
ar
X

iv
:2

40
7.

04
87

3v
2

 [
cs

.A
I]

 2
2

N
ov

 2
02

4

Evaluating Language Models for Generating and Judging
Programming Feedback

Charles Koutcheme
Aalto University
Espoo, Finland

charles.koutcheme@aalto.fi

Nicola Dainese
Aalto University
Espoo, Finland

nicola.dainese@aalto.fi

Sami Sarsa
University of Jyväskylä

Jyväskylä, Finland
sami.j.sarsa@jyu.fi

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Juho Leinonen
Aalto University
Espoo, Finland

juho.2.leinonen@aalto.fi

Syed Ashraf
Aalto University
Espoo, Finland

syed.ashraf@aalto.fi

Paul Denny
The University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Abstract

The emergence of large language models (LLMs) has transformed
research and practice across a wide range of domains. Within the
computing education research (CER) domain, LLMs have garnered
significant attention, particularly in the context of learning pro-
gramming. Much of the work on LLMs in CER, however, has fo-
cused on applying and evaluating proprietary models. In this arti-
cle, we evaluate the efficiency of open-source LLMs in generating
high-quality feedback for programming assignments and judging
the quality of programming feedback, contrasting the results with
proprietary models. Our evaluations on a dataset of students’ sub-
missions to introductory Python programming exercises suggest
that state-of-the-art open-source LLMs are nearly on par with pro-
prietary models in both generating and assessing programming
feedback. Additionally, we demonstrate the efficiency of smaller
LLMs in these tasks and highlight the wide range of LLMs accessi-
ble, even for free, to educators and practitioners.

CCS Concepts

• Social and professional topics → Computing education.

Keywords

open source, large language models, generative AI, automatic feed-
back, automatic evaluation, programming feedback, LLM-as-a-judge

1 Introduction

High-quality and timely feedback is essential for students in pro-
gramming courses. Some types of feedback, such as whether a pro-
gram runs or passes a provided test suite, are readily available via
simple automatedmeans [13, 28]. However, feedback on the causes
of subtle programming errors and suggestions for resolving them
can be difficult to produce [14]. Especially in large classes, provid-
ing accurate and personalised explanations of bugs as feedback to
students can be a manual and time-consuming task for educators,
and yet essential for reducing frustration and aiding learning.

The automated generation of human-like feedback has recently
been made possible thanks to the accessibility of state-of-the-art
generative AI tools, such as ChatGPT. In particular, API access to
powerful large language models (LLMs) has sparked the develop-
ment of many programming feedback tools that are now being
deployed in classrooms [33]. These include tools for generating
improved error messages [22], aiding real-time debugging [12], ex-
plaining code [21, 23] and tailoring next-step hints [35]. Such sys-
tems have been successful not only in generating feedback, but also
in assessing feedback quality, offering the potential for generating
high-quality feedback through iterative improvement.

Despite the promise of LLM-based feedback generation and eval-
uation approaches, the vast majority of research and usage in com-
puting education contexts has relied on proprietarymodels such as
GPT-4. This reliance on closed-source LLMs is concerning for sev-
eral reasons. It involves sending potentially sensitive data to third
parties with no guarantees on how the data will be used, provides
little insight into how the models are trained or what deliberate or
inadvertent biases they may contain, and may come with unpre-
dictable licensing expenses [20]. Open-source LLMs, on the other
hand, are freely accessible and open for modification and distribu-
tion, and have started to become viable alternatives. Nevertheless,
very few studies have explored their capabilities for providing or
assessing programming feedback.

In this work, we investigate the potential of open-sourcemodels
to produce high-quality feedback, and assess the quality of feed-
back generated by other LLMs. We focus on feedback that pro-
vides explanations of bugs or issues in student-written programs
and outlines the steps to address these issues. While prior research
suggests that open-source language models are competitive alter-
natives to proprietary models for generating feedback, the extent
to which they can serve as judges (validators) of such feedback
remains unclear. Using a publicly available benchmark dataset of
student-written programs, we address the following two research
questions:

http://arxiv.org/abs/2407.04873v2
https://orcid.org/0000-0002-2272-2763
https://orcid.org/0000-0001-9806-419X
https://orcid.org/0000-0002-7277-9282
https://orcid.org/0000-0001-6502-209X
https://orcid.org/0000-0001-6829-9449
https://orcid.org/0009-0007-0513-4613
https://orcid.org/0000-0002-5150-9806

Charles Koutcheme et al.

