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Abstract

It is well-known that all Feynman integrals within a given family can be expressed as a finite
linear combination of master integrals. The master integrals naturally group into sectors.
Starting from two loops, there can exist sectors made up of more than one master integral.
In this paper we show that such sectors may have additional symmetries. First of all, self-
duality, which was first observed in Feynman integrals related to Calabi—Yau geometries,
often carries over to non-Calabi—Yau Feynman integrals. Secondly, we show that in addition
there can exist Galois symmetries relating integrals. In the simplest case of two master
integrals within a sector, whose definition involves a square root r, we may choose a basis
(I1,I,) such that I, is obtained from I; by the substitution » — —r. This pattern also persists in
sectors, which a priori are not related to any square root with dependence on the kinematic
variables. We show in several examples that in such cases a suitable redefinition of the
integrals introduces constant square roots like v/3. The new master integrals are then again
related by a Galois symmetry, for example the substitution v/3 — —+/3. To handle the case
where the argument of a square root would be a perfect square we introduce a limit Galois
symmetry. Both self-duality and Galois symmetries constrain the differential equation.
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1 Introduction

Integration-by-parts and differential equations are among the most popular tools to compute
Feynman integrals. Integration-by-parts allows us to express any integral from a family of Feyn-
man integrals as a linear combination of master integrals [1,2]. The set of master integrals is
finite [3]. The method of differential equations allows us to write down a differential equation
for the master integrals with respect to the kinematic variables [4-7]. In order to solve the differ-
ential equation one tries to find a transformation to an €-factorised form [§]]

dl = €Al (1)

where [ denotes the vector of master integrals, the symbol d is the differential with respect to all
kinematic variables, € denotes the dimensional regularisation parameter, and A is a square matrix
with dimensions equal to the number of master integrals. The entries of A are differential one-
forms, depending on the kinematic variables, but independent of the dimensional regularisation
parameter €. A differential equation in €-factorised form can be solved systematically order-by-
order in € in terms of iterated integrals [9].

In this paper we investigate the structure of the matrix A in more detail. In particular we
show that it is often possible to redefine the master integrals, such that the e-factorised form is
maintained, but additional symmetries can be realised. This is achieved by a transformation

J = Ul, (2)

where U is a GL(n,C)-matrix, independent of the dimensional regularisation parameter € and
the kinematic variables. The number of master integrals is denoted by n. Such transformations
preserve the e-factorised form, as required.

Master integrals may be grouped into sectors. If we order the master integrals such that the
first integral corresponds to the simplest and the last to the most complicated one, then the ma-
trix A has a lower block-triangular structure. The size of the blocks on the diagonal is given
by the number of master integrals in the corresponding sector. While at one loop, each sector
has just one master integral, starting from two loops there may be sectors with more than one
master integral. In this paper we are interested in sectors with more than one master integral. We
show that it is often possible to redefine the integrals such that the master integrals within one
sector exhibit a self-duality symmetry. Self-duality is the statement that the block on the diag-
onal is reflection-symmetric with respect to the anti-diagonal. This type of symmetry was first
observed in Feynman integrals related to Calabi—Yau geometries [[10,11]. Extending the analysis
of ref. [12], we show that self-duality often extends to non-Calabi—Yau Feynman integrals. In
addition there can exist Galois symmetries, such that master integrals within the same sector are
related by the action of a Galois group. In the simplest case such an action amounts to flipping
the sign of a specific square root r appearing in the integrals, i.e. r — —r. Galois symmetries
have been used in the past to group the letters of the symbol alphabet into even and odd letters,
see for example refs. [13H15]]. In this paper we show that Galois symmetries often extend from
symmetry properties of individual letters to relations between master integrals.



Both types of symmetries, self-duality and Galois symmetries, induce relations among the
entries of the differential equation matrix A. To give an example, consider a sector with two mas-
ter integrals /1, I, and assume that we may choose the two master integrals such that self-duality
and Galois symmetry are manifest. The block on the diagonal of the matrix A (corresponding to

the maximal cut of this sector)
ajl apn 3)
ay an

has then the self-duality symmetry

ayily = daj. (4)

The Galois symmetry relates the two master integrals such that I, = 6(I;), where G is an element
of the Galois group. This induces on the matrix A the relations

an = o(ann), an = o(an). &)
The combination of Galois symmetry and self-duality gives us therefore
apn = aj;, ay = 6(ann), an = o(an). (6)

We see that we only need to know two entries of the block, the other two entries follow from
symmetries.

Galois symmetries are expected if the definition of one master integral in the sector involves
a square root r. In the simplest case of two master integrals within one sector, whose definition
involves a square root r, we may choose a basis (I1,>) such that I, is obtained from /; by the
substitution r — —r. However, we can go further. We point out that this pattern may also appear
in sectors that a priori are not related to any square root with dependence on the kinematic
variables. We show that in these cases constant square roots such as v/3 can be introduced, such
that after a suitable redefinition the master integrals are related by the substitution v/3 — —+/3.

There is no reason to expect self-duality to extend to the full differential equation beyond a
single sector: If we order the master integrals by sectors and the sectors from the simplest to
the most complicated, self-duality would relate the most complicated sector to the simplest one,
which is obviously impossible. However, we show in several examples that Galois symmetry
does extend to the full matrix A. Consider a second sector consisting of two master integrals
I, 1, and let us assume that they have been chosen such that Iy = 6'(I3), where ¢’ is another
element of the Galois group not identical to the first one. Let us further assume that ¢’ acts
trivially on /; and I, and that G acts trivially on /3 and I. The matrix A is thus a (4 X 4)-matrix.
The lower-left non-diagonal block

(o) -
asl ag

has then the symmetries
a2 = 6(a31), au = o' (a31), an = o (c(a3z1)). (8)
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In this case we see that three entries out of four of the non-diagonal block may be obtained
from Galois symmetries. Our strategy is always to impose self-duality first, and in a second
step to realise Galois symmetries. Although we were able to make self-duality manifest in all
examples we checked, we have no proof that this is possible in general. While sectors with two
or more master integrals often satisfy in addition to self-duality a Galois symmetry, we are aware
of integrals where this is not the case. The most prominent examples are the massless planar
double-box and the equal-mass sunrise integral. In the case of the massless planar double-box
integral we still have a “limit Galois symmetry”. We will explain this concept in detail in the
main part of the paper. In the case of the equal-mass sunrise integral we do not expect Galois
symmetries, as Galois symmetries cannot relate quantities of different modular weight.

The transformation U, which realises self-duality and Galois symmetry is not necessarily
unique. We provide a simple example with two master integrals in one sector and two square
roots r1 and r; related to this sector. We may either choose a basis such that J, = 6(J;) (Where
o1 corresponds to r; — —rp) or a basis Jé = Gz(Ji) (where o7 corresponds to r, — —r3). In
a second example with three master integrals in one sector we show that there is even a one-
parameter family of possible transformations, which realise self-duality and Galois symmetry.

This paper is organised as follows: In the following section we review the concept of master
integrals, self-duality and the basics of Galois theory. In section 3] we show in several examples
that it is possible to realise self-duality and Galois symmetries. We first focus on examples, where
the differential one-forms are dlog-forms with algebraic arguments. We are in particular inter-
ested in the case, where square roots appear in the arguments of the dlog-forms. For our study it
is irrelevant, if the square roots can be rationalised simultaneously or not. We present examples
for both cases. In section 4] we comment on Feynman integrals, whose differential equations
involve differential one-forms beyond dlog-forms with algebraic arguments. This includes the
elliptic case. Finally, section [3contains our conclusions.

