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Abstract. 6-DoF grasp detection has been a fundamental and chal-
lenging problem in robotic vision. While previous works have focused
on ensuring grasp stability, they often do not consider human intention
conveyed through natural language, hindering effective collaboration be-
tween robots and users in complex 3D environments. In this paper, we
present a new approach for language-driven 6-DoF grasp detection in
cluttered point clouds. We first introduce Grasp-Anything-6D, a large-
scale dataset for the language-driven 6-DoF grasp detection task with 1M
point cloud scenes and more than 200M language-associated 3D grasp
poses. We further introduce a novel diffusion model that incorporates
a new negative prompt guidance learning strategy. The proposed neg-
ative prompt strategy directs the detection process toward the desired
object while steering away from unwanted ones given the language in-
put. Our method enables an end-to-end framework where humans can
command the robot to grasp desired objects in a cluttered scene using
natural language. Intensive experimental results show the effectiveness of
our method in both benchmarking experiments and real-world scenarios,
surpassing other baselines. In addition, we demonstrate the practicality
of our approach in real-world robotic applications. Our project is avail-
able at https://airvlab.github.io/grasp-anything.

Keywords: Language-Driven 6-DoF Grasp Detection, Diffusion Models

1 Introduction

Grasp detection stands as a foundational and enduring challenge in the field of
robotics and computer vision [9, 28|. This task involves identifying a suitable
configuration for the robotic hand that stably grasps the objects, facilitating
the effective manipulation capability in the robot’s operating environment. Tra-
ditional grasp detection methods have predominantly focused on ensuring the
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stability of the detected grasp pose, while often neglecting the human inten-
tion. This limitation underscores a large gap between current approaches and
real-world user-specified requirements [81]. The integration of human intention
conveyed through natural language, is therefore crucial to help robots perform
complex tasks more flexibly. This enables users to communicate task specifica-
tions more intuitively and comprehensively to the intelligent robot, facilitating
a more effective human-robot collaboration.

EZRnAS

Grasp the mug. Get the sunglasses. ’ Hand me the spoon. Plck up the green penctl G/ve me the wrist- watch

Fig. 1: We tackle the task of language-driven 6-DoF grasp detection in cluttered 3D
point cloud scenes.

In recent years, thanks to advancements in large language models [11,12,54]
and large vision-language models [33,35,59], there has been a surge of interest
in language-driven robotics research [6,7, 14,47, 60, 78,97]. This research field
focuses on developing intelligent robots that can understand and respond to hu-
man linguistic commands. For example, SayCan [7] and PaLM-E [11] are robotic
language models designed to provide instructions for robots operating in real-
world environments. Trained on large-scale data, RT-1 [6] and RT-2 [97] are
robotic systems capable of performing low-level actions in response to natural
language commands. While significant progress has been made in the field, it is
noteworthy that only a few works have addressed the task of language-driven
grasp detection [46, 60, 72,73, 75,81]. Furthermore, these methods still exhibit
considerable shortcomings. Particularly, while the authors in [46,72] solely focus
on single-object scenarios, the works in [73, 75, 81| restrict grasp detection to
2D configurations. These limitations prevent the robot from capturing the com-
plexity of real-world 3D and multi-object scenarios. In this research, we address
these limitations by training a new system that detects language-driven 6-DoF
grasp poses, with a focus on grasping objects within diverse and complex scenes
represented as 3D point clouds.

We first introduce a new dataset, namely Grasp-Anything-6D, as a large-
scale dataset for language-driven 6-DoF grasp detection in 3D point clouds. Our
dataset builds upon the Grasp-Anything dataset [81] and incorporates a state-
of-the-art depth estimation method [5] to support 2D to 3D projection, and
manual correction to ensure the dataset quality. Specifically, Grasp-Anything-
6D provides one million (1M) 3D point cloud scenes with comprehensive object
grasping prompts and dense 6-DoF grasp pose annotations. With its extensive
volume, our dataset enables the capability of 6-DoF grasp detection using lan-
guage instructions directly from the point cloud. Empirical demonstrations show
that our dataset successfully facilitates grasp detection in diverse and complex
scenes, both in vision-based experiments and real-world robotic settings.
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With the new dataset in hand, we propose a new diffusion model to ad-
dress the challenging problem of language-driven 6-DoF grasp detection called
LGrasp6D. We opt for diffusion models due to their recent impressive results
in various generation tasks [24,50, 68|, including image synthesis [13,49], video
generation [55,87], and point cloud generation [39,44]. However, the application
of diffusion models to grasp detection remains under-explored [46, 76]. Unlike
previous works that mostly focus on language-driven grasp detection in 2D im-
age [73,75,81] or in 3D point cloud with single object [46,72], our work proposes
a new diffusion model for language-driven 6-DoF grasp detection in cluttered
3D point cloud environments. In practice, language-driven 6-DoF grasp detec-
tion is a fine-grained task driven by the language, e.g., “Grasp the blue cup”
and “Grasp the black cup” are for two different objects in the scene. Therefore,
we introduce a new negative prompt guidance learning strategy to tackle this
fine-grained nature. The main motivation of this strategy is to learn a negative
prompt embedding that can encapsulate the notion of other undesired objects
in the scene. When being applied in the generation process, the learned neg-
ative prompt embedding explicitly guides the grasp pose toward the desired
object while avoiding unwanted ones. Our LGrasp6D method is an end-to-end
pipeline that enables humans to command the robot to grasp desired objects in
a cluttered scene using a natural language prompt. Figure 1 illustrates examples
of our language-driven grasp detection in 3D point clouds. To summarize, our
contributions are three-fold:

— We propose Grasp-Anything-6D, a large-scale dataset for language-driven
6-DoF grasp detection in 3D point clouds.