RQ1 How do open- and closed-source models compare with
respect to the quality of their generated bug explanations
and suggested fixes?

RQ2 To what extent can open- and closed-source models as-
sess the quality of programming feedback generated by
other models relative to expert human judgment?

To answer our first research question, we generate explanations
of bugs and their corresponding fixes using five state-of-the-art
open-source and three popular proprietary language models. We
manually evaluate this feedback using a customrubric that includes
the completeness and comprehensibility of the explanations and
the accuracy of the suggested fixes. To answer our second research
question, we use these expert human-generated ground truth la-
bels to evaluate the performance of the models on the task of judg-
ing the programming feedback.

Our findings suggest that open-source languagemodels are com-
petitive with proprietary models for both generating and assess-
ing programming feedback. Given the potential benefits of open-
source models in terms of transparency, trust, and cost, we argue
that they should be increasingly adopted in computing education
contexts.

2 Related Work

2.1 Using Language Models For Feedback

Automating assessment of programming exercises and providing
feedback on the exercises have been studied for decades within
the computing education research domain [14, 27, 28]. Classically,
much of the existing work on automating feedback has focused on
informing students about mistakes in their code, while providing
formative feedback has been less common [14]. Providing sugges-
tions on the location of the issue or hints on how to fix the issue
can improve students’ performance over just pointing out that a
test failed [7], but manually creating quality feedback can be very
time-consuming.

The recent emergence of powerful language models has led to
researchers exploring their capabilities for programming feedback [3,
5, 9, 15, 22, 23, 29, 30] and, in general, the observations on the
quality or utility of feedback has evolved with the introduction
of better language models [9]. As an example, GPT-3 had high
variability in the quality of feedback, at times generating incor-
rect and inconsistent feedback [3], while GPT-3.5 would often pro-
vide meaningful feedback and find issues in code, but also often
hallucinate issues that were not present in the code [9]. Language
models are also better at detecting some types of errors than oth-
ers [9, 15], being useful, especially for providing feedback on syn-
tax or compilation errors [15, 22, 30]. Despite the advances, even
the state-of-the-art models like GPT-4 are still not on par with hu-
mans when generating feedback for programming exercises [31].
At the same time, there are increasing amounts of evidence that
language model-powered feedback systems and chatbots in pro-
gramming [8, 10, 23, 38] can aid students, at least when the pro-
gramming languages or used frameworks are not brand new [8].

Most existing work on language models for programming feed-
back in the computing education research context has focused on
utilizing proprietary models (mainly from OpenAI). In contrast,
the use of open-source models has received only little attention.

Calls for increasing the use of open-sourcemodels have been voiced [39],
already due to potential privacy issues related to sharing student
datawith languagemodel providers.Work on utilizing open-source
models for the task is also starting to emerge [10, 16, 25], where
one of the research aspects has been contrasting the performance
of open-source models to the proprietary ones; researchers have
already observed that open-source models are on par with models
such as GPT-3.5-Turbo for programming feedback [18].

In our work, our first research question re-investigates how var-
ious language models, including open-source ones, perform in ex-
plaining issues in student programs and providing fixes, comple-
menting prior studies.

2.2 Using Language Models as Judges

The idea of using an LLM to judge the output of other LLMs –
LLMs-as-judges – was first studied in the work of Zheng et al.
[40], showing good promise, but also limitations, e.g., in grading
math and reasoning tasks. Since then, GPT-4 has been used in mul-
tiple studies as a judge of the quality of other LLMs’ generations
[26], also in educational contexts [10, 18]. Moreover, the reliance
on GPT-4, a proprietary model, has sparked interest in leverag-
ing other open-source language models to act as judges [4]. Yet,
recent work has highlighted the limitations of relying on a sin-
gle language model for evaluating the quality of other language
models’ outputs, and suggested employing a diverse ensemble of
smaller models from different LLM families as a jury for cheaper
and less biased evaluations [37]. When answering our second re-
search question, we test this hypothesis by comparing the usage
of single judges (both open-source and proprietary) and that of a
jury of smaller open-source language models.