2 Set-up

2.1 Master integrals

We consider Feynman integrals, which depend on N kinematic variables x = (x,...,xy). We
view the kinematic variables as coordinates on the kinematic space X. Let I = (Iy,...,I,)T
be a vector of n master integrals. We assume that the master integrals satisfy an €-factorised
differential equation

dl (x,e) = eA(x)I(x,¢). 9)
with an integrable connection A:
dA =0 and ANA =0, (10)

In addition, we will always assume that when we restrict the kinematic variables to a sub-space,
where the geometry reduces to a curve of genus zero, the master integrals will be pur. The

I'This excludes for example the basis K from ref. [16].
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differential d is the differential in the kinematic variables x:

il d
d = ;dxjgj. (11)
J_

The condition dA = 0 states that the entries of the (n x n)-matrix A are closed one-forms. We
denote a basis of differential one-forms appearing in A by ®y,...,®y, and the C-vector space
they span by Q!(X). We have

dimQ!(X) = N (12)

If we assume that the master integrals are ordered such that /; is the simplest and /,, the most
complicated, then the matrix A has a lower block triangular structure induced by the sectors (or
topologies) of the family of Feynman integrals under consideration. We distinguish blocks on
the diagonal and blocks off the diagonal. A block on the diagonal corresponds to the maximal
cut of the corresponding sector. If a family of Feynman integrals has s sectors then the matrix A
is of the form

D, 0 ... 0
Ny Do
A = . : , (13)
: D, 1 0
Nsl PN “ee NS(S*l) Ds

with diagonal blocks D; and non-diagonal blocks »;;.

At one loop, every sector has just one master integral, but starting from two loops we may
have sectors with two or more master integrals. In this paper we are primarily interested in
sectors of the second type.

2.2 Self-duality

Let us consider an (n x n) diagonal block

(14)

Self-duality is the statement

dij = dpg1—j)(n+1-i)- (15)



It corresponds to a reflection symmetry with respect to the anti-diagonal, as indicated by the
colours in eq. (I4]).

Self-duality has been observed for the first time in the /-loop banana integrals of equal mass
[10L[11,117]. These integrals are related to Calabi—Yau geometries and the name derives from
self-dual properties of Calabi—Yau operators [18]. However, the symmetry stated in eq. (I3) is
more general and not necessarily tied to Calabi—Yau geometries [12].

Self-duality is a symmetry of the diagonal blocks. There is no reason to expect self-duality
to hold beyond the diagonal blocks if we keep the ordering: If we order the master integrals by
sectors, and the sectors from the simplest to the most complicated, self-duality would relate the
most complicated sector to the simplest one, which is obviously impossible.

2.3 Galois theory

Given a non-constant polynomial p(x) with coefficients from a field F, the roots of p(x) may not
lie in F. In this case one considers the splitting field L/F, which is the smallest field extension
that contains all the roots of p(x). The Galois group

G(L/F) = {ocecAut(l) | o|lp=id} (16)
is the subgroup of the automorphism group of L, which keeps F fixed.

A trivial example is given by the polynomial p(x) = x*> —3 € Q[x]. The roots of p(x) lie in
Q[v/3] and the Galois group is

G(Qv3/Q) = o, a7
generated by

c : QN3] —QNV3,
c(x@) — V3. (18)

In the application towards Feynman integrals we often encounter roots r of quadratic equations,
where the Galois group acts as r — —r. A typical example is the square root

ro= y/—s(4m?—ys). (19)

In the differential equation we will have differential one-forms that are even, like

o = din (i) (20)
and differential one-forms that are odd, like
1 2m*—s—r
O = -dhnh|——7-—]. 21
! 2 n <2m2 —s+ r) @D
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The group element G sending r to (—r) acts on these as
G (mwg) = Wy, c(w)) = —0. (22)

If two master integrals J; and J; are related by J, = 6(J;) with 62 =id it follows from

n n
dli =€) aijlj, dly =¢€) al; (23)
= =
that
o(a2) = azi, of(an) = an. (24)

If in addition the remaining master integrals are invariant under the action of G, i.e. 6(J;) = Ji
for k € {3,...,n} we further have

G(alk) = ay, for k € {3,...,}1}. (25)

More formally, we may view a system of Feynman integrals as a vector bundle. The base space
is parameterised by the kinematic variables x, and for each point in the base space we have a
vector space in the fibre. This vector space is spanned by the master integrals. Initially we may
take this vector space to be defined over the field Q(x,€), the field of rational functions with
rational coefficients in the kinematic variables x and the dimensional regularisation parameter €.
In a pre-canonical basis this is all what is needed: In the differential equation for this basis we
will only have rational functions in x and €. However, we are interested in an €-factorised basis
and this may require to enlarge the field, for example by adjoining a root r. In this case we are
led to a vector space over the field Q(x,€)[r]. Throughout this paper we will assume that any
element of the Galois group acts trivially on any pre-canonical master integral:

o(K) = K, (26)

where © is an element of the Galois group and K a pre-canonical master integral.

2.4 Combination of Galois symmetries and self-duality

Given a sector with two master integrals it is always possible to impose a Galois symmetry
(without requiring in addition self-duality): For two master integrals I = (I}, ;)7 satisfying the
e-factorised differential equation

dl = €Al A:(@1@), 27)
azr ax
one sets
Ji1 = L+rh,
J = L —rh, (28)
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where r is an algebraic extension of QQ, for example r = i. We define the Galois action by
6(r) = —r, and G acts trivially on all other expressions. Clearly we have

Jr = o). (29)

In the new basis J = (J1,J2)7 the differential equation reads

d] = €AJ (30)
with
A — < ai ap ) _1 ( 6}11+6}22+r:16212+r6221 6}11 —?zz—r:czlz-i-rczm ) 31)
azy a 2\ ann—ap+r aip—rdy dpp+dxn—r dpp—ray
The matrix A has the Galois symmetries
ap = o(ai1), a = 6(an). (32)
However, A is in general not self-dual since
aiy # o(an). (33)
Self-duality of A will require
ap+riday = 0. (34)

The possibility of finding a basis which makes self-duality and Galois symmetries manifest is
therefore a non-trivial property. As Galois symmetry alone is trivial, we are always interested in
the case where we might have Galois symmetries in addition to self-duality.

Let us summarise: For a sector with two master integrals it is often possible to find a basis
J = (J1,J2)T such that

d] = ¢€AJ, (35)

and A has the structure

. apn
A = ( -~ >, (36)

where entries with the same background colour are related by a symmetry. Self-duality relates
aip = an. (37)
Furthermore, there is a Z;-group with a generator ¢ such that
aip = o(an), a2 =06(aa), an = o(ann), axn = o(an). (38)

This is the Galois symmetry. We see that only two of the four entries of the (2 X 2)-matrix need
to be known, the other two follow from symmetries.
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Figure 1: The effect of various symmetries on a (3 x 3) diagonal block: Entries with the same
background colour are related by a symmetry. Left: Self-duality symmetry. Middle: The Galois
symmetry I3 = 6(1;), I, = (). Right: The combination of both.

It is worth discussing these concepts for sectors with more than two master integrals. Let
us consider a sector with three master integrals I = (I,l>,13)” and the e-factorised differential
equation

air aiz ais
dl = €A, A = a» ay ax |. (39)
as; asy asjz
Self-duality gives the three relations
az = ay;, a3 = ap, axm = aj. (40)
Let us assume that there exists a Galois symmetry, which relates /; and I3
L = o(h), (41)
and which acts trivially on /,:
L = o(h). (42)
The Galois symmetry alone leads to the relations
a31 = o(ai3), ax = o(a), a3 = o6(an), ay = o(axa), (43)

and to the invariance relation az; = 6(az2). Combining self-duality and Galois symmetry we
obtain the relations

a3 = ay, a3 =ap, ax = ay = 6(an), az = o(a3), (44)
and
ajr = o(an), axn = o(an). (45)

This is illustrated in fig. [l Combining self-duality and Galois symmetry, only four out of the
nine entries of the matrix A need to be known, the remaining ones follow from symmetry.