— We propose a new diffusion model that learns and applies negative prompt
guidance, significantly enhancing the grasp detection process.

— We demonstrate that our dataset and the proposed method outperform other
approaches and enable successful real-world robotic manipulation.

2 Related Works

Robot Grasp Detection. Several works for robot grasp detection addressed
the task on 2D images [25, 32,61, 94]. Thanks to recent advancements in 3D
perception [26,48, 56, 57|, 6-DoF grasp detection in 3D point clouds is gaining
increasing interest in both computer vision and robotics communities. In general,
two main lines of approaches have been employed for this problem. The first
line [22, 36,42, 43] involves sampling various grasp candidates across the input
point cloud, followed by validation using a grasp evaluator network. The primary
drawback of methods in the first line lies in their inefficiency in terms of speed,
attributed to their multi-stage structure. In contrast, the second line of research
detects the grasp poses in an end-to-end manner [20,48,58,83|, achieving a more
favorable balance in terms of the time-accuracy tradeoff. For instance, Qin et
al. [58] presented a novel gripper contact model and a single-shot neural network
to predict amodal grasp proposals, while Wang et al. [83] proposed the concept
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of graspness to detect the scene graspable areas. However, most of the existing 6-
DoF grasp detection methods do not take into account language as the input. In
this work, we follow the end-to-end approach. Our method integrates language
instructions into the grasp detection process, ensuring that the detected grasp
pose is aligned with the user-specified requirements.

Language-Guided Robotic Manipulation. Amidst the remarkable strides
of large language models [8,12,54] and large vision-language models [33, 35, 59],
several recent works have harnessed language semantics for multiple tasks of
robot manipulation [6,21,47,62,97]. For instance, the authors in [21] presented a
framework that learns meaningful skills from language-based expert demonstra-
tions. Nguyen et al. [47] utilized language to detect open-vocabulary affordance
for 3D point cloud objects. More recently, the authors in [97] proposed a family
of models that learn generalizable and semantically aware policies derived from
fine-tuning large vision-language models trained on web-scale data. Besides, the
task of language-guided grasp detection is also under active exploration. How-
ever, approaches in this research direction present several limitations. Specifi-
cally, the works in [46,72] only addressed single-object scenarios. The authors
in [73,75,80,81] exclusively detected 2D rectangle grasp poses. More recently, the
method in [60] required multiple viewpoints of the scene to build the language
field, which is not always obtainable. In contrast to these works, our method is
capable of detecting language-driven 6-DoF grasp poses in cluttered single-view
point cloud scenes, making it well-suitable for real-world robotic applications.

Diffusion Probabilistic Models. Diffusion models are a class of neural
generative models, based on the stochastic diffusion process in Thermodynam-
ics [67]. In this setting, a sample from the data distribution is gradually noised
by the forward diffusion process. Then, a neural network learns the reverse pro-
cess to gradually denoise the sample. First introduced by [67], diffusion mod-
els have been further simplified and accelerated [24,68], and improved signifi-
cantly [3,50,70,86]. In recent years, many works have explored applying diffusion
models for various generation problems, such as image synthesis [13,89], scene
synthesis [31,82], and human motion generation [74,85]. In robotics, diffusion
models have also been applied to many problems ranging from policy learn-
ing [10, 93], task and motion planning [38, 76] to robot design [84]. However,
few works have adopted diffusion models for the task of grasp detection [46,76].
Notably, none of them consider the task of language-driven grasping in 3D clut-
tered point clouds. To address this challenging task, we propose a novel diffusion
model that incorporates a new negative prompt guidance learning approach.
This strategy assists in guiding the generation process toward the desired grasp
distributions while steering away from unwanted ones. The effectiveness of our
proposed approach is demonstrated through comprehensive experiments.

3 The Grasp-Anything-6D Dataset

Our Grasp-Anything-6D dataset is built upon the Grasp-Anything dataset [81].
Leveraging foundation models [53,64], Grasp-Anything is a large-scale dataset for



Language-Driven 6-DoF Grasping w. Negative Prompt Guidance 5

2D language-driven grasp detection. This dataset consists of 1M RGB images and
~3M objects, substantially surpassing prior datasets in diversity and volume. To
bring the problem from 2D to 3D, we first leverage the state-of-the-art depth
estimation method ZoeDepth [5] to estimate the depth map given the input RGB
images of Grasp-Anything. Subsequently, we perform projection and manual
verification to ensure the quality of our dataset.

3D Scenes and 6-DoF Grasps Construction. For a given 2D scene in
the Grasp-Anything dataset [81], we first employ ZoeDepth [5] to get the depth
map for the image and establish the 3D point cloud scene with the camera model
assumption of a 55-degree field of view and central principal point. We select
the field of view of 55 degrees because it leads to 3D scenes representing real
object scales. Next, to bring a 2D grasp configuration to 3D, we first infer the
3D position using the center of the 2D rectangle grasp in the image. Since in
the Grasp-Anything dataset, the position of the 2D grasp may not necessarily
be integers, we employ bilinear interpolation to calculate its corresponding 3D
position by considering the 3D coordinates of neighboring pixels. The position
determines the translation part of the grasp representation. For the rotation
part, we utilize the angle of the 2D rectangle grasp and map it to 3D to rotate
the 6-DoF grasp pose accordingly. The width of the 6-DoF grasp is derived from
the width of the 2D grasp. Adhering to the Robotiq 2F-140 gripper specifica-
tions [63], we establish the maximum grasp width as 202.1 mm, and discard any
grasps exceeding this threshold. The overview of our 3D scenes and 6-DoF grasps
construction process is illustrated in Figure 2. We maintain the same scene de-
scription and grasping prompts as in the Grasp-Anything dataset. Additionally,
we infer the 3D masks on the point cloud scene for every object in the grasp list
using the corresponding segmentation masks in 2D.