3 Methodology

In this section, we describe our methodology for answering our
two research questions. We first introduce the dataset used in our
evaluations, then our methods used for answering RQ1 and RQ2.

3.1 Dataset

We use data from the Socratic guidance benchmark [2], which con-
sists of 57 introductory-level programming assignments requiring
students to write functions. Each of the assignments is accompa-
nied by the associated test cases, a unique incorrect student solu-
tion, the ground truth description of a single bug in the program,
a list of potential bug fixes, and several conversation threads be-
tween a fake student and a teaching assistant. The ultimate goal
for the benchmark is evaluating LLMs’ ability to help students us-
ing the socratic method, i.e., guiding students in finding a solution
on their own, by asking a series of relevant questions that help
their reasoning.

However, for this study, we focus solely on identifying the is-
sues in the code and any required fixes, as it is a fundamental step
for effective use of LLMs for socratic guidance – models incapable
of identifying issues in students’ programs would be likely to pro-
vide them erroneous guidance. We leave the problem of evaluating
LLMs for socratic guidance for future work.

Evaluating Language Models for Generating and Judging Programming Feedback

3.2 Generating High-Quality Feedback

Given a student’s incorrect program, our goal regarding RQ1 is to
evaluate LLMs’ ability to provide two particular types of feedback:
an explanation of the bugs in the student’s program and sug-

gested fixes for the found bugs.

Feedback Generation. We prompt the models to provide feed-
back according to the following example:

0
You are a CS professor teaching introductory programming using Python.

1

Below are a problem description, test cases, and an incorrect program written
by a student (i.e., it does not pass all test cases).

<problem description>, <test cases>, <student code>

Your tasks are as follows:

1. **Explain Bugs**: List and explain all the bugs in the program that prevent it
from passing the unit tests. Please explain each bug in 1-2 sentences. Do not
suggest performance improvements.

2. **Provide Fixes**: For each bug, suggest a code fix by describing the change
in a concise sentence. You can specify a replacement, insertion, deletion, or
modification of one or several lines of code.

Please focus on providing clear and concise explanations and fixes, and avoid
suggesting unnecessary changes to the code.

List of bugs and fixes
2

To elaborate, we provide a language model: 0 a system prompt
and 1 a description of the task (with all the necessary contextual
information), which results in output 2 .

Feedback LanguageModels. Weconsider the following open-source
models: Gemma-2B [6], Phi-3-mini [1] (3.8B parameters), Mistral-
7B [11], Llama-3.1.1-8B [4], Llama-3.1.1-70B [4]. We chose these
models because of their extensive documentation, community adop-
tion, strong performance on code and language reasoning bench-
marks (e.g., MMLU), their parameter count, and their ability to fol-
low instructions. This selection covers the recent state-of-the-art
models from various companies across the most used model sizes
for LLMs. Furthermore, we also evaluate three of OpenAI’s propri-
etary flagship models, GPT-3.5-turbo, GPT-4o-mini, and GPT-4o,
which represent the current industry standards.

We query proprietary models using the OpenAI Python library,
and open-source ones with HuggingFace Transformers Python
library to simplify querying them through the HuggingFace In-
ference API. All models are evaluated using greedy decoding [18].
Next, we explain the annotation process before detailing the grad-
ing rubric.

