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Abstract
A challenging problem in many modern machine
learning tasks is to process weight-space features,
i.e., to transform or extract information from the
weights and gradients of a neural network. Recent
works have developed promising weight-space
models that are equivariant to the permutation
symmetries of simple feedforward networks.
However, they are not applicable to general
architectures, since the permutation symme-
tries of a weight space can be complicated
by recurrence or residual connections. This
work proposes an algorithm that automatically
constructs permutation equivariant models, which
we refer to as universal neural functionals
(UNFs), for any weight space. Among other
applications, we demonstrate how UNFs can
be substituted into existing learned optimizer
designs, and find promising improvements over
prior methods when optimizing small image
classifiers and language models. Our results
suggest that learned optimizers can benefit from
considering the (symmetry) structure of the
weight space they optimize. We open-source our
library for constructing UNFs at https:
//github.com/AllanYangZhou/
universal_neural_functional.

1. Introduction
Many problems in machine learning require handling
weight-space features, such as the weights, gradients, or
sparsity masks of neural networks. For example, optimiz-
ers iteratively map the current weights and gradient history
to updated weights. Taking this perspective, researchers
have proposed a variety of data-driven methods that train a
neural network to process these weight-space features. Ex-
amples applications of these neural functionals (Zhou et al.,
2023a) include training neural networks to predict classifier

1Work done at Google DeepMind 2Stanford Univer-
sity 3Google DeepMind. Correspondence to: Allan Zhou
<ayz@cs.stanford.edu>, James Harrison <jamesharri-
son@google.com>.

generalization from weights (Eilertsen et al., 2020), to opti-
mize other networks (Metz et al., 2022), and to classify or
edit implicit neural representations (INRs) (De Luigi et al.,
2023).

Until recently, researchers lacked a unifying and princi-
pled framework for designing neural functionals, and would
implement a custom model for their particular weight-
space task. A significant recent advance was the devel-
opment of weight-space models that are permutation equiv-
ariant (Navon et al., 2023; Zhou et al., 2023a). Neuron
permutation symmetries arise in a neural network’s weight
space because re-ordering hidden neurons has no effect on
the network’s function (Hecht-Nielsen, 1990). A permuta-
tion equivariant neural functional can guarantee that under a
neuron permutation of its input, its output permutes accord-
ingly.

Navon et al. (2023) showed that permutation equivariance
significantly improves performance on weight-space tasks,
but their models only apply to the weight spaces of simple
feedforward multilayer perceptrons (MLPs). Permutation
equivariant neural functionals (Zhou et al., 2023a) added the
ability to process weights from simple feedforward convolu-
tional networks (CNNs). However, in practice we may deal
with the weight spaces of complex networks that have resid-
ual connections, recurrence, normalization layers, and so
on. Extending existing approaches to each possible weight
space would be tedious and challenging.

We propose an approach that automatically constructs per-
mutation equivariant models for any collection of tensors
whose dimensions can permute according to a shared set of
permutations. This naturally encompasses the permutation
equivariance we might desire for any given weight space.
We show that our algorithm constructs the most general lin-
ear layer that operates on a given weight space while guaran-
teeing equivariance to the specified permutation symmetries.
Stacking multiple such layers with pointwise nonlinearities
produces a deep permutation equivariant model, which we
refer to as a universal neural functional.

To evaluate the empirical effectiveness of UNFs, we apply
them to tasks involving a variety of weight spaces, includ-
ing those of recurrent neural networks (RNNs) and Trans-
formers. We incorporate UNFs into the implementation
of learned optimizers and use them to optimize small im-
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Figure 1. Illustration of the permutation symmetries in the weight space of a recurrent neural network (Example 2.2). Left: Each layer
contains feedforward (ff) weights mapping between different layer’s activations, and recurrent (rec) weights transforming activations over
time. We can permute the hidden activations as illustrated without changing the final outputs hL

t . Right: Permuting the hidden activations
induces a permutation on the weights. Here, the rows and columns of the feedforward weights are permuted by (σℓ+1, σℓ), while the
recurrent weights are permuted by (σℓ, σℓ). Our algorithm automatically constructs permutation equivariant models for any collection of
weight tensors given a description of its symmetries (Appendix A).

age classifiers and language models, observing promising
improvements over prior methods. In a generalization pre-
diction task, we use UNF to predict the performance of
sequence-to-sequence RNN models from their weights. Our
experiments show that universal neural functionals are flex-
ible, can be easily applied to different weight spaces, and
improve upon prior weight-space methods.

2. Preliminaries
We largely follow or extend the notation and naming of
Zhou et al. (2023a). Given a fixed neural network archi-
tecture, there is a weight spaceW of possible parameters
(weights, biases, normalization scalings, etc.). We refer to
all such parameters as “weights”. A particular set of weights
W =

(
W (1), · · · ,W (L)

)
contains multiple “tensors”, or

multidimensional arrays. Depending on the architecture,
W contains numerous symmetries (Hecht-Nielsen, 1990;
Godfrey et al., 2022), i.e., transformations on the weight
space that do not affect the network’s behavior. Following
prior work (Navon et al., 2023; Zhou et al., 2023a), this
work focuses only on the permutation symmetries, which
are called neuron permutations.