The Galois symmetries extend beyond the maximal cut. To discuss this point let us consider
a system consisting of two sectors with two master integrals each, satisfying an €-factorised
differential equation

aigp app 0 0
a1 an 0 0
dl = €Al, A = . (46)
aszy dszz dszz aszq
as1 a4 443 a44
If the master integrals have been chosen such that self-duality is manifest, we have

ayp = ayy and aqq = az;z. “47)

Let us further assume that there are Galois group elements ¢ and 6, which relate 1,1, and I3, 4,
respectively. In other words,

L =o(l}) and Iy = 6 (I). (48)
We then have
ar; = ©(apn), as3 = 0 (az). (49)
Two cases are relevant: Within the first case, G acts trivially on /3,1
6(K) =51 and o(ly) = L, (50)
and o acts trivially on 11,1,
o'(l}) =1 and o' () = b. (51)
In this case the entries of the lower-left non-diagonal block are related as
ap = o(a31), aq =0 (a31), an = o (c(a3)). (52)

We see that in this case we only need to know one entry of the non-diagonal block, the other
three follow from symmetry. In summary, we have in this case the following structure of the
matrix A

app O 0
A — |l 00 | (53)
a3y dasz [ as3z az4

asl a4 a43 | aa4

where entries with the same background colour are related by a symmetry.
The second relevant case is 6 = @', i.e. the group element relates I; to I, as well as 5 to 4.
We look again at the lower-left non-diagonal block. In this case we have

ap = o(az1), as = o(azn), (54)
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and two entries of the non-diagonal block may be obtained from Galois symmetries. The struc-
ture of the matrix A is then

ap! 0 O
a 0 0
A — 21
aszp [ a3z | a4
as aj3 | da4

(55)

where again entries with the same background colour are related by a symmetry.

The non-diagonal blocks need not be square matrices. In the case where we have one sector
with one master integral and a second sector with two master integrals together with a generator
o of the Galois group, the structure of the matrix A in a suitable basis is given by

ai; 0 O
A = a [axp ax; | . (56)
az; azy a4z

Self-duality relates aszz = ap», the Galois symmetry relates on the diagonal block a3y = o(a23).
On the (2 x 1)-non-diagonal block the Galois symmetry relates

a31 = of(ay). 57

The situation is similar if we have one sector with two master integrals and one sector with one
master integral (ordered from the simplest to the most complicated sector). The structure of the
matrix A in a suitable basis is

ap O
A = a| 0 . (58)
aszy dsp ass

Self-duality relates ax; = aj;, the Galois symmetry relates on the diagonal block ay; = 6(ays).
On the (1 x 2)-non-diagonal block the Galois symmetry relates

azy = G(Cl31>- (59)

2.5 Galois symmetries and rationalisations

Certain square roots can be rationalised [19,20] and one may consider the fate of Galois symme-
tries if one does so. We discuss this case with a simple example, involving the square root

r o= —v(4—v). (60)
Typical differential one-forms in this case are

o =dln(—v) o =din(4—v), 3 = -dln=—. (61)
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Let ¢ be the element of the Galois group, which sends » — —r. The first two differential one-
forms are even under o, the third one is odd:

G((Dl) = M, G((Dz) = My, 0(0)3) = —03. (62)

The root r is rationalised by

1—x)? 1 -2
Vv = —%, X = 5(2—\/—}”), ro= xx ) (63)
In the variable x we have
®; = 2dIn(l1—x)—dInx, @, = 2dIn(1+x)—dlnx, o3 = dlnx. (64)
The transformation 6(r) = —r translates to 6(x) = x~!. It is easily checked that ®; and @, are

invariant under x — x~ !, while @3 changes the sign under this transformationd. Thus we see that
the automorphism & of Q(v,€)[r|, which keeps Q(v,€) fixed and sends r — —r corresponds to
the automorphism x — x~! of Q(x,£). Note that in the latter case there is no Galois extension.

2.6 Parameterised Galois symmetries and limit Galois symmetries

In some cases the transformation that realises self-duality and Galois symmetries is not unique.
For example, it might occur that the transformation

J1 = Li+rh, r = \/7_»,
Jo» = 11 —rh, (65)

realises self-duality and Galois symmetry for any value A € Q that is not a perfect square. We
call this a parameterised Galois symmetry. An example will be given in section[3.6l We have to
exclude the case where A is a perfect square. If A is a perfect square, we have r € Q and there is
no field extension. Furthermore, there exists for » € (Q no field automorphism of () which sends
rto —r.

Nevertheless, it will be useful to introduce something which comes close to being a Galois
symmetry with respect to a square root of a perfect square, as there will be cases where there is
no (normal) Galois symmetry on top of self-duality. We introduce the concept of a limit Galois
symmetry as follows: We first divide the rational numbers into

Q = PSUNPS, (66)

where PS denotes the set of rational numbers that are perfects squares and NPS the set of rational
numbers that are not perfect squares. We consider sequences

(M) € NPS (67)

2The condition 6(r) = —r leads in x-space to the two possible transformations x — x~! and x — —x. However,
only the first one leaves ®; and ®; invariant.
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with
limA, = A € PS. (68)

n—oo

For each such sequence and each A, we consider the field extension Q(x,€)[v/A,] and redefine
the master integrals for example as

I = L+ h, 1Y =1 —/Ab. (69)
For any A,, € NPPS the master integrals J l(n) and Jén) are related by a Galois symmetry
i = e (s, (70)
where 6 sends /A, to —v/A,,. We further set
Ji o= 1limJ" = L +VAn,
n—soo
L= limAY = 1 —Van. (71)
n—soo

We say that J; and J; are related by a limit Galois symmetry, i.e. for any sequence (A,) of non-
perfect squares which converges to the perfect square A we have for any A, a Galois symmetry
in the usual sense.

Our most important example will be a sequence (A,) which converges to 1. We may take

A, = 1— (72)
DPn

where p, denotes the n-th prime number. Clearly, A, is not a perfect square and lim A, = 1. It
n—o0

will be convenient to use a short-hand notation for a limit Galois symmetry, mirroring the one
we use for a normal Galois symmetry. In the following we will for example simply write

Ji=1L+rhL, J=1I1—-rhL, r=+VI, (73)

where /1 is understood in the sense discussed above. In the combination of self-duality and a
limit Galois symmetry we will require self-duality only in the limit n — oo. In section we
will present an example where there is no (normal) Galois symmetry in addition to self-duality.
However, there is a limit Galois symmetry in addition to self-duality.

3 Examples with dlog-forms

In this section we show in several examples that it is often possible to realise self-duality and
Galois symmetries. For now we limit the discussion to Feynman integrals whose €-factorised
differential equation involves only dlog-forms with algebraic arguments. Typically we will have
square roots appearing in the arguments of the dlog-forms. For the study of symmetries it is
irrelevant whether the square roots can be rationalised simultaneously or not.

Examples of Feynman integrals with e-factorised differential equations beyond dlog-forms
will be discussed in section [l
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3.1 Drell-Yan
3.1.1 Set-up

As our main example, which we discuss at length, serves a diagram contributing to the mixed
QCD-electroweak corrections to the Drell-Yan process. This example involves three square
roots. It is known that the three square roots cannot be rationalised simultaneously [21]]. How-
ever, the result can be expressed in terms of multiple polylogarithms [22]. The example we
discuss is the minimal example with three non-simultaneously rationalisable square roots. This
section also serves to set-up our notation for all further examples.

We consider the integrals

2vEE (2 v—D 2 dea K 1
Iy vovavavsvevaveve = €15 (117) / H H pYe |’ (74)

. D
a=1 12 c=14*¢

where D denotes the number of space-time dimensions, € the dimensional regularisation param-
eter, Yr the Euler—Mascheroni constant and

9
v = Y, (75)
j=1
The inverse propagators are given by
Py :—k%, Pzz—k%-i-mz, P3:—(k1—k2)2,
Py=—(ka+p1)?, Ps=—(ki+p1)?, Ps = — (ko + p1 +p2)*,
Py =—(ki+p1+p2)° +m?, Py=—(ky—ps)°, Py =— (ki — pas)°. (76)

The external particles are assumed to be massless: p% = p% = p% = pﬁ = 0. The Mandelstam
variables s and ¢ are defined by

s=(pi+p)’, 1= (ptp) (77)

A sector is defined by the set of propagators with positive exponents. We define the sector id by
9 .