Annotation. We use the eight models presented above, and the
57 programs of the benchmark, which results in 8 × 57 = 456 model
outputs. To answer our first research question, two annotators (two
paper authors who are expert Python programmers) annotated all
456 model outputs. First, we selected 11 problems out of the 57
available problems using the manual annotation subset presented
in [2]. Then, the two annotators independently annotated 8 × 11
= 88 model outputs with an initial description of each grading cri-
terion on this subset. We then computed an inter-annotator agree-
ment score using Cohen’s Kappa coefficient. The resulting annota-
tion process yielded amoderate inter-rater agreement of 0.54. After

comparing annotations and resolving conflicts, the remaining feed-
back examples were split equally between the two annotators. The
final annotated dataset formed the basis for evaluating the quality
of the feedback generated by the language models.

GradingCriteria. During the final annotation phase, each expert
used the following grading criteria for evaluating the quality of a
single generated bug explanation (E), and the quality of the gener-
ated fixes (F):

• EA - Explanation Accurate: the explanation identifies
and correctly explains the bug in the student program.

• ES - Explanation Selective: the explanation does not
mention non-existent (or non-relevant) bugs or issues.

• EC - Explanation Clear: the explanation is easy to un-
derstand for a novice programmer, presented in a readable
format and contains the right amount of information. Note:
this criterion is independent of the correctness of the expla-
nations.

• FA - Fixes Accurate: the required bug fixes are laid out
and explained.

• FS - Fixes Selective: no unnecessary or irrelevant changes
are outlined;

• FC - Fixes Clear: the proposed fixes are succinct and men-
tion the unique changes to perform in the code.

These criteria extend prior work [9, 18, 32]. Criteria EA, ES, FA,
and FS (resp. EC, and FC) represent how correct (resp. how under-
standable) the explanations and criteria are. The annotators used
the following guidelines: for each ground truth bug (provided in
the dataset), match the bug with one (or several) model-generated
explanations. If any generatedmodel bug descriptions did notmatch
the ground truth, we set the criteria ES to false, unless the model
explicitly noted the irrelevance of the unmatched bug. Then, inde-
pendently of the correctness, we looked at whether or not a novice
programmer unaware of the real issues could understand themean-
ing of the provided bug description. We follow the same strategy
for the fixes. Moreover, for the clarity criterion, we ensure that the
fixes provide clear descriptions of changes with snippets or at least
highlight changes in a repaired program (if present).

3.3 Automatic Feedback Evaluation

In this subsection, we present the methods we used to automati-
cally evaluate the quality of LLM-generated feedback using other
language models (answering RQ2). We explored two approaches:
a single LLM as a judge, and an ensemble of LLMs as a jury on
two scenarios, depending on whether a reference answer is avail-
able or not. We first describe howwe generate the responses to the
grading criteria using a single LLM as a judge for the two scenar-
ios. We then outline our ensemble of LLMs and how we obtain the
jury annotations.

No Reference Answer Available. Given the feedback generated by
a language model, we prompt another language model (the judge)
to grade this feedback (according to the criteria outlined in Sec-
tion 3.2) using the prompting strategy shown and described below:

Charles Koutcheme et al.

...

List of judge-generated bugs and fixes
2

3

Below is a list of bugs and their fixes written by a teaching assistant.

<List of bugs and fixes>

Your task is to evaluate the quality of the TA’s feedback according to the
grading criteria outlined below, using your own response as baseline feedback.

<grading criteria> <grading guideline>

This evaluation will be conducted in two parts:

1. Comparison: Compare the TA’s feedback with your feedback. Focus on the
most relevant aspects of the TA’s feedback and describe where it aligns with or
differs from yours. Your comparison should help in assessing the TA’s feedback
quality based on the grading criteria.

2. Grading List: Conclude with each criterion listed on a separate line in the
following format: "criteria: yes/no"

...
<FS - yes/no>

4

Before asking the judge language model to grade the quality
of the feedback 3 (using the grading criteria list as part of the
prompt), we first ask the judge to generate its own descriptions
of the bugs and fixes in the student program, as described in Sec-
tion 3.2 (0 1 2). This strategy is a form of zero-shot-chain-of-
thought Single Answer Grading (SAG) [40], i.e., the judge uses its
solution to the “problem” as a reasoning step to grade the solu-
tion of another language model. This first scenario without a ref-
erence answer is applicable for educators and practitioners inter-
ested in evaluating language models’ feedback abilities on their
private datasets without the need for ground truth annotations.