3D Construction &
Post-Processing

Depth Estimation

2D image and grasps Depth map 3D point cloud and grasps

Fig. 2: Overview of Grasp-Anything-6D dataset construction pipeline.

Post-Processing. After converting the 2D scenes and grasps to 3D, we
manually check for the collision of the 6-DoF grippers and point cloud scenes,
as well as whether the grippers can stably grasp the objects. These problems
may occur since the depth estimation network [5] may not always bring good
results. Concretely, we remove the grasp poses that collide with the point cloud
scene and those whose closing volume between the fingers does not intersect the
object determined by its 3D mask. As a result, our Grasp-Anything-6D dataset
consists of 1M point cloud scenes, with comprehensive grasping prompts, and
200M corresponding dense and high-quality 6-DoF grasp poses.
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4 Grasp Detection using Negative Prompt Guidance
4.1 Motivation

Diffusion models have recently shown remarkable performance across various
generation tasks. This makes it a promising choice for our problem, where grasp
detection can be viewed as a generation process conditioned on both the point
cloud scene and the language prompt. The main contribution of our diffusion
model is a novel negative prompt guidance learning strategy. This is motivated
by the notion that generating a grasp for a specific object can benefit signifi-
cantly from guidance away from unwanted objects in the scene. Our LGrasp6D
leverages this by integrating learning the negative prompt embedding into the
training process alongside the conventional denoising objective. Our target for
the negative prompt embedding is to capture the notion of other undesired ob-
jects in the scene. The learned negative prompt guidance is then applied in the
sampling to assist the grasp detection process.

4.2 Language-Driven 6-DoF Grasp Detection

/€ Position encoder

"Bring me

the vase.”

@ Element-wise sum

@ Concatenation

Multi-Head
Cross-Attention

MLP
I
o)
£

Fig. 3: Overview of our denoising network. In addition to predicting the noise, our de-
noising network is trained to learn the negative prompt embedding, which is supervised
by the text embeddings associated with other unwanted objects in the same scene.

Forward Process. We use the se(3) Lie algebra [65] to represent the trans-
lation and rotation of our grasp poses. We use the se(3) representation since it
allows us to conveniently perform the operators of addition and multiplication by
a scalar required by our forward and reverse diffusion processes. The grasp pose
is then represented as the concatenation of se(3) vector and the grasp width.
Note that one can easily convert between the se(3) and 4 x 4 transformation
matrix representation using the logarithm map and exponential map [52]. Given
a target grasp pose go in the training dataset, in the forward process, we obtain
a sequence of perturbed grasp poses by gradually adding to it small amounts
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of Gaussian noise in T steps. The noise step sizes are specified by a predefined
variance schedule {3; € (0, 1)}?:1. The forward process is formulated as:

q(gtlgi—1) =N (gt; 1- ﬁtgt—hﬁtl) . (1)

The perturbed pose at any arbitrary time step ¢ can be obtained by:

gt = Vago + V1 — aue, (2)

where &; = H§=1 ay with oy =1 — 3, and € ~ N (0,I). When T — oo, gr is
equivalent to A (0,I) [24].

Denoising Network. Our denoising network approximates the added noise
described in the forward process by incorporating both the conditions of the
point cloud scene and the textual prompt specifying the target object. Addition-
ally, our network learns a vector representation serving as a negative prompt
guidance. In our framework, this representation is guided by the available tex-
tual prompts associated with other objects within the scene. The details of our
denoising network are shown in Figure 3.

The denoising network first encodes the grasp pose g; at a specific time step
t using a grasp encoder MLP. The scene encoder encodes the point cloud scene
S to ns scene embedding tokens. In our framework, we use PointNet-++ [57] as
the underlying architecture for the scene encoder. For the textual prompt, we
employ a pretrained text encoder to get a text embedding t. We use sinusoidal
positional embedding [24] to embed the time step ¢ to a high-dimensional vector.
Afterward, we form the unified representation fy,; of the grasp pose, the textual
prompt, and the time step. In concrete, we concatenate the time embedding
with the element-wise sum of the grasp embedding and the text embedding.
Subsequently, we adopt the multi-head cross-attention mechanism to capture
the intricate relationships among input components. Specifically, the query for
the cross-attention is the unified feature f,,; while the n, scene tokens serve as
keys and values. The output of the cross-attention module is then fed to an MLP
to obtain the predicted noise €g (g;, S, t,t). We supervise the noise prediction by
optimizing the simplified objective function as described in [24]:

‘Cnoise = Ee,go,s,t,t |:||60 (gtv Sv tv t) - 6”2 . (3)

Negative Prompt Learning. Along with estimating the noise, the denois-
ing network also produces the negative prompt embedding t. We subtract the
text embedding t from the scene tokens, compute the average over ny resulting
vectors, and then pass the output through an MLP to get t. Our purpose for t
is that it can encapsulate the notion of other objects in the same scene. Hence,
our objective is to minimize the distance between t and the negative text em-
beddings which are text embeddings corresponding to other objects. Specifically,
we define the loss function for the learning of negative prompt embedding as:

£negative =D (faT = {EI}ZI) = min?;l ||E - El“i’ (4)
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where D (-) denotes the distance function, T = {t;}]", is the set of m negative
text embeddings. In training, we simultaneously optimize both the denoising loss
Loise and the loss for negative prompt embedding learning Lyegative-

Reverse Process with Negative Prompt Guidance. Different from con-
ventional diffusion models, our reverse diffusion process utilizes the negative
prompt embedding learned during the training to guide the grasp pose toward
the desired object while avoiding unwanted ones. Our generation process can
be formulated as a conditional distribution p (g|S, t, —|E). The negation sign of t
indicates that we aim to sample the grasp pose with the absence of the t prompt
condition. We begin with the following proposition:

Proposition 1. The conditional distribution p (g\S,t, —@) can be factorized as

p(glt,S)

p (g[S, t,~t) < p(g|S) » (&t S)

()

Proof. See Supplementary Material.