Neuron permutations correspond to re-arranging the neurons
within (hidden) layers, which have no canonical ordering.
We make the simplifying assumption that all layers can be
re-arranged–this assumption can be later corrected using po-
sitional encodings (Zhou et al., 2023a). Assuming there are
N independently permutable layers of neurons, the neuron
permutation group S is the direct product:

S = Sn1
× · · · × SnN

, (1)

where ni is the number of neurons being permuted in each
layer.

In general, each weight is a “tensor” (multi-dimensional

array) of real numbers. Using M(a, b, · · · ) to denote arrays
Ra×b×···, consider a rank-Dℓ tensor

W (ℓ) ∈M
(
ndℓ

1
, · · · , ndℓ

Dℓ

)
. (2)

Each dimension dℓi is permuted by σdℓ
i
. That is, the action

of σ on the indices of the weight tensor is:

σ (i1, · · · , iDℓ
) :=

(
σdℓ

1
(i1), · · · , σdℓ

Dℓ

(iDℓ
)
)
. (3)

Defining the multi-index i⃗ := (i1, · · · , iDℓ
), the action on

the weight tensor is to permute the entries:[
σW (ℓ)

]⃗
i
:= W

(ℓ)

σ−1(⃗i)
, (4)

and the action onW is:

σW :=
(
σW (1), · · · , σW (L)

)
. (5)

We now elaborate on the definition of the group and action
in several common cases.
Example 2.1 (Multilayer perceptron). A multilayer percep-
tron (MLP) with L+ 1 layers has activations:

hℓ+1 = s
(
W (ℓ)hℓ + b(ℓ+1)

)
, h1 := x, y := hL+1

(6)
where each hℓ ∈ Rnℓ . The weights and biases are rank-2
and rank-1 tensors:

W (ℓ) ∈M(nℓ+1, nℓ) and b(ℓ) ∈M(nℓ). (7)

Then we have a neuron permutation group S = Sn1
×· · ·×

SnL+1
, and σ ∈ S can be written σ = (σℓ)

L+1
ℓ=1 . The action

on the weights and biases is:

W (ℓ) 7→ P (σℓ+1)W
(ℓ)P (σℓ)

⊤
, (8)

b(ℓ) 7→ P (σℓ) b
(ℓ) (9)
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where P (σℓ) is the nℓ× nℓ permutation matrix correspond-
ing to σℓ. This corresponds exactly to the “NP” setting in
Zhou et al. (2023a).
Example 2.2 (Recurrent neural network). Consider a deep
recurrent neural network (RNN) (Elman, 1990) without
biases. We follow the presentation of Wang et al. (2023):

hℓ+1
t = s

(
W ℓ+1

rec hℓ+1
t−1 +W ℓ

ffh
ℓ
t

)
,

h1
t := xt, yt := hL+1

t (10)

where xt, yt are the inputs and outputs at each timestep
and hℓ

0 is initialized to 0. The weight space consists of
feedforward (ff) and recurrent (rec) weights:

W ℓ
ff ∈M (nℓ+1, nℓ) and W ℓ

rec ∈M (nℓ, nℓ) . (11)

We again define the neuron permutation group S := Sn1
×

· · ·×SnL+1
, but the action of the group on the weight space

is now different. Here, re-arranging the neurons corresponds
to transforming the weights:

W ℓ
ff 7→ P (σℓ+1)W

ℓ
ffP (σℓ)

⊤
,

W ℓ
rec 7→ P (σℓ)W

ℓ
recP (σℓ)

⊤
. (12)

As illustrated by Figure 1, the feedforward weights trans-
form just as in the MLP case (Eq. 8), but the recurrent
weights’ rows and columns must be transformed by the
same permutation.
Example 2.3 (Convolutional neural network). Consider a 1D
convolutional neural network (CNN) without biases, with
activations:

hℓ+1 = s
(
W (ℓ) ⋆ hℓ

)
, h1 := x, y := hL+1, (13)

where ⋆ is cross-correlation. If each filter has spatial di-
mension kℓ and each hℓ has nℓ channels, then we have
rank-3 weight tensors W (ℓ) ∈M (nℓ+1, nℓ, kℓ) and neuron
permutation group:

S =

L∏
ℓ=1

Snℓ
× Skℓ

. (14)

Looking at how each dimension of W (ℓ) permutes, we
would have σnℓ+1

∈ Snℓ+1
permute the first dimension

(output channels), σnℓ
∈ Snℓ

permute the second dimen-
sion (input channels), and σkℓ

∈ Skℓ
permute the third

dimension (spatial).

We note that permutating the spatial dimensions of a con-
volution filter would change the CNN’s behavior and is not
a true symmetry of the weight space. This is a notable
difference between how our framework handles convolu-
tional weight spaces compared to NFNs (Zhou et al., 2023a),
where the action of the neuron permutation group does not

affect the spatial dimensions at all. Assuming that all di-
mensions of each weight tensor can permute simplifies the
development of our framework, and undesired symmetry
can be broken (if desired) by positional encodings of the
input (Zhou et al., 2023a; Lim et al., 2023).

