).
We then compare this mixed compression strategy with ap-
plying 4-bit PTQ to the baseline model, which yields about
the same level of compression.

As summarized in table 4, the 8-bit version of our com-
pressed model surpasses the 4-bit uncompressed model in
accuracy by 0.43%. This result indicates the compatibility
of quantization with our low-rank approximation and its
superiority compared with quantization-only compression.

5. Conclusions and Future Work
In this work, we proposed a novel methodology for com-
pressing ViTs. We adopted activation-aware SVD to ap-
proximate the outputs of the layers within the model while
maintaining the principal energy components of the matri-
ces. This approximation was refined by developing a greedy
strategy for assigning various ranks to different layers. In
the end, we also proposed layer-wise error compensation for
reducing the error introduced by SVD as much as possible.
Overall, our methodology significantly reduces the parame-
ter count of ViTs, facilitating their efficient deployment in
inference engines.

While our current work has been focused on the compression
of ViTs, the presented approach exhibits promising char-
acteristics that suggest its potential applicability to other
transformer-based architectures like large language mod-
els. Investigating and adapting our methodology to other
transformer variants is an exciting direction for future work.
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A. Impact of Low-Rank Approximation on Compute Efficiency
Given a matrix multiplication O = XW , where X and W are n× k and k ×m matrices respectively, we approximate the
output as O ≈ X(UV T +GY T ). Here, U , V , G, and Y are k × r, m× r, k × q, and m× q matrices, respectively. The
original matrix multiplication requires nkm individual multiplication operations.

If we compute UV T and GY T directly, add them, and then multiply by X , the total number of multiplications is:

krm (for UV T ) + kqm (for GY T ) + nkm (when multiplying by X) (13)

This increases the multiplication count. However, a more efficient approach is to first multiply X by U and then the result
by V T , and similarly for G and Y . Compute XG first, then multiply it by Y T . The total multiplications become:

nkr (for XU) + nrm (for XUV T ) + nkq (for XG) + nqm (for XGY T ) (14)

The ratio of these multiplications to the original is:

nkr + nrm+ nkq + nqm

nkm
=
nk(r + q) +mn(r + q)

nkm
(15)

Since r + q is smaller than the original matrix dimensions k and m, this ratio is less than 1. Thus, our method, while not
primarily aimed at computational efficiency, inadvertently achieves a reduction in multiplication count, leading to a speedup.

B. Quantization
In our experiments, post-training quantization (PTQ) was implemented to demonstrate how our weight compression technique
can be effectively combined with other methods. The specific quantization function used is the basic round-to-nearest linear
quantization, defined as follows:

Uq = clamp(⌊U
s

+ z⌉, 0, 2N − 1), Û = s× (Uq − z) (16)

Here, s = max(U)
2N−1

and z = −min(U)
2N−1

, where N is the number of bit-widths used. The operation ⌊⌉ represents the rounding
process. Uq is the quantized version, and Û is the de-quantized version of the original matrix U .
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