With Equation 5, alongside detecting grasps conditioning on the scene and
the user-specified prompt via p(g|S) and p (g|t,S), we can now seamlessly in-
corporate the negative prompt guidance into our reverse process via p (g|t, S).

Remark 1. Liu et al. [37] demonstrated how diffusion models can be composed
based on their connection to energy-based models [15]. We recall this relationship
in detail in our Supplementary. Consequently, following the expression in [37],
we can formulate our compositional denoising step in the reverse process as:

éB (gta Sata _‘Eat) = €g (gtvsvgat) +w (69 (gta Satat) — €9 (gtvs7fvt)) . (6)

In Equation 6, p (g|S), p (g|t,S) and p (g\f, S) are parameterized by €g (g, S, &, 1),
€o (g1,S,t,t) and €g (gt, S,E,t) respectively. €g (gt, S,E,t) is the output of the
denoising network when the learned negative prompt embedding t is plugged in
as the text embedding. w is a hyperparameter that controls the strength of the
negative guidance. €g (g, S, @, t) is the predicted noise when the text condition
is discarded. In training, we learn €g (g, S, @,t) by randomly masking out the
text embedding with a predefined probability pyask. Given the denoising step de-
fined in Equation 6, we can now sample grasps from Gaussian noise by applying
the reverse process from timestep 1" back to 0 using the following formulation:

1 1-— [ 7 ~
1= - — S, t,t, ¢t 7
gt—1 \/OTt (gt MEG (gtv ) Uy ) )) + ﬁtza ( )

where z ~ N (0,I) if the time step ¢ > 1, else z = 0.

4.3 Training and Sampling

We define the overall loss function for training as £ = 0.9L,0ise +0.1L1egative- We
utilize the pretrained CLIP ViT-B/32 text encoder [59] for our text encoder and
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freeze it during training. We set the number of timesteps to T' = 200, and set the
forward diffusion variances to increase linearly from 3; = 10~% to 87 = 0.02. The
probability of masking out the text embedding is set to ppask = 0.1. The whole
network is trained over 200 epochs on a cluster of 8 A100 GPUs with a batch
size of 128. We use Adam optimizer [27] with the learning rate 10~2 and the
weight decay 10~%. In sampling, we set the negative guidance scale to w = 0.2.
To obtain a favorable inference speed, we pre-compute the scene tokens, the text
embedding t, and the negative prompt embedding t since they are independent
of the timestep. This precomputation substantially reduces the detection time,
making our method feasible for practical implementation on real robots.

5 Experiments

In this section, we evaluate the effectiveness of our LGrasp6D trained on the
Grasp-Anything-6D dataset via several vision-based and real robot experiments.

5.1 Language-Driven 6-DoF Grasp Detection Results

Baselines. We evaluate our method against generative approaches for 6-DoF
grasp detection, which are 6-DoF GraspNet [42], SE(3)-DF [76], and 3DAP-
Net [46]. We adapt the frameworks of these baselines to integrate textual input
into the detection process. To ensure a fair comparison, we utilize the CLIP
ViT-B/32 [59] as the text encoder for all methods. We also include our method
without utilizing negative prompt guidance (denotes as Ours w.o. NPG) as an
additional baseline for comparison. Detailed implementation information for all
baselines is available in our Supplementary Material.

Setup. We train all baselines on 80% scenes of the Grasp-Anything-6D
dataset and evaluate them on the remaining 20%. For each pair of point cloud
scene-textual prompts, we detect 64 grasp poses for evaluation. To benchmark
the methods’ detection capabilities, we use three metrics, which are the coverage
rate [42], earth mover’s distance [76], and collision-free rate [95]. The coverage
rate (CR) [42] measures how well the space of ground-truth grasps is covered
by the detected grasps. The earth mover’s distance (EMD) [76] evaluates the
dissimilarity between the distributions of ground-truth grasps and the detected
ones. Finally, the collision-free rate (CFR) [95] assesses the occurrence of colli-
sions between the gripper of the detected grasps and the scene. The final results
for all metrics are averaged across all scene-text prompt pairs. Since latency is
a critical factor for any robotics applications, we additionally benchmark the
inference speeds of all methods using the inference time in seconds (IT). Specif-
ically, for each baseline, we calculate its inference time for detecting 1000 grasp
poses across 1000 different scene-text pairs and take the average result.

Quantitative Results. Table 1 shows the results of language-driven 6-DoF
grasp detection on our Grasp-Anything-6D dataset. The outcomes indicate the
advantages of our methods, even without negative prompt guidance, over other
baselines. Our complete method consistently achieves the highest scores across
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all three metrics for grasp detection capability. It significantly surpasses the
second-best method, which is our framework without negative prompt guidance,
with large margins of 0.1235 on CR, 0.2249 on EMD, and 0.0370 on CFR. This
highlights the effectiveness of our proposed negative prompt guidance learn-
ing. Regarding latency, our methods achieve competitive IT scores compared
to other diffusion model-based methods (SE(3)-DF and 3DAPNet). Although
6-DoF GraspNet achieves the best IT, it is important to note that this is a vari-
ational autoencoder-based method requiring only a single decoding step, and its
results on the remaining metrics are poor.