ID = Y2 lew)), (78)

J=1

with ®(x) = 1 for x > 0 and ®(x) = 0 for x < 0. We further define the dimension-shift operator
D, which lowers the dimension of space-time by two units through

D_IV1V2V3V4V5V6V7V8V9 (D) = IV1V2V3V4V5V6V7V8V9 (D - 2) . (79)

We consider the sector 215 with the propagators Py, P>, Pz, Ps, P;, Pg. The Feynman diagram for

14



Figure 2: The Feynman diagram for the sector 215. Black lines denote massless particles, red
lines denote particles with a mass m.

this sector is shown in fig.[2l The system has 16 master integrals. It is the minimal example with
non-simultaneously rationalisable square roots. A pre-canonical basis is given by

1111000000, 1101000100, 11(—1)1000100> 20010100105 1111000100, 011010010, 011000110, £(—1)11000110>

I111010100, 1111010010, {111000110, T1010101105 {1 (~1)1010110> 0110101105 L(—1)110101105 {111010110-
(80)

An overview of the master integrals is given in table[ll There are four sectors (sectors 69, 198,
213 and 214) with two master integrals. We may transform to a basis I = (Iy,...,11¢)", which
puts the differential equation into an e-factorised form at the expense of introducing three square
roots (see ref. [22]):

ri = 1/—s(4m?—ys),

o= (=8 (1) [m? (1 —m2) — s (1)),
= ) [ (0 2m2 s) () () @1

Such a basis is given by

2m2 _
Sector7: I} = € ED 1111000000,
2(’”2_5) -
Sector69: I, = ¢ T D™ 1101000100,

2
_ m _
I = 82 (D 11(71)1000100——‘112 D 1101000100)7
t
Sector 148: I, = 82—2 D™ Inoi010010,
u

2
r. (m°___ _
Sector 71: Is = 82; (F D™ Ii11000100 — D 1101000100) ,
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number of | block | sector | master integrals | master integrals | roots
propagators basis I basis J
3 1 7140 Ji
2 69 | I, Iz Jr,J3
3 148 | It J4
4 4 71 | Is J5 r
5 150 | I Js
6 198 | I7,1g J7,J8 r
5 7 87 | Iy Jo
8 151 | Ijp J1o
9 199 | I1; J11
10 213 | 112,113 J12,J13
11 214 ha, 15 J14,J15 r
6 12 215 | Lig Ji6 r3

Table 1: Overview of the set of master integrals. The first column denotes the number of prop-
agators, the second column labels consecutively the sectors, the third column gives the sector id
(defined in eq. (Z8)), the fourth column lists the master integrals in the basis 1, the fifth column
the corresponding ones in the basis J. The last column denotes the dependence on square roots.

t
Sector 150: I = 83'[7[0120100107
S
Sector 198: I; = 83"710120001107
10 1
Ig=r|-=—-)0,
8 1(8 s s) 7
3m2s
Sector 87: Iy = € F12110101007
t
Sector 151: Ijp= 84"711110100107
S
Sector 199: ;1= 84'[?[111000110,
4(s+1)
Sector 213: Ijp= € 2 T101010110,5
2
m-(s+t
li3= 83%1101010210,
Sector 214: 4= 83(1 —28)‘%1011010110,
)
Ii5= 83E1012010110,
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Sector 215:  I14= 84%1111010110- (82)

In this basis we have an e-factorised differential equation
dl = €Al (83)
We write the differential one-forms appearing in A as
®; = dlnl;. (84)

We call the ;s letters. In total there are 17 letterﬂ, which can be divided into rational letters and
non-rational letters. The rational letters are

m - _
llz‘u—z, lzz‘u—zs, 13_'[1_;,
o = 4m s P
p ur 2
St Am?*(—t —m?) + st 4m*1* — s (m* —1)
bh=—p ly = , o= : (85)
u ut Iy
The non-rational letters are
lw:w Iy = (2m* —s) (=1) =2
2m? —s+ry’ 2m2—s5)(—1) 11’
ha = (=) (=) =12 I3 = (=s) [(4m® =s) (=1) =2m*] — i1
(=) (=) 472’ (=) [(GnZ—5) (—t)—2m¥] + iy
Iy = (—=s) (m*—1t) —r3 s — (—=s) (m*+1) —r3
(—s)(m2—1)+ry’ (—s) (M2 +1) +r3°
e = (—s) (st —m2s —4m2t) —rn o st (st s — Amt —2m4) . 56
(—S) (St —m2s — 4m2t) +rir3 ’ st (St —m2s — 4Am2t — 2m4) ¥ rors .

In the basis 7 the diagonal blocks D; and the non-diagonal blocks N; j do not have any particular
structure. We give three examples: The diagonal block for sector 198 is given by

_ 1
Do = ( e 20w ) 87)
5010 —0] — ®s
the diagonal block for sector 214 is given by
_ Ll — 1 1
Dy = 3m1+2w% 703 — 507 1 203131 7 (88)
—5011 0)1—§(D3+§(D7—20)3
and the non-diagonal block N(H)(, is given by
1 1 1
Y —703+ 507 —500
N, = 2 2 2 . 89
(11)6 ( o) o ) (89)

3Setting for example u = m reduces the number of letters by one. In this case we have dInl; = 0.
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3.1.2 A refined basis and the Galois group

For the Drell-Yan example we may achieve the symmetries of eq. (37), eq. (38), eq. (32)) and
eq. (54) for all sectors by a change to a new basis J = (J1,...,Ji6)" defined by

Sector 69: Hh=Db+ \/513, Ji=Dh— \/513,

Sector 198: J7 :17+§\/§18, Jg :17—§ﬂ18,

Sector 87: Jo =1y — é (Lh+1),

Sector 199: J1i :In—f—%h,

Sector 213:  Jia =3I — (1 n f3) Ls,  Ji3=—3a— (1 . f3) Is,
Sector 214: Jia = 2L+ %\/5115, Jis =214 — %\/5115, (90)

and J; = I for all other master integrals. Apart from the three square roots ry,r;,r3 we have two
new (trivial) square roots

3= V3, 53 =iV3. O1)
The square roots s3 and s_3 do not depend on the kinematic variables. The Galois group is
G = ZzXZzXZzXZzXZQ, (92)

with generators p1, p2,P3,03,0-3. We adopt the convention that we label square roots, which de-
pend on kinematic variables by r;, and square roots, which do not depend on kinematic variables
by s;. The corresponding generators of the Galois group are denoted by p; and G;, respectively.
A generator p; acts on r; as

pi(ri) = —ri, (93)
and trivially on all other square roots
pi(rj) =r; fori#j and pi(s) = s (94)
The action of ©; is analogous:
Gi(si) = —si 95)

and trivially on all other square roots. In this new basis we have again an e-factorised differential
equation

d] = €AJ. (96)

18



The individual blocks are now symmetric, for example the diagonal block for sector 198 is now
given by

De — ( —2?1+%?32—%?\J/5§ —601+%032+1%035+1#6010 ) , 97)
—O] + 70 + 5705 — =501 =201 + 70 — 505
We have
af = pi(a)) = o (@) = pi(d) = oa () = 3.
£ = i (a) = o (a). o5
since
pir(wi) = —opo. (99)

For the diagonal block of sector 214 we find

Dy — — 1 + 0 — 303+ 507 — 0 —2031+602—0)7+608—§6011 (100)
20 + 0y — 7+ g+ P01 —0p + 0 — Sy + Loy — o

We have (with p2<0)11) =—-01)
11 11 11 11 11 11
d%l )= P2 (dgl )> = 63 (dgl )> = p2 (déz )> = 03 (déz )> = éz g
) = pa () = o3 ("), (101)
For the non-diagonal block Ny we find

Nane = (102)

1 1 iv3 3 ] 1 1 iv3 3 ]

_§m3+_m7+%mlo+§wll+iml3 _§m3+§m7_%mlo+§wl _L(DB

1 1 iv3 3 ] 1 1 iv3 3 ] '
_§m3+§m7+%mlo_%wll_%ml3 _§m3+§m7_%mlo_%wll+%ml3

Here we have

=05 (nl{"), (103)

Note that

i = =8535-3 (104)



Sector 69 198 213 214
Galois symmetries | 63 p;,6-3 O3 P2,03

Table 2: Overview of the Galois symmetries of the sectors with more than one master integral.

and therefore 6_3(i) = —i. The Galois symmetries associated with the four sectors with two
master integrals each are summarised in table 2l We have

J3 = o3(h),

Js = pi1(f7) = 0-3(J7),

Jiz = 063(J12),

Jis = p2(J1a) = 03(Jua). (105)

Note that for the sectors 198 and 214 there is more than one element from the Galois group that
relates the two master integrals in this sector. Furthermore, note that the occurrence of a square
root in a particular sector does not imply that this sector must have master integrals related by
a Galois symmetry. Counterexamples are given by sector 71, where the definition of the master
integral J5 involves the square root r; and by sector 215, where the definition of the master
integral Ji4 involves the square root r3. Both sectors have only one master integral.

