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Abstract

We introduce the notion of an online matroid embedding, which is an algorithm for mapping
an unknown matroid that is revealed in an online fashion to a larger-but-known matroid. We
establish the existence of such an embedding for binary matroids, and use it to relate variants of
the binary matroid secretary problem to each other, showing that seemingly simpler problems
are in fact equivalent to seemingly harder ones (up to constant-factors). Specifically, we show
this to be the case for the version of the matroid secretary problem in which the matroid is
not known in advance, and where it is known in advance. We also show that the version with
known matroid structure, is equivalent to the problem where weights are not fully adversarial
but drawn from a known pairwise-independent distribution.

1 Introduction

A common setup in online algorithms is to have a matroid whose structure is revealed to the
algorithm one element at a time. The algorithm processes the elements of the ground set in
sequence, and at each point in time, it has access to the dependencies between the elements that
have already arrived. Typical examples include the famous matroid secretary problem (MSP)
[BIK07, BIKK07, Lac14, FSZ18] and matroid prophet inequalities [CHMS10, KW12].

In such problems, is there any advantage in knowing the matroid structure in advance? Imagine
the following situation: we are processing an unknown matroid M; however, we know a fixed
(potentially very large) matroid BigM that has an isomorphic copy of every possible matroid M,
and we can construct this embedding online. We will show that if such an object exists, then we
can reduce the version of the problem where the matroid is revealed online to the version of the
problem where the matroid structure is known, by assuming our matroid is BigM. Moreover, if
the on-the-fly embedding maintains uniform random order, then the existence of such an online
embedding implies that in that class, the matroid secretary problem with unknown structure is no
harder than the matroid secretary problem with known structure.

Important recent progress on the MSP has established that it is equivalent to the matroid
prophet secretary problem with correlated distributions [Dug21, Dug20]. Though seemingly un-
related, another consequence of the existence of such online embeddings will be that—for certain
matroids— this equivalence holds even if we impose pairwise independence.
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Figure 1: Reductions for binary matroids. We use P ⪰ Q to indicate that P is harder than Q,
and we use ⪰ϵ and ⪰C to designate an additive ε or multiplicative factor C loss in approximation.

1.1 Our Contribution

Online Matroid Embedding Our main conceptual contribution is to define the notion of an
online matroid embedding (OME) in Section 3. For a given class of matroids C and a host matroid
BigM, we define an OME as a set of matroid monomorphisms, i.e., mappings that preserve the
matroid structure, from any matroid in the class C into BigM that can be constructed sequentially,
only using calls to an independence oracle over the set of elements observed so far.

The use of embeddings in algorithm design is an idea that has been successfully explored in
other contexts, most notably, metric embeddings both in classic settings [Bou85, LLR95, Bar98]
as well as more recently in online settings [IMSZ10, BFU20, NR25]. While our motivation and
main application is the matroid secretary problem, we believe that understanding maps between
matroids preserving structure is an important mathematical question in its own right that can
enable other algorithmic applications beyond the matroid secretary problem.

Consequences for the MSP We use the concept of online matroid embeddings to gain insights
into the complexity of the matroid secretary problem (MSP) on binary matroids (see Section 2).
Specifically, we relate different variants of the problem to each other and show that seemingly
simpler ones are actually equivalent to harder ones (up to constant factors). See Figure 1 for an
overview of the reductions that we establish in this paper.

The three variants we are interested in are: (1) the online-revealed-matroid MSP, where the
matroid is a priori unknown to the online algorithm and the algorithm has access to an independence
oracle on the already arrived elements, (2) the known-matroid MSP, where the structure of the
matroid is known to the algorithm in advance, and (3) the prophet MSP, where the matroid
structure is known in advance and additionally the weights of the elements are drawn from a
known, but possibly correlated distribution.

Clearly, the online-revealed-matroid MSP is harder than the known-matroid MSP and the
known-matroid MSP is harder than the prophet MSP, in the sense that if we have an α-approximation
for one problem, then we also have an α-approximation for the other. Two main implications of
our work are “inverses” of these statements for binary matroids, that hold up to a constant-factor
loss, and apply even if we impose pairwise-independence in the prophet MSP. Such reductions be-
tween different average-case problems are notoriously difficult to achieve, as they need to ensure
or maintain rather stringent assumptions on the input distribution that are essential for the target
algorithm to be applicable in a meaningful way, and the required properties are easily disrupted.

Step 1: A Reduction From Online-Revealed Matroid MSP to Known-Matroid MSP. In Theorem
5.1 we show that the existence of an OME for a class of matroids enables a reduction from the
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online-revealed-matroid MSP to the known-matroid MSP. The challenge in proving this is to show
that the online embedding can be used in a way that (almost) maintains uniform random arrival
order. More precisely, let M be the unknown matroid that is revealed to the algorithm in an online
fashion and let f be an OME into BigM. Now consider the reduction: upon arrival of an element-
weight pair (e, we) in matroid M at iteration t, we construct the corresponding element-weight
pair (f(e), we) as an input to MSP on BigM at iteration t. However, this is not a valid input to
known-matroid MSP on BigM as it does not construct a random arrival order over the elements
that are not in the image of M.

To overcome the shortcoming of the above simple reduction, we interleave the elements in BigM
that are in the image of M with the remaining elements in BigM. In the proof of Theorem 5.1,
our main technical argument shows that, while this interleaving does not ensure uniformity of
the arrival order of the elements in BigM, it leads to an arrival order over elements in BigM
that is close to uniformly random arrival order in total variation distance (Section 5.1). We then
complete the reduction with a coupling argument that shows that the existence of an α-competitive
algorithm for the known-matroid MSP implies the existence of an (α − ϵ)-competitive algorithm
for the online-revealed-matroid MSP.

Together with the existence of an OME that maps binary matroids into the complete binary
matroid (see Section 4 and discussion below), our reduction implies that an algorithm for the
MSP over binary matroids cannot meaningfully use any advance information about the matroid
(Corollary 5.2). This is in contrast to all known O(1)-competitive algorithms for special cases of
binary matroids [KP09, DK14].

Step 2: A Reduction from Prophet MSP w/ Pairwise Independence to Known-Matroid MSP. In
Theorem 5.3, we show that the existence of an OME from a class of matroids C to BigM satisfying
a 2-transitivity property (that is satisfied by complete binary matroids, see definition in Section 2),
allows to translate an α-competitive algorithm for prophet MSP with pairwise-independent weight
distribution on BigM into a C · (α − o(1))-competitive algorithm for known-matroid MSP on
matroid M ∈ C, for some constant C > 0.

To establish Theorem 5.3, we build on [Dug21, Dug20] and show how to reduce prophet MSP
with arbitrary correlation on M ∈ C to prophet MSP with pairwise-independent weight distribution
on BigM.1 To prove this, we first show that any uniformly random automorphism f : BigM →
BigM satisfies the following property: for any pair of elements e, e′, Pr[f(e) = e′] = 1

n and for any
two pairs of independent elements e1, e2 and e′1, e

′
2, Pr[f(e1) = e′1 ∧ f(e2) = e′2] =

1
n·(n−1) , where

n = |BigM| (Lemma 3.2). This property allows us to construct an “almost pairwise independent”
randomized OME f ′ : M → BigM by simply composing the given OME with a uniformly random
automorphism on BigM. The resulting weight distribution is approximately pairwise independent
in the sense that for any pair of elements e, e′ ∈ BigM and weights w,w′ it holds that |Pr[w(e) =
w] · Pr[w(e′) = w′]− Pr[w(e) = w′ ∧ w(e′) = w′]| = O

(
1
n2

)
.

To conclude the proof, we show that there exists a pairwise-independent distribution that is
close to the induced weight distribution overBigM (Theorem 5.9). This is one of the most technical
results of the paper (see discussion below, and Section B). Combining Theorem 5.9 with a coupling
argument similar to the one in our other reduction completes the proof.

We note that constructing an exactly k-wise independent distribution from an approximately
k-wise independent distribution has been studied in previous work [AGM03, AL12, AAK+07].
However, their techniques focus on a set of Bernoulli random variables with identical marginals

1A technical detail that we are ignoring here is that our reduction is from a restricted version of the prophet MSP
with arbitrary correlation, which results in an additional constant-factor loss.
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[AGM03, AAK+07] or “uniformity” of the underlying random variables [AL12]—both conditions
do not hold in our setting as the weight distribution in the prophet MSP instance can be arbi-
trarily correlated. In fact, in both works [AGM03, AL12], they show that if the random variables
X1, . . . , Xn satisfy “uniformity” and |E[Xi · Xj ] − E[Xi] · E[Xj ]| ≤ ε then there exists pairwise
independent random variables X̃1, . . . , X̃n within a distance of O(n2 · ε) — which is not enough for
our purpose as ε = Θ(1/n2) in our case.

To obtain Theorem 5.9, we construct an explicit pairwise-independent weight distribution over
BigM by a sequence of “small” perturbations to a naturally induced “almost” pairwise-independent
distribution. At each step, we perturb the original distribution such that ω(1) many pairs of
random variables end up being independent (Procedure 1 and Procedure 2 in Section B) while
always decreasing the pairwise correlation of the rest of the pairs (Lemma B.1). Then the main
technical work is devoted to showing that the total deviation through our procedures is in the order
of ε · o(n2) (Section B.3 and Section B.4), which, combined with the fact that ε = O(1/n2) leads to
the desired result. We believe that our idea of sequentially constructing small perturbations would
find further applications to obtain exact pairwise (or k-wise) independent distributions from their
approximate counterparts in other settings.

Constructing OMEs In Section 4 (Theorem 4.2 and Theorem 4.4), we provide a complete
analysis for binary matroids. Namely, for the class of binary matroids M with n elements, there
is an online matroid embedding into BigM the complete binary matroid Fn

2 . We also develop a
technique for making the OME order-independent: we use properties of the automorphism group of
Fn
2 together with randomization to ensure that the images of the elements in M are not correlated

with the arrival order. This technique is in fact more general (Theorem 4.6) and can be applied
whenever the group of automorphisms of the host matroid is “sufficiently rich” in a sense that the
theorem statement makes precise.

The key property of binary matroids that we exploit to establish these results is that in Fn
2 ,

there is a unique element that completes a circuit, in the sense that there cannot be two circuits of
the same size that intersect in all but one element of each.

We refer to online matroid embeddings where both M and BigM are of the same class as
“within-class” OMEs. In Section 6.1 we explore whether such “within-class” OMEs can exist for
graphic matroids. We show that such embeddings cannot exist, in fact we show that graphic
matroids cannot be embedded in an online-fashion to regular matroids. To rule out the existence of
such an online embedding, we show that if it would exist, then BigM must contain an isomorphic
copy of Fn

2 . However, Fn
2 contains an isomorphic copy of the Fano plane which is not representable

over F3 [Tut58]. Hence BigM can’t be regular.
We believe that the lack of online matroid embeddings for graphic matroids/regular matroids

that “don’t leave the class” may shed light on why progress on the known-matroid MSP for graphic
and regular matroids has not extended to the online-revealed version of these problems, and more
generally the MSP for general binary matroids.

In Section 6.2 we give another example of an OME, namely for laminar matroids. We show (in
Theorem 6.6) how to embed the class of laminar matroids M with at most n elements into BigM
which is a complete linear matroid of rank n over any field with sufficiently many elements.

Finally in Section 6.3 we show an impossibility result of constructing an OME for the class of all
matroids. This is shown by studying finite projective planes and showing that for those matroids,
elements that haven’t arrived yet impose non-trivial constraints on the already arrived elements.
As a corollary we obtain an impossibility of constructing an OME for the class of all matroids
representable over fields of characteristic at least 7.
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Approximate OMEs In Section 7 we extend the notion of an OME to allow distortion, i.e., the
map approximately preserves the rank. We observe that the α-partition property in [AKKG23]
and [DKP24] can be viewed as an approximate matroid embedding into the free matroid.

First, combining our formalism with their lower bounds on embedding into the free matroid,
we also provide a lower bound on the distortion needed to embed the complete binary matroid into
a graphic matroid (Corollary 7.3). This result is an example of the power of the formalism: with
the right definitions, extending the lower bound to larger classes becomes a simple corollary.

In Theorem 7.6 we show the tightness of the Ω(n/ log n) lower bound in [DKP24] of the distortion
of embedding the complete binary matroid into the free matroid by constructing an embedding
achieving this distortion. We also show that there is no constant approximate online embedding
of the class of graphical matroids into a free matroid when the underlying matroid is not known
upfront (Theorem 7.7). Therefore, any constant competitive algorithm for unknown graphical
matroid secretary that relies on constructing an online embedding of the graph into a free-matroid
has to exploit the random arrival order of the underlying elements or develop new techniques that
do not rely on online embedding into a free matroid.

1.2 Discussion and Significance of Results

We believe that the existence or non-existence of (approximate) online matroid embeddings can
shed new light on different classes of matroids and how they relate to each other. In this work, we
demonstrate two implications for the matroid secretary problem.

Our first implication (Theorem 5.1) offers the first formalization of the intuition that, in general,
advance knowledge of the matroid structure should not help in the design of a constant-competitive
algorithm for the matroid secretary problem. In light of this, it would be interesting to develop al-
gorithms for classes of matroids for which constant-competitive algorithms exist when the algorithm
has advance knowledge of the matroid structure [e.g., KP09, DK14].

Our second implication (Theorem 5.3), in turn, presents a novel “line of attack” for obtaining
such an algorithm for the class of binary matroids (for which no constant-competitive algorithm
is known). While it was already known that it suffices to find such an algorithm for the secretary
prophet version with correlated weights [Dug21, Dug20], general correlated weight distributions
offer little additional structure. Our result shifts the challenge away from intractable arbitrary
correlations, towards the better-understood realm of pairwise independent distributions. Pairwise
independent distributions admit powerful tools like concentration inequalities and have found ap-
plication in areas such as hashing and constructions of pseudo-random generators (for more details,
see surveys [LW+06, Vad12]), as well as prophet inequalities [CGLW22].

1.3 Related Work

Matroid Secretary Problem The matroid secretary problem was first studied in [BIK07,
BIKK07, BIKK18], who gave a O(log(rank))-competitive algorithm for general matroids. This
bound was improved to O(

√
log(rank)) in [CL12], and the state-of-the-art is a O(log log(rank))-

competitive algorithm [Lac14, FSZ18]. The algorithms of [Lac14, FSZ18] only uses independence
oracle calls on subsets of the elements revealed so far.

For graphic matroids there is a O(1)-competitive algorithm, provided that the graphic matroid
is known in advance [KP09]. The same is true for the more general class of regular matroids [DK14].
Laminar matroids also admit an O(1)-competitive algorithm [IW11, JSZ13]. Some evidence for the
difficulty of the matroid secretary problem for general binary matroids can be found in [LMP22]
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and [AKKG23], showing that binary matroids are not (b, c)-decomposable, ruling out a promising
approach to obtaining an O(1)-competitive algorithm for this class.

Oveis Gharan and Vondrák [OGV13] systematized the study of matroid secretary problem
variants, establishing a notation for classifying problem variants according to whether the elements
arrive in adversarial or random order, whether the assignment of weights to elements is adversarial
or random, and whether or not the matroid structure is known in advance. In their nomenclature,
the main question addressed in our work is whether the RO-AA-MK variant is equivalent to the
RO-AA-MN variant for matroids in general, or for specific classes of matroids. Interestingly, for
variants with adversarial arrival order but random weight assignment, [OGV13] demonstrates a
stark qualitative difference in approximability: the AO-RA-MK model (when the matroid structure
is known in advance) admits a 64-competitive algorithm for all matroids, whereas the AO-RA-MN
model (when the number of elements is known in advance but the matroid structure is revealed
online) has no constant-competitive algorithm even for the class of rank one matroids!

Very recently, [SSZ25] gave a O(1)-competitive algorithm for the matroid secretary problem in
the random assignment model when the matroid structure is not known in advance, and instead is
only revealed over time. In a similar spirit, [SSZ23] presents an online contention resolution scheme
for graphic matroids, that uses almost no advance information about the graph. However, they
assume that the endpoints of the edges are revealed upon their arrival which leads to an obvious
OME into a graphical matroid.

Matroid Prophet Inequalities The matroid prophet inequality problem was first studied in
[HKS07]. An asymptotically optimal (1− o(1))-competitive algorithm for k-uniform matroids was
given in [Ala14]. A tight O(1)-competitive algorithm for the matroid prophet inequality problem
was given in [KW12], also see [DFKL20] for the problem of maximizing submodular functions
subject to matroid constraints. Constant-factor competitive algorithms can also be obtained via
online contention resolution schemes (OCRS) [FSZ21]. Random-order versions of the matroid
prophet inequality problem are studied in [EHKS18].

To the best of our knowledge, all these algorithms exploit that the matroid structure is known
in advance. An additional difficulty for reductions of the type we present in this paper, is that
typically these algorithms need to know the identity of the distribution that a certain element’s
weight is drawn from. For the i.i.d. case this is obviously not an obstacle, and so our reductions
apply. We believe that extensions of our techniques might shed further light on the variant of the
matroid prophet inequality problem, in which the matroid is revealed online.

Metric Embeddings and Distortion An important inspiration for this work comes from the
literature on metric embeddings. A classic result in this context is Bourgain’s theorem [Bou85].
The algorithmic importance of such embeddings, and Bourgain’s theorem in particular, was first
highlighted in the seminal papers of [LLR95, Bar98].

Since then metric embeddings have found applications in a host of algorithmic problems, see,
e.g., the survey of [Ind01] and Chapter 15 of [Mat02]. Closer to our notion of online matroid
embeddings is a recent line of work on online metric embeddings [IMSZ10, BFU20, NR25] in which
points of a metric space are presented one at a time to an algorithm who must then decide on
a mapping to the host metric space. The main difference is that instead of preserving a matroid
structure, those papers try to minimize metric distortion.
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2 Matroids, Morphisms, and K-representations

Throughout the paper, we will use [n] to denote the set of integers {1, 2, . . . , n}.