Baseline CRt EMD| CFR? IT|

6-DoF GraspNet [42] 0.3802 0.8035 0.6900 0.4216
SE(3)-DF [76] 04290 0.7565 0.7325  1.7233
3DAPNet [46] 0.4777  0.7381  0.7213  3.4274
LGrasp6D (ours) w.o. NPG | 0.5459  0.6262 0.7336  1.4328
LGrasp6D (ours) 0.6694 0.4013 0.7706 1.4832

Table 1: Results on Grasp-Anything-6D dataset.

Qualitative Results. We present the qualitative results of all baselines in
detecting language-driven grasps in Figure 4. Point cloud scenes are selected from
our Grasp-Anything-6D dataset. The results indicate that LGrasp6D exhibits a
significantly stronger capability in detecting language-driven grasp poses com-
pared to the others. Specifically, our method excels at focusing on the desired
objects, whereas other methods often get distracted by undesired ones. More
qualitative results are provided in our Supplementary Material.

Accelerating Detection. While latency is critical for robot applications,
diffusion models are notorious for their low inference speed [69]. Despite our
method achieving a competitive inference speed, as shown in Table 1, we continue
to seek even faster models with comparable performance. Hence, we benchmark
our LGrasp6D employing the fast reversion technique of denoising diffusion im-
plicit models (DDIM) [68], with numbers of sampling steps of 200 (the original
one), 100, 50, 20, and 10. The results are shown in Table 2. We can observe that
decreases in the sampling step lead to decreases in performance. However, all
the variants still outperform other baselines in Table 1. Regarding the inference
time, these accelerated models obtain significantly better inference speed com-
pared to the original one. The variant with 50 steps already surpasses the 6-DoF

Baseline CR? EMD| CFRt IT| Baseline CR? EMD, CFRt
LGrasp6D - 10 steps | 0.5611  0.5273 0.7368 0.0726 6-DoF GraspNet [42] 0.3498  0.8501  0.6927
LGrasp6D - 20 steps | 0.6425 0.4300 0.7580 0.1464 SE(3)-DF [76] 0.3892  0.7622  0.7205
LGrasp6D - 50 steps | 0.6439  0.4254  0.7639  0.3991 3DAPNet [46] 0.4491  0.7434  0.7092
LGrasp6D - 100 steps | 0.6522 0.4110 0.7633 0.8427 LGrasp6D (ours) w.o. NPG | 0.5208 0.6422 0.7385
LGrasp6D - 200 steps | 0.6694 0.4013 0.7706 1.4832 LGrasp6D (ours) 0.6420 0.4197 0.7683

Table 2: DDIM accelerating results. Table 3: Cross-dataset results.



Language-Driven 6-DoF Grasping w. Negative Prompt Guidance 11

Pick up the steel knife.

Give me the black headphone.

Grasp the flower vase.

EEEEE

Hand me the orange.

EREEE

Ours Ours w.0. NPG 3DAPNet SE(3)-DF 6-DoF GraspNet

Fig. 4: Language-driven 6-DoF grasp detection qualitative results.

GraspNet method (0.3991 seconds compared to 0.4216 seconds). Although the
variant with 10 steps achieves the best detection speed, it is not recommended
as its detection performance is severely compromised.

5.2 Generalization Analysis

Cross-Dataset Transferability. Given the extensive scale and diversity of our
Grasp-Anything-6D dataset, we expect that our proposed method, trained on
this dataset, will exhibit strong generalization capabilities when tested on a dis-
tinct dataset. Specifically, we evaluate the language-driven grasp detection per-
formance of models trained on Grasp-Anything-6D using the Contact-GraspNet
dataset [71]. This dataset comprises point cloud scenes of cluttered tabletops syn-
thesized using objects and 6-DoF grasps from [19] and a random camera view.
We utilize the object category names as textual prompts for language-driven
grasping. The findings showcased in Table 3 exhibit a comparable trend to those
observed in the Grasp-Anything-6D dataset. Our method continues to outper-
form its counterparts across all three metrics, with the version lacking negative
prompt guidance following behind. Furthermore, the slight performance decrease
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on the new dataset is noteworthy. They underscore the efficacy of our dataset,
as models trained on it demonstrate strong generalizability.

Grasp Detection in the Wild. Figure 5 illustrates results of our method
in point cloud scenes captured from diverse real-world environments, such as
working desks, bathrooms, and kitchens. As we can observe, the detected grasp
poses exhibit satisfactory quality. This indicates that despite being trained on
synthetic data, our approach effectively generalizes to real-world environments.

# WS Wl S A

Grasp the green ball. ‘ ’ Get the toothpaste rube Gn/e me the controller Ple up the thermometer‘ ’ Bring me the kettle.

Fig. 5: In the wild language-driven 6-DoF grasp detection results.

5.3 Negative Prompt Guidance Analysis

We offer a more intuitive understanding of how negative prompt guidance influ-
ences the grasp detection results. Specifically, we ultimately sample 1000 grasp
poses for each object in a given point cloud scene for both cases: our frame-
work with negative prompt guidance and the one without it. We then employ
t-SNE [77] to visualize all grasp poses on a 2D plane. The results are depicted
in Figure 6, where grasp data points of the same color are detected for the
same object. We can observe that negative prompt guidance significantly assists
our method in discriminatively detecting grasp poses for different objects. Con-
versely, without negative prompt guidance, detecting grasp poses for one object
is seriously confused by other ones. This further highlights the effectiveness of
our proposed approach. More comparison results can be viewed in Figure 8.

¢HER

Pick up the folk. Grasp the clock Hold the phone.