Reference Answer Available. Educators may also be interested in
evaluating their language models on existing benchmarks contain-
ing ground truth annotations of issues. Although such benchmarks
are not abundant, we expect more to come as educational AI ad-
vances and becomes more widespread. In consideration of this sce-
nario, we experiment with providing the judge with the ground
truth descriptions of issues, instead of the more error-prone ap-
proach of generating them using the judge itself. The example be-
low illustrates our prompting strategy:

You are a CS professor teaching introductory programming using Python.

Below are a problem description, test cases, and an incorrect program
written by a student (i.e., it does not pass all test cases). You are also provided
with the ground truth description of a bug in that programand the required fixes.

<description>, <test cases>, <code>, <bug description>, <bug fixes>

Below is a list of bugs and their fixes written by a teaching assistant.

<LLM feedback generation>

Your task is to evaluate the quality of the TA’s feedback according to the grading
criteria outlined below, using the provided ground truth bug description and
fixes as reference.

...

This prompting strategy is a form of reference grading [40]. We
refer to this strategy as GAG (Ground truth Annotated Grading).
We note that for both strategies (SAG, GAG), we extract the re-
sponse to each grading criterion from the final judge model out-
put.

Ensemble of Judges. Prior work suggests that using a single LLM
as a judge has limitations. For example, GPT-4 favours outputs
from OpenAI’s GPT line of models [34]. As mentioned in Section

2.2, instead of using a single LLM, Verga et al. [37] showed that us-
ing multiple language models from different families can address
many of these issues. We aim to test their hypothesis in our edu-
cational context. We prompt three popular open-source language
models to provide their judgement, and then, we combine themodel
decisions using majority voting separately for each criterion. For
example, given three LLMs outputting ‘yes’, ‘yes’, and ‘no’ respec-
tively for a given criterion, the final ensemble result will be ‘yes’.
We consider this “jury” both when reference answers are available
(GAG) and not available (SAG).

Judge and Jury Language Models. We evaluate both proprietary
and open-source models as judges. We use GPT-3.5-turbo and ex-
tend prior work [18] by also including GPT-4o, and GPT-4o-mini.
We compare these proprietarymodels against state-of-the-art open-
source language models Phi-3-mini, Llama-3.1-8B, Mistral-7B, and
Llama-3.1-70B. For the jury, we use the three language models:
Llama-3.1-8B, Mistral-7B, and Phi-3-mini. We selected these three
strong LLMs due to them being at the top of the leaderboards for
LLMs of their size, and being from different families of models. As
with the feedback generation, we query these language models us-
ing the OpenAI and Huggingface Transformers Python libraries
and obtain the outputs using greedy decoding.

Evaluation. To answer RQ2, we compare the evaluation of each
judge/jury model for the 456 generated feedback outputs against
themanuallywritten ground truth annotations, with respect to our
grading criteria (see Section 3.2). We then report the performance
of each judge/jury across all of their outputs and for our two sce-
narios. We report the weighted average version of the 50.5 score as
in [18] (although they used plain 50.5) for each judge/jury, as this
metric accounts for false positives and potential class imbalances.
We also report the kappa score to complement our observations.

4 Results

4.1 Generating Feedback

Table 1 shows the performance of each language model on vari-
ous grading criteria, including both individual and grouped crite-
ria, based on human evaluations. We make the following observa-
tions.

Table 1: Feedback results for various languagemodels based

on human evaluations. Legend (see also grading criteria in

3.2): �0;; (resp. �0;;): all explanations (resp. all fixes) related

criteria are correct, ALL: all criteria are correct.