Matroid Definition A matroid M is composed by a ground set M and a rank function rankM :
2M → Z+ satisfying the following properties:

• rankM(∅) = 0;

• rankM(S ∪ {i})− rankM(S) ∈ {0, 1}, ∀S, {i} ⊆ M

• rankM(S ∪ T ) + rankM(S ∩ T ) ≤ rankM(S) + rankM(T ),∀S, T ⊆ M (submodularity)

It follows from the second condition that rankM(S) ≤ |S|. Whenever |S| = rankM(S) we say that S
is an independent set of the matroid. Otherwise, we say that S is dependent. A minimal dependent
set is called a circuit, i.e., C ⊆ M is a circuit if C is dependent but every strict subset S ⊊ C is
independent. We say that a matroid has rank r if r = maxS rankM(S).

We say that an element x ∈ M is a loop if rankM({x}) = 0. We say that a matroid is
loop-free if every set of one element is independent. Given a set S ⊆ M we define the span as
spanM(S) = {x ∈ M; rankM(S ∪ {x}) = rankM(S)}.

Matroid Morphisms We will use the same notation to refer to a matroid and its ground set.
Given two matroids M and N we will define a morphism f : M → N to be a map between their
ground sets that preserves rank, i.e.:

rankN(f(S)) = rankM(S), ∀S ⊆ M.

Whenever the matroid morphism is an injective map, we will say it is a matroid monomorphism
or a matroid embedding. Whenever it is bijective, we will say it is a matroid isomorphism. An
isomorphism from a matroid to itself is called an automorphism. (Aside: this paragraph defines
the category of matroids in the sense of category theory. However, we won’t use any other fact
from category theory other than borrowing its very convenient language.)

We refer to the set of automorphisms M → M as Aut(M), which forms a group under compo-
sition, i.e., given f, g ∈ Aut(M), then f ◦ g ∈ Aut(M) (and ◦ satisfies the group axioms).

Element Copies Given a matroid M and an integer k we will define the matroid M[k] by
creating k copies of each element of M. Formally, the ground set of M[k] is {(u, j);u ∈ M, j ∈ [k]}.
The rank function of M[k] is induced by the projection ϕ : M[k] → M that maps (u, j) 7→ u, i.e.,
rankM[k]

(S) = rankM(ϕ(S)). By definition, the projection ϕ is a matroid morphism fromM[k] → M.
If N is a matroid of at most n elements, every morphism f : N → M can be written as:

f = ϕ ◦ f ′ where f ′ : N → M[n] is a monomorphism.

Direct Sum Given two matroids M and N, we define their direct sum M ⊕N as the matroid
whose ground set is the disjoint union of the ground sets of M and N and rankM⊕N(S) = rankM(S∩
M) + rankN(S ∩N) for all S in the disjoint union of ground sets.
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Graphic Matroids We will define a few special classes of interest. We start with graphic ma-
troids. Given a graph with edge set E, we can define a matroid with ground set E by defining the
rank(S) of a subset S ⊆ E as the maximum number of edges in S that don’t form a cycle. We say
that a matroid M is graphic if it is isomorphic to the matroid obtained from an undirected graph
as we just described.

As an example, consider the matroid M with ground set {a, b, c} and rank function such that
rank(S) = |S|. The matroid is graphic since it is isomorphic to the matroid that can be obtained
from any of the graphs in Figure 2. An important thing to note, however, is that the matroid
description contains no information about vertices. It only tells us which sets of edges are indepen-
dent and which are not. As we can see in the figure, this is typically not enough to fully determine
the graph structure.

a b c
a

b

c

Figure 2: Two graphs that generate the same matroid on their edge set

K-representable Matroids Let K be a field (e.g. Q,R,Fp) and let Kd be the vector space
formed by d-dimensional vectors with coordinates inK. We say that a subset of vectors u1, . . . , uk ∈
Kd is independent if the unique solution to α1u1 + α2u2 + . . .+ αkuk = 0 for αi ∈ K is α1 = α2 =
. . . = αk = 0. Any subset of Kd together with the independency relation above defines a matroid.
From now on, we will use the notation Kd to represent both the vector space and the corresponding
matroid. We say that a matroid M is K-representable if there is a matroid morphism M → Kd

for some integer d.
If a matroid M is K-representable for every field K we say that M is a regular matroid. Every

graphic matroid is representable over any field by mapping an edge (u, v) to the vector eu − ev
where eu the the u-th unit vector. (This is true even over F2 where eu − ev = eu + ev.)

For example, the matroids in Figure 2 can be represented by the vectors (1,−1, 0, 0), (0, 1,−1, 0),
(0, 0, 1,−1). As it is the case for graphic matroids, the matroid description has no informa-
tion about vectors and the representation is again not unique. An equally good representation
is (1, 0, 0), (0, 1, 0), (0, 0, 1).

We will be specially interested in binary matroids which are matroids that are representable
over F2 (the finite field of 2 elements where addition and multiplication are performed mod 2).

Laminar matroids A family of sets, A, is called laminar if it satisfies the property that for any
A,A′ ∈ A, at least one of the sets A ∩ A′, A \ A′, A′ \ A is empty. A laminar matroid M is one
for which there exists a laminar family of sets A consisting of subsets of the ground set of M and
a function c : A → Z+, such that the independent sets of M are precisely those sets I ⊆ M such
that |I ∩A| ≤ c(A) for all A ∈ A.

Uniform Matroid We will denote by Un,r the uniform matroid of n elements and rank r. This
is the matroid with ground set [n] and whose rank function is rankUn,r(S) = min(r, |S|). We call
the Frn := Un,n the free matroid of rank n, i.e., a matroid of n elements in which every set is
independent.
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Trivial Matroid Let T be the trivial matroid which has ground set {0} and rank function
rankT(S) = 0 for all sets S.

2-transitive Matroid We say that a simple matroid M (loop-free and no parallel elements) is
2-transitive if for any pair of independent sets of size two, {e1, e′1}, {e2, e′2} ∈ M there exists an
automorphism f ∈ Aut(M) satisfying f(e1) = e′1 and f(e2) = e′2. There are several matroids that
satisfies the 2-transitive property including complete affine matroids, complete projective matroids,
free matroids, and their truncations [Kan85].

3 Online Matroid Embeddings

We are interested in studying matroids whose structure is revealed to an algorithm in an online
fashion. For that, it will be useful to take into account the order in which elements are processed,
which we will represent by an indexing of the ground set: π : [n] → M.

A matroid N is a restriction of matroid M if the ground set of N is a subset of the ground set
of M and rankM coincides with rankN on the ground set of N.

Given a matroid with ordered ground set specified by a pair (M, π), we say that (M′, π′) is a
prefix-restriction of (M, π) if n′ = |M′| < |M|, M′ is the restriction of M to π([n′]) and π′ is the
restriction of π to [n′].

Let C be a class of matroids that is closed under restriction (e.g., the class of all matroids,
graphic matroids, binary matroids, K-representable matroids, matroids of rank at most r). An
online matroid morphism (OMM) for class C consists of a host matroid BigM, together with
matroid morphisms

fM,π : M → BigM

for every M ∈ C and every indexing π : [n] → M of the ground set of M, such that for every
prefix-restriction (M′, π′) of (M, π), the map fM′,π′ is the restriction of fM,π to the ground set of
M′.

If all morphisms fM,π are monomorphisms, we say that they form an online matroid embedding
(OME). Given an online matroid morphism it is easy to construct an online matroid embedding
by copying the elements of BigM.

Lemma 3.1. Let C be a class of matroids, where each matroid M ∈ C has at most n elements and
fM,π : M → BigM form an online matroid morphism. Then there is an online matroid embedding
f ′
M,π : M → BigM[n].

Proof. We define f ′
M,π as follows: for each u ∈ M if u = π(k) let f ′

M,π(u) = (fM,π(u), j) where
j = |i ∈ [k]; fM,π(π(i)) = u|. The functions f ′

M,π are injective by construction and they are matroid
morphisms by the definition of BigM[n]. In fact: fM,π = ϕ◦f ′

M,π where ϕ is the natural projection
BigM[n] → BigM. Finally note that they can be constructed online since the identity of the copy
used is only a function of the set of elements that arrived up to this point.

With this definition we can ensure that an online algorithm is able to construct a monomor-
phism from an unknown matroid M to BigM in an online fashion. Consider a matroid M for
which the elements arrive according to π. At each time t, we can observe the structure of the
matroid Mt which is the restriction of M to π([t]). Let πt be the restriction of π to [t]. If we have
an online matroid embedding, we can first construct fM1,π1 , then extend to fM2,π2 and so forth.
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It will also be convenient to define a randomized online matroid morphism (embedding) which
for every matroid M ∈ C and ordering π specifies a distribution over (mono)morphisms fM,π : M →
BigM such that for every prefix-restriction (M′, π′) the distribution of the restriction of fM,π to
the ground set of M′ coincides with the distribution of fM′,π′ .

Finally, we say that a randomized online matroid embedding is order-independent if the distri-
bution of fM,π doesn’t depend on π. In other words, for any two orderings π and π′, the morphisms
fM,π and fM,π′ are equally distributed.

Uniform Order-Independent Embedding Let f be an order-independent online embedding
from M → BigM. We consider an order independent-randomized embedding g : M → BigM by
composing f with uniformly random automorphism f ′ ∈ Aut(BigM), i.e. g = f ′ ◦ f .

Interestingly, whenever BigM satisfies 2-transitive property then the embedding g maps each
element of e ∈ M uniformly at random over the matroid BigM. In addition, for any independent
set of pair of elements {e, e′} ⊆ M and pair of elements {ẽ, ẽ′} ⊆ BigM, the events {g(e) = ẽ} and
{g(e′) = ẽ′} are ‘almost’ independent. More formally,

Lemma 3.2. Given a simple host matroid (loop-free and no parallel elements) BigM such that
for any two pairs of distinct elements {e1, e2} and {e′1, e′2} there exists an automorphism f ′ ∈
Aut(BigM) satisfying f ′(e1) = e′1 and f ′(e2) = e′2, then a uniformly random automorphism f
sampled from Aut(BigM) satisfies:

1. For any e, e′ ∈ BigM, Pr[f(e) = e′] = 1
n .

2. For any two pairs of elements e1, e2 and e′1, e
′
2 (s.t. e1 ̸= e2 and e′1 ̸= e′2), we have

Pr[f(e1) = e′1 ∧ f(e2) = e′2] =
1

n · (n− 1)

Proof. Consider the action of the group of automorphisms Aut(BigM) on the set of pairs of distinct
elements P = {(e1, e2) : e1, e2 ∈ BigM, e1 ̸= e2}. For two pairs (e1, e2), (e

′
1, e

′
2) ∈ P , the set of

automorphisms f ∈ Aut(BigM) that satisfy f(e1, e2) = (e′1, e
′
2) is nonempty, and therefore, it

is a coset of the subgroup of stabilizers of (e1, e2) (i.e., the set of automorphisms that satisfy
f(e1, e2) = (e1, e2)). Since all cosets of a subgroup must have the same size, and because all pairs
(e′1, e

′
2) ∈ P define a different coset, for a uniformly drawn automorphism f ,

Pr[f(e1, e2) = (e′1, e
′
2)] =

1

|P |
=

1

n · (n− 1)
.

An analogous argument gives that Pr[f(e) = e′] = 1/n.

Online vs. Offline Embeddings The difficulty of constructing an online matroid embedding is
that the elements of BigM corresponding to certain elements of M must be chosen before the full
matroid structure of M is known. If we merely wanted to construct a matroid BigM that contains
an isomorphic copy of every matroid in C, that would be very easy: BigM could be taken to be
the direct sum of all the matroids in C.

4 OMEs for Binary Matroids

Before we discuss how to use online matroid embeddings in online algorithms, it is important to
show first that they exist in non-trivial cases. For that, we will provide a complete analysis for
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binary matroids. Recall that Fn
2 is the complete binary matroid of rank n and that graphic matroids

and regular matroids are special cases of binary matroids. Our first result is the existence of an
OME for this class. This will be done by showing the existence of an OMM and using Lemma 3.1
to convert an OMM to an OME.

Our first step is to show a lemma that the matroid Fn
2 is special in the sense that its group of

matroid automorphisms coincides with its group of vector space automorphisms:

Lemma 4.1. A mapping A : Fn
2 → Fn

2 is a matroid automorphism iff it is an automorphism of
vector spaces.

Proof. An automorphism of vector spaces A : Fn
2 → Fn

2 is a bijection such that for any vectors
v1, . . . , vk ∈ Fn

2 it holds that A(
∑k

i=1 vi) =
∑k

i=1Avi. This in particular implies that a set of
vectors v1, . . . , vk is independent iff the vectors Av1, . . . , Avk are independent. This is because
a coefficient vector (α1, . . . , αk) satisfies the equation

∑k
i=1 αivi = 0 if and only if it satisfies∑k

i=1 αiAvi = A(
∑k

i=1 αivi) = 0, so the first equation has only trivial solutions if and only if the
second equation has only trivial solutions.

For the opposite direction, if A is a matroid automorphism and e1, . . . , en is the standard
basis of Fn

2 then Ae1, . . . , Aen must be linearly independent elements of Fn
2 . Now, take any vector

v =
∑

i∈S ei. Since {v} ∪ {ei; i ∈ S} forms a circuit, then {Av} ∪ {Aei; i ∈ S} must form a circuit.
Since the only non-zero constant in F2 is 1, it must hold that: Av +

∑
i∈S Aei = 0 and hence

Av =
∑

i∈S Aei. Hence A is also an automorphism of vector spaces.

Theorem 4.2. Let C be the class of binary matroids of at most n elements and let BigM be the
complete binary matroid Fn

2 . Then there exists an OMM for C into BigM.

Proof. Given a binary matroid M we construct a mapping f : M → Fn
2 as follows. We keep a

counter k initially set to 1. For each element a we process, if it is independent of the previously
arrived elements (i.e. there are no circuits containing a and the elements seen so far), we set
f(a) = ek and increment k. Otherwise, a forms a circuit with a set of previously arrived elements
u1, . . . , um for some integer m ≥ 0. This means that their image f(a), f(u1), . . . , f(um) must be a
minimal F2-linearly dependent set. Since the only non-zero constant in Fn

2 is 1, then it must hold
that:

f(a) + f(u1) + . . .+ f(um) = 0

and hence we can map: f(a) to f(u1) + . . .+ f(um) (recall that 1 = −1 in F2).
Finally, we need to argue that f is a matroid morphism. Observe that if M is a binary matroid,

then there exists a morphism g : M → Fn
2 . Let {b1, . . . , br} be the elements of M such that

f(bi) = ei. By the fact that g is matroid morphism, g(b1), . . . , g(br) are linearly independent
elements in Fn

2 . By Lemma 4.1 there is an automorphism A ∈ Aut(Fn
2 ) that takes g(bi) to ei. Since

matroid morphisms compose, Ag : M → Fn
2 is matroid morphism.

M Fn
2

Fn
2

g

f

A

Finally, we argue that f(a) = Ag(a) for all a inM. We show this by induction. For each element
processed by the algorithm, if it is independent from previously arrived elements, then f(a) = Ag(a)
by construction. Otherwise, there are previously arrived elements such that a, u1, . . . , um form a
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circuit. Hence their image under Ag must be a linearly dependent set of F2-vectors, which means
that:

Ag(a) = Ag(u1) + . . .+Ag(um) = f(u1) + . . .+ f(um) = f(a)

where the second equality holds by induction. Since f coincides with Ag, f is a matroid morphism.

Furthermore, there is a randomized OME that is order-independent. We will show it as a
consequence of the following lemmas:

Lemma 4.3. Given a binary matroid M and the complete binary matroid Fn
2 , if there are two

matroid morphisms f, g : M → Fn
2 , then there exist an automorphism A ∈ Aut(Fn

2 ) such that
f = A ◦ g.

Proof. Let r be the rank of M and let {b1, . . . , br} be a basis of M. Then {f(b1), f(b2), . . . , f(br)}
and {g(b1), g(b2), . . . , g(br)} are both sets of independent vectors in Fn

2 . Then there exists an
automorphism A of vector spaces (and hence a matroid automorphism) that sends g(bi) to f(bi). For
any other element in v ∈ M consider any circuit formed with a subset of the basis. If {v}∪{bi; i ∈ S}
is a circuit then it must be the case that: f(v) =

∑
i∈S f(bi) and g(v) =

∑
i∈S g(bi). Given that A

is a automorphism of vector spaces, then: Ag(v) =
∑

i∈S Ag(bi) =
∑

i∈S f(bi) = f(v).

Theorem 4.4. There is a order-independent randomized OMM from the class of binary matroids
C into the complete binary matroid.

Proof. Let fM,π be the online matroid morphism constructed in Theorem 4.2 and consider A◦fM,π

when A is drawn uniformly at random from Aut(Fn
2 ). It is clear that for every fixed A the morphisms

A ◦ fM,π still form an OMM. We only need to check that they are order-independent. To see
that, observe that if π and π′ are two different orderings of the ground set of M then fM,π and
fM,π′ are two morphisms M → Fn

2 . By the previous lemma, there is A0 ∈ Aut(Fn
2 ) such that

fM,π = A0 ◦ fM,π′ . Now, the distribution of A ◦ fM,π for a random A ∼ Aut(Fn
2 ) is the same

distribution as A ◦ A0 ◦ fM,π′ which is the same distribution of A ◦ fM,π′ , since A0 ◦ A is also
uniformly distributed over Aut(Fn

2 ).

Extending to Copies In the following section we will be needing an online matroid embedding.
For that reason, we need to extend the last two theorems to deal with copies. The extension is rather
simple: we only need to observe that a matroid autormorphism of the commplete binary matroid
with n copies of each element (Fn

2 )[n] can be decomposed into an automorphism A ∈ Aut(Fn
2 ) and

indexings of the identities of the copies.