Equivariance and invariance. We are interested in func-
tions T :W →W that are equivariant, meaning that it
doesn’t matter whether we apply a neuron permutation to
the input or the output. We define LS (W,W) as the space
of equivariant linear maps, i.e., those T satisfying:

T (σW ) = σT (W ) ,∀σ ∈ S,W ∈ W. (15)

Our goal is to design a layer (i.e., a parameterized space of
functions) that is equivalent to LS (W,W).

In some applications, we may instead desire invariance, that
is a function P satisfying

P (σW ) = P (W ) ,∀σ ∈ S,W ∈ W. (16)

Following prior work (Navon et al., 2023; Zhou et al.,
2023a), we can build invariant neural functionals by com-
posing several equivariant layers with an invariant pooling
layer, e.g., one that sums over every dimension of each
weight tensor and concatenates the results.

3. Universal neural functionals
Since equivariance is preserved under composition, and
pointwise non-linearities are already permutation equivari-
ant, we can build deep equivariant models as long as we have
an equivariant linear layer. Additionally, composing equiv-
ariant layers with an invariant pooling operation produces
a deep invariant model. This section introduces a method
for producing equivariant weight-space layers for any given
weight space, which enables the flexible construction of
universal neural functionals.

3.1. Decomposing equivariant weight-space maps

The weight space is a direct sum of individual weight sub-
spaces,

W =W(1) ⊕ · · · ⊕W(L). (17)

The problem of defining an equivariant layer on W can
be decomposed into defining equivariant layers between
each pair of weight subspacesW(m) andW(ℓ), for all ℓ and
m (Navon et al., 2023).

We re-state this result in our own notation. For any ℓ,m pair
we define LS

(
W(m),W(ℓ)

)
as the space of equivariant

maps between the two weight subspaces. It contains all
T ℓm :W(m) →W(ℓ) satisfying

T ℓm
(
σW (m)

)
= σT ℓm

(
W (m)

)
∀σ,W (m), (18)
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noting that the action on the left and right hand sides of the
equivariance condition are not, in general, the same.

Assume that we already have a basis Bsp for
LS

(
W(p),W(s)

)
. A basis function E ∈ Bsp can be

extended to Ē :W →W by defining:

Ē(W )ℓ :=

{
E
(
W (p)

)
ℓ = s

0 otherwise
, (19)

where Ē(W ) :=
(
Ē1(W ), · · · , ĒL(W )

)
.

Theorem 3.1 (Navon et al. (2023)). Let {Bℓm } be bases
for each LS

(
W(m),W(ℓ)

)
. Then the union of these bases

(extended by Eq. 19) is a basis for linear equivariant maps
onW . That is,

B =
⋃

ℓ,m∈JLK2

{
Ē

∣∣ E ∈ Bℓm }
(20)

is a basis for LS (W,W).

This result tells us that we can construct an equivariant ba-
sis B for LS (W,W) by simply combining the equivariant
bases {Bℓm } for each pair of weight subspaces.

3.2. Equivariant layers between tensors

Since weights are tensors, our decomposed problem in-
volves finding bases for permutation equivariant maps be-
tween tensors. Variants of this problem have been studied by
numerous prior works–in particular, Maron et al. (2018) the-
oretically characterize a basis for equivariant maps between
arbitrary-rank tensors, and provide a concrete implemen-
tation of the basis functions in the rank-2 case. Here, we
describe a general algorithm that automatically constructs a
basis for permutation equivariant maps between arbitrary-
rank tensors. Concretely, it implements each basis function
in terms of simple array operations that are amenable to ef-
ficient computation with modern deep learning frameworks.

Functions in LS
(
W(m),W(ℓ)

)
take input tensors indexed

by { i1, · · · , iDm
} and produces output tensors indexed by

{ o1, · · · , oDℓ
}. We can construct a basis Bℓm for this space

where each element is identified by a valid partition P of
these indices. Recall that the indices (i1, i2, · · · ) of W (m)

are permuted by
(
σdm

1
, σdm

2
, · · ·

)
. We say that two indices

i1 and i2 “permute simultaneously” if dm1 = dm2 .
Definition 1. A valid partition is a partition P of the output
and input indices I = { o1, · · · , oDℓ

, i1, · · · , iDm
} into

non-empty subsets, such that each subset only contains
indices that are permuted simultaneously.
Example 3.1 (W(m) = W(ℓ) = Rn1×n2). Here the out-
put and input indices are { o1, o2, i1, i2 }. The partition
{ { o1, o2 } , { i1, i2 } } is not valid because o1, o2 are per-
muted by σ1, σ2, so they do not permute simultaneously. On
the other hand, { { o1, i1 } , { o2, i2 } } is a valid partition.

Example 3.2 (W(m) = W(ℓ) = Rn1×n1). This time, the
partition { { o1, o2 } , { i1, i2 } } is valid because o1, o2 are
both permuted by σ1, as are i1, i2.