model EA ES EC FA FS FC �0;; �0;; ALL

Gemma-2b 0.44 0.02 0.65 0.42 0.02 0.65 0.00 0.02 0.00

Phi-3-mini 0.72 0.19 0.93 0.74 0.21 0.89 0.18 0.19 0.18

Mistral-7b 0.70 0.23 0.96 0.70 0.25 0.93 0.21 0.21 0.19

Llama3.1-8b 0.70 0.04 0.74 0.68 0.05 0.72 0.04 0.04 0.04

Llama3.1-70b 0.89 0.28 0.89 0.88 0.40 0.89 0.26 0.37 0.26

GPT-3.5-turbo 0.84 0.35 0.93 0.81 0.37 0.84 0.32 0.28 0.28

GPT-4o-mini 0.96 0.35 0.93 0.93 0.37 0.96 0.30 0.35 0.30

GPT-4o 0.98 0.44 0.93 0.93 0.42 0.98 0.39 0.42 0.39

Evaluating Language Models for Generating and Judging Programming Feedback

Open-Source vs. Proprietary Models. The GPT-4o and GPT-4o-
mini models show very strong performance across nearly all indi-
vidual and grouped criteria, beating all other models. Among the
open-source models, there is significant variance in performance
across different criteria. For instance, Llama-3.1-70B performs on
par with or better than GPT-3.5-turbo on the accuracy and clarity
of explanations (EA, EC), and the clarity of fixes (FC). Llama-3.1-
70B remains also competitive with both GPT-4o-mini and GPT-4o
for generating perfect explanations (�0;;), and perfect fixes (�0;;).
In contrast, smallermodels such as Gemma-2b performpoorlyacross
the board. However, size alone does not determine performance,
as other small open-source language models, like Phi-3-mini (with
3.8 billion parameters – slightlymore parameters than Gemma-2b),
despite their smaller size, perform decently well on several criteria,
notably for generating accurate explanations and fixes (EA, FA).

Strengths andWeaknesses. Eachmodel has its strengths andweak-
nesses. However, we notice that most models struggle with selec-
tivity (i.e., they identify irrelevant issues or fixes), while they gen-
erally produce clear outputs (i.e., well-formatted and understand-
able responses). When looking at the feedback generations, the
stronger models (e.g. Llama-3.1-70B, and the GPTs) often added
performance suggestions (e.g. replace a for loop with a built-in
function), while the other models often added incorrect outputs.
This indicates a broader challenge in developing models that can
effectively identify and focus on relevant issues without including
redundant or irrelevant information. Improvements in this area
could lead to substantial overall performance gains.

Explanation, Fixes, and Repairs. We can observe a direct relation-
ship between models’ abilities to explain issues and their ability
to generate fixes: overall, language models that produce more ac-
curate (resp., more selective) explanations tend to generate more
accurate (resp., more selective) fixes. During our experiments, we
also noticed that the generated feedback often included repaired
programs after the fixes, even though we did not prompt the mod-
els for this. Although program repairs are not our primary focus,
they represent another valuable form of feedback for students and
can later be leveraged for hint generation [16]. Building on this,
we hypothesize that a language model’s performance in generat-
ing accurate and selective fixes provides insights into its ability to
generate high-quality program repairs—repairs that are function-
ally correct and preserve the intent of the student’s original code
[19]. If our hypothesis holds, our findings complement prior work
[17] suggesting that repair abilities may serve as a proxy for expla-
nation quality in language models. This connection could enable
educators to more easily identify language models suited for gen-
erating effective programming feedback.

4.2 Evaluating Feedback

Table 2 shows the results of the judgment task, detailing the 50.5
scores and kappa scores for each language model under the two
scenarios (SAG and GAG). We can make several observations from
these results:

Open-Source vs. Proprietary Models. Without ground truth bug
descriptions and fixes, LLama-3.1-70B shows superior judging abil-
ity compared to GPT-3.5-turbo and smaller open-source models.