Lemma 4.5. If f ∈ Aut((Fn
2 )[n]) then there exists A ∈ Aut(Fn

2 ) and indexings σu : [n] → [n] for
each u ∈ Fn

2 such that f((u, j)) = (Au, σu(j))

Proof. Let id be the identity map and ϕ : (Fn
2 )[n] → Fn

2 the natural projection. Now, ϕ ◦ f
and ϕ are two matroid morphisms from (Fn

2 )[n] → Fn
2 so by Theorem 4.3 there is A ∈ Aut(Fn

2 )
such that ϕ ◦ f = A ◦ ϕ (see the commutative diagram below). This means in particular that
f((u, j)) = (Au, σu(j)) for some indexings σu.

(Fn
2 )[n] Fn

2

(Fn
2 )[n]

(Fn
2 )[n] Fn

2

ϕ

id

f

ϕ

A
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With that, Theorem 4.4 automatically extends to the matroid with copies (Fn
2 )[n] by taking a

random automorphism from group Aut((Fn
2 )[n]).

Remark A (Single Orbit Morphisms) Theorem 4.4 is not particular to binary matroids. The
only fact it uses is that all the morphisms of the OMM belong to the same orbit under the action
of the automorphism group Aut(BigM). We can state it more generally as follows. The proof is
identical to Theorem 4.4, so we omit it here.

Theorem 4.6 (Generalization of Theorem 4.4). Let fM,π be an OMM of class C into BigM such
that given two orderings π and π′ of the ground set of M, there is an automorphism A ∈ Aut(BigM)
such that fM,π′ = A ◦ fM,π. Then there is an order independent randomized OMM of class C into
BigM.

Remark B (Other Fields) In this section we repeatedly use the fact that F2 has only one non-
zero constant, so whenever we identify a circuit in the matroid, we know exactly what is the linear
dependency between the elements in the corresponding vector field. This is no longer true even in
slightly larger fields like F3. If vectors u, v, w ∈ Fn

3 form a circuit, it could be that: w = ±u ± v
in the representation. As a consequence, given two matroid morphisms f, g : M → Fn

3 there may
not exist a vector-space automorphism A of Fn

3 such that f = Ag. In the previous example, if
f(u) = g(u), f(v) = g(v) but f(w) = f(u) + f(v) but g(w) = g(u) − g(v) no such automorphism
can exist.

5 OMEs and the Matroid Secretary Problem

In this section, we use OMEs to explore the complexity of the matroid secretary problem (MSP)
on binary matroids. We consider three versions of the problem, each making different assumptions
on the data generation process and what’s known to the algorithm. We will use OMEs to estab-
lish equivalences between these problems, showing that seemingly simpler problems are actually
equivalent to harder ones (up to constants).

Three Versions of the MSP. We consider the following three versions of the MSP, and aim to es-
tablish the relations in Figure 1. In all three variants, the goal is an algorithm for selecting elements
that form an independent set, and whose combined weight is in expectation an α-approximation
to the weight of the optimal basis.

• Online-revealed-matroid MSP: In this version of the problem, there is an underlying
matroid M, which is a priori unknown to the algorithm. The algorithm has only access to
the number of elements n = |M| and to a promise that M ∈ C for a class of matroids C. For
each element u ∈ M, an adversary determines a weight wu ∈ R+. The algorithm processes
pairs (u,wu) in random order at each time, but it only knows the rank function restricted
to the subset of elements that have already arrived. Upon seeing the element, the algorithm
must irrevocably decide whether to accept that element or not, subject to the constraint that
the set of accepted elements must be an independent set of M.

• Known-matroid MSP: In this version, the matroid M is known to the algorithm ahead
of time. The only information missing is the weight of each element, which is again chosen
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adversarially. As before elements arrive in random order, and the algorithm must make
immediate accept/reject decisions, with the restriction that the chosen set of elements must
be an independent set of M.

• Prophet MSP: In this version, the matroid M is again known to the algorithm ahead of
time. However, this time the weight of each element is drawn from a known distribution
D, which can potentially sample weights in a correlated manner. As in the other versions
elements are then presented to the algorithm in random order, and the algorithm aims to
select an independent set of high weight in an online manner.

Note that the first version is clearly harder than the second and the second version is clearly
harder than the third, in the sense that an α-approximation to the harder problem immediately
implies an α-approximation to the simpler one. We derive approximate “inverses” of these com-
parisons from the existence of OMEs, even if we restrict prophet MSP to pairwise-independent
distributions.

Our Reductions. We first use OMEs to show an (essentially exact) “inverse” of the comparison
between the online-revealed-matroid MSP and the known-matroid MSP, implying that for binary
matroids the latter is as hard as the former.

Theorem 5.1. If a class C of matroids admits a randomized order-independent online matroid
embedding into matroid BigM, then an α-approximation to the known-matroid MSP for BigM[n]

implies that for every ϵ > 0 there is a (α − ϵ)-approximation to the online-revealed-matroid MSP
for C.

For the case of binary matroids that we previously discussed, the matroids BigM and BigM[n]

themselves are binary in which case we can obtain the following corollary:

Corollary 5.2. For binary matroids, there is no gap in approximability between the known-matroid
MSP and the online-revealed-matroid MSP.

As our second result, we use the existence of OMEs into a 2-transitive host matroid as a tool
to establish the approximate equivalence of known-matroid MSP and prophet MSP with pairwise-
independent distributions.

Theorem 5.3. Suppose a class C of matroids admits a randomized order-independent online ma-
troid embedding into matroid BigM which is 2-transitive. Then an α-approximation to the prophet
MSP with pairwise-independent weight distributions for BigM[k], implies that for some constant
C > 0 there is a C · (α− o(1))-approximation to the known-matroid MSP for C.

Noting that the full binary matroid is 2-transitive, and there exists an order-independent OME
from the class of binary matroids into a full binary matroid, we obtain the following corollary.

Corollary 5.4. For binary matroids, there is a constant-factor gap in approximability between the
known-matroid MSP and the prophet MSP with pairwise-independent weight distributions.

We note that we can also chain the two reductions, and this way relate the online-revealed-
matroid MSP to the Prophet MSP with pairwise-independent distributions. The rest of this section
is devoted to the proofs of the reductions.
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5.1 Proof of Theorem 5.1

Let M be the unknown matroid that is revealed to the algorithm in an online fashion and let fM,π

be an order-independent randomized OME into BigM. Let n = |M|, N = |BigM| and d, k be two
larger integers (to be specified later) where k is a multiple of d.

An instance of the MSP consists of a sequence of weighted elements from M that are presented
to the algorithm in random order. Our goal is to map it on the fly to a random instance of the
MSP on BigM[k]. The main difficulty is, as usual, doing it online and preserving the random
order. Our strategy will be to first provide an offline reduction which preserves random order and
obtains the desired approximation, but can’t be implemented online. After that we will provide
a mostly-online implementation of this reduction, i.e. a procedure that samples from the same
distribution generated by the offline reduction and that with 1− ϵ probability can be implemented
online. With the remaining ϵ probability, the process raises a flag. Raising a flag will indicate that
from that point on, the reduction can no longer be implemented online. Algorithmically, we will
stop the algorithm whenever we raise a flag and obtain zero reward. Finally, we will show that the
probability of raising a flag is very small for large values of k and d.

Offline Reduction We will view a weighted element of M as a pair (u,wu) with u ∈ M and
wu ∈ R+. In the offline reduction, we assume we have access to the entire matroid M and the
entire sequence of weights. Now, we will produce a distribution of instances of BigM[k] as follows.

For each element v in BigM sample k different i.i.d. timestamps tvj for j ∈ [k] from the
Uniform([0, 1]) distribution. Those timestamps specify the arrival time of each of the k copies of
the elements in BigM and induce a random ordering over the ground set of BigM[k]. For the
matroid M, sample a random embedding f : M → BigM from the OME. (Since the embedding
is order independent, we don’t need to know the arrival order of elements in M to sample such
embedding). For each u ∈ M, pick a random copy of f(u) and set its weight to wu. For the
remaining elements, set the weight equal to zero.

This random input is clearly in random order as it is equivalent to starting with k copies of the
elements of BigM where all but one copy has weight zero if that corresponds to an element of M
and randomly permuting those elements. Now, feed this instance to the α-competitive algorithm for
the MSP on BigM[k]. From the set selected by the algorithm, discard any element with zero weight
chosen by the algorithm. The elements with non-zero weight chosen in BigM correspond to an
independent set of M with the same weight. Hence, in expectation, we select an α-approximation
to the optimal basis of M.

Mostly-online Implementation The drawback of the previous reduction is that it can’t be
implemented online as we are assuming we know everything in advance. We will describe the same
sampling procedure in a way that with high probability we can generate the instance as we go. In
the sampling procedure, we will also define an event raise a flag which will mean that we can’t
generate that instance online as we learn the structure of the matroid M.

The process will again start by sampling i.i.d. timestamps tvj for v ∈ BigM and j ∈ [k] from
Uniform([0, 1]). In addition, we will also sample n additional timestamps from Uniform([0, 1]) sort
them in increasing order and denote the sorted list by T1, . . . , Tn.

We will now divide the interval [0, 1] into intervals Ii = [ i−1
d , i

d) for i ∈ [d]. If more than one
timestamp Ts falls in the same interval Ii, we will raise a flag. We will count how many of the
timestamps tv,j fall in each interval:

Xvi = |{j ∈ [k]; tvj ∈ Ii}|
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With that, also define:

Avi = min

(
k

d
,Xvi

)
Bvi = max

(
0, Xvi −

k

d

)
Now, process the elements of the matroid M according to order π (which will be sampled at
random). As we process the s-th element u = π(s) ∈ M, we will map it to an element in v =
fM,π(u) ∈ BigM using the randomized OME. Now, we will apply the following procedure to choose
a copy of v in BigM[k] to assign weight wu:

• find the interval Ii containing Ts.

• with probability Avid/k, choose one of the Xvi timestamps tvj in interval Ii

• with remaining probability (if any), raise a flag and choose a different interval Ii′ with prob-
ability proportional to Bvi′ and choose a timestamp tvj in that interval.

We assign weight wu to the element with the chosen timestamp and zero weight to others. Now,
we will show the following facts.

Lemma 5.5. The mostly online implementation samples sequences with the same probability as
the offline reduction.

Proof. Observe that if we ignore the weights, the order of the elements of BigM is the same in
both processes since they are determined by the timestamps tvj . What we are left to argue is that
for each v we select uniformly random timestamp tvj to assign the non-negative weight. For that,
observe that since fM,π is order independent, it has the same distribution as if we first sampled
a monomorphism f : M → BigM, and then we sampled an independent uniform indexing π
for the arrival order of the elements in f(M). This implies that when we assign the timestamps
T1, . . . , Tn according to π, the resulting distribution is the same as if we assigned i.i.d. Uniform[0, 1]
timestamps Tv to each element v ∈ f(M), and therefore, the interval Tv lands in is uniformly
chosen and independent across elements v ∈ f(M). Now fix a certain timestamp tvj and let Ii
be the interval containing it. We will show that the probability that this timestamp is selected is
exactly 1/k.

Consider two cases: either Xvi ≤ k/d in which case the probability of sampling tvj is the
probability that the timestamp Tv is in Ii (which is 1/d), times the probability we decide to sample
a timestamp inside Ii (which is Xvid/k), times the probability that out of those, we choose tvj
(which is 1/Xvi). The total probability is:

1

d
· Xvid

k
· 1

Xvi
=

1

k

In the case where Xvi > k/d, then it is possible that we sample tvj also when Tv is outside Ii. The
probability that we sample tvj and Tv is in Ii is:

1

d
· 1 · 1

Xvi
=

1

dXiv

The probability that we sample when it is outside is the probability that we choose a different
interval Ii′ , raise a flag and then move to interval Ii, which is:∑

i′

1

d

(
1− Avi′d

k

)
· Bvi∑

i′ Bvi′
· 1

Xvi
=

1

k

(k −
∑

i′ Avi′)∑
i′ Bvi′

· Bvi

Xvi
=

1

k

Bvi

Xvi
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because
∑

i′ Avi′ +
∑

i′ Bvi′ =
∑

i′ Xvi′ = k. Taking those two probabilities together, we have:

1

dXiv
+

1

k

Bvi

Xvi
=

1

k
.

Lemma 5.6. If no flags were raised, we can produce the instance on the fly as we process M.

Proof. Let i1 < . . . < in be the indices of the intervals such that Ts ∈ Iis . Since no flag was raised,
then each Ts landed in a different interval and the s-th element that arrives from matroid M is
mapped to a copy inside Iis . This enables the following online reduction: once the s-th element
arrives we can decide the weights of all the elements in intervals Iis−1+1 to Iis and feed to the MSP
algorithm for BigM[k]. In this sub-sequence there will be at most one element on non-zero weight
which corresponds to the arriving element of M. We can observe if that element was selected in
BigM[k] and if so, we can select it in M.

Lemma 5.7. For any n and ϵ, there are large enough k and d, such that the probability that we
raise a flag is at most ϵ.

Proof. The first event in which we raise a flag is when two timestamps Ts land in the same interval.
The probability that this happens is at most n2/d. Now, note that for each interval i and each of
the n elements v in BigM that have non-zero weights, we have by the Chernoff bound that:

P
(
Xvi ≤ (1− δ)

k

d

)
≤ exp

(
−δ2k

2d

)
Hence with probability at most nd exp

(
− δ2k

2d

)
, the timestamps tvj are such that the probability we

raise a flag when we try to choose a timestamp in the same interval as Ts is more than δn. Taking
the union bound of those events, we get:

n2

d
+ nd exp

(
−δ2k

2d

)
+ δn

Taking δ = ϵ/(3n), d = 3n2/ϵ and k large enough, we get that the total probability of raising a flag
is at most ϵ.

Taking those lemmas together, we can conclude the proof of Theorem 5.1. For that, let Alg
be an α-competitive algorithm for BigM[k] and let Y represent the sequence of the MSP sampled
by the offline reduction. Let’s represent by Alg(Y ) the weight of the elements selected by Alg and
Opt the weight of the optimal basis. By the fact that the offline reduction produces an instance in
random order, we know that E[Alg(?′Y )] ≥ αOpt.

Our online reduction, will attempt to construct Y on the fly. If we raise the flag, we will stop the
algorithm and pretend we had zero reward. If not, we will continue the reduction and collect Alg(Y )
reward. We will denote by Flag the event that the flag was raised and by Flag its complement. Our
total reward will be:

E[Alg(Y ) · 1{Flag}] = E[Alg(Y )]− E[Alg(Y ) · 1{Flag}] ≥ E[Alg(Y )]− Opt · P[Flag] ≥ (α− ϵ)Opt.
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5.2 Proof of Theorem 5.3

Let M be the unknown matroid with |M| = n that is revealed to the algorithm in an online fashion,
which admits an order-independent randomized OME into BigM with |BigM| = M . First, we
obtain the following simple reduction that allows us to focus on a special class of the prophet MSP
in which each element takes a weight from the set of weights W with |W | = m = O(n2). In
addition, we can restrict the weight distribution such that each element has a distinct weight from
the weight class.

Lemma 5.8. If there exists an α-approximation to the prophet MSP on M with weight distribution
D supported over the set of weights W with rank(M) = d, |M| = n, |W | = O(n2) with maxw∈W w ≤
1 and ED[OPT(M)] ∈

[
1
16 , 1

]
such that for all w ∈ W , there exists at most one element assigned

weight of w with probability one, then there exists an
(

α
256 − 1

32d

)
-approximation to prophet MSP

on matroid M with any arbitrary weight distribution.

The proof of the above lemma simply follows from Sublemma-4.2 from [Dug21] that reduces
any arbitrary prophet MSP with O(log(|rank(M)|)) many weights and ED[OPT(M)] ∈

[
1
16 , 1

]
. We

then add distinct noise of the order of O
(

1
n2

)
to ensure that the weight of each element is distinct.

The full proof of the reduction is delegated to Section A.
For simplicity, we let W = {w1, . . . , wm} and consider the prophet MSP on matroid M and

weight distributionD supported over the set of weightsW satisfying the conditions from Lemma 5.8.

Extending BigM with Copies We let BigM[m·N ] be a matroid with m · N parallel copies of

each element of BigM with |BigM| = M and integer N = Ω
(
2M

2
)
. We divide the set of N ·m

copies into m sets of size N , each part corresponding to weight class wi. We use Ni to denote the
set of labels corresponding to weight wi for all i ∈ [m] with |Ni| = N . We sometimes denote Ni by
[N ] = {1, 2, . . . , N} whenever it is clear from the context which wi we are referring to. In addition,
the ℓ-th copy of the weight class corresponding to weight wi of element v ∈ BigM is denoted as
vi,ℓ.

Reduction to “Almost” Pairwise Independent Prophet MSP We first define the weight
distribution D∗ over BigM[m·N ] in Definition 1, which is “almost” pairwise independent. Then

in Theorem 5.9, we show an existence of exact pairwise independent weight distribution D̃ over
BigM[m·N ] which is “close” to the distribution defined in Definition 1 in total-variation distance.
This allows us to utilize the fact that any algorithm A can not distinguish between the almost
pairwise independent weight distribution D∗ and D̃ with high probability. Finally, we complete the
proof of Theorem 5.3.

We begin by defining the almost pairwise independent weight distribution over BigM[m·N ].

Definition 1 (Almost P.W. Independent Distribution). Consider the weight distribution D∗ over
the elements of BigM[m·N ] defined as follows:

1. Given an order independent OMM f ′ : M → BigM, we sample a random automorphism
f ′′ ∈ Aut(BigM) and obtain an order independent matroid morphism f = f ′′ ◦ f ′.