Ours w.0. NPG Ours w. NPG

Fig. 6: Negative prompt guidance analysis. Fig. 7: Failure cases.
Pick up the red pencil.

Grasp the apple. Ii

Ours w.0. NPG Ours w. NPG Ours w.0. NPG Ours w. NPG

Fig. 8: Comparisons between models with and without negative prompt guidance.
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5.4 Robotics Experiment

. : Query: “Bring me the black cup.”
RealSense Y éQuery 1 2
LGrasp6D

RO

/
Robotiq 2F-85

(a) (b)

Fig. 9: (a) Experiment setup. (b) Example of the execution of a grasping task.

Baseline | Input Modality | Single Cluttered
GG-CNN [41] + CLIP [59] RGB-D 0.10 0.07
CLIPORT [66] RGB-D 0.27 0.30
Det-Seg-Refine [1] + CLIP [59] RGB-D 0.30 0.23
GR-ConvNet [30] + CLIP [59] RGB-D 0.33 0.30
CLIP-Fusion [90] RGB-D 0.40 0.40
LGD [80] RGB-D 0.43 0.42
6-DoF GraspNet [42] Point clouds 0.31 0.27
SE(3)-DF [76] Point clouds 0.35 0.34
3DAPNet [46] Point clouds 0.36 0.34
LGrasp6D (ours) w.o. NPG Point clouds 0.38 0.36
LGrasp6D (ours) Point clouds 0.43 0.42

Table 4: Robotic language-driven grasp detection results.

Setup. In Figure 9, we present the robotic experiment conducted on a KUKA
robot. The success rate is used for evaluation. Using an Intel RealSense D435i
depth camera, the detected 6-DoF grasp poses are mapped to robot’s 6-DoF
end-effector poses using transformation matrices obtained via hand-eye calibra-
tion [45]. The trajectory planner and the computed torque controller [4,79] are
employed for the grasp execution. We use two computers for the experiment.
The first computer executes the real-time control software Beckhoff TwinCAT
of 8 kHz update frequency, while the second one utilizes the Robot Operating
System (ROS) for the camera and the Robotiq 2F-85 gripper. Using EtherCAT
protocol, PC1 communicates with the robot via a network interface card (NIC).
The inference process is performed on PC2, utilizing an NVIDIA RTX 3080
graphic card. Our assessment encompasses both single-object and cluttered sce-
narios, involving a diverse set of real-world daily objects. To ensure the reliability,
we repeat each experiment for all methods a total of 45 times.

Baselines. Besides the baselines utilized in previous experiments, we addi-
tionally compare LGrasp6D with language-supported versions of state-of-the-art
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2D grasp detectors, including GR-CNN [30], Det-Seg-Refine [1], GG-CNN [41],
CLIPORT [66], CLIP-Fusion [90], and LGD [80]. In all cases, we employ the
pretrained CLIP ViT-B/32 [59] as the text encoder. The implementation details
of all baselines can be found in our Supplementary Material.

Results. Our method, incorporating negative prompt guidance, demonstrates
better performance compared to other baselines in Table 4. Additionally, even
though LGrasp6D is trained on Grasp-Anything-6D, a synthesis dataset exclu-
sively created by foundation models, it still yields commendable results when
applied to real-world objects.

6 Discussion

Despite promising results, it is important to acknowledge that our method still
has limitations, as illustrated in Figure 7. The left case depicts an example of
grasping the wrong object, while the middle one illustrates a detected grasp
colliding with an object. The final case shows our method detecting a grasp that
mis-targets the desired object. These underscore the challenges in language-
driven 6-DoF grasping, indicating its need for further investigation.

For future research, we aim to enhance the performance by incorporating
more advanced techniques to capture the intricate correlation among input
modalities. In addition, our work can be extended to address language-driven
6-DoF grasping at both the part-level and task-level. For instance, instead of
object-specific prompts like “Grasp the knife”, one can provide more detailed
prompts such as “Grasp the knife by its handle” or "Grasp the knife for cutting”.
Furthermore, it would be beneficial to extend our approach to accommodate
different types of robot end-effectors to enhance the flexibility and adaptability
of our framework. Lastly, integrating learning language-driven 6-DoF grasp de-
tection with robotic control could create a more effective end-to-end pipeline,
connecting human instructions directly to low-level robot actions.

7 Conclusion

We address the task of language-driven 6-DoF grasp detection in cluttered point
clouds. In particular, we have presented the Grasp-Anything-6D dataset as a
large-scale dataset for the task with 1M point cloud scenes. We have introduced
a novel LGrasp6D diffusion model incorporating the new concept of negative
prompt guidance learning. Our proposed negative prompt guidance assists in
tackling the fine-grained challenge of the language-driven grasp detection task,
directing the detection process toward the desired object by steering away from
undesired ones. Empirical results demonstrate the superiority of our method over
other baselines in various settings. Furthermore, extensive experiments validate
the efficacy of our approach in real-world environments and robotic applications.
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A Theoretical Findings

A.1 Proof of Proposition 1

Proof. We have the following derivation:
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p(t,S), p(t,S) are constants

The assumption of independence between t, t, and S reflects general real-
world scenarios where human language prompts can be arbitrary and are not
necessarily dependent on the scene. Proposition 1 is now proved. B
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A.2 Connection between Diffusion and Energy-Based Models

The connection between diffusion and energy-based models is not restricted to
our problem. We will recall this connection in the general context of any gener-
ation task.