To construct the equivariant basis, we enumerate all valid
partitions and then map each partition P to a basis function
EP . Concretely, we label each subset of P with a distinct
character α, β, γ, · · · and then remap each of our original
indices { o1, · · · , oDℓ

, i1, · · · , iDm } to a a character based
on which subset the index was in. This mapping is best
illustrated by continuing our previous example.
Example 3.3 (W(m) = W(ℓ) = Rn1×n2). Here in-
put and output are both matrices, with combined indices
{ o1, o2, i1, i2 }. We have two permutations (σ1, σ2) ∈
Sn1
× Sn2

that can act on the rows and columns of the
input and output matrices. There are four valid partitions:

P1 = { { o1, i1 } , { o2, i2 } } ,
P2 = { { o1, i1 } , { o2 } , { i2 } } ,
P3 = { { o1 } , { i1 } , { o2, i2 } } ,
P4 = { { o1 } , { o2 } , { i1 } , { i2 } } . (21)

Consider P2–we assign a character to each subset:

P2 = { { o1, i1 }︸ ︷︷ ︸
α

, { o2 }︸ ︷︷ ︸
β

, { i2 }︸ ︷︷ ︸
γ

} . (22)

which tells us to remap the output indices (o1, o2) 7→ (α, β)
and the input indices (i1, i2) 7→ (α, γ), producing the basis
function EP2

defined:

EP2

(
W (m)

)
αβ

:=
∑
γ

Wαγ , (23)

where summation over γ can be inferred because it only
contains an input index.

Repeating this index-remapping process for each valid
partition will generate a total of four basis functions
EP1

, · · · , EP4
for LS

(
W(m),W(ℓ)

)
. Our equivariant

W(m) →W(ℓ) layer will be defined as a linear combination
of them:

T ℓm
(
W (m);λ

)
:=

4∑
k=1

λk · EPk

(
W (m)

)
, (24)

which is the layer introduced in Hartford et al. (2018).

To generalize the previous example, for each valid parti-
tion of the indices P we label its subsets with characters
α, β, γ, · · · and then construct a basis function:

E(W (m))c[o1],··· ,c[oDℓ
] =

∑
R

W
(m)
c[i1],··· ,c[iDm ], (25)

where c[·] maps each index to the subset of P that contains
it. We sum over the characters inR, which is the (possibly
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empty) subset of characters that only contain input indices
(i.e., only appear on the right-hand side). Entries that are
not explicitly assigned by the left-hand side are 0. Algo-
rithm 1 gives a formal description of the complete process
for generating Bℓm.

Algorithm 1 Basis for equivariantW(m) →W(ℓ) layer

Require: W(m),W(ℓ)

1: Initialize basis Bℓm ← { }
2: Define indices I ← { o1, · · · , oDℓ

, i1, · · · , iDm
}

3: for P in VALIDPARTITIONS (I) do
4: Label each subset sp ∈ P by unique character

CHAR(sp)
5: for α ∈ I do
6: Map index c[α]← CHAR(sp) where α ∈ sp
7: end for
8: EP(X)c[o1],··· ,co[Dℓ]

:=
∑

R Xc[i1],··· ,c[iDm ]

9: Bℓm ← Bℓm ∪ {EP }
10: end for
11: return Bℓm

Once Algorithm 1 has generated a basis of equivariant func-
tions Bℓm, we can implement an equivariant layer

T ℓm
(
W (m);λℓm

)
:=

|Bℓm|∑
b=1

λℓm
b · EPb

(
W (m)

)
, (26)

where λℓm ∈ R|Bℓm| is a vector of learned coefficients, one
per basis function.

3.3. Equivariant layers on weight spaces

Theorem 3.1 now tells us that we may now construct the
equivariant weight-space layer by combining the bases
{Bℓm } into a basis B of functions onW . The weight-space
layer T (·, λ) could then be defined by a linear combination
of the basis functions with learned coefficients λ.

Equivalently, we may instead combine the layers {T ℓm }:

T 1
(
W,λ1,:

)
=

L∑
m=1

T 1m
(
W (m), λ1m

)
...

TL
(
W ;λL,:

)
=

L∑
m=1

TLm
(
W (m), λLm

)
(27)

where λℓ,: = {λℓm | ℓ = 1, · · · , L }. Then the full weight-
space layer is defined:

T (W,λ) =
(
T 1

(
W,λ1,:

)
, · · · , TL

(
W,λL,:

))
, (28)

parameterized by λ =
(
λ1,:, · · · , λL,:

)
.

Appendix A provides a concrete description of how we spec-
ify the weight space in code and how the algorithm is then
used to automatically construct an equivariant weight space
layer. Our open-source implementation is compatible with
most JAX (Bradbury et al., 2018) neural network libraries.

Theorem 3.2. The weight-space layer defined by Eqs. 27-
28 is S-equivariant, and can express any linear equivariant
function onW .

Proof. Each T ℓm is a linear combination of basis func-
tions in Bℓm by coefficients in λℓm. Then, as described by
Thm 3.1, Eq. 27 is a linear combination of basis functions
for LS (W,W) by the coefficients in λ. Hence the set of
functions {T (·, λ) }λ that the layer can express is exactly
LS (W,W).