2. For any v ∈ M with w(v) = wi, let u = f(v). We sample ℓ ∼ Unif(Ni) and assign the weight
of w(ui,ℓ) = wi.

3. We assign the weight of the rest of the elements of BigM[m·N ] to be zero.
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We first observe that when N is much larger than M , the distribution in the above definition
is almost pairwise independent. To see this, we first observe that for any i ∈ [m], ℓ ∈ Ni and
u ∈ BigM, ui,ℓ ∈ BigM[m·N ] can potentially either take a weight of wi or zero. For simplicity, now
consider any two distinct elements ui,ℓ,u

′
j,ℓ′ ∈ BigM[m·N ] and weight distribution D such that there

always exists a pair of elements v,v′′ ∈ M that are assigned weights of wi, wj , respectively. Since
f ′ is a random automorphism Aut(BigM), we have Pr[w(ui,ℓ) = wi] = Pr[f(v) = u] · 1

N = 1
M ·N .

On the other hand, we have

Pr[w(ui,ℓ) = wi ∧ w(uj,ℓ) = wj ] = Pr[f ′(v) = v ∧ f ′(v′) = u′] · 1

N2
=

1

M(M − 1)
· 1

N2
,

which is close to the product Pr[w(ui,ℓ) = wi] · Pr[w(uj,ℓ) = wj ] =
1

M2·N2 . However, in general,
we can not guarantee that D will always assign weights wi, wj to some pair of elements of v,v′ of
M. In addition, the above argument also fails if we have i = j or u = u′ as in both of these cases,
Pr[w(ui,ℓ) = wi∧w(uj,ℓ) = wj ] = 0. Intuitively, we can circumvent these pairwise correlation issues
by taking N large enough as it makes pairwise correlations small enough. More precisely,

|Pr[w(ui,ℓ) = wi ∧ w(uj,ℓ) = wj ]− Pr[w(ui,ℓ) = wi] · Pr[w(uj,ℓ) = wj ]| = O

(
1

M2 ·N2

)
.

Using this observation, we prove the following technical theorem.

Theorem 5.9. For N = Ω
(
2M

2
)
, let weight distribution D∗ over BigM[m·N ] be defined as in

Definition 1, then there exist a pairwise-independent weight distribution D̃ over BigM[m·N ] such

that TVD∗,D̃ ≤ O
(
m3

M

)
.

The proof of the above theorem is highly technical and constructs an explicit D̃ by a sequence of
small perturbations to D∗. For the sake of the uninterrupted flow of the presentation, we delegate
it to Appendix B. We emphasize that the choice of N = Ω(2M

2
) is required due to the limitations

of the techniques developed to prove Theorem 5.9. We conjecture that one can prove the similar
theorem for N = Ω(Poly(M)), which we leave as an intriguing technical open problem.

Proof of Theorem 5.3 We now complete the proof of the main theorem.

Proof of Theorem 5.3. To prove the main theorem, we first prove the following: if there exists
an α-approximate algorithm to the prophet MSP instance with a pairwise independent weight
distribution for the matroid BigM[m·N ], then there exists an (α− o(1))-approximate algorithm for
the prophet MSP instance for the matroid M with weight distribution D supported over the set of
weights W with rank(M) = d, |M| = n and |W | = O(n2) with maxw∈W w ≤ 1 and ED[OPT(M)] ∈[
1
16 , 1

]
such that for all w ∈ W , there exists at most one element assigned weight of w with

probability one. Combining this with Lemma 5.8, we will conclude the proof of the Theorem 5.3
Given an order-independent matroid morphism f ′ : M → BigM, we sample a random au-

tomorphism f ′′ ∈ Aut(BigM) and obtain an order-independent matroid morphism f̃ = f ′′ ◦ f ′.
Given f̃ : M → BigM, we obtain f : M → BigM[m] that maps each v ∈ M to ui ∈ BigM[m]

iff f̃(v) = u and w(v) = wi. We then consider BigM[m·N ], i.e. matroid BigM[m] with N many
copies of each element.

We first consider an offline reduction as follows: for all vi ∈ BigM[m], sample N many inde-
pendent arrival times from Unif[0, 1] denoting the uniformly random arrival times of elements of
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BigM[m·N ]. Given any v ∈ M and pair (v, w(v) = wi), with ui = f(v), let w(ui,ℓ) = wi uniformly
random from ℓ ∈ [N ].

Since f does not require any information about the arrival order, the above-described offline
reduction is a valid instance of matroid prophet secretary over BigM[m·N ]. In addition, the induced
weight assignment over BigM due to offline reduction is identical to the distribution D∗ defined in
Definition 1.

Given the uniformly random arrival of elements of M, we construct an “almost online imple-
mentation” of the above offline reduction similar to the proof of Theorem 5.1. We let N be large
enough (Ω(n2/ε)) such that the probability of “almost online implementation” raising a flag is at
most ε. In fact, for the proof of Theorem 5.9, we let N = Ω(2M

2
) which satisfies the required

condition.
We let A be an α-approximate algorithm for the pairwise-independent prophet MSP on matroid

BigM[m·N ]. Since there exists a pairwise independent weight distribution D̃ over BigM within the

total variation distance of O
(
m3

M

)
, the algorithm A can not distinguish the weight distribution D∗

from D̃ with probability at least 1−O
(
m2

M

)
.

Let E be the event when the algorithm A can not distinguish between D∗ and D̃. We note that
when event E does not hold, the offline optimal can be bounded by

E[OPT(BigMm·N ) | Ec] ≤ rank(BigM[m·N ]) · max
wi∈W

wi ≤ n · 1 = n,

where the second inequality follows because rank(BigM[m·N ]) = n and wi ≤ 1 for all i ∈ [m ·N ].
Now, let S be the selected set of elements of BigM by A w.r.t. weight distribution D∗. We can

bound,
E[w(S)] = E[w(S) | E ] · Pr[E ] + E[w(S) | Ec] · Pr[Ec]

≤ E[w(S) | E ] + E[OPT(BigM[M ·m]) | Ec] · m
3

M

≤ E[w(S) | E ] + m3 · n
M

.

Above, the first inequality holds because Pr[Ec] ≤ m2

M and the second inequality holds because
E[OPT(BigM[m·N ]) | Ec] ≤ n. Due to our reduction, the performance of the algorithm on the
original Prophet MSP instance F′ is lower bounded by E[w(S) | E ], next we lower bound the
expectation E[w(S) | E ],

E[w(S) | E ] ≥ E[w(S)]− m3 · n
M

≥ α · ED̃[OPT(BigM[m·N ])]− o(1) ·OPT(M)

≥ OPT(M) ·
(
α− α ·m3

M

)
− o(1) ·OPT(M) ≥ (α− o(1)) ·OPT(M).

Above, the second inequality holds because A is an α approximate algorithm for Prophet MSP
with pairwise independent prior and m3·n

M = O(m4/2m) = o(1). The third inequality holds because
TVD∗,D̃ ≤ O(m3/M). Finally, since the performance of the reduction on the original matroid
secretary is

E[w(S) | E ] · Pr[Reduction does not Flag] ≥ (1− ε) · (α− o(1)) ·OPT(M).

This concludes the proof.
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6 OMEs Beyond Binary Matroids

We next explore OMEs beyond binary matroids. In Section 6.1, we show that there cannot be an
OME that embeds graphical matroids into graphical matroids or, more generally, regular matroids.
Then, in Section 6.2, we give an OME that embeds laminar matroids into laminar matroids. Finally,
in Section 6.3, we show that there is no universal host matroid, that allows embedding of all matroids
on n elements of a given rank.

6.1 Graphic and Regular Matroids

For graphic matroids, there exists an elegant 2e-approximation algorithm for the MSP in the
known-matroid case by Korula-Pál [KP09]. Their algorithm assumes that when an edge arrives,
the algorithm learns the pair of vertices it connects as well as the weight. In other words, the
algorithm processes in each step (u, v), wuv where u and v are vertices. Even though the full
graph is not known in advance, there is enough information about the graph structure to randomly
decompose the problem into instances of the single-item secretary problem.

In the online-revealed matroid case, the algorithm has only access to an oracle that tells which
subsets of previously arrived edges are independent (contain no cycles). For example, if 3 edges
arrive and the algorithm knows that they are all independent, it is impossible for the algorithm
to know if they form a path, a star or if they share not endpoints (recall Figure 2). Korula-
Pál heavily relies on having vertex information and doesn’t easily extend to this model. In fact,
we are not aware of any O(1)-approximation algorithm for the MSP for graphic matroids in the
online-revealed-matroid setting.

In the remainder of this section we investigate whether we can obtain such an algorithm using
a OME. A natural idea is to try to construct an embedding where the host matroid BigM is itself
a graphic matroid. If one could do that, it would be possible to combine the reduction in Section 5
with the Korula-Pál algorithm to obtain an algorihtm for the graphic MSP in the online-revealed-
matroid setting. Unfortunately, we show below that no such embedding exists:

Theorem 6.1. If C is the class of graphic matroids, there is no online matroid embedding into a
host matroid BigM where BigM is also graphic.

Proof. Assume that such embedding exists and let G = (V,E) be the graph representing BigM.
Now, consider two graphic matroids M1 and M2 represented respectively by the graphs in the left
and right of Figure 3. Observe that when restricted to {a, b, c}, the matroids are identical since
every non-empty subset of elements is independent. When an OMM observes the restriction to
those three elements, it has no way to know in which matroid we are in, so it needs to map those
three edges to the same edges of the graph G representing BigM. Let’s denote those edges by
a′, b′, c′. Let also d′, e′, f ′ be the edges in G that the edges of the left matroid are mapped to and
let g′ be the edge that the g edge in the right matroid is mapped to. Note that {a′, b′, d′}, {b′, c′, e′}
and {a′, c′, f ′} must form cycles in G. The only way that this is possible while keeping {a′, b′, c′}
independent is if edges a′, b′, c′ all share an endpoint. However, edges a′, b′, c′, g′ must form a cycle
in G as well, which is not possible if the first three edges share an endpoint.

Graphic matroids are a special case of regular matroids, for which there exists an O(1)-
competitive algorihtm by Dinitz-Kortsarz [DK14]. It is then tempting to construct an embedding
from graphic into a host matroid BigM that is regular. However, that is again not possible:

Lemma 6.2. If a host matroid BigM is regular and admits an online matroid embedding of all
rank n graphic matroids, then BigM must also admit an online matroid embedding of all rank n
binary matroids.
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Figure 3: Two graphic matroids whose restriction to {a, b, c} coincide.

Proof. We will show that BigM contains an isomorphic copy of Fn
2 . We first define for each S ⊆ [n]

a graphic MS with ground set [n+ 1] represented by the graph where the only cycle is formed by
the edges with labels in S ∪ {n+ 1}. Equivalently, the rank function is given by

rankMS
(T ) =

{
|T | − 1 for T ⊇ S ∪ {n+ 1}
|T | otherwise

Let also M′ be the matroid on [n] such that rankM′(T ) = |T | for all subsets T . Assuming all ground
serts are ordered according to the labels, note that M′ is a prefix of all matroids MS . Now, let
b1, . . . , bn ∈ BigM be the image of the ground set of M′ by the online embedding. Since BigM is
regular, it admits an F2-representation, so we can think of b1, . . . , bn as linearly independent vectors
in Fn

2 .
Since this is an online embedding, it can be extended to a morphism MS → BigM for each

S ⊆ [n]. So, for each S, let bS be the element in BigM [n + 1] maps to. If we view bS as an
F2-vector, we must have bS =

∑
i∈S bi in Fn

2 . As a consequence, the vectors {bS ;S ⊆ [n]} form an
isomorphic copy of Fn

2 .

We can now derive the following theorem as as corollary:

Theorem 6.3. If C is the class of graphic matroids, there is no online matroid embedding into a
host matroid BigM where BigM is regular.

Proof. By the previous lemma, if such embedding exists then BigM must contain an isomorphic
copy of Fn

2 . However, Fn
2 contains an isomorphic copy of the Fano plane which is not representable

over F3 [Tut58]. Hence BigM can’t be regular.

The reader will notice that Theorem 6.1 can be derived as a trivial corollary of Theorem 6.3
since graphic matroids are regular. Nevertheless, we find the more direct proof of Theorem 6.1
enlightening and opted to keep it.

6.2 Laminar Matroids

Another important class of matroids that admits an online embedding is the class of laminar
matroids. We begin this section by recalling the definition of a laminar matroid and proving a
useful structural lemma about them. We then present an OMM for the class of laminar matroids
with at most n elements, using a host matroid BigM which is a complete linear matroid of rank n
over any field with sufficiently many elements.

Lemma 6.4. If f : M → N is a matroid monomorphism and N is laminar, then M is laminar as
well.
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Proof. Denote the ground sets of M,N by M,N , respectively. If A is a laminar family of subsets
of N such that N is a laminar matroid with respect to the function c : A → Z+, then the family of
sets f−1(A) consisting of the sets f−1(A) for each A ∈ A is a laminar family, and M is a laminar
matroid with respect to the function c̃ : f−1(A) → Z+ defined by

c̃(B) = min{c(A);A ∈ A and B = f−1(A)}.

Let us also recall the definitions of the span and flat in a matroid. Given a subset S of the
ground set of a matroid M, we define the spanM(S) = {x ∈ M; rankM(S ∪ {x}) = rankM(S)}.
From the properties of the rank function, this is the equivalent to the maximal set containing S
that has the same rank as S. We say that a subset S is a flat if S = span(S). For the complete
K-representable matroid Kn, the span coincides with the notion of the linear span of vector fields
and the flats are linear subspaces.

The span of laminar matroids has the following useful property:

Theorem 6.5 (Fife and Oxley [FO17]). A matroid is laminar if and only if, for all circuits C1

and C2 with C1 ∩ C2 ̸= ∅, either span(C1) ⊆ span(C2) or span(C2) ⊆ span(C1).

Theorem 6.6. Let C be the class of laminar matroids of at most n elements and F be a field with
at least 2n elements. Then there is an OMM from C into Fn.

Proof. The OMM is defined inductively. IfM is an empty matroid then fM,π is the trivial morphism
from the empty matroid to BigM = Fn. Otherwise let n = |M|, let (M′, π′) denote the restriction
of (M, π) to [n− 1], let g denote the morphism fM′,π′ , and let u = π(n). The morphism f = fM,π

is defined as follows. For u′ ̸= u we set f(u′) = g(u′). If u doesn’t belong to any circuit with
previously arrived elements, define f(u) to be any element outside the linear span of f(M′). If u is
in some circuit, define A ⊆ M to be the intersection of span(C) over all circuits C in M containing
u. By Theorem 6.5, A is the span of some circuit in M and hence a flat. Now, choose f(u) to be an
element in the linear subspace V = spanFn(f(A \ {u})) that is not contained in VS = spanFn(f(S))
for every subset S of M such that S ∪ {u} is independent on M.

To justify that f(u) is well-defined, we must argue that the linear subspace V contains at least
one element that is not in VS for every subset S such that S ∪ {u} is independent. We will use a
counting argument that consists of showing that VS ∩ V is a proper linear subspace of V for every
such S, and then observing that a vector space over a field with at least 2n elements cannot be
expressed as the union of 2n or fewer proper linear subspaces. To show that VS∩V is a proper linear
subspace of V we argue by contradiction. Let C be a circuit containing u such that A = spanM(C).
As S ∪{u} is independent, there must be some u′ ∈ C \ {u} such that S ∪{u′} is also independent.
Then, since g : M′ → BigM is a matroid morphism, g(u′) is linearly independent of g(S). In
particular, g(u′) ∈ V \ VS and hence VS ∩ V is a proper linear subspace of V as claimed.

Having justified that f is well-defined, we must show that it is a matroid morphism. Consider
any set S in M. To show rankBigM(f(S)) = rankM(S) we will proceed by case analysis.

1. If u ̸∈ S then f(S) = g(S) and we use the induction hypothesis that g = fM′,π′ is a matroid
morphism.

2. If u ∈ S and rankM(S) = rankM(S \ {u}) + 1 then let B be a maximal independent subset of
S \ {u}. Since g is a matroid morphism, every u′ ∈ S \ {u} lies in the linear span of g(B).
Since B ∪{u} is independent in M, by construction f(u) lies outside the linear span of g(B).
Hence, rankBigM(S) = rankBigM(B ∪ {u}) = |B|+ 1 = rankM(S).

22



3. If u ∈ S and rankM(S) = rankM(S \ {u}) then there is a circuit C ⊆ S containing u. The
span(C \ {u}) is a flat A′ that contains u, so A′ must be a superset of A by Theorem 6.5.
Then we have the following chain of containments.

spanFn(g((S \ {u})) ⊇ spanFn(g((C \ {u})) = spanFn(g((A′)) ⊇ spanFn(g(A \ {u})).

Since f(u), by construction, belongs to spanFn(g(A \ {u})), it belongs to spanFn(g(S \ {u}))
and therefore

rankFn(f(S)) = rankFn(g(S \ {u})) = rankM′(S \ {u}) = rankM(S).

Similarly to the situation of graphic matroids, we can embed laminar matroids into a large
linear matroid, but there is no embedding for which BigM is also laminar:

Theorem 6.7. If C is the class of laminar matroids of at most n elements, there is no online
matroid embedding into a host matroid BigM where BigM itself is laminar.

Proof. Given a set S let Un,r(S) denote the uniform matroid with n elements and rank r defined on
ground set S. Using this notation, consider the following three matroids on ground set {a, b, c, d}:

U3,2({a, b, d})⊕U1,1({c}) U3,2({a, c, d})⊕U1,1({b}) U3,2({b, c, d})⊕U1,1({a})

It is easy to check that all three of those matroids are laminar. Moreover, the restriction to {a, b, c}
is the matroid U3,3({a, b, c}). Assume now that there is an OMM into a laminar matroid BigM and
let a′, b′, c′ be the elements it maps to. There must be some set in the laminar family of BigM that
separates those elements, otherwise we can’t extend it to the three matroids above. For example,
in the first matroid we can’t swap the roles of a and c preserving rank. Finally, there is at most one
two-element subset of {a′, b′, c′} that can be formed by intersecting one of the sets in the laminar
family with {a′, b′, c′}. If the two-element subset that spans d is not that one, then you have no
way of extending the embedding to include d.