In summary, the matrix A has the structure (for a compact notation we use hexadecimal
indices)

A= (106)
ai; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0O 0 O 0 0O 0 O 0 0 0 0 0 0
0 - o 0 0 0 0O 0 O 0O 0O 0 0 0 0
0 0 0 au O 0 0 0 0 0 0 0 0 0 0 0
as; asp, a3 0 ass O 0 0O 0 O 0 0 0 0 0 0
ael 0 0 deq 0 aes 0 0 0 0 0 0 0 0 0 0

0 0 0O 0 O ag 0 0 0 0 0 0 0 0
. 0 0 0 0 0 ag; 0 0 0 0 0 0 0 0
0 0 0 0 as O 0 0 ag O 0 0 0 0 0 0
0 0 0 0 0 ase O 0 0 amm O 0 0 0 0 0
api 0 aps 0 0 0 agp 0 0 0 0 0
ac; O 0 0 0 0 0 0 0 0 0
api 0 0 0 0O 0 O 0 0 0 0
ag1 0 0 a4 0 are A4dAg7 Agg 0 0 0 0
ari 0 0 ara 0 are ar7 dAarg 0 0 0 0
ao [ 0 05 aos avr as aw aoa aos ano

Entries with the same background colour are related by a symmetry.
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Figure 3: The Feynman diagram for the sector 69. Black lines denote massless particles, red
lines denote particles with a mass m.

3.1.3 The simplest example

One of the simplest examples is given by the sector 69 of the previous family of Feynman inte-
grals. It is worth discussing this example explicitly, as there is no square root with a dependence
on the kinematic variables associated to it. This is the simplest example where the non-obvious
square root v/3 appears. The corresponding Feynman diagram is shown in fig. 3l This sector
has no sub-sectors and forms a system with two master integrals, which we may takes as (,13),
with I; and I5 defined in eq. (82). The differential equation for these master integrals reads

14) A (D
d<13) - £D2<I3), (107)

b — ( lor+ 3w, — 4oy —iml-i—%ooz )
- 1 1 :
201 =702 —201 7™

with
(108)

The transformation from (I, I3) to (J2,J3) given in eq. (90) converts the differential equation to

Jr _ S
o(4) = (%) i

with
—%0)1—1—%0)2—2(,04 (1+§> (,01—|—<1—§) W) —2my4
D, = V3 V3 1 1 (110)
(1—7) 0)1+(1+T> Wy — 204 —50314-50)2—20)4
The self-duality requirement
2 2
d? = 4% (111)

will introduce the (non-obvious) square root s3 = V3.
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Figure 4: An example of a Feynman diagram relevant to electroweak corrections to electron-
nucleon scattering. Black lines denote massless particles, red lines denote particles with a mass
mg, green lines denote particles with a mass my.

3.2 Electron-nucleon scattering

A second interesting example is the family of Feynman diagrams shown in fig. 4] contributing
to the electroweak corrections to electron-nucleon scattering. This example has one sector with
two master integrals and two square roots. The inverse propagators are now given by

P = —ki, Py = —(kj —p1)* +m3, Py = —(ky — p1a)* +m3,
Py=—(k — p123)*, Ps = —k3, Ps=— (ki +ky—p123)*,
Pr=—(ki +ka+p12)*, Py =— (ki +ky—p1)?, Py=—(k; +k)?, (112)

and the external momenta satisfy
pi=pi=0, p3=p;=my (113)

The Mandelstam variables s and 7 are defined as in eq. (77). In eq. (1I12) we used the short-
hand notation p12 = p1 + p2 and p123 = p12 + p3. A basis of master integrals, which puts the
differential equation into an e-factorised form was given in ref. [23]] and reads

2
m t
Z -
>— | D" Io10011000,
u

b= €D Iyjo(_1)11000;
2
Sector 52: = g(1+4¢) (_12\7) D™ 1001011000,
u

Sector 50: I1= g2 (

3 My —s
Sector 53: L= —4e 7 1101012000,

-
Sector 54: Is= € (;12) 1611012000,

r _
Ie= € (E) D™ Io11(-1)11000;

2 2
my —S mZ—t J
5 5 111012000,
u u

Sector 55: = ¢



Sector 50 54 55
Galois symmetries | 63 p3,0-3 03

Table 3: Overview of the Galois symmetries in the basis J of the sectors with more than one
master integral for the example shown in fig. @4l

2
my — S
Iy= 83( ILZ )1111(1)12000- (114)

There are three sectors with two master integrals (sectors 50, 54 and 55). Sector 50 in this
example is an integral we encountered previously, it is the integral shown in fig. 3l Sector 54
introduces two square roots r; and r3, which are given by

no= om0, = md (Amd ). (115)

The occurrence of two square roots within one sector makes this example interesting. Changing
the basis of master integrals to

Sector 50: Ji =1 +V3h, J =1 —\/3b,

Sector 52: J3 =1,

Sector 53: Ja =1,

Sector 54: Js =I5+ é\/§16, Jo=15— é\/§16,

Sector 55: J7 =1 +3l, Jg =1 —\/3Ig, (116)

and J; = I; for all other master integrals will realise self-duality and the Galois symmetries. In
eq. (L16) we introduced again two square roots

s3 = V3, s_3=iV3 (117)

with no dependence on the kinematic variables. The Galois symmetries are summarised in ta-
ble[3l We have

J2 = O3 (Jl),
Jo = p3(Js) = 0-3(Js),
Js = O3 (J7) . (1 18)

In the basis J we have an e-factorised differential equation

d] = €AJ (119)
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Sector

50

54

55

Galois symmetries

03

P1,0-3

O3

Table 4: Overview of the Galois symmetries in the basis J' of the sectors with more than one

master integral for the example shown in fig. 4l

where A has the structure

Entries with the same background colour are related by a symmetry.

(120)

The basis of master integrals that maximises the symmetries of the matrix A is not necessarily
unique. To see this, let us discuss the roles of the roots 7; and r3 in this example. They appear in
the same sector (sector 54 with master integrals J5 and Jg). We have chosen a basis such that

p3(Js) =

Acting with p; on J5 gives us

p1(Js) =

Setting

—J.

Ji = Is—2i\V3s,
Jy = Ig+2iV3Is

and J ,’c = J;, for all other integrals will reverse the roles of r; and r3. We now have

p1 () =J5,  p3(Jh) = —Jp.

In the basis J’ we have again an e-factorised differential equation

dj’ =

eA'] .

(121)

(122)

(123)

(124)

(125)

A’ has the same structure as the one shown in eq. (I120). The Galois symmetries in the basis J’

are summarised in table [4l
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Figure 5: An example of a Feynman diagram contributing to the Higgs decay H — bb. Thin
black lines denote massless particles, a thick black line denotes a particle with a mass my, green
lines denote particles with a mass m;.