For an MLP weight space with neuron permutation group
defined as in Example 2.1, this approach will generate the
exact same layer as NFNNP (Zhou et al., 2023a). This is
because the layers each parameterize all possible linear
maps equivariant to the same symmetry group, and hence
can express the same set of functions.

3.4. Multiple feature channels

In practice, we may be interested in simultaneously process-
ing multiple weight-space features, such as the weights and
a history of gradients. These features can be stacked into a
“channel” dimension analogous to the channels of convolu-
tional networks. In that case, we must consider direct sums
of weight spaces of the formWc = ⊕c

k=1W , with elements
that can be written as1:

W = (W [1], · · · ,W [c]) , W [k] ∈ W. (29)

Then the action is σW := (σW [1], · · · , σW [c]) for σ ∈ S ,
extending the (single channel) definition given in Eq. 5. The
definition of equivariance can then be extended to layers of
the form T (·) : Wci → Wco , where ci, co are the number
of input and output channels.

Extending equivariant layers to the multi-channel setting is
quite common in the geometric deep learning literature and
simply involves taking linear combinations along the chan-
nel dimension (Cohen & Welling, 2016; Ravanbakhsh et al.,
2017). That is, we modify the equivariant layer between
subspaces as:

T ℓm
(
W (m);λℓm

)
[k′]

:=

|Bℓm|∑
b=1

ci∑
k=1

λℓm
b [k′, k] · EPb

(
W (m)

)
[k], (30)

1In the multichannel setting we overload notation and use W
to refer to elements of Wc, not W .
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where each λℓm
b is now a learned co × ci matrix instead of

a scalar. Again assembling these subspace layers accord-
ing to Eq. 27 results in an equivariant weight-space layer
T (·;λ) :Wci →Wco .

3.5. Deep models

The previous sections describes the construction of S-
equivariant layers that operate operate on weight-space fea-
tures inWc. We construct universal neural functionals by
stacking multiple such layers (interleaved with pointwise
non-linearities) into a deep, permutation equivariant model
that can process weights. To construct a permutation in-
variant model, we can add an invariant pooling layer after
the equivariant layers, as in prior work (Navon et al., 2023;
Zhou et al., 2023a).

4. Experiments
In this section, we refer to weight-space models con-
structed using our algorithm as universal neural function-
als (UNFs). We compare their performance to prior methods
on two types of weight-space tasks: predicting the gener-
alization of recurrent sequence-to-sequence models, and
training learned optimizers for a variety of architectures and
datasets.

4.1. RNN generalization prediction

Method Test τ
STATNN 0.8839± 0.0007

UNF (Ours) 0.8968± 0.0006

Table 1. Rank correlation between predicted and actual success
rates of RNNs in the Tiny RNN Zoo. The goal is to predict
the success rate of a Seq2Seq model on an arithmetic task by
only looking at its weights. Implementing predictors with UNFs
significantly outperforms STATNN (Unterthiner et al., 2020).

One promising application of neural functionals is in pre-
dicting the generalization of neural network models from
their weights (Eilertsen et al., 2020). We construct Tiny
RNN Zoo2, a dataset of recurrent neural networks trained to
do arithmetic by completing given questions character-by-
character. For example, given the input string “15+20=” the
correct completion would be “35<EOS>”. To construct the
dataset, we train 104 sequence-to-sequence (Sutskever et al.,
2014) models on example problems with input numbers up
to five input digits. Both encoder and decoder RNNs contain
a single GRU cell (Chung et al., 2014) with hidden size 128.
Each model is trained with a distinct learning rate and batch
size, and it’s test success rate (SR) is recorded. The learn-
ing rate is sampled from a log-uniform distribution over

2Inspired by the Tiny CNN Zoo (Unterthiner et al., 2020).

[10−4, 10−2], and the batch size is sampled uniformly from
{ 64, 128, 256 }. With the goal of predicting test SR from
weights, we split the Tiny RNN Zoo into 8000/1000/1000
training, validation, and test examples.

The success rate of each RNN model is clearly invariant
under permutation symmetries of its weights, so invariance
is a natural inductive bias for any generalization predictor.
We evaluate STATNN (Unterthiner et al., 2020) and a UNF-
based predictor (note that NFNs are not applicable to the
weights of recurrent networks). STATNN is operates on ba-
sic statistical features3 of the weights, and has been shown
to be a very strong baseline on previous generalization pre-
diction tasks (Unterthiner et al., 2020). On the other hand,
UNF operates on raw weight inputs and may be able to
extract more nuanced signals than STATNN, as was shown
(for CNN classifiers) in Zhou et al. (2023a).

In particular, STATNN computes the mean, variance, and
(0, 25, 50, 75, 100)-percentiles of each weight tensor in the
RNN and feeds them into a six-layer MLP with hidden
width 600. UNF is a permutation invariant model, imple-
mented using a three-layer equivariant backbone (16 hidden
channels) followed by invariant pooling and a three-layer
MLP (512 hidden neurons). We train each predictor with
binary cross entropy loss (since the target SR is in [0, 1]), us-
ing the Adam optimizer with learning rate 0.001, batch size
10, and training for up to 10 epochs. We use the validation
data only for early stopping, and assess the performance of
each predictor on the test inputs using Kendall’s τ , the rank
correlation between predicted and actual success rate.