6.3 Matroids of Bounded Rank

Finally, we show that there is no universal host matroid BigM such that all matroids of at most n
elements admit an OMM into BigM. In fact, we show that even if we restrict to matroids of rank
3 this is not possible. The geometric intuition is that once we reach rank 3, we start being able
to represent finite projective planes, where elements that haven’t arrived yet impose non-trivial
constraints on the already arrived elements. Before we get there, it is useful to analyze ranks 1
and 2.

Let Mn,r be the matroids of rank at most r defined on at most n elements. We will show that
for r = 1, 2 it is trivial to construct an online matroid embedding. As usual, we will construct an
OMM and convert it to an OME using Lemma 3.1.

Lemma 6.8. There is an online matroid morphism from Mn,1 into U1,1 ⊕ T .

Proof. The matroid U1,1 ⊕ T has ground set {0, 1} and the only independent set is {1}. Given a
matroid M ∈ Mn,1 and an element e of the ground set of M we map it to 1 if rankM({e}) = 1 and
to 0 otherwise. The mapping is constructed online since it only depends on the rank of a single-set
element consisting of the element we are processing. It is also simple to check that it is a morphism
since M has rank 1.
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Lemma 6.9. There is an online matroid morphism from Mn,2 into Un,2 ⊕ T .

Proof. The matroid Un,2 ⊕ T has ground set {0, 1, 2, . . . , n} and the independent sets are subsets
of at most 2 elements that don’t contain zero. To construct an embedding f : M → Un,2 ⊕ T ,
when we process an element e, we first check if rankM({e}) = 0. If so, we map it to 0. Otherwise,
for every element a processed before e, we check if rankM({a, e}) = 1. If so, we map f(e) = f(a).
Otherwise, we map e to the first unused index in [n].

Once we reach rank 3, the situation becomes a lot more interesting, as there exist many non-
trivial matroids like finite projective planes (e.g. Fano plane). The richness of the space of rank 3
matroids will also imply that an online matroid embedding no longer exists.

Before we prove it formally, let’s give some geometric intuition. Given points on the plane R2,
we can define a matroid of rank 3 as follows: (i) every set of one point is independent (ii) every
pair of different points is independent; (iii) every triple of points is independent iff it they are not
collinear; (iv) no other set is independent.

Now, consider the following online problem: we are presented with labels a, b, c, d, e, f, g in this
order. Each label represents a point, but we are not told which point it is. Instead, we are told the
dependency relation between them. As they arrive, we are asked to map each label to a R2 such
that the dependency relations are satisfied.

Take the following instance of this problem: the first 6 points a, b, c, d, e, f arrive, we are told
that all triples are independent, i.e., neither of them is collinear. Figure 4 shows two possible ways
to place those points in the plane satisfying those dependencies. In the first arrangement, the
segments [a, b], [c, d], [e, f ] all intersect in a single point. In the second arrangement, they don’t.

Now, the last label g arrives. If the algorithm chose the arrangement on the left, we can ask to
place g such that {a, g, b}, {c, g, d} are dependent, but {e, f, g} are independent. There is no way
to satisfy those dependencies in the figure on the left, since g must be in the intersection of the
[a, b] and [c, d] but the only way to do so is by also being in the line [e, f ]. On the other hand,
if the algorithm chose the arrangement on the right in Figure 4, we can ask to place g such that
{a, g, b}, {c, g, d} and {e, f, g} are dependent. There is no way to satisfy those dependencies in the
figure on the right since the lines [a, b], [c, d] and [e, f ] must meet on the same point.

Those two dependencies are satisfiable offline, as we can see in Figure 5. The difficulty is that
the dependencies on points that have not arrived pose constraints on the relative position of points
that have already arrived.

a e

c

bf

d

a e

c

bf

d

Figure 4: Two sets of points that induce the same matroid on {a, b, c, d, e, f}

Our goal with the previous discussion is to provide an intuition for the following proof. Note
that while embedding a matroid of rank 3, we are not restricted to R2. We could in principle embed
it in a matroid that is not representable over any field. However, geometric intuition can now be
turned into a combinatorial proof of the following statement:

Theorem 6.10. There is no host matroid BigM for which there is an online matroid morphism
from Mn,3 into BigM.
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Figure 5: Once the dependency of point g with respect the remaining points is specified, this
constrains the possible geometric arrangements of points {a, b, c, d, e, f}.

Proof. Define matroids M1 and M2 on elements {a, b, c, d, e, f, g} represented by the points in
Figure 5. In those pictures, a triple of elements is independent iff the corresponding points are not
collinear.

Those points induce the same matroid on the first 6 points, which is simply the uniform matroid
U6,3, but the matroids differ when we one considers element g.

• in M1, the sets {a, b, g}, {c, d, g} and {e, f, g} are dependent

• in M2, the sets {a, b, g} and {c, d, g} are dependent but {e, f, g} is independent

Now suppose BigM is a matroid and we’re trying to construct an online embedding of a
matroid M into BigM, where M is a rank-3 matroid that could either be M1 or M2. When
the first six elements of M arrive, we have no way of distinguishing whether the input sequence
is going to be M1 or M2. The online embedding algorithm chooses some function h mapping
{a, b, c, d, e, f} to a six-element subset of BigM. Denote the images of a, b, c, d, e, f in BigM by
capital letters, for example h(a) = A. Now suppose there are two different extensions of h to the
domain a, b, c, d, e, f, g, denoted by h1 and h2, such that hi is an embedding of Mi into BigM for
each i. Let G1 = h1(g) and G2 = h2(G). Then the following must hold:

• the sets {A,B,G1}, {C,D,G1} and {E,F,G1} are dependent in BigM

• the sets {A,B,G2} and {C,D,G2} are dependent but {E,F,G2} is independent in BigM

The sets {A,B,G1, G2} and {C,D,G1, G2} both have rank 2 in BigM, whereas their union
has rank 3 since it contains the rank-3 set {A,B,C,D}. By submodularity, the set {G1, G2} must
have rank 1. Again by submodularity,

rankBigM({E,F,G1, G2}) ≤ rankBigM({E,F,G1}) + rankBigM({G1, G2})− rankBigM({G1})

which evalutes to 2 + 1− 1 = 2. This contradicts the fact that {E,F,G2} has rank 3.

Corollary 6.11. For every field K of characteristic p ≥ 7, there is no host matroid BigM for
which there is an online matroid embedding from all K-representable matroids into BigM.

Proof. Observe that the matroids M1 and M2 in the proof of Theorem 6.10 are representable in
every field of characteristic at least 7. For example, they can be represented respectively by the
columns of the following matrices:0 2 1 1 2 0 1

1 1 2 0 0 2 1
2 0 0 2 1 1 1

 and

0 2 1 1 2 0 1
1 1 2 0 0 1 1
2 0 0 2 1 1 1


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We know that because of the results in Section 4, Corollary 6.11 is false for F2. We leave it as
an open question whether there is an online matroid embedding for class of F3 and F5-representable
matroids.

7 Approximate Embeddings

Like metric embeddings, it is useful to extend the notion of matroid embedding to allow distortion.
We define an (offline) β-approximate embedding f : M → N as a map between ground sets that
approximately preserves rank:

1

β
· rankM(S) ≤ rankN(f(S)) ≤ rankM(S), ∀S ⊆ M

We also define a randomized β-approximate matroid embedding as a family of functions fr : M →
Nr indexed by a random variable r ∼ R such:

rankNr(fr(S)) ≤ rankM(S) a.s. ∀S ⊆ M (1)

E[rankNr(fr(S))] ≥
1

β
rankM(S), ∀S ⊆ M (2)

Their online counterparts can be defined in the natural way: given a class of matroids C and
host matroid BigM then an online β-approximate randomized embedding is a family of functions:
fM,π,r : M → BigM defined for each M ∈ C, π : M → [n] and r ∈ R such that: (i) it is a ran-
domized β-approximate matroid embedding for each fixed M, π; (ii) satisfied the prefix-restriction
property defined in Section 3.

For example, if we can design a randomized order-independent β-approximate embedding for
class C into a matroid BigM and there is a known α-competitive algorithm for the known-matroid
MSP on BigM, then we can use the reduction in Section 5 to convert it into an (αβ)-competitive
algorithm for the online-revealed-matroid MSP on class C.

It is worth noting that every loop-free matroid M of rank n admits a trivial n-approximate
embedding into the free matroid Fr1 := U1,1. In the next paragraph, we observe below that we
can’t obtain better than n for any graphic host matroid. This is related to the notion called partition
property.

Offline Embedding and the Partition Property The notion of the α-partition property was
defined by Abdolazimi et al [AKKG23] to generalize a property exploited by Korula-Pál [KP09] in
their algorithm for the graphic matroid secretary problem. Translating it to our notation, we say
that a matroidM satisfies the α-partition property if there is an (offline) α-approximate randomized
embedding into a free matroid (i.e., a matroid where every non-empty subset is independent). The
name partition property comes from the fact that partition matroids are the class of matroids that
admit an (exact) morphism to a free matroid. Their respective lower and upper bounds translate
to the following results:

Theorem 7.1 (Korula-Pal [KP09]). If M is a graphic matroid, then it admits a 2-approximate
randomized embedding into a free matroid.

Theorem 7.2 (Abdolazimi et al. [AKKG23], Dughmi et al. [DKP24]). If M is the complete binary
matroid of rank n and if it admits an β-approximate randomized embedding into a free matroid,
then β ≥ Ω(n/ log n). Moreover, there exist a linear matroid M of rank n such that β-approximate
randomized embedding into a free matroid only exist for β ≥ Ω(n).
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Since composing an β-approximate embedding with a α-approximate embedding we obtain an
(αβ)-approximate embedding, we can strenghten the lower bound to also allow for embedding into
graphic matroids.

Corollary 7.3. If M is the complete binary matroid of rank n and if it admits an β-approximate
randomized embedding into a graphic matroid, then β ≥ Ω(n/ log n). Moreover, if there is a linear
matroid M such that it admits a β-approximate randomized embedding into a graphic matroid, then
β = Ω(n).

As we discussed, constructing an n-approximate embedding is trivial. For binary matroids, we
complement the lower bound of Dughmi et al. [DKP24] with an algorithm to construct a O(n/ log n)
embedding into the free matroid. Moreover, this embedding can be computed online.

Matching Upper Bound that is Also Online Computable We now construct a randomized
approximate embedding from a binary matroid to Frn. Using Theorem 4.2 we can identify every
received element x ∈ M with a vector in Fn

2 \ {0}. To map x to a partition matroid, we sample a
random basis b1, . . . , bn of Fn

2 and define the function fb : Fn
2 \ {0} → [n] that maps each x ∈ Fn

2 to
the smallest index i such that bi is in the unique circuit in {x, b1, . . . , bn}.

We first show that this embedding doesn’t increase the rank (first property of an approximate
embedding in equation (1)):

Lemma 7.4. Given any loop-free matroid M of rank n and a basis b1, . . . , bn of M, let f(x) be
the smallest index i such that bi is in the unique circuit formed by {x, b1, . . . , bn}. The function
fb : M → Frn is such that rankFr(fb(S)) ≤ rankM(S),∀S ⊆ M.

Proof. Given S, choose S′ ⊆ S be such that rankFr(fb(S)) = rankFr(fb(S
′)) = |S′|. We will show

that S′ is independent in M and hence |S′| = rankM(S′) ≤ rankM(S).
To show that, observe that for any element x ∈ M, fb(x) = j iff x ∈ spanM({bj , bj+1, . . . , bn}) \

spanM({bj+1, . . . , bn}). If that is the case, then: spanM({x, bj+1, . . . , bn}) = spanM({bj , bj+1, . . . , bn}).
Now, construct x1, . . . , xn such that xj is the element in S′ that maps to j if there is such element

and xj = bj otherwise. Then fb(xj) = j. We can show by induction that spanM({xj , . . . , xn}) =
spanM({bj , . . . , bn}), by replacing elements of b1, . . . , bn one by one by their corresponding xj ele-
ment and observing that the spans are preserved. In particular, {x1, . . . , xn} must be independent
since they span the entire matroid. As a consequence the original set S′ is independent.

We now show a lower bound on the expected rank of fb(S) which will lead to the second property
of an approximate embedding:

Lemma 7.5. For the complete binary matroid Fn
2 , the embedding fb for a random basis b1, . . . , bn

of Fn
2 satisfies:

E[rankFr(fb(S))] ≥ (1− 1/e) log2(rankM(S))−O(1), ∀S ⊆ [n]

Proof. Step 1: Sampling the basis We consider the following procedure for sampling an uniformly
random basis b1, . . . , bn of Fn

2 . For each i we sample an uniform independent vector from Fn
2 and

call it b′i. Now, if b′i is not in span(b1, . . . , bi−1) then we set b′i = bi. Otherwise we resample until
we get an element not in the span of the previous elements and set it as bi. Nevertheless, we still
record b′i as the first element sampled such that b′1, . . . , b

′
n are i.i.d. vectors. Now, let’s define E as

the event that bi = b′i for i ≤ n/2. We observe that:

P(E) = (1− 2−n)(1− 2−n+1) . . . (1− 2−n/2−1) ≥ 1−
∑n/2

k=1 2
−n+k−1 ≥ 1− 2−n/2
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Finally, define B to be the n× n matrix over F2 that has bi as the i-th column. Since b1, . . . , bn is
a basis, B is invertible.

Step 2: Change of basis Fix a set S ⊆ Fn
2 such that r = min(rankFn

2
(S), n/2) and let S′ =

{s1, . . . , sr} be an independent subset of S. Our goal is to bound E[rankFr(fb(S′))].
Let alsoX be a n×n invertible matrix over F2 where the first r columns correspond to s1, . . . , sr.

Define now b̃i = XB−1ei (where ei is the standard basis). Since the columns of B are uniformly
random and X is invertible, b̃1, . . . , b̃n is also a uniformly random basis. With that we observe that:

E[rank(fb̃1..b̃n(S))] ≥ E[rank(fb̃1..b̃n(S
′))] = E[rank(fe1..en({b1, . . . , br}))]

since bi = BX−1si, ei = BX−1b̃i and z 7→ BX−1z is a matroid isomorphism of Fn
2 .

Step 3: Conditioning on E The vectors b1, . . . , br are not sampled i.i.d. but the vectors b′1, . . . , b
′
r

are and conditioned on E they are the same. So we write:

E[rank(fe1..en({b1, . . . , br}))] ≥ E[rank(fe1..en({b1, . . . , br})) | E ] · P[E ]
= E[rank(fe1..en({b′1, . . . , b′r})) | E ] · P[E ]
≥ E[rank(fe1..en({b′1, . . . , b′r}))]− n/2n/2

Step 4: Bounding the rank in the free matroid The rank in the free matroid is simply the number
of elements in the image, so we can re-write:

E[rank(fe1..en({b′1, . . . , b′r}))] =
n∑

j=1

P[j ∈ fe1..en({b′1, . . . , b′r}))]

=
n∑

j=1

(
1−

r∏
i=1

P[j ̸= fe1..en(b
′
i)]

)

=

n∑
j=1

(
1− (1− 2−j)r

)
since P[j ̸= fe1..en(b

′
i)] is the probability that the first non-zero entry of the random vector b′i is

not j, which happens with probability (1 − 2−j). Finally observe that for j ≤ log2(r) we have
(1− 2−j)r ≤ (1− 1/r)r ≤ 1/e. Putting this together we obtain that:

E[rank(fe1..en({b′1, . . . , b′r}))] ≥ (1− 1/e) log2(r) ≥ (1− 1/e) log2(rankFn
2
(S)/2)

This completes the proof.

Theorem 7.6. For any loop-free binary matroid M there is a O(n/ log n)-online approximate
embedding to the partition matroid.

Proof. For a loop-free binary matroid M use the composition of the embedding fb for a random
basis b of Fn

2 from the previous lemma with the online morphism M → Fn
2 in Theorem 4.2. Since

both can be computed online, their composition can also be computed online.
By Lemma 7.4 the embedding satisfies the first property of an approximate embedding. By

Lemma 7.5 a set of S of rank r in M is mapped to a set with expected rank max(1, c log(r) − c′)
for constants c, c′. Finally, observe that r/max(1, c log(r)− c′) ≤ O(n/ log(n)).
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No Constant-Approximate Embedding from Graphical Matroid to Free Matroid Next,
we show that there is no constant approximate online embedding of a graphical matroid into a free
matroid when the elements are revealed online with access to an independence oracle. This is in
contrast to the result of [KP09] that allows us to construct an approximate offline embedding.

Theorem 7.7. There is no constant approximate online embedding from the class of graphical
matroids into a free matroid.

Proof. First, we construct the underlying graph that is revealed online to an algorithm that embeds
the corresponding graphical matroid into a free matroid. Suppose the underlying graph has two
disjoint paths, e1, e2, . . . , ed and f1, . . . , fd. Let the endpoints of the edge ei = (vi, vi+1) and
fi = (ui, ui+1). We consider two special edges e∗ = (v1, u1) and f∗ = (vd+1, ud+1). In addition, we
have a set of edges gi = (vi, ui) for all i ∈ {2, . . . , d}. We make d many identical copies of the above
graph and k-th copy of vertices and corresponding edges are denoted as uki , v

k
i , f

k
i , g

k
i and fk

∗ , e
k
∗ for

all i ∈ [d] and k ∈ [d].
To prove the lemma, we need to define an arrival order π over the edges such that any algorithm

that maps these edges into a free matroid, and equivalently, a simple partition matroid, can not
obtain O(1)-approximate embedding.