Diffusion Models. Denoising diffusion probabilistic models (DDPMs) con-
struct a forward diffusion process by gradually adding Gaussian noise to the
ground truth sample xq through T timesteps. A neural network then learns to
revert this noise perturbation process. Both the forward and the reverse processes
are modeled as Markov chains:

T
q (xor) = q(xo) [[ ¢ (xexe=1),  po (x10) = p (x1) [[ po (xe1lxe) . (8)

t=1 t=T

=

where ¢ (xg) is the ground truth data distribution and p (xr) is a standard
Gaussian prior N (0,T).

In the reverse process, each step is parameterized by a Gaussian distribution
with mean pg (x4, t) and covariance matrix B,1, where 3, = f3; 1;2‘(;1 . Following
the simplification in [24], we can keep the covariance fixed and formulate the
reverse distribution as:

ot =N (= (3 - e ) 51). @

Subsequently, an individual step in sampling can be performed by:

o G =) RV (10)

where z ~ N (0,1) if the time step t > 1, else z = 0.
Energy-Based Models. Energy-Based Models (EBMs) [16,17,23,51] are
a family of generative models in which the data distribution is modeled by an
unnormalized probability density. Given a sample x € RP, its probability density
is defined as:
po (x) oc e Bo (), (11)

where the energy function Fp(x) : RP — R is a learnable neural network.
Langevin dynamics [17] is then used to sample from the unnormalized probability
distribution to iteratively refine the generated sample x:

A
Xt = Xg—1 — §VxE9 (x¢-1) +V)z, (12)

where ) is the predefined step size and z ~ A (0, I).

The sampling procedure used by diffusion models in Equation 10 is func-
tionally similar to the sampling procedure used by EBMs in Equation 12. In
both settings, samples are iteratively refined starting from Gaussian noise, with
a small amount of noise removed at each iterative step. At a timestep ¢, in
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DDPMs, samples are updated using a learned denoising network € (x¢, t), while in
EBMs, samples are updated via the gradient of the energy function VxFEy (x¢) o<
Vi« log pg (x¢). Thus, we can view a DDPM as an implicitly parameterized EBM
and apply similar composition techniques for EBMs as in [15] for DDPMs. More
details about compositional DDPMs can be referred to in [37].

B Remark on Related Works

Diffusion Models in Robotics. Recent years have witnessed diffusion models
being applied to several robotic tasks. For instance, in policy learning, diffusion
models have been employ for multi-task robotic manipulation [88], long-horizon
skill planning [40], or cross-embodiment skill discovery [91]. Besides, the ability
of diffusion models to generate realistic videos over a long horizon has enabled
new applications in the context of robotics [2,18,29]. For example, Du et al. [18]
proposed to learn universal planning strategy via text-to-video generation. In
robot development, diffusion models have been leveraged for manipulator con-
struction [92] or soft robot co-design [84]. Although diffusion models have also
been explored for the task of grasp detection [46,76], none of them address the
task of detecting language-driven 6-DoF grasp poses in 3D cluttered scenes.

Language-Driven Grasp Detection. Language-driven grasp detection has
emerged as an active research domain in recent years. Previous works have pri-
marily focused on addressing this task using 2D images [72, 75,80, 81, 90]|. For
instance, the authors in [73]| presented a method that combines object ground-
ing and task grounding to tackle the task of task-oriented grasp detection, while
Xu et al. [90] proposed to jointly model vision, language, and action for grasp-
ing in clutter. Despite achieving promising results, these approaches are limited
in their ability to handle complex 3D environments. To overcome this limita-
tion, recent research has explored language-driven grasp detection in 3D data.
In particular, Nguyen et al. [46] addressed the task of affordance-guided grasp
detection for 3D point cloud objects, while Tang et al. [72] leveraged knowledge
from large language models for task-oriented grasping. However, these methods
are designed for single-object scenarios, limiting their applicability in cluttered
settings. In contrast, our method is capable of detecting language-driven 6-DoF
grasp poses in cluttered point cloud scenes.

C Dataset Statistics

Table 5 shows our dataset statistics and comparisons to other 6-DoF grasp
datasets.

D Implementation Details

D.1 Grasp Detection Methods for 3D Point Clouds

— Our LGrasp6D: The text embedding t produced by the pretrained CLIP
ViT-B/32 and the negative prompt embedding t are 512-dimensional (512-
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Dataset Text?|#objects|#grasps|#scenes|Cluttered? | Data type|Annotation
GraspNet-1B [20] X 88 ~1.2B | 97K v Real Analysis
6-DoF GraspNet [42]| X 206 ~T™™ 206 X Sim. Sim.
ACRONYM [19] X 8872 |~17.7TM - X Sim. Sim.
Ours v ~3M | ~200M| 1M v Synth. Analysis

Table 5: Dataset statistics.

D). We employ a PointNet+-+ [48] architecture for our scene encoder. The
number of points per scene is 8192. The scene encoder extracts ng = 128
scene tokens of 256-D. We employ 4 heads for the multi-head cross-attention
block, with the output of 512-D. The timestep ¢ is encoded by a sinusoidal
positional encoder to obtain a 64-D vector. To speed up the training process,
we freeze the scene encoder after the first 100 epochs.

— 6-DoF GraspNet: We modified the model to integrate the text embedding
derived from the CLIP text encoder [59] into both the encoder and decoder
of the variational autoencoder. Since our dataset does not include negative
grasp poses, we refrained from employing additional refinement steps. This
is also to ensure a fair comparison with other methods. The remaining archi-
tecture, hyperparameters, and training loss are inherited from the original
work.

— SE(3)-DF [76]: We append the text embedding extracted by the CLIP text
encoder [59] to the input of the feature encoder. As the signed distance func-
tion is not available for our 3D point clouds, we exclude the signed distance
function learning objective from the framework. The remaining architecture,
hyperparameters, and training loss are retained from the original work.