3.3 An example with three master integrals within one sector

As an example with a sector with three master integrals we discuss a two-loop integral contribut-
ing to the Higgs decay H — bb, where the b-quarks are assumed to be massless. The diagram
is shown in fig.[3l This family has in total five master integrals, grouped into three sectors. The
first two sectors have just one master integral each. The first sector (with one master integral) is
given by a product of two one-loop tadpole integrals, the second sector (again with one master
integral) is given by the product of a one-loop two-point function with a one-loop tadpole inte-
gral. The third sector has three master integrals. We follow the notation of ref. [24]. The family
of Feynman integrals has seven propagators

Py = —ki +my, Po=—(ki—pi—p2)+m?,  Py=—(ki+k)?,
Po=—(kitka—p)*,  Ps=—k3+miy, Py =—(ko+p2)* +m?,
Py =—(ki—p1)* +m. (126)

We set s = (p1 + p2)?. There is one square root
rn = —s (4mt2 — s). (127)

A basis of master integrals, which puts the differential equation in €-factorised form is given byH

L = €D Looooo,

L = %82‘% D™ 1100010,

L = 83/% 11120010,

Iy = 83/% Ni110020,

5 = 82% [(1—2¢) Li1oo1o +€ I1110020] - (128)

“In ref. [24]] these master integrals are denoted J, J3, J17, Ji1g and Jig.
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The change of basis J; = I1, J, = I, and

V3
J3 = 13-“4-#-%15,
AVAY) 2iv/6
3 3
iv3
Js = 13+14—%15, (129)
introduces two constant square roots
s.3 = iV3, s_¢ = iV6, (130)

and realises self-duality and the Galois symmetry. The differential equation reads

O o0 o0 o0 o0
ay ax»y 0O 0 0

dl = €AJ, A = az1 O as4  ass . (131)
0 a4 as
as] 0

Self-duality corresponds to the relations
ass = asz, d45 = a4, As4 = 443 (132)
The Galois symmetry J3 = p;(J2) = 6_3(J2) gives in addition the relations

a3 = p1(azs) = 6-3(azs),

as3 = pi1(azs) = 6-3(ass),
as; = pi(az) = o6_3(az1). (133)
It is worth noting that
1
V2 = —35-356, (134)
and therefore
6 1 (\fz) — V2 and 6.3 (NE) NG (135)

The latter relation states that G_3 acts on s_3, but not on s_g. If we set u = my;, the entries of A’
are linear combinations of
_ds ds ds 1 2m? —s—r

m = R 0 = —s, 03 = = —dln .
s s —4m? —s(4mt2—s) 2 2m? — s+

(136)
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Figure 6: An example of a Feynman diagram contributing to the three-loop Higgs boson self-
energy. Black lines denote massless particles, red lines denote particles with a mass my, green
lines denote particles with a mass m;.

The differential one-form ®3 is odd under py:
pr(w;) = —ws. (137)

The entries a34 and aq3 are given by
iv6 iv6
azs = —7031 + \/5033, ass = ——031 \/7033, (138)

and with eq. (I33)) and eq.(I37) one directly verifies the relation a4z = p(asz4) = 6_3(az4). The
symmetries of the diagonal block corresponding to sector 39 (the (3 x 3)-block formed by the
master integrals J3, J4 and Js) follow the pattern of symmetries shown in fig. [IL

3.4 An example with four master integrals within one sector

As an advanced example we discuss a three-loop integral contributing to the Higgs boson self-
energy. The diagram is shown in fig.[6l This family has a single sector with four master integrals.
We follow the notation of ref. [25]. We consider the integrals

~3p 3 dPk, 21
Ly vyv3vavsvevivsve — JNEE (‘UZ)V 3 /(H > ) <H PW)’ (139)

. D
a=1 12 c=1

where the inverse propagators are given by

= —ki +mj, Py = —(k; — p)* +m?, Py = — (ki +k)?,
P4:—k%+mt, Ps = —(ka+k3)* +miy, Ps=—(ky+p)* +m?,
Py = —k3, Ps=—(ks—p)*, Py = — (ki —k3)* +m?. (140)

We are interested in sector 86 (with propagators 2,3,5,7). A basis of master integrals that puts
the differential equation into an €-factorised form is given by

3712 -
I = ¢ L?D Iv11010100,
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i 2 2
_ m; —m _
L = ¢ |D Tor1(=1)10100 — g——f—lzg——ﬂiz-l) 1011010100] ,
L = €D Iyoi-1)100;
3 [ P’
Iy = ¢ D10110101(1)o+l?D1011010100}- (141)

In this example we have the square root of the Killen function
rn = \/A(ptmg, m?). (142)
We recall that the Killen function is defined by
Mx,y,z) = P +yE 42— 2xy—2yz—2zx. (143)

The change of basis

iv2
Ji = Tll + DL+ 13+ 14,

b = %(i—l—\/g)b-l-%(i—\/g)h—iu,
5 = %(i—\@)lz-l-%(i-l—\/g)h—iu,

V2
Iy = —%;h+b+k+u, (144)

introduces three additional square roots
s3= V3, s.2=iV2, s =i (145)
From the definition of the basis J it follows that

Jo = p2(i) = 02(N),
J3 = 03 (Jz) . (146)
With the choice of the master integrals as in eq. (I44)) the square root s_; = i leads to the relation

J3 = —6_1(J2). However, it is sufficient to focus on the Galois symmetries in eq. (I46). In the
basis J, the differential equation is again in an e-factorised form

d] = €AJ, (147)

and is structured as follows

B oo o lay
a a a a

A 21 22 23 24 ' (148)
aszp das [d3z | dz4

ag ax as3 [
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Figure 7: The Feynman diagram for the massless planar double-box integral.

We have the self-duality relations

asq = apy, a3 = axp, a4z = dp, a4 = a3, a4 = asz;, a4z = az1. (149)

In addition we have the Galois symmetries

a3 = 03(an), a3z = o3(a21), as = p2(an) = c_2(a2). (150)

We see that self-duality and Galois symmetries reduce the number of entries of A, which need
to be known, to five (for example a1, ax, a4, a3 and ap»), the remaining ones follow from
symmetry.

3.5 The massless double-box integral

While we have seen that in sectors with more than one master integral we may have in addition
to self-duality a Galois symmetry, this is not guaranteed. To illustrate this point, we discuss
one of the simplest examples, the massless planar double-box integral [26] depicted in fig [7]
We show that in this case we have a limit Galois symmetry as discussed in section This
example has eight master integrals, grouped into seven sectors. The first six sectors have one
master integral each, the top sector consists of two master integrals. An g-factorised form has
been given in [8,27]. We follow the notation of ref. [28]. The inverse propagators are given by

PIZ_(kl_p1>27 P2:_(k1_p1_p2)27 P3:_k27
Py=— (ki +k)?, Ps=—(ka+pi+p2)*, Ps=—k3,
Pr=—(ko+pi+p+p3)’, P=—(ki—pi—p3)°, Po=—(ko+pi+p3). (I51)

We denote the relevant kinematic variable by x = s/¢, with s and ¢ being the usual Mandelstam
variables as defined in eq. (7). There are two differential one-forms,

0o = dln(x) and ®; = dln(x+1). (152)
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Starting from the pre-canonical basis
K= (153)
T
(T001110000 71001001005 Z0110110005 1100111000, 1111100100, 7101110100, T111111100, 1111111 (~1)0)

we obtain an e-factorised basis through

I = U'UK, (154)
where U is given in eq. (6.232) of ref. [28] and U’ is given by
1 0 0 00 0O0O0
O 1 0 00 0O0O
O 0O 1 00 0O0O
;o O 0 O 10 00O
=1 0 0 0o 11 000 (155)
O -1 0 00 100
2 -3 -1 1 0 -2 10
-2 2 0 -20 401

The constant matrix U’ maximises zeros in the last two rows. In the basis I we have a differential
equation in e-factorised form. It is easily checked that it is impossible to have self-duality and
a Galois symmetry at the same time. There are no square roots which depend on the kinematic
variable x. We may make self-duality manifest through a GL(2,C)-transformation in the top
sector. In this case we find that the required transformation is actually a GL(2, Q)-transformation
and does not introduce any square roots either. Hence, there is no Galois symmetry (in the usual
sense) on top of self-duality. However, there is a limit Galois symmetry. The change of basis