Results. Table 1 shows the performance of each predictor on
held out weight inputs. Our UNF-based predictor achieves
significantly higher rank correlation between predicted and
actual success rate, suggesting that the equivariant layers
are able to extract more informative features from the raw
weights compared to STATNN.

4.2. Learned optimizers

Choosing the optimizer is a key step in training any mod-
ern neural network. Though most popular optimizers are
variants of stochastic descent, the non-convexity of neural
network training leaves few rigorous guidelines for ideal
optimizer design. This has led some researchers to pro-
pose training good optimizers using some form of meta-
learning (Bengio et al., 1990; 2013; Andrychowicz et al.,
2016; Wichrowska et al., 2017; Metz et al., 2019).

Common optimizers today (including the learned ones) are
equivariant to any permutation of the weights. This is be-
cause permuting the weights also permutes the gradients,
so stochastic gradient descent and similar optimizers will

3Notably, it computes statistics that are invariant to permuta-
tions of the weights.
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Figure 2. Training loss (negative log-likelihood) curves for different tasks and architectures using meta-learned optimizers. We implement
learned optimizers with either universal neural functionals (UNFs), NFNs (Zhou et al., 2023a), or Deep Sets (Zaheer et al., 2017). Deep
Sets are the current standard choice for implementing learned optimizers. Note that NFN is identical to UNF in the MLP case, different
for CNN case, and not applicable to RNNs or Transformers. All loss curves are smoothed and averaged over 5 random initializations (3
for Transformer), with shaded regions showing standard error.

produce permuted updates. However, equivariance to any
permutation ignores the actual symmetry structure of the
optimized neural network. Arguably the more appropriate
constraint is to only require equivariance to the neuron per-
mutation group, which enables more expressive optimizers
while still respecting the symmetries of the weight space.
As we will see, this can be achieved by using UNFs to
implement a learned optimizer.

Training learned optimizers that generalize well is extremely
compute-intensive (Metz et al., 2022), so we conduct our
experiments in several smaller settings to analyze the impact
of architecture choice on learned optimizer performance.
In each setting, an optimizer is meta-trained to optimize
an architecture type on a task from random initializations.
Following Harrison et al. (2022), our learned optimizers
have the form:

mγ
t ← γmt−1 +∇t (31)

Wt+1 ←Wt − α (mγ0

t + βf (Wt,∇t, {mγi

t }i , t)) .

Here αmγ0

t is a “nominal term” that biases the learned op-
timizer to behave like stochastic gradient descent with mo-
mentum coefficient γ0. The neural functional f(·) ingests
weights Wt, gradients∇t, momentum terms at several coef-
ficients {mγi

t }i, and the iteration t.

During meta-training, we optimize network f and scalars
α, β, γ0 to minimize the task training loss after a fixed num-
ber of training steps T , the “inner training horizion.” To
avoid the issue of backpropagating through an optimiza-
tion process, we estimate meta-gradients using persistent
evolutionary strategies (Vicol et al., 2021).

Comparisons. The default architecture choice for f(·) in
prior work is Deep Sets (Zaheer et al., 2017), which offers
equivariance to any permutation symmetry. We study the
effect of replacing Deep Sets by UNFs. We also try the
NFNNP architecture (Zhou et al., 2023a) where applicable,

though it cannot be used on the RNN and Transformer ex-
periments. Finally, we consider stochastic gradient descent
with momentum (SGDM), which is equivalent to fixing
β = 0 in Eq. 31. The SGDM baseline is also meta-trained
to tune the learning rate α and momentum decay rate γ0.
We compare the different learned optimizers in four tasks:

MLP on FashionMNIST. Each optimizer trains an MLP
classifier on a downsized and flattened version of the Fash-
ionMNIST dataset (Xiao et al., 2017). We note that for MLP
weight spaces, UNF are identical to NFNNP (Zhou et al.,
2023a).

CNN on CIFAR-10. Each optimizer trains a convolutional
classifier on a downsized 16× 16 CIFAR-10. In this setting
our algorithm produces a UNF that is different to NFNNP
(see Example 2.3).

RNN on LM1B. Each optimizer trains a character-level
RNN-based language model (LM) on the One Billion Word
Language Model Benchmark (LM1B) dataset (Chelba et al.,
2013).

Transformer on LM1B. Each optimizer trains a Trans-
former LM on LM1B, this time predicting tokens instead of
characters.

We use an inner training horizon T = 2,000 for the first
three tasks and T = 5,000 for the Transformer task, since
it takes longer to train. When implementing f(·) for each
method, we use a network with four layers, 32 hidden chan-
nels, and ReLU nonlinearities. The Deep Set optimizer
uses exclusively Deep Set layers (Zaheer et al., 2017, Eq.
4), while the UNF and NFN optimizers uses three Deep
Set layers followed by a single UNF or NFN layer. See
Appendix B.1-B.2 for full descriptions of the tasks and
meta-training.