Suppose the arrival order of edges is as follows: first the set of edges ek1, . . . , e
k
d; f

k
1 , . . . , f

k
d and

ek∗ arrives in uniformly random order for k ∈ [d]. Since these edges form an independent set, the
algorithm can not distinguish the identity of these edges. Therefore, any constant approximate
algorithm needs to map the arrived edges into O(d2) many disjoint parts of the underlying simple
partition matroid. Let the algorithm map the arrived edges into C ·d2 many parts. We first observe
that at most C2 · d2 many parts with more than 1

C2 edges are assigned to them by the algorithm.
We let P be the set of parts that contains at most 1

C2 many edges. In addition, since the algorithm
can not distinguish between the arrived edges, we can assume that the algorithm adds these edges
into C · d2 many parts uniformly at random.

Next, for any fix k, we lower bound the probability that the algorithm embeds all ek1, . . . , e
k
d;

fk
1 , . . . , f

k
d and ek∗ into separate parts — denoted as the event E . We let i1, . . . , id, j1, . . . , jd and

ℓ∗ be the parts in which algorithm embeds the edges ek1, . . . , e
k
d, f

k
1 , . . . , f

k
d and ek∗ respectively. We

can lower the probability of the event E by iq, jq ∈ P for all q ∈ [d] intersecting with the event E .
Since each part in P contains at most 1

C2 many edges, we can lower bound the probability of the
event E by,

d+1∏
i=1

(
1− 1

(C − C2)d2 − i
C2

)
≥

(
1− d

(C − C2)d2 − d
C2

)
≥
(
1−O

(
1

d

))
.

For the rest of the proof, we condition on the event that the algorithm embeds all ek1, . . . , e
k
d;

fk
1 , . . . , f

k
d and ek∗ into separate parts. Therefore, from now on, we also drop the superscript k as

it is fixed in the rest of the proof. In addition, we let Pi, Qi and P∗ be the parts that contains the
edges ei, fi and e∗ for i ∈ [d].

Next, let the edge f∗ arrive followed by the edge e∗. Since, the edges e1, . . . , ed; f1, . . . , fd and
e∗, f∗ form a cycle, the algorithm is forced to add the edge e∗ into one of the existing parts. Since
all the edges are symmetric to the algorithm, at this stage, we can assume that the algorithm adds
the edge f∗ into one of the parts uniformly at random that contains one of the edges e1, . . . , ed;
f1, . . . , fd and e∗. We define an event F as the event where the edge f∗ does not belong to the
parts Pd, Pd−1, . . . , Pd−

√
d and Qd, Qd−1, . . . , Qd−

√
d. We note that Pr[F ] ≥ 1− 2√

d
. For the rest of

the sketch, we condition on the event F .

29



Next, we define the arrival order of the edges as: gd, gd−1, gd−2, . . . , gd−
√
d. Upon arrival of the

edge gi for any i ∈ {d, . . . , d−
√
d}, we consider the following cycles

C = (e∗, e1, . . . , ei−1, gi, ui−1, ui−2, . . . , u1)

C′ = (gi, vi, vi+1, . . . , vd, f∗, ud, ud−1, . . . , ui).

Under the event F , we claim that the edge gi has to be added to the part P ∗ that contains the
edge f∗.

Suppose the algorithm does not add the edge gi to the part P ∗. In this case, we have either
gi ∈ {P1, . . . , Pi−1, Q1, . . . , Qi−1, P̄} \ P ∗ or gi ∈ {Pi+1, . . . , Pd, Qi+1, . . . , Qd}. In the first case, we
can observe that all the edges in C ′ belong to different parts which breaks the assumption that the
algorithm comes up with a valid embedding. In the second case, all the edges in C are in different
parts which again breaks the same assumption. Therefore, the edge gi has to be in the part P ∗.
We can further observe that if gi is mapped to the part P ∗ then it leads to a valid (approximate)
embedding.

The above argument shows that all the edges gi : i ∈ {d −
√
d, . . . , d} have to be in the same

part while conditioned on E and F while the rank of gi : i ∈ {d −
√
d, . . . , d} is

√
d. Since

Pr[E ∩ F ] ≥ 1− O(1/
√
d), the algorithm is at most

√
d-approximate. This rules out any constant

approximate algorithm.
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[OGV13] Shayan Oveis Gharan and Jan Vondrák. On variants of the matroid secretary problem.
Algorithmica, 67:472–497, 2013.

[SSZ23] Richard Santiago, Ivan Sergeev, and Rico Zenklusen. Simple random order contention
resolution for graphic matroids with almost no prior information. In SOSA 2023, pages
84–95, 2023.

[SSZ25] Richard Santiago, Ivan Sergeev, and Rico Zenklusen. Constant-competitiveness for
random assignment matroid secretary without knowing the matroid. Math. Program.,
210(1):815–846, 2025.

[Tut58] William Thomas Tutte. A homotopy theorem for matroids. I, II. Trans. Am. Math.
Soc., 88(1):144–174, 1958.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, 2012.

32



A Reduction to a Special Case of Prophet MSP

In this appendix, we provide a proof of Lemma 5.8. First, we present a simple reduction from
[Dug21].

Lemma A.1 (Sublemma-4.2 from [Dug21]). If there exists an α-approximate Prophet MSP on

matroid M with Rank(M) = d and weight distribution D supported over
{

1
256·d ,

2
256·d ,

22

256·d , . . . , 1
}

with the offline optimum ED[OPT(M)] ∈
[
1
16 , 1

]
then there exists α

256 -approximate prophet MSP
on matroid M with any arbitrary weight distribution.

Given the simple reduction in Lemma A.1, we prove the following simple reduction that allow
us to focus on the weight distribution that assigns distinct weight to each element of the matroid.
We consider weight class,

W =

{
1

256 · d
+

i− 1

256d · n2
: i ∈ {0, 1, . . . , 256d · n2 + 1}

}
∪
{

1

256 · d
,

2

256 · d
,

22

256 · d
, . . . , 1

}
.

Above, n denotes the set of elements of the matroid M.
Given any prophet MSP instance consists of matroid M and arbiritary weight distribution, we

reduce it to a prophet MSP instance F consists of matroid M and weight distribution D supported

on
{

1
256·d ,

2
256·d ,

22

256·d , . . . , 1
}
with the offline optimum ED[OPT(M)] ∈

[
1
16 , 1

]
. Then we construct

prophet MSP instnace F′ over the same matroid but slightly perturbed weight distribution as
follows: we find a random permutation π over the set of elements of the matroid. We sample the
weights of the elements using the distribution D. Then for all i ∈ [n], we subtract i−2

256·d·n2 from the
weight of element e, iff the element e appears at the i-th position on the permutation π.

We observe that in the perturbed matroid secretary instance, the weight distribution is sup-
ported over the set of weights W . In addition, for any w ∈ W , there is at most one element
whose weight is assigned to be w. This simply follows from the fact that for any two elements
e, e′ with distinct weight in the draw from distribution D will be assigned a different weight as the
prtrubution to both elements is smaller than 1

256d·n . In addition, the perturbation is distinct for
two distinct elements e, e′ ∈ V . Therefore, the pair of elements e, e′ with the identical weight in
the draw from D are assigned different weights in the perturbed instance.

Proof of Lemma 5.8. To prove the lemma, we prove the following statement: if there is an α
approximate algorithm for perturb prophet matroid secretary instance F′ then we can construct
α−O

(
1
d

)
-approximate algorithm for prophet matroid secretary instance F.

Suppose, we are given an algForithm A that is α-approximate for the instance F′. Our goal is
to design an algorithm for the instance F using A that is α− 1

d -approximate. We give the following
online reduction from F to F′: in the instance F, upon arrival of the element e at the position
i ∈ [n], we perturb the weight of the element e by subtracting i−1

256·d·n2 . We note that since the
arrival order of the elements is uniformly at random, the modified weight distribution is identical
to that of weight distribution in the perturbed instance. Hence, we feed the perturbed weight of
the arrived element to the algorithm A. We then select an arrived element e iff the algorithm A
selects the element e in the perturbed instance.

Let S, OPT and OPT′ be the selected elements by A, the optimal value of the instance F,
and the optimal value of the perturbed instance F′. We denote the modified weight as w′(·). By
construction, we have,

w(S) ≥ w′(S) ≥ α ·OPT′ ≥ α ·
(
1− 1

32 · d

)
·OPT.
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Above, the first inequality holds because w′(e) ≤ w(e). The second inequality holds because A is α-
approximate for thee perturbed distribution. The final inequality holds because the total decrease
in the weight

∑
e∈V (w(e)−w′(e)) ≤ 1

512·d and OPT ≥ 1
16 by assumption on D. This concludes the

proof.

B Exact from Approximate Pairwise Independence

In this section, we present the proof of Theorem 5.9, and construct an exact pairwise-independent
weight distribution on BigM[m·N ] that is close to the weight distribution D∗ defined in Definition 1
on BigM[m·N ]. First, in Section B.1, we present our construction that iteratively applies small
perturbations as defined in Procedure 1 and Procedure 2 to turn the weight distribution D∗ into an
exact pairwise-independent weight distribution D̃. Then in Section B.2, we obtain tight upper and
lower bounds on the parameters of Procedure 1 and Procedure 2. Afterwards, in Sections B.3 and
B.4, we bound the total perturbations due to Procedures 1 and 2, respectively. Finally, Section B.5
shows how this implies the theorem.

B.1 Constructing an Exact-Pairwise Independent Distribution

Before we present the procedure to obtain an exact pairwise independent weight distribution, we
recall the notations from Theorem 5.9. We have a prophet MSP instance on matroid M and weight
distribution D supported over the set of weights W = {w1, w2, . . . , wm} satisfying the conditions
from Lemma 5.8. Given the prophet MSP instance we let D∗ be the weight distribution over BigM
defined in Definition 1. For any i, j ∈ [m], we let,

pi = Pr
w∼D

[∃v ∈ M : w(v) = wi]

pij = Pr
w∼D

[∃v ∈ M : w(v) = wi ∧ ∃v′ ∈ M : w(v′) = wj ].

Since D is arbitrarily correlated over the support W , we can potentially have pij ̸= pi · pj .
We first observe that for any i ∈ [m], ℓ ∈ Ni and u ∈ BigM, ui,ℓ ∈ BigM[m·N ] can potentially

take either weight of wi or zero. Therefore, we define Bernoulli random variables Xu
iℓ for all

ui,ℓ ∈ BigM[m·N ] such that Xu
iℓ = 1 iff w(ui,ℓ) = wi. We note that the Bernoulli random variables

Xu
iℓ for all u

i,ℓ ∈ BigM[m·N ] contain the full information of the weight distribution over BigM.
We next observe that,

E[Xu
i,ℓ = 1] = Pr [∃v ∈ M : w(v) = wi ∧ f(v) = u] · Pr

ℓ′∼Unif(Ni)
[ℓ′ = ℓ]

= Pr [∃v ∈ M : w(v) = wi] · Pr [f(v) = u] · 1

N

=
pi

M ·N
.

Above, the second equality holds because the weight assignment to M is independent of the matroid
morphism f . The second equality holds because f = f ′′◦f ′ and f ′′ is a uniformly random automor-
phism from Aut(BigM), which implies Pr[f(v) = u] = 1

|BigM| =
1
M . Similarly, we compute the

pairwise joint distribution of the Bernoulli random variables. First, for any elements u,u′ ∈ BigM,
i, j ∈ [m] and ℓ ∈ [Ni], ℓ

′ ∈ [Nj ], we have,

E[Xu
i,ℓ = 1 ∧Xu′

j,ℓ′ = 1] = 0
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if i = j or u = u′ because there can be at most one element v ∈ M with w(v) = wi and f is a
matroid morphism and two distinct elements from M with weight wi and wj can not be mapped
to u ∈ BigM via f .

Finally, for any pair of elements ui,ℓ,u
′
j,ℓ, for i ̸= j and u ̸= u′, we have,

E[Xu
i,ℓ = 1 ∧Xu′

j,ℓ′ = 1] = Pr
[
∃v ∈ M : w(v) = wi ∧ ∃v′ ∈ M : w(v′) = wj ∧ f(v) = u ∧ f(v′) = u′

]
· 1

N2

= pij · Pr[f(v) = u ∧ f(v′) = u′] · 1

N2

=
pij

M · (M − 1) ·N2
.

Above, the second equality holds because the weight assignment to M is independent of the matroid
morphism f . The second equality holds because f = f ′′◦f ′ and f ′′ is a uniformly random automor-
phism from Aut(BigM), which implies Pr[f(v) = u∧ f(v′) = u′] = 1

M ·(M−1) . Given the definition
of Xu

i,ℓ, since it captures the complete information about the weight distribution over BigM[m·M ],

we prove the existence of Bernoulli random variables X̃u
i,ℓ : ∀ui,ℓ with pairwise-independent joint

distribution X̃ s.t. TVX,X̃ ≤ O
(
m3

M

)
. This immediately implies the proof of Theorem 5.9.

It is difficult to give a closed form construction of X̃ in a “simple” procedure, therefore, we give a
sequential process that iteratively generates Bernoulli random variablesXu

i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ]

for k = 0, . . . , k∗ starting from Xu
i,ℓ(0) = Xu

i,ℓ : ∀ui,ℓ ∈ BigM[m·N ] such that at the end of the

process, X̃u
i,ℓ(k̄) : ∀ui,ℓ are pairwise independent. For any i, j ∈ [m], and distinct u,u′ ∈ BigM

i ̸= j, we define bias

εij = |E[Xu
i,ℓ = 1 ∧Xu′

j,ℓ′ = 1]− E[Xu
i,ℓ = 1] · E[Xu′

j,ℓ′ = 1]| = |p̄ij − pi · pj |
M2 ·N2

,

where p̄ij = M
M−1 · pij . The above expression captures the closeness of the random variables

Xu
i,ℓ : ∀ui,ℓ ∈ BigM[n·M ] from being pairwise independent. The above bias εij does not depend on

the choice of vectors u,u′ and their corresponding labels ℓ, ℓ′. On the other hand, for i ∈ [m] and
distinct u,u′ ∈ BigM, we let,

εi = |E[Xu
i,ℓ = 1 ∧Xu′

i,ℓ′ = 1]− E[Xu
i,ℓ = 1] · E[Xu′

i,ℓ′ = 1]| = p2i
M2 ·N2

.

Our high-level idea is to sequentially transform the random variables starting from {Xu
i,ℓ(0) :

∀ui,ℓ ∈ BigM[m·N ]} distributed as D(0) = D∗ to {Xu
i,ℓ(k) : ∀ui,ℓ} for bounded k such that at each

step, the resultant distribution becomes “closer” to being pairwise independent. More formally, we
prove the following lemma.

Lemma B.1. Let {X̃u
i,ℓ : ui,ℓ ∈ BigM[m·N ]} be the random variables obtained after applying

Procedure 1 and Procedure 2 to {Xu
i,ℓ : ui,ℓ ∈ BigM[m·N ]}, then {X̃u

i,ℓ : ui,ℓ ∈ BigM[m·N ]} are
pairwise-independent.

Proof of Lemma B.1. We define initial bias εij(0) = εij and εi(0) = εi. We let the evolution of
the weight distribution starting from D∗ = D(0) → D(1) → · · · → D(k̄), where k̄ = O(m2) in
Procedure 1. For any k > 0, we let,

εi(k) = |E[Xu
i,ℓ(k) = 1 ∧Xu′

i,ℓ′(k) = 1]− E[Xu
i,ℓ(k) = 1] · E[Xu′

i,ℓ′(k) = 1]|

εij(k) = |E[Xu
i,ℓ(k) = 1 ∧Xu′

j,ℓ′(k) = 1]− E[Xu
i,ℓ(k) = 1] · E[Xu′

j,ℓ′(k) = 1]|.
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Through the process of transforming Bernoulli random variables in Procedure 1, we make sure that
εij(k) and εi(k) do not depend on u,u′ ∈ BigM and their labels ℓ ∈ [N ] and ℓ′ ∈ [N ] and rather
only depends on the weight class i, j ∈ [m].

Suppose we have completed k many iterations of Procedure 1 and have obtained distribution
D(k) over {Xu

i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ]}. In addition, we have for any i ∈ [m],u ∈ BigM and
ℓ ∈ [N ], we have E[Xu

i,ℓ] = pi(k) and any distinct i, j ∈ [m],u,u′ ∈ BigM and any labels ℓ, ℓ′ ∈ [N ],

we have E[Xu
i,ℓ ·Xu′

j,ℓ′ ] = pij(k). Given Xu
i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ], and i ̸= j with εij(k) ̸= 0, we

consider the two cases: εij(k) > 0 and εij(k) < 0 separately and resolve their pairwise correlations
(See Procedure 1).

Procedure 1:
Initialize k = 0 and {Xu

i,ℓ(0) = Xu
i,ℓ : u

i,ℓ ∈ BigM[m·N ]}
Run until for all distinct i, j ∈ [m], pij(k) = pi(k) · pj(k):
Case-1 (pij(k) > pi(k) · pj(k)): We define Xu

i,ℓ(k + 1) : ∀ui,ℓ ∈ BigM[m·N ] as follows:

1. Assign Xu
i,ℓ(k + 1) = Xu

i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ].

2. With probability qij , sample Z ∼ Ber(1/2) and do the following:

(a) If Z = 1 then assign Xu
i,ℓ(k + 1) = 1 with probability 1

N independently ∀u ∈
BigM, ∀ℓ ∈ [N ] and Xu

j,ℓ(k + 1) = 0 : ∀u ∈ BigM, ∀ℓ ∈ [N ].

(b) Otherwise assign Xu
i,ℓ(k + 1) = 0 : ∀u ∈ BigM[m·N ], ℓ ∈ [N ] and Xu

j,ℓ(k + 1) = 1

with probability 1
N independently ∀u ∈ Fd

2, ℓ ∈ [N ].