I = 17+(1+%1)18, Jg = 17+(1—%1)18 (156)
with s; = v/1 makes self-duality manifest. In addition we have a limit Galois symmetry
Js = o1(J7). (157)

In practical terms we set s; = 1 in the end and the limit Galois symmetry is simply the substitution
s1 — —s1. In the basis J we have the e-factorised differential equation

d] = €AJ (158)
with
ai; O 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 a3 O 0 0 0 0
_ 0 0 0O age O 0 0 0
A = 0 asn 0 as4  dss 0 0 0 ’ (159)
del d4e2 0 0 0 age 0 0
0 ap az 0 a5 az arg
O ‘agp agz 0 ags age agy
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Figure 8: The Feynman diagram for the planar massless pentabox integral.

where entries with the same background colour are related by self-duality or a limit Galois sym-
metry. In detail we have

ar; = agg = —2wp+ %601,
ars = —2(1+s1) 0o+ %col, ag7 = —2(1—s1) 9+ %o;)l. (160)
The entries a;7g and agy are related by
ag7 = Op(arg). (161)
The entries of the non-diagonal blocks are given by
app = agy = —4wg, a3 =ag3 =20, a5 =ags = —201, aje=ags = —4m. (162)

3.6 The planar pentabox integral

As our most involved example we discuss the planar massless pentabox integral shown in fig.
This is an example with 61 master integrals. An e-factorised form has been given in ref. [29].
The motivation for this example is as follows: Up to now all examples where we had Galois
symmetries on top of self-duality involved Feynman integrals with at least one massive internal
propagator. On the other hand, the massless double-box integral discussed in section had
only a limit Galois symmetry on top of self-duality. The planar massless pentabox integral is a
Feynman integral that has in almost all sectors (normal) Galois symmetries in addition to self-
duality with the exception of two sectors, where we find limit Galois symmetries in addition
self-duality. The second aspect which makes this example interesting is the fact that in two
sectors we find one-parameter families of Galois symmetries.
There is one kinematic square root

. 2
r = \/K, A = (418#Vpcp’fp\2’p§pff) . (163)
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The alphabet consists of 26 letters in the planar case. 21 letters are even with respect to r; — —ry,
five letters are odd. The 61 master integrals group into 46 sectors. 34 sectors have one master
integral, 9 sectors have two master integrals and 3 sectors have three master integrals. We find
that it is possible to redefine the master integrals such that self-duality is manifest in all sectors.
Furthermore it is possible to choose the master integrals such that we have Galois symmetries in
all sectors except two. In these two sectors we do have limit Galois symmetries. The two sectors
are the ones corresponding to the two double-box topologies with one external massive leg.

We denote by 7 = (I1,...,I¢;)" the basis of master integrals as given in ref. [29]. The sym-
metries are realised by the change of basis

Jp =D+ glm Joz =Ipn — ?123,

Jog = De + ?127, Jo1 = Ihe — ?127,

J31 =051+ ?132, J3o =B — ?132,

J31 =D+ Zi\@k% J3g =38 — 2i;/§137,

Jao = Iy + ?141, Ja1 = Iy — ?141,

Jag = Iyg + ?145, Jos = I4g — ?145,

Jae = ls6 + %147, Ja7 = Iy — ?147,

Jag = Isg + S kl)lso +2v/MIs1, Js1 = lao + G _2M>150 —2v/Msy,

iV2(3+M)

1
Js2 =153+§ (1451)1s2,

1
J54 = Iss +§ (1451)Is4,

Js0 = i\/§149+ ) Isp,
1
Js3 =Is3+ 3 (1—1s1)1s2,

1
Js5 = 155+§ (1 —s1)Isq,

3—A 3—A
Js6 = Is6 + ( 5 2)157 +4v/ Aolsg, Jsg =I5+ ( 5 2)157 — 4\ Malsg,
. iv2(3+A
Js7 = iV2Is6+ ykﬁ
W2, V2 W2, V2
Js9 =160 + ——150 + ——Ie1, Jo1 = 1l6o — ——159 — ——Ie1,
2 2 2 2
Joo = 5159 + 31 . (164)
and J; = I for all other master integrals. Here we introduced the square roots
st = V1, s =V2 s3=V3 s53=iV3 s, = VA, s, =V (165)



Sector Galois symmetries
J2,J23 03
J26,J27 G3
J31,J32 G3
J37,J38 P1,0-3
Jao,J41 P1,0-3
Jaa,J45 P1,0-3
Jag,Ja7 P1,0-3
Ja9,J50,J51 P1,0n,
Js52,Js3 o
Js4,Jss o
Js6,J57,J58 P1,0%,
J59,J60,J61 G

Table 5: Overview of the Galois symmetries of the sectors with more than one master integral.

The Galois symmetries associated with the sectors consisting of two or three master integrals are
summarised in table 5l The sectors (Jsp,Js53) and (Js4,J55) have a limit Galois symmetry. Of
particular interest are also the sectors (Ja9,Js0,J51) and (Js6,J57,J58 ), where we have a parame-
terised Galois symmetry: For any value A; € Q (with i = 1,2) which is not a perfect square we
have self-duality and a Galois symmetry.

We further remark that it is a matter of convention whether p; is considered to be a Galois
symmetry of the top sector (Js9,J60,J61). This is a sector with three master integrals and we
required in this paper that any Galois symmetry acts trivially on the middle (second) master
integral (see eq. (42)). In our example p; acts on Jg as

p1(Jeo) = —Jeo- (166)

If one takes this additional minus sign into account one may view pp also as a Galois symmetry
of the top sector.

3.7 Further examples

In addition we investigated several families of Feynman integrals with about O(30) master in-
tegrals each. First, we considered the full set of the two-loop mixed electroweak-QCD master
integrals for the Drell-Yan process as discussed in refs. [22,/30,31]. This family consists of 36
master integrals. The top-level diagrams are shown in fig. Ol This family contains the example
discussed in section[3.1las a sub-system. In addition, it has a sector with four master integrals.

Secondly, we investigated the family of the planar double-box integrals with one internal
mass. Massive propagators are indicated by red lines in the left diagram of figure[10l The system
consists of 29 master integrals. This integral was first analytically computed in ref. [32] via an
e-factorised differential equation.
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Figure 9: The top-level diagrams for the two-loop mixed electroweak-QCD master integrals for
the Drell-Yan process. Black lines denote massless particles, red lines denote particles with a
mass m.

Figure 10: Two examples of planar double-box Feynman integrals with internal masses. Black
lines denote massless particles, red lines denote particles with a mass m.
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Figure 11: The Feynman diagram of the equal-mass sunrise integral (left) and the unequal-mass
sunrise integral (right). Coloured lines denote massive particles and different colours correspond
to different masses.

Thirdly, we studied a further planar double-box integral with one internal mass. The massive
propagators are indicated by red lines in the right diagram of figure This family differs from
the previous one by the mass assignments for the internal propagators, and consists of 32 master
integrals. The first analytic computation was presented in ref. [33]], again via an e-factorised
differential equation.

These examples have been chosen as they provide sectors with up to four master integrals
and several square roots. In all cases we were able to realise self-duality and Galois symmetries.

4 Beyond dlog-forms

It is well-known that there exist Feynman integrals whose differential equations involve differ-
ential one-forms beyond dlog-forms with algebraic arguments. A typical example are elliptic
Feynman integrals, and more generally, Calabi—Yau Feynman integrals. In this section we dis-
cuss Galois symmetries for elliptic Feynman integrals. In the elliptic case there is an additional
integer number, called the modular weight k. The known e-factorised differential equations in the
elliptic case have the property that each entry of the differential equation matrix A has a unique
modular weight k. A Galois symmetry permutes roots of a polynomial equation, it does not
change the modular weight. Hence, Galois symmetries cannot relate entries of different modular
weight. For this reason, there is no Galois symmetry in the simplest elliptic Feynman integral,
the equal-mass two-loop sunrise integral, shown in fig [[1l However, there can be Galois sym-
metries relating entries of the same modular weight. As an example of a Galois symmetry in the
elliptic case we discuss the unequal-mass sunrise integral, also shown in fig. [I1] and a two-loop
non-planar three-point function shown in fig.