— 3DAPNet [46]: 3DAPNet jointly addresses the tasks of language-guided affor-
dance detection and pose detection. To adapt this method to our problem,
we remove the affordance learning objective from the original framework.
The remaining architecture, hyperparameters, and training loss are inher-
ited from the original work.

D.2 Grasp Detection Methods for Images

Methods in this section are used in our robotic experiment in Section 5.2 of
our main paper. They are trained on the RGB-D images to predict rectangle
grasp poses inherited from Grasp-Anything [81]. Specifically, each grasp pose is
represented by (9z, gy, 9w, 9n, go), where (gz, gy) is the center of the rectangle,
(9w, gn) are the width and height of the rectangle and gy is the grasp angle.

— Language-supported versions of GG-CNN [41], Det-Seg-Refine [1], and GR-
ConvNet [30]: We slightly modify these baselines by adding a component
to fuse the input image and text prompt. Specifically, we utilize the CLIP
text encoder [59] to extract the text embedding. Additionally, we employ the
ALBEF architecture presented in [34] to fuse the text embedding and the
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visual features. The remaining training loss and architecture are inherited
from the original works.

— CLIPORT [66]: The original CLIPORT framework learns a policy 7, which is
not directly applicable to our setting. Therefore, we modify its architecture’s
final layers by adding an MLP to output the rectangle grasp pose.

— CLIP-Fusion [90]: We follow the cross-attention module in CLIP-Fusion. The
final MLP in the architecture is modified to output five parameters of the
rectangle grasp pose.

— LGD [80]: We report results from the original paper.

E Ablation Studies

Negative Guidance Scale. Recall that the negative guidance scale w plays
an important role in controlling the strength of the negative guidance in the
sampling process. We conduct an ablation study of the effect of the change in w
on the grasp detection performance. Table 6 demonstrates that values of w = 0.2
(used in experiments in the main paper) and w = 0.5 yield the best results,
whereas excessively small or large values of w detrimentally affect performance.

w | CRt EMD, CFRt
0.1 | 0.6573 04183  0.7629
0.2 | 0.6649 0.4013 0.7706
0.5 | 0.6607 0.4005  0.7698
1.0 | 0.6531  0.4310  0.7622
2.0 | 0.6372 04521  0.7563

Table 6: Grasp detection performance with varying negative guidance scale.

Loss Function. Table 7 shows the performances when using varying ratios
of Lyegative (called ¢) and Lygise (which is 1—¢). The results indicate that setting
¢ to 0.1 or 0.2 yields strong accuracy, while either too high (0.4) or low (0.05)
values significantly hurt the performance.

¢ CRt EMD| CFRt
0.05 | 0.6237 04500  0.7420
0.1 | 0.6733 0.4029  0.7754
0.2 | 0.6664  0.4093 0.7812
04 | 05833 05298  0.7326

Table 7: Loss function analysis.
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Backbone Variation. We conduct an ablation study on two different scene
encoder backbone, i.e., PointNet++ [57] and Point Transformer [96], and two
different pretrained text encoders, i.e., CLIP ViT-B/32 [59] and BERT [12].
The number of parameters and results of all variants are shown in Table 8. We
observe that in general, PointNet++ performs better than Point Transformer,
and CLIP performs better than BERT. Variants using Point Transformer run
significantly slower than those using PointNet++ due to the larger and more
complicated architecture. Particularly, the combination of Point Transformer
and CLIP obtains a competitive grasp detection performance compared to that
of PointNet+-+ and CLIP; however, its inference time is considerably higher.
This pattern is also observed when comparing CLIP and BERT text encoders.
The gap in grasp detection performance between variants utilizing the CLIP
ViT-B/32 text encoder and those employing BERT is substantial, highlighting
CLIP’s superiority in semantic language-vision understanding.

Scene Encoder | Text Encoder CRtT EMD| CFR? IT|
Point Transformer [96] (23M) | BERT [12] (110M) | 0.6428 0.4597 0.7583  2.0137
Point Transformer [96] (23M) | CLIP [59] (63M) 0.6591  0.4167 0.7725 1.9755
PointNet++ [57] (2M) | BERT [12] (110M) | 0.6430 0.4225 0.7622 1.5449
PointNet++ [57] (2M) | CLIP [59] (63M) | 0.6649 0.4013 0.7706 1.4832

Table 8: Scene encoder and text encoder backbone variation.

F Robotic Experiments

We show 20 real-world daily objects used in robotic experiments in Figure 10.
The sequences of actions when the KUKA robot grasps objects are presented
in Figure 11. Figure 12 further shows the detection result of our LGrasp6D on
point clouds captured by a RealSense camera mounted on the robot. The robotic
experiments demonstrate that although our method is trained on a synthetic
Grasp-Anything-6D dataset, it can generalize to detect grasp poses in real-world
scenarios. More illustrations can be found in our Demonstration Video.

Fig. 10: Set of 20 objects used in the robotic experiments.
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y, Y, Y,
Fig. 11: Snapshots of two example robotic experiments.

Fig. 12: Detection results in robotic experiments. Point clouds are captured from a
RealSense camera with experiments in Figure 11.

G Additional Qualitative Results

Figure 13 shows more qualitative results to demonstrate the effectiveness of our
method in detecting grasp poses for different objects.

’Get the wooden tea cup.‘ ‘ Grasp the folk. ‘ [Bring me the white vase.‘ [ Give me the toy car. ‘ [Hand me the eyeglasses.‘

Take the silver vase. ‘ ‘ Pick up the spoon. ‘ [ Hold the blue vase. ‘ [ Grasp the bottle.

Fig. 13: Additional qualitative results.
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