Case-2 (pij(k) < pi(k) · pj(k)): We define Xu
i,ℓ(k + 1) : ∀ui,ℓ as follows:

1. Assign Xu
i,ℓ(k + 1) = Xu

i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ].

2. With probability qij , let Xu
i,ℓ(k + 1) = 1 : ∀u ∈ BigM, ℓ ∈ [N ] and Xu

j,ℓ(k + 1) = 1 :
∀u ∈ BigM, ℓ ∈ [N ].

First, we can straightforwardly observe that while obtaining {Xu
i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ]} we

ensure that for any fix i ∈ [N ], u,u′ ∈ BigM and ℓ, ℓ′ ∈ [N ], we have E[Xu
i,ℓ(k+1)] = E[Xu′

j,ℓ′(k+1)].
In addition, given any fix distinct i, j ∈ [m], for any distinct u,u′ ∈ BigM and labels ℓ, ℓ′ ∈ [N ],
E[Xu

i,ℓ(k + 1) ·Xu′
j,ℓ′(k + 1)] does not depend on u,u′ and their labels ℓ, ℓ′ ∈ [N ].

In both cases, we let qij such that we obtain εij(k+1) = 0. We will define the closed form and an
upper bound on qij by writing the conditions to obtain εij(k+ 1) = 0 in Section B.2. However, we
prove the following crucial property that shows that the above procedure stops after iterating over
all pairs of indices i ̸= j and leads to the distribution where Xu

i,ℓ(k) and Xu′
j,ℓ′(k) are independent

as long as i ̸= j.

Claim B.2. For any pair r, r′ such that r ̸= r′, we have εrr′(k+ 1) ≤ εrr′(k). In addition, for any
u ∈ BigM, ℓ, ℓ′ ∈ [N ] and distinct r, r′ ∈ [m], we have,

|E[Xu
r,ℓ(k+1)·Xu

r′,ℓ′(k+1)]−E[Xu
r,ℓ(k+1)]·E[Xu

r′,ℓ′(k+1)]| ≤ E[Xu
r,ℓ(k)·Xu

r′,ℓ′(k)]−E[Xu
r,ℓ(k)]·E[Xu

r′,ℓ′(k)]

Proof. We can easily observe that when r, r′ /∈ {i, j} then εrr′(k + 1) = εrr′(k). In addition, when
r = i, r′ = j, the choice of qij ensures that εij(k + 1) = 0 < εij(k + 1). Hence, we can focus on the
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case, r′ = i. We note that for any pair of u,u′ ∈ BigM,

|E[Xu
r,ℓ(k + 1) ·Xu

r′,ℓ′(k + 1)]− E[Xu
r,ℓ(k + 1)] · E[Xu

r′,ℓ′(k + 1)]|

= |E[Xu
i,ℓ(k + 1) = Xu′

r,ℓ′(k + 1) = 1]− E[Xu
i,ℓ(k + 1) = 1] · E[Xu′

r,ℓ′(k + 1) = 1]|

= |(1− qij) · E[Xu
i,ℓ(k) = Xu′

r,ℓ′(k) = 1] + α · qij · E[Xu′
r,ℓ′(k) = 1]

− ((1− qij)E[Xu
i,ℓ(k) = 1] + qij · α) · E[Xu′

r,ℓ′(k) = 1]| (α = 1 or α = 1/2)

= (1− qij) · εir(k).

Next, we observe that for the case when u ̸= u′, |E[Xu
i,ℓ(k

′) ·Xu
r′,ℓ′(k

′)]−E[Xu
i,ℓ(k

′)] ·E[Xu
r′,ℓ′(k

′)]| =
εir(k

′) for k′ ∈ {k, k + 1}. This further implies that εi,r(k + 1) ≤ εi,r(k).

Claim B.2 implies that that once Procedure 1 iterates over all possible distinct pairs i, j ∈ [m]
over k̄ many iterations, for the resultant , the resultant Xu

i,ℓ and Xu′
j,ℓ′ are independent as long as

i ̸= j. Suppose the above procedure terminates after k̄ many iterations. We note that k̄ ≤ m·(m−1)
2

due to Claim B.2. Once the above procedure terminates for all i ̸= j, the only correlation we have
left is between Xu

i,ℓ and Xu′
i,ℓ′ for u,u′ ∈ BigM, i ∈ [m] and ℓ, ℓ ∈ [N ] and between Xu

i,ℓ, X
u
j,ℓ′ for

u ∈ M, i, j ∈ [m] and ℓ, ℓ′ ∈ [N ].
We now describe Procedure 2 to resolve the rest of the correlations, which is similar to our

Procedure 1. In Procedure 2, we initialize {X̃u
i,ℓ(0) = Xu

i,ℓ(k̄) : ui,ℓ ∈ BigM[m·N ]} and at each
iteration, we resolve the correlation between a pair of Bernoulli random variables which exhibits
pairwise correlation. This is in contrast to Procedure 1 that resolved the pairwise correlation
between the sets of random variables corresponding to pairs of weight classes i, j ∈ [m].

Procedure 2:
Initialize k = 0 and {X̃u

i,ℓ(0) = X̃u
i,ℓ(k̄) : u

i,ℓ ∈ BigM[m·N ]}
Run until {X̃u

i,ℓ(k) : u
i,ℓ ∈ BigM[m·N ]} are Pairwise Independent:

∃X̃u
i,ℓ(k)X̃

u′
j,ℓ′(k) not independent for some i, j ∈ [m], u,u′ ∈ BigM and ℓ, ℓ′ ∈ [N ]

Case-1: (E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)] > E[X̃u
i,ℓ(k)] · E[X̃u′

j,ℓ(k)]):

1. Assign Xu
i,ℓ(k + 1) = Xu

i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ].

2. With probability q(k), sample Z ∼ Ber(1/2) and do the following:

(a) If Z = 1 then assign Xu
i,ℓ(k + 1) = 1 and Xu′

j,ℓ′(k + 1) = 0.

(b) Otherwise assign Xu
i,ℓ(k + 1) = 0 and Xu′

j,ℓ′(k + 1) = 1.

Case-2: (E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)] < E[X̃u
i,ℓ(k)] · E[X̃u′

j,ℓ(k)]):

1. Assign Xu
i,ℓ(k + 1) = Xu

i,ℓ(k) : ∀ui,ℓ ∈ BigM[m·N ].

2. With probability q(k), let Xu
i,ℓ(k + 1) = Xu′

j,ℓ′ = 1.

At any iteration k of Procedure 2, let X̃u
i,ℓ(k) and X̃u′

j,ℓ′(k) are the selected random variables

whose correlation is being resolved. We set q(k) such that we end up with E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)] =

E[X̃u
i,ℓ(k)]·E[X̃u′

j,ℓ(k)]. Similar to Claim B.2, we show that the correlation between all pair of random
variables can only go lower.
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Claim B.3. For any k ≥ 0 and pair of random variables X(k), X ′(k) ∈ {X̃u
i,ℓ(k) : u

i,ℓ ∈ BigM[m·N ]},
we have,

|E[X(k + 1) ·X ′(k + 1)]− E[X(k + 1)] · E[X ′(k + 1)]| ≤ |E[X(k) ·X ′(k)]− E[X(k)] · E[X ′(k)]|.

Proof. Let X̃u
i,ℓ(k) and X̃u′

j,ℓ′(k) are the selected random variables whose correlation is being resolved.

For any X(k), X ′(k) /∈ {X̃u
i,ℓ(k), X̃

u′
j,ℓ′(k)}, the condition in the claim trivially satisfies. On the

other hand, if X(k) = X̃u
i,ℓ(k) and X ′(k) = X̃u′

j,ℓ′(k) then we have E[X(k + 1) · X ′(k + 1)] =
E[X(k + 1)] · E[X ′(k + 1)] which implies the condition in the claim.

To complete the proof, we focus on the case whenX(k) = X̃u
i,ℓ(k) andX ′(k+1) /∈ {X̃u

i,ℓ(k), X̃
u′
j,ℓ′(k)}.

The proof of this case is identical to the proof of Claim B.2 but we give a detailed proof for the
sake of completeness. We observe that,

|E[X(k + 1) ·X ′(k + 1)]− E[X(k + 1)] · E[X ′(k + 1)]|
=|(1− q(k)) · E[X(k) ·X ′(k)] + q(k) · α · E[X ′(k)]− ((1− q(k)) · E[X(k)] + q(k) · α) · E[X ′(k)]|
=(1− q(k)) · |E[X(k) ·X ′(k)]− E[X(k)] · E[X ′(k)]|
≤|E[X(k) ·X ′(k)]− E[X(k)] · E[X ′(k)]|.

In the above calculations, α = 1/2 if E[X̃u
i,ℓ(k) · X̃u′

j,ℓ′(k)] > E[X̃u
i,ℓ(k)] · E[X̃u′

j,ℓ′(k)] and α = 1
otherwise.

The above claim implies that at any iteration k, if X̃u
i,ℓ(k) and X̃u′

j,ℓ′(k) are the selected random

variables whose correlation is being resolved, either i = j or u = u′ since we have E[X̃u
i,ℓ(0) ·

X̃u′
j,ℓ(0)] = E[X̃u

i,ℓ(0)] · E[X̃u′
j,ℓ(0)] for distinct u,u′ ∈ BigM and distinct i, j ∈ [m] at the end of

Procedure 1. This implies that Procedure 2 stops after iterative over pair of random variables
Xu

i,ℓ, X
u
j,ℓ′ for u ∈ BigM, i, j ∈ [m], ℓ, ℓ′ ∈ [N ] and Xu

i,ℓ, X
u′
i,ℓ′ for u,u′ ∈ BigM, i ∈ [m], ℓ, ℓ′ ∈

[N ]. This completes the proof fo the lemma that the resultant random variables {X̃u
i,ℓ : ui,ℓ ∈

BigM[m·N ]} at the end of Procedure 1, followed by Procedure 2 are pairwise independent.

B.2 Parameters of Procedure 1 and Procedure 2

Next, in order to complete the proof of Theorem 5.9, we first bound qij and q(k), i.e, the probability
by which Procedure 1 and Procedure 2 deviate from the original random variables {Xu

i,ℓ : ui,ℓ ∈
BigM[m·N ]}. We next obtain upper and lower bound on the parameters of the Procedures 1 and
2, respectively.

Lemma B.4. Let (i, j) be the indices selected at iteration k of Procedure 1, then we have,

1. When pij(k) > pi(k) · pj(k), we have
N ·εij(k)

2(pi(k)+pj(k))
≤ qij ≤ N ·εij(k)

pi(k)+pj(k)
, and

2. When pij(k) < pi(k) · pj(k), we have εij ≤ qij ≤ εij(k)
(1−pi(k)−pj(k))

In addition, for k ≥ 0, let X̃u
i,ℓ(k) and X̃u′

j,ℓ′(k) are the selected random variables whose correlation

is being resolved at the k-th iteration of Procedure 2. Let p1(k) = E[X̃u
i,ℓ] and p2(k) = E[X̃u′

j,ℓ′ ], then
we have,

1. When E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)] > E[X̃u
i,ℓ(k)] · E[X̃u′

j,ℓ(k)], we have

|E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)]− E[X̃u
i,ℓ(k)] · E[X̃u′

j,ℓ(k)]|
2(p1(k) + p2(k))

≤ q(k) ≤
|E[X̃u

i,ℓ(k) · X̃u′
j,ℓ(k)]− E[X̃u

i,ℓ(k)] · E[X̃u′
j,ℓ(k)]|

p1(k) + p2(k)
,
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2. When E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)] < E[X̃u
i,ℓ(k)] · E[X̃u′

j,ℓ(k)], we have

|E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)]− E[X̃u
i,ℓ(k)| ≤ q(k) ≤

|E[X̃u
i,ℓ(k) · X̃u′

j,ℓ(k)]− E[X̃u
i,ℓ(k)|] · E[X̃u′

j,ℓ(k)]|
1− p1(k)− p2(k)

,

Proof. In both cases, we want to find qij such that pij(k + 1) = pi(k + 1) · pj(k + 1). We analyze
both cases of Procedure 1 separately,

Case-1 (pij(k) > pi(k) · pj(k)) In this case, by construction, we have,

pi(k + 1) = (1− qij) · pi(k) +
qij
2N

and pij(k + 1) = (1− qij) · pij(k).

For simplicity in notations, we let aij =
1

4N2 − 1
2N · (pi(k) + pj(k)) and bij =

1
2N · (pi(k) + pj(k)) +

εij(k) + pi(k) · pj(k). By constraint, pij(k + 1) = pi(k + 1) · pj(k + 1), we get,

(1− qij) · pij(k) =
(
(1− qij) · pi(k) +

qij
2N

)
·
(
(1− qij) · pj(k) +

qij
2N

)
=⇒

(
1

4N2
− 1

2N
· (pi(k) + pj(k))

)
· q2ij +

(
1

2N
· (pi(k) + pj(k)) + εij(k) + pi(k) · pj(k)

)
· qij − εij(k) = 0

=⇒ qij =
−bij +

√
b2ij + 4 · εij(k) · aij
2 · aij

=⇒ qij =
εij(k)

bij +
√
b2ij + 4 · εij(k) · aij

≤ N · εij(k)
pi(k) + pj(k)

.

Above the last inequality follows because bij ≥ 1
2 · (pi(k) + pj(k)). In addition, we get qij ≥

εij
2·bij+2εij ·aij ≥ εij

2·(pi(k)+pj(k))
. We conclude the proof of this case.

Case-2 (pij(k) < pi(k) · pj(k)) In this case, by construction, we have,

pi(k + 1) = (1− qij) · pi(k) + qij and pij(k + 1) = (1− qij) · pij(k) + qij .

For simplicity in notations, we let aij = 1+pi(k) ·pj(k)− (pi(k)+pj(k)) and bij = (1−pi(k)−pj(k)
−pi(k) · pj(k) + εij(k)). By constraint, pij(k + 1) = pi(k + 1) · pj(k + 1), we get,

(1− qij) · pij(k) + qij = ((1− qij) · pi(k) + qij) · ((1− qij) · pj(k) + qij)

=⇒ (1 + pi(k) · pj(k)− (pi(k) + pj(k))) · q2ij − (1− pi(k)− pj(k)− pi(k) · pj(k) + εij(k)) · qij + εij(k) = 0

=⇒ qij =
bij −

√
b2ij − 4 · εij(k) · aij

2 · aij
=⇒ qij =

εij(k)

bij +
√
b2ij − 4 · εij(k) · aij

.

Above the last inequality follows because bij ≥ (1− pi(k)− pj(k)).
The proof of the second part for Procedure 2 is identical to the proof of claim for the first

part by replacing εij(k) = |E[X̃u
i,ℓ(0) · X̃u′

j,ℓ(0)] − E[X̃u
i,ℓ(0)] · E[X̃u′

j,ℓ(0)]|, pi(k), pj(k) by p1(k), p2(k)
(defined in the statement of the lemma.) and q by N · q. This concludes the proof.
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B.3 Analysis of Procedure 1

Next, we bound the marginals and bias in the set of random variables {Xu
i,ℓ(k̄) : ui,ℓ ∈ BigM[m·N ]}

at the end of Procedure 1. Here, k̄ denotes the number of iterations performed of Procedure 1. We
prove the following claim that lower bounds the marginals pi(k̄) for all i ∈ [m].

Claim B.5. For any k ≥ 0 and i ∈ [m], we have that pi(k) ≥ pi(0) at the end of the k-th iteration
of Procedure 1. In addition, we have that,

1. For any pair of distinct i, j ∈ [m], qij ≤ 1
(M−1) when pij(0) > pi(0) ·pj(0) and qij ≤ 1

(M−1)2·N2

when pij(0) < pi(0) · pj(0).

2. For any i ∈ [m], pi(k̄) ≤ pi(0) +
m−1

N ·(M−1) at the end of Procedure 1.

Proof. We first observe that pi(k) ≤ 1
2N for large enough N,M > 0 which follows inductively. This

implies that for any k > 0, we have pi(k + 1) = pi(k) if weight class i is not processed at the
iteration k of Procedure 1. Otherwise if weight classes i, j is processed for some j ∈ [m], we have
pi(k + 1) ≥ (1− qij) · pi(k) + qij/2 ≥ pi(k). This concludes the proof of the first part.

Second, we observe that for any distinct i, j ∈ [m], we can bound qij as follows:

qij ≤
N · εij(k)

(pi(k) + pj(k))
≤ εij(0)

(pi(0) + pj(0))

≤
N · | M

M−1 · pij − pi · pj |
M2 ·N2 ·min(pi(0), pj(0))

≤ N ·M
M − 1

· min(pi(0), pj(0))

M ·N ·min(pi(0), pj(0))

=
1

(M − 1)
.

Above, the first inequality holds due to Claim B.4, the second inequality holds because of Claim B.2
and the first part of the claim pi(k) ≥ pi(0). In the other case, we have,

qij ≤
εij(k)

(1− pi(k)− pj(k))
≤ εij(0)

1− pi(k)− pj(k)
≤

N · | M
M−1 · pij − pi · pj |

M2 ·N2 · (1− 1/M)
≤ 1

(M − 1)2 ·N2
.

Finally, the probability pi(k̄) at the end of Procedure 1 can be bound by union bound on the
event that at least one of the Bernoulli Z ∼ Ber(qij) for some j ̸= i ∈ [m] turns out to be 1
throughout Procedure 1. This implies,

pi(k̄) ≤ pi(0) +
1

N
·
∑
j ̸=i

qij ≤ pi(0) +
m− 1

(M − 1) ·N
.

This completes the proof.

Next, we analyze the type of remaining correlation after the end of Procedure 1. We recall
that at the end of Procedure 1, the only correlation we have left is between Xu

i,ℓ and Xu′
i,ℓ′ for

u,u′ ∈ BigM, i ∈ [m] and ℓ, ℓ ∈ [N ] and between Xu
i,ℓ, X

u
j,ℓ′ for u ∈ M, i, j ∈ [m] and ℓ, ℓ′ ∈ [N ].