Results. Figure 2 shows the training curves produced by
each of the meta-trained optimizers in each experiment.
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Learned optimizers with deep architectures (UNF, Deep
Set, or NFN) outperform SGDM, even after tuning SGDM’s
learning rate and momentum decay. UNF typically learns
fastest and achieves the lowest training loss across all meth-
ods, though Deep Set and NFN can be comparable in some
settings. One interesting observation is that UNF outper-
forms NFN in the CNN experiment. As noted in Exam-
ple 2.3, UNFs make the stronger assumption that all tensor
dimensions–including the spatial dimensions of the convo-
lution filter–are permutable, while NFNs do not. Although
the UNF assumption is technically incorrect, the stronger
assumption leads to a lower parameter count (see Table 3 in
the appendix) which may be easier for meta-optimization.

Overall, our results show the promise of using UNFs to
create more expressive learned optimizers that utilize the
specific symmetry structure of the weight spaces they op-
timize. Further work could investigate their capacity for
generalization to new tasks and architectures, for example
by meta-training on diverse tasks (Metz et al., 2022). More-
over, as Table 3 in the appendix shows, a necessary trade-off
of UNFs being more expressive is that they require more
parameters for an equivalent number of layers and hidden
channels. Since learned optimizers are still much smaller
than the networks they could optimize, this may not be a
significant computational constraint in practice. Still, it
could be a challenge to meta-optimization, since evolution-
ary strategies are known to struggle in higher dimensions.
Hence, further work on efficient high-dimensional meta-
gradient estimators would complement the development of
expressive weight-space models like UNF.

5. Related Work
There is a long history of neural network architectures that
are equivariant to various symmetry groups (LeCun et al.,
1995; Cohen & Welling, 2016; Ravanbakhsh et al., 2017;
Kondor & Trivedi, 2018; Cohen et al., 2018). Existing
frameworks for automatically constructing equivariant mod-
els (Finzi et al., 2021) produce equivariant matrices, which
would be intractable for our task. Our work constructs effi-
cient equivariant basis functions for a particular class of per-
mutation symmetries that arise in the weight spaces of neural
networks. Permutation equivariant networks have been de-
veloped for sets (Zaheer et al., 2017), matrices whose rows
and columns permute independently (Hartford et al., 2018),
and tensors under higher-order permutation actions (Thiede
et al., 2020; Pan & Kondor, 2022)–the latter may also be
viewed as equivariant models on graphs or polytopes (Maron
et al., 2018; Albooyeh et al., 2019). This work observes that
a weight space is a collection of tensors under higher-order
permutation symmetries, and develops equivariant models
for that setting.

There has been significant interest in designing architec-

tures that that either optimize or generate neural network
weights (Schmidhuber, 1993; Ha et al., 2016; Krueger et al.,
2017; Kirsch & Schmidhuber, 2021; Peebles et al., 2022;
Metz et al., 2022). Some works have identified the im-
portance of respecting the relevant symmetries when im-
plementing black box meta-learners (Kirsch et al., 2022).
However, precise characterizations of equivariant models on
neural weight spaces are relatively recent and were initially
restricted to simple feedforward models (Navon et al., 2023;
Zhou et al., 2023a;b).

A recent alternative approach has instead leveraged message
passing neural networks (MPNNs) (Zhang et al., 2023) to
process weights as edges of a graph. Concurrent to this work,
Kofinas et al. (2024) demonstrated applications of MPNNs
to learned optimization for MLPs and CNNs and Lim et al.
(2023) extended MPNNs to process more general weight-
spaces. Our approach gives maximally expressive equiv-
ariant linear layers for collections of tensors that describe
(hyper)graphs with multiple node sets. Hence, UNFs can
be viewed as a type of of equivariant graph network (Maron
et al., 2018), in constrast to an MPNN-style approach.

6. Conclusion
We introduce a method for constructing permutation-
equivariant neural functionals that operate on arbitrary
weight spaces, removing a major limitation of previous
frameworks that were only applicable to the weight spaces
of simple MLPs and CNNs. Our algorithm constructs max-
imally expressive equivariant linear layers for processing
any collection of tensors given a description of their permu-
tation symmetries, and implements these layers in terms of
efficient array operations in standard deep learning frame-
works. We empirically validate that the resulting universal
neural functionals (UNFs) are effective at tasks that involve
processing the weights and gradients of convolutional im-
age classifiers, recurrent sequence-to-sequence models, and
Transformer language models. In particular, we find that
UNFs show promising improvements over existing learned
optimizer designs in small scale experiments.

Limitations and future work. It remains to be demon-
strated how UNFs can be applied to heterogenous weight-
space inputs, e.g., to have a single UNF act as a learned
optimizer for any input architecture. Moreover, our exper-
imental results only validate the promise of UNF-based
learned optimizers in relatively limited settings, and more
work would needed to test generalization across arbitrary
tasks. Finally, computational tractability may be a signifi-
cant challenge for more complex architectures as the number
of basis terms generated by Alg. 1 would grow rapidly for
higher rank tensors with higher-order interactions. Resolv-
ing these challenges would further improve the scalability
and applicability of neural functionals to weight-space tasks.
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A. Weight-space specifications
Here we discuss the concrete specification that precisely describes a weight space and must be provided as input to the
algorithm before it can construct equivariant weight-space layers. Our open-sourced implementation4 is compatible with
most JAX (Bradbury et al., 2018) neural network libraries.