4.1 The equal-mass sunrise integral

The family of the equal-mass two-loop sunrise integral consists of two sectors: one sector with
one master integral corresponding to the product of two one-loop tadpole integrals and a second
sector with two master integrals corresponding to the sunrise topology. The differential equation
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can be brought into an e-factorised form and reads [34]]

0 0 O
dl = €Al, A= 0 @ o |. (167)
W3 W4 O

The sunrise integral depends on one kinematic variable, which we may take to be the modular
parameter T. In this variable we have

oy = fi(t) (2mi)dr, (168)

where fi(7) is a modular form of modular weight k. The matrix A in eq. (I67) clearly has the
self-duality symmetry, which is the statement that

ay = az; = . (169)

However, the modular form fy(T) appearing in a3 = @y is of modular weight 0, while the modu-
lar form f4(t) appearing in az; = ®4 is of modular weight 4. There cannot be a Galois symmetry

relating fo(T) to fa(t).

4.2 The unequal-mass sunrise integral

The situation is different for the unequal-mass sunrise integral. This is a system with seven
master integrals. There are three sectors with one master integral each, corresponding to products
of two one-loop tadpole integrals. In addition, there exists a sector with four master integrals
corresponding to the sunrise topology. In the latter sector we may choose the master integrals
such that two of them reduce to the master integrals of the equal-mass case in the equal-mass
limit. As in the equal-mass case there is no Galois symmetry relating these two. The other two
master integrals can be chosen such that they vanish in the equal-mass limit. More importantly,
the entries in the differential equation related to these master integrals have the same modular
weights. A redefinition of these will realise a Galois symmetry. In the following we will follow
the notation of ref. [35]. We have an e-factorised differential equation

d] = €AJ, (170)

with a (7 x 7)-matrix A. The master integrals J are defined in eq. (78) of ref. [35]. The modular
weights of the non-zero entries of A are

2 - - - - _ _
- 2 _ - — _
- - 2 - - - _
- - =2 1 10 (171)
2 2 2 3 2 2 1
2 2 2 3 2 2 1
3 3 3 4 3 3 2
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and we see that corresponding entries related to J5 and Jg have the same modular weights. Chang-
ing to a new basis

1 ' 1 '
Jg = E\/gJS"i‘%J& Jé = E\/gjs_ij& (172)

and J; = Ji for all other k will realise self-duality and the Galois symmetry
Jo = o-1(J5). (173)
We have again introduced two square roots
s3=1V3, s =i (174)

In the new basis J' we have again an e-factorised differential equation

O 0 0 O
0O 0 0 O
0O 0 0 O

dl’ = €Ay, A (175)

/ / / / / /
agyp gy dgz dgy Ay dig

The matrix A satisfies now the self-duality relations
[ | [ | /A A | P A |
ay; = dag,  dege = Ass,  Ggy = dgs,  As; = dgg,  A76 = Asg,  G75 = dgy, (176)
and in addition the Galois symmetries
ags = O-1(dse), dye = 6-1(ays), apy = 0-1(dsy), (177)
and

dyy = o1 (ds;)  forje{1,2,3}. (178)

4.3 A non-planar elliptic three-point function

We consider the two-loop non-planar three-point function shown in fig. This family consists
of 11 master integrals, grouped into 8 sectors. There are three sectors with two master integrals
each. Among the sectors with two master integrals there is the top sector, which is elliptic. An
e-factorised differential equation has been given in ref. [12], and we follow to a large extent the
notation of this paper. As we always order the sectors from the simplest to the most complicated
sector, we start from a basis / with

L= Mg, Iy = My, I¢ = Ms, I; = Mg, Lo = My, 1 = M, (179)
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Figure 12: An example of a two-loop non-planar elliptic three-point function. Thin black lines
denote massless particles, green lines denote particles with a mass m.

and I, = My,_ for all others. The master integrals M), are defined in ref. [12]]. This example has

two kinematic square roots
rn = 1+4y, r_1 =/1—-4y, (180)

where y is the kinematic variable defined in ref. [12]. In order to realise self-duality and Galois
symmetries, we introduce

53 =3, 55 =6 (181)
and set
6 6
J3 = 13+§14, Jy = 13—§14,
Jo = 17+?16, Iy = h—?lﬁ. (182)

We have the Galois symmetries

Jy = p1(fz) = 06(3), J7 =p-1(Js) = 03(Js). (183)

There is no Galois symmetry for the elliptic sector consisting of the master integrals J1o and Jy;
(for the same reasons as discussed in section . T)). In the basis J we have again an e-factorised
differential equation

d] = €AJ, (184)
where the (11 x 11)-matrix A has the structure (we use again hexadecimal indices)
o o o0 o o0 o o0 o0 o0 o0 o
0O a@ 0 0O O O O O O O O
a1 O o 0 o0 o0 0 0 o
ay1 0 | as o 0 o0 o0 0 0 O
0 O o 0 o0 o0 0 0 O
A = del d4e2 0 0 0 ag7 0 0 0 0 (185)
ayjlr  ann 0 0 0 aje 0 0 0 0
0 0 0 O oags agg 0 0 O
0 0 O 0 as O O O O O O
0 0 O O 0 0 0 O aaB
0 O

0
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Entries with the same background colour are related by a symmetry. Note that there is no Galois
symmetry relating asp to ags. The former entry has modular weight 0, the latter modular weight
4.

5 Conclusions

In this paper we studied the structure of the differential equation for families of Feynman in-
tegrals. We showed that often the connection matrix A has additional symmetries, which can
be realised by a redefinition of the master integrals through a constant GL(n, C)-transformation.
The symmetries we studied were self-duality and Galois symmetry. Self-duality is the statement
that blocks on the diagonal are symmetric with respect to the anti-diagonal. In all examples we
presented we were able to find a transformation which achieves self-duality.

In addition to self-duality there can be Galois symmetries present. Galois symmetry relates
two master integrals through the action of a Galois group: I, = 6(I;). Galois symmetries can
be expected in sectors where the definition of the master integrals for an e-factorised differential
equation involves square roots. Surprisingly, also sectors not related to any square root with
dependence on the kinematic variables may exhibit Galois symmetries. The requirement of self-
duality can introduce constant square roots like v/3 and the Galois symmetry in the latter case is
the conjugation v/3 — —+/3. Galois symmetries may or may not exist on top of self-duality. We
presented many examples with Galois symmetries, but we also pointed out two examples, where
there is no Galois symmetry on top of self-duality: These were the examples of the two-loop
planar massless double-box integral and the two-loop equal-mass sunrise integral. In the former
case we showed that we still have a limit Galois symmetry on top of self-duality. In the latter case
we do not expect Galois symmetries, as Galois symmetries cannot relate quantities of different
modular weight. To the other extreme, we also find examples in which a Galois symmetry
can be realised in a number of different ways. Moreover, there exist cases with symmetries
involving arbitrary roots, including perfect squares. Thus the presence of Galois symmetry is
not necessarily linked with a specific or even any field extension (see also the discussion in
section [2.3]).

Clearly, self-duality and Galois symmetries give only non-trivial relations in sectors with
two or more master integrals and therefore only affect more complicated Feynman integrals.
This might be an explanation why these symmetries have not been noticed up to now. In this
paper we presented strong evidence for the ubiquity of self-duality and Galois symmetries in
Feynman integrals. It would be interesting to understand the exact conditions under which these
symmetries can be realised, and to which extent they are unique. This is left for future work.

Note added

While this paper was under review, ref. [36] appeared on the arXiv, providing an explanation of
the self-duality symmetry we observed in terms of twisted cohomology on the maximal cut.
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