We make the following claim.

Claim B.6. Let Procedure 1 run for k̄ many iterations. The following statements holds:

1. For any i ∈ [m] and pair of u,u′ ∈ BigM and ℓ, ℓ′ ∈ [N ], the random variables Xu
i,ℓ(k̄) and

Xu′
i,ℓ′(k̄) are positively correlated. In addition,

E[Xu
i,ℓ(k̄) ·Xu′

i,ℓ′(k̄)]− E[Xu
i,ℓ(k̄)] · E[Xu′

i,ℓ′(k̄)] ≤
m

4 ·N2 · (M − 1)
.

40



2. For any distinct i, j ∈ [m], u ∈ BigM and ℓ, ℓ′ ∈ [N ], we have Xu
i,ℓ(k̄) and Xu′

j,ℓ′(k̄) are
negatively correlated. In addition,

E[Xu
i,ℓ(k̄)] · E[Xu′

j,ℓ(k̄)]− E[Xu
i,ℓ(k̄) ·Xu′

j,ℓ(k̄)] ≤
1

N2 ·M2
.

Proof. We first consider any i ∈ [m] and pair of u,u′ ∈ BigM and ℓ, ℓ′ ∈ [N ], we observe that
before we start Procedure 1, E[Xu

i,ℓ(0) ·Xu′
i,ℓ′(0)] = 0 as there is at most one element v ∈ M that

takes weight wi. Therefore, at iteration k̄, Xu
i,ℓ(k̄) · Xu′

j,ℓ(k̄) = 1 holds iff Xu
i,ℓ(k̄) · Xu′

j,ℓ(k̄) with
probability qij while resolving correlation between i, j ∈ [m] where pij < pi · pj or with probability
qij
4·N2 while resolving correlation between i, j ∈ [m] where pij > pi · pj . This implies,

E[Xu
i,ℓ(k̄) ·Xu′

j,ℓ(k̄)] =
∑

j ̸=i:(pij<pi·pj)

qij +
∑

j ̸=i:(pij>pi·pj)

qij
4N2

≤
∑

j ̸=i:(pij<pi·pj)

1

(M − 1)2 ·N2
+

∑
j ̸=i:(pij>pi·pj)

1

4N2
· 1

(M − 1)

≤ m

4 ·N2 · (M − 1)
.

Above, the first inequality follows from Claim B.5 and the last inequality follows from the fact that
1

4N2 · 1
(M−1) >

1
(M−1)2·N2 for M > 3. The positive correlation between Xu

i,ℓ(k̄), X
u′
j,ℓ(k̄) follows from

the fact that Procedure 1 mixes the original distribution with positively correlated distribution
among Xu

i,ℓ(k̄), X
u′
j,ℓ(k̄) with marginal higer than the original marginals. This above bound on

E[Xu
i,ℓ(k̄) ·Xu′

j,ℓ(k̄)] concludes the proof of the first part.

Finally, for any distinct i, j ∈ [m], u ∈ BigM and ℓ, ℓ′ ∈ [N ], we have Xu
i,ℓ(k̄) ·Xu′

j,ℓ′(k̄) = 1, only
if while resolving correlation between i, j during Procedure 1, it ends up assigning Xu

i,ℓ(k + 1) =
1 : ∀u ∈ BigM, ℓ ∈ [N ] and Xu

j,ℓ(k + 1) = 1 : ∀u ∈ BigM, ℓ ∈ [N ]. In this case, qij satisfies,

pij(k + 1) = pi(k) · pj(k + 1). Since, E[Xu
i,ℓ(k) · Xu′

j,ℓ′(k)] < pij(k) at round k, Xu
i,ℓ(k), X

u′
j,ℓ′(k)

remains negatively correlated at iteration k while the correlation between i, j is being resolved.
During all the other iterations of Procedure 1, Claim B.2 ensures that Xu

i,ℓ(k̄), X
u′
j,ℓ′(k̄) remains

negatively correlated.

B.4 Analysis of Procedure 2

Given the structure and bound on the correlation between Xu
i,ℓ and Xu′

i,ℓ′ for u,u
′ ∈ BigM, i ∈ [m]

and ℓ, ℓ′ ∈ [N ] and between Xu
i,ℓ, X

u
j,ℓ′ for u ∈ M, i, j ∈ [m] and ℓ, ℓ′ ∈ [N ] in Proposition B.6, we

next show that the probability that Procedure 2 alters the original distribution is small which is
crucial to bound the total variation distance between the original and the final distribution.

First, we observe that the order in which Procedure 2 resolves correlation does not affect
its termination. Therefore, we first analyze the total probability of deviation from the original
distribution while resolving the positive correlations. For simplicity, we assume that for the first
M ·N−1 many iterations of Procedure 2, we resolve correlation betweenXu

i,1 withXu′
i,ℓ for all u

′i,ℓ′ ̸=
ui,1 ∈ BigM[m·N ]. We first bound

∑
k≤MN−1 qk. Before, we obtain the bound on

∑
k≤MN−1 qk,

we prove the following crucial claims:

Claim B.7. For k ≤ MN − 1, we have

E[X̃u
i,1(k)] =

∏
p<k

(1− qp) · E[X̃u
i,1(0)] +

1

2
·
∑
p≤k

qp ·

 ∏
k≥j>p

(
1− qj

2

) .
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Proof. Since, fir k < MN − 1, we resolves the correlation between Xu
i,1 with Xu′

i,ℓ, at each iteration
p < k, we assign Xu

i,1(p) = 1 independently at each round with probability qp/2. Finally, we have

X̃u
i,1(k) = 1 iff we have X̃u

i,1(p) = 1 and Procedure 2 does not assign X̃u
i,1(j) for all j > p. Combining

the above argument for the set of disjoint events X̃u
i,1(p− 1) = 0 and X̃u

i,1(j) = 1 for all j ≥ p, we
obtain the proof of the claim.

Next, we prove the monotonicity of the probability qk for k = 1, . . . ,MN − 1.

Claim B.8. For any k < MN − 1, we have qk > qk+1.

Proof. This claim simply follows from the fact that E[X̃u
i,1(k + 1)] ≥ E[X̃u

i,1(k)], E[X̃u
i,1(k + 1) ·

X̃u′
i,ℓ(k+1)]−E[X̃u

i,1(k+1)] ·E[X̃u′
i,ℓ(k+1)] = (1− qk) · (E[X̃u

i,1(k) · X̃u′
i,ℓ(k)]−E[X̃u

1,ℓ(k)] ·E[X̃u′
i,ℓ(k)])

and qk+1 ≤
E[X̃u

i,1(k+1)·X̃u′
i,ℓ(k+1)]−E[X̃u

i,1(k+1)]·E[X̃u′
i,ℓ(k+1)]

E[X̃u
i,1(k)]

due to Lemma B.4 and Claim B.2.

Finally, we are now ready to bound the the probability qk.

Lemma B.9. For k ≤ MN − 1, we have

qk ≤
E[X̃u

i,1(0) · X̃u′
i,ℓ(0)]− E[X̃u

i,1(0)] · E[X̃u′
i,ℓ(0)]

E[X̃u
i,1(0)] +

1
4 ·
∑

p≤k
ε

p0+
p·ε

2·E[X̃u′
i,ℓ

(0)]

.

Proof. First, we observe that for the first MN − 1 iterations of Procedure 2, we resolve correlation
between X̃u

i,1 and X̃u′
i,ℓ therefore due to Claim B.2, at iteration k when we resolve correlation between

X̃u
i,1 and X̃u′

i,ℓ for some ℓ ∈ [N ] and u′ ∈ BigM, we have,

E[X̃u
i,1(k) · X̃u′

i,ℓ(k)]− E[X̃u
i,1(k)] · E[X̃u′

i,ℓ(k)] =

∏
p<k

(1− qp)

 · ε,

for ε = E[X̃u
i,1(0) · X̃u′

i,ℓ(0)] − E[X̃u
i,1(0)] · E[X̃u′

i,ℓ(0)]. For the sake of simplicity, we define p0 :=

E[X̃u
i,1(0)]. Therefore, we can bound,

qk ≤

(∏
p<k(1− qp)

)
· ε

E[Xu
i,1(k)]

=

(∏
p<k(1− qp)

)
· ε∏

p<k(1− qp) · p0 + 1
2 ·
∑

p≤k qp ·
(∏

k≥j>p

(
1− qj

2

))
=

ε

p0 +
1
2 ·

∑
p≤k qp·

(∏
k≥j>p

(
1−

qj
2

))
∏

p<k(1−qp)

≤ ε

p0 +
1
2 ·

∑
p≤k qp·(

∏
k≥j>p(1−qj))∏

p<k(1−qp)

Above, the first inequality holds due to Claim B.4, the first equality holds due to Claim B.7, the
second equality holds by simple re-arrangement and the last inequality follows because 1 − qj

2 ≥

1 − qj . We now focus on lower-bounding the term
∑

p≤k qp·(
∏

k≥j>p(1−qj))∏
p<k(1−qp)

. We now again expand

42



the the expression,

∑
p≤k qp ·

(∏
k≥j>p (1− qj)

)
∏

p<k(1− qp)
≥ 1

2
·

∑
p≤k

ε·(
∏

p<k(1−qj))∏
j<p(1−qp)·p0+ 1

2
·
∑

j≤p qj ·
(∏

p≥j′>j

(
1−

qj′
2

))(∏
p<k (1− qj)

)
=

1

2
·
∑
p≤k

ε∏
j<p(1− qp) · p0 + 1

2 ·
∑

j≤p qj ·
(∏

p≥j′>j

(
1− qj′

2

))
≥ 1

2
·
∑
p≤k

ε

p0 +
1
2 ·
∑

j≤p qj

≥ 1

2
·
∑
p≤k

ε

p0 +
p·ε
2·p0

.

Above, the first inequality holds because of Claim B.4, the second equality holds because (1− qj) <
1. The last inequality holds due to Claim B.8, i.e. qj ≤ q1 and due to Claim B.4 q1 ≤ ε

p0
. Combining

this with the earlier inequality, we obtain,

qk ≤ ε

p0 +
1
4 ·
∑

p≤k
ε

p0+
p·ε
2·p0

This completes the proof.

Next, we analyze the bound on qk obained in the previous lemma. First, wre observe that,

Claim B.10. For ε ∈ (0, 1), p0 ∈ (0, 1) and ε
p20

> 1, function h(ε, p0) = ε
p0+

1
4
·
∑

p≤k
ε

p0+
p·ε
2·p0

is

increasing in ε and decreasing in p0.

Proof. First we prove the function’s monotonicity in ε. Absolutely, let’s analyze the given function
and prove that it’s increasing with respect to ε. We let D(ε) = p0 +

1
4 ·
∑

p≤k
ε

p0+
p·ε
2·p0

. We need to

show that, D(ε)−ε·D′(ε)
[D(ε)]2

≥ 0 which is eqvivelenet to proving that D(ε) − ε ·D′(ε) > 0. We observe

that, D′(ε) = 1
4 ·
∑

p≤k
p0

[p0+
p·ε
2·p0

]2
. This implies that,

p0 +
1

4
·
∑
p≤k

ε

p0 +
p·ε
2·p0

− ε · 1
4
·
∑
p≤k

p0
[p0 +

p·ε
2·p0 ]

2
= p0 +

1

4

∑
p≤k

(
pε2

2p0(p0 +
pε
2p0

)2

)
> 0.

Next, we analyze its monotonicity property in p0.
Let’s analyze the function with respect to p0. We let, D(p0) = p0 +

1
4

∑
p≤k

ε
p0+

pε
2p0

. There-

fore, to complete the claim, we need to show that D′(p0) > 0. We observe that D′(p0) =

1− ε
4

∑
p≤k

1− pε

2p20(
p0+

pε
2p0

)2 . Since,
ε
p20

> 1 (due to positive correlation at the beginning of Procedure 2),

we get

D′(p0) > 1− ε

4

∑
p≤k

1− p
2(

p0 +
pε
2p0

)2 > 1.

Above the last inequality follows because k > 2.

Finally, due to Claim B.6, we get the following lemma.
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Lemma B.11. Let Procedure 2 resolve positive correlations for the first k∗ ≤ m · M2 · Nmany
iterations, then we have ∑

k≤k∗

qk ≤ O

(
m ·M2

log(M ·N)

)
≤ O

(m
M

)
.

Proof. First, we let the procedure run for each u ∈ BigM and resolve positive correlations for
all pairs Xu

i,1 with Xu′
i,ℓ for all u′i,ℓ′ ̸= ui,1 ∈ BigM[m·N ]. Since the correlation between the pair

of random variables goes down after each iteration, we can bound the total deviation
∑

k≤k∗ qk ≤
M ·
∑MN−1

k=1 qk. In other words, we need to bound the total deviation while resolving the correlation

between for all u′i,ℓ′ ̸= ui,1 ∈ BigM[m·N ] for the first considered element u ∈ BigM. We can bound,

MN−1∑
k=1

qk ≤
MN−1∑
k=1

ε

p0 +
1
4 ·
∑

p≤k
ε

p0+
p·ε
2·p0

≤
MN−1∑
k=1

m
N2(M−1)

1
MN + 1

4 ·
∑

p≤k

m
N2(M−1)
1

MN
+p· m

2N

≤
MN−1∑
k=1

m
N2(M−1)

1
MN + 1

2MN ·
∑

p≤k
1

p+1

≤ 2m

N
·
MN−1∑
k=1

1

1 + log k
≤ O

(
m ·M

log(MN)

)
.

Above, the first inequality holds due to Claim B.9. The second inequality holds due to Claim B.10
and p0 ≥ 1

M ·N and ε ≤ m
(M−1)·N . The third inequality holds because

∑
p≤k

1
p+1 ≥ 1

log k and the final

inequality holds because
∑MN

k=1
1

log k is the order of O(MN/ log(MN)). Since N ≥ Ω
(
2M

3
)
, we

conclude the lemma.

Next, we analyze the total probability of deviation from the original distribution while resolving
the negative correlations. This case is simpler because the correlation resolution requires to alter
the distribution with a small probability.

Lemma B.12. For any k ≥ 0, i ∈ [m], u ∈ BigM and ℓ ∈ [N ], we have E[X̃i,ℓ(k)] ≥ E[X̃i,ℓ(0)] at
the end of the k-th iteration of Procedure 2. In addition, at iteration k, for distinct i, j ∈ [m], u ∈
BigM and ℓ, ℓ′ ∈ [N ] if correlation between X̃u

i,ℓ(k) and X̃u
j,ℓ(k) being resolved then, qk ≤ M ·m

(M−1)3·N2 .

Proof. We first observe that E[X̃i,ℓ(k)] ≤ 1
2 for large enough N,M > 0 which follows inductively.

This implies that for any k > 0, we have E[X̃i,ℓ(k + 1)] = E[X̃i,ℓ(k)] if X̃i,ℓ(k) is not processed at
the iteration k of Procedure 1. Otherwise, we have E[X̃i,ℓ(k + 1)] ≥ (1− qk) · E[X̃i,ℓ(k)] + qij/2 ≥
E[X̃i,ℓ(k)]. This concludes the proof of the first part. Next, Lemma B.4 implies that,

qk ≤
E[X̃u

i,ℓ(k)] · E[X̃u
j,ℓ′(k)]− E[X̃u

i,ℓ(k) ·Xu
j,ℓ′(k)]

(1− E[Xu
i,ℓ(k)]− E[Xu

i,ℓ(k)])

≤
E[Xu

i,ℓ(0)] · E[Xu
j,ℓ′(0)]− E[Xu

i,ℓ(0) ·Xu
j,ℓ′(0)]

(1− E[Xu
i,ℓ(k)]− E[Xu

i,ℓ′(k)])

≤
m

(M−1)2·N2

1− pi(k)− pj(k)
≤ M ·m

(M − 1)3 ·N2
.
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Above, the first inequality follows from Claim B.4, the second inequality follows because of
Claim B.2.

B.5 Wrapping Things Up

Finally, we show that the resultant random variables at the end of the procedure are close to the
original random variables in terms of total variation distance and complete the proof of Theorem 5.9.

Proof of Theorem 5.9. Let X̃ := X̃u
i,ℓ : ∀ui,ℓ ∈ BigM[m·N ] be the random variables after applying

Procedures 1 and 2 on the set of random variables X := Xu
i,ℓ : ∀ui,ℓ ∈ BigM[m·N ]. Due to

Lemma B.1, we have that X̃u
i,ℓ : ∀ui,ℓ ∈ BigM[m·N ] are pairwise independent. Finally, we can

bound the total variation distance between X and X̃.
Let k1 and k2 be the number of iteration performed by Procedures 1 and 2, respectively. We

divide the iterations of Procedure 2 into two parts, during the first k̄2 many iterations, Procedure 2
resolves positive correlation between Xu

i,ℓ and Xu′
i,ℓ′ for u,u′ ∈ BigM, i ∈ [m] and during the last

k2 − k̄2 many iterations, it resolves negative correlation between Xu
i,ℓ, X

u
j,ℓ′ for u ∈ M, i, j ∈ [m]

and ℓ, ℓ′ ∈ [N ].

TVX,X̃ ≤
∑

i ̸=j∈[m]

qij +

k1∑
k=1

qk +

k̄2∑
k=k1+1

qk +

k2∑
k=k̄2+1

qk

≤ m2

(M − 1) ·N
+

m

M2
·M + |k2 − k̄2| ·

M ·m
(M − 1)3 ·N2

≤ 2m3

M
.

The first inequality follows because it bounds the total probability that either Procedure 1 or Pro-
cedure 2 alters the original distribution X. The second inequality follows because of Lemmas B.12
and B.11. The last inequality follows because (k2− k1) ≤ M ·N2 ·m2 combining with N = Ω(2M

2
)

and M = Ω(2m).
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