Suppose we wish to process an MLP’s weights that are stored in a (nested) Python dictionary:

params = {
"layer1": {"weight": Array[64, 32], "bias": Array[64]},
"layer2": {"weight": Array[64, 64], "bias": Array[64]},

}

Then a specification should match the nested dictionary structure but provide a string or integer name for each dimension of
each array. The name tells the algorithm which permutation affects which dimensions of each array.

In this example, the specification closely follows the MLP description in Example 2.1, where W (1) ∈ M(n2, n1) is
permuted as W (1) 7→ P (σ2)W

(1)P (σ1)
⊤.

specification = {
"layer1": {"weight": ("n2", "n1"), "bias": ("n2",)},
"layer2": {"weight": ("n3", "n2"), "bias": ("n3",)},

}

Providing this specification object to our algorithm is sufficient for it to deduce the symmetry group, its action, and
construct the corresponding equivariant layer.

Since most neural networks consist of repeating layers or blocks, the process of constructing the specification can be
semi-automated by first defining a function that creates the specification for a single layer or block and then re-using that
function for each block. Although we did not find this necessary for our experiments, it may also be possible to automatically
deduce the specifications for a network in common deep learning frameworks by analyzing its computation graph.

B. Experimental details
B.1. Learned optimization tasks

Here we describe each of the experimental settings we evaluated the learned optimizers on. Across all experiments, the
training loss is negative log-likelihood.

MLP on FashionMNIST. Train a three-layer MLP classifier on a downsized (8× 8) and flattened version of the FashionM-
NIST dataset (Xiao et al., 2017). The MLP has a hidden size of 32 and ReLU activation function. We use a batch size of
128.

CNN on CIFAR-10. Train a convolutional classifier on a downsized 16×16 CIFAR-10. The classifier has two convolutional
layers (16 and 32 channels), followed by global average pooling and a linear classification head, and is trained with a batch
size of 128.

RNN on LM1B. Trains a character-level RNN-based language model (LM) on LM1B (Chelba et al., 2013). The RNN itself
has one hidden layer with size 64, and uses identity-initialization (Le et al., 2015). An embedding layer with dimension 32
maps tokens to embeddings before feeding into the RNN, and an output layer produces token predictions from the RNN
output. The LM is trained to predict the next token with teacher forcing at batch size 64, on sequences of length 16.

Transformer on LM1B. Train a Transformer LM on LM1B, this time predicting tokens instead of characters. The
Transformer has two blocks with an embedding dimension of 32, and uses four self-attention heads. We train with a batch
size of 8 on length-8 sequences.

4https://github.com/AllanYangZhou/universal_neural_functional
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Figure 3. Number of parameters used by f(·) in each learned optimizer, for each task. Note that NFN and UNF are identical for the MLP
task. This count does not include the other meta-learned scalars in Eq. 31, which are α, γ0, β.

Task UNF Deep Set NFN
MLP on FashionMNIST 3,783 2,788 3,783
CNN on CIFAR-10 7,369 2,788 41,603
RNN on LM1B 8,043 2,788 N/A
Transformer on LM1B 64,168 2,788 N/A

B.2. Learned optimization meta-training

Call DS[c] a single equivariant Deep Set layer (Zaheer et al., 2017, Eq 4) with c output channels (similarly for UNF[c]
and NFN[c]). Then f(·) in our learned optimizers (Eq. 31) is always implemented as a feedforward architecture:

DeepSetOpt = DS[32] -> ReLU -> DS[32] -> ReLU -> DS[32] -> ReLU -> DS[1]
UNFOpt = DS[32] -> ReLU -> DS[32] -> ReLU -> DS[32] -> ReLU -> UNF[1]
NFNOpt = DS[32] -> ReLU -> DS[32] -> ReLU -> DS[32] -> ReLU -> NFN[1]

For all methods, we initialize α = 0.1 and γ0 = 0.9 before starting meta-training. For non-SGDM methods, we initialize
β = 0.001, and provide six momentum values {mγi

t }i with coefficients γi = 0.1, 0.5, 0.9, 0.99, 0.999, 0.9999. The
iteration number t is converted into an 11-dimensional sinusoidal encoding, and all inputs to f(·) are concatenated along the
channel dimension. Concretely, this results in an input inW19. The output is inW1.

We meta-train for 50,000 steps using Adam, estimating meta-gradients over 16 parallel training runs using persistent
evolutionary strategies (PES) (Vicol et al., 2021) with a truncation length of 50 and a noise standard deviation of 0.01. The
meta-training objective is training loss at the end of the inner training horizon (T = 5,000 for the Transformer setting, and
T = 2,000 otherwise), and we apply a gradient clipping of 1.0.

Size of each learned optimizer f(·). Since Deep Set layers are agnostic to the specific weight space being optimized, the
Deep Set learned optimizer uses the same number of parameters in each task. The same is not true of UNF layers, where the
number of parameters grows in proportion to the size of the bases generated by Algorithm 1. Table 3 lists the number of
parameters in f(·) for each learned optimizer.
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