Themodel performs comparably toGPT-4o-mini andGPT-4o across
many individual criteria. It even surpasses OpenAI’s flagship mod-
els in average 50.5-scores overall criteria (i.e., average scores across
self-generated and other-generated feedback).While largermodels
generally perform better, smaller models such as Phi-3-mini and
Mistral also demonstrate strong judging performance, rivallingGPT-
3.5-turbo, a previous state-of-the-art model. These small models
also rival top language models in terms of explanation accuracy
(EA), explanation clarity (EC), and fixes clarity (FS). However, they
still lag in terms of judging selectivity. Providingmodelswith ground
truth descriptions of bugs and required fixes (GAG setting) leads to
significant performance gains (nearly 10%) over relying solely on
their explanations (SAG setting). This improvement is most pro-
nounced for models like Mistral, which struggle with selectivity
in the SAG setting. In the GAG setting, the performance gap be-
tween top models (LLama-3.1-70B, GPT-4o-mini, and GPT-4o) be-
comes negligible across all criteria, indicating these models are
viable alternatives to one another. However, in the GAG setting,
Phi-3-mini’s performance does not improve. When looking at the
model reasoning process in that setting, themodel appears to overly
rely on exact matches with the ground truth, showing less flexibil-
ity in its evaluation. This behaviour might stem from the model’s
smaller size, which could limit its capacity for nuanced reasoning.

Kappa Scores. The low kappa scores in the SAG setting indicate
that most model results could be due to random chance. When in-
vestigating the reasons for the scores, we see thatmostmodels tend
to be overly positive, predicting ‘yes’ the majority of the time. This
phenomenon aligns with observations in [18], highlighting a ten-
dency ofmodels to overestimate the quality of feedback.When pro-
vided with ground truth annotations, the results improve to reach
a moderate level of agreement.

Self-Evaluation vs. Evaluation of Others. Models perform better
when evaluating othermodels’ outputs than their own, with Llama-
3.1-70b performing the best. This might be due to a bias toward
positive evaluations, especially within models of the same family,
as noted in previous research [40]. Our result thus suggests that
language models from different families should be used for gener-
ating and validating feedback [32].

Ensemble Performance. Combining multiple models into an en-
semble does not improve judgment quality; instead, it biases the
results. The ensemble approach, which combined the outputs of
themodels Phi-3-mini, Mistral-7B, and LLama-3.1-8B, did not yield
better performance. This contrasts with previous work by Verga et
al. [37], possibly due to the absence of few-shot examples, which
provide the model with additional context and training data that
could enhance the performance of the individual models. In the
previous study, models competitive with GPT-3.5-turbo were used,
leading to better ensemble performance. Moreover, our method of
taking the mode of the generations from three LLMs means that if
two weaker models consistently disagree with the stronger model,
the output can be negatively biased. This highlights a key limita-
tion in ensemble approaches: the quality of the ensemble is highly
dependent on the individual models’ performance and their ability
to complement each other.

Charles Koutcheme et al.

Table 2: Judging results.

(a) Detailed f0.5 scores. We show the SAG score and in parenthesis the GAG score. Legend: AVGO: (resp. AVGS)

average f0.5 over all criteria when judging other models’ (resp. the judge’s own) feedback.

judge EA ES EC FA FS FC AVGO AVGS

Phi-3-mini 0.70 (+0.00) 0.41 (-0.03) 0.81 (-0.02) 0.65 (+0.00) 0.37 (-0.04) 0.78 (+0.00) 0.58 (-0.02) 0.41 (+0.09)

Mistral 0.67 (+0.07) 0.14 (+0.50) 0.81 (-0.02) 0.63 (+0.05) 0.19 (+0.42) 0.81 (-0.04) 0.49 (+0.18) 0.44 (+0.13)

Llama-3.1-8b 0.63 (+0.12) 0.55 (+0.15) 0.75 (+0.04) 0.63 (+0.12) 0.56 (+0.09) 0.75 (+0.04) 0.60 (+0.11) 0.51 (+0.22)

Ensemble 0.68 (+0.06) 0.28 (+0.33) 0.81 (-0.01) 0.64 (+0.06) 0.33 (+0.24) 0.79 (+0.01) 0.53 (+0.14) /

Llama-3.1-70b 0.69 (+0.17) 0.72 (+0.10) 0.81 (+0.01) 0.71 (+0.10) 0.71 (+0.10) 0.80 (+0.03) 0.69 (+0.14) 0.69 (+0.14)

GPT-3.5-turbo 0.65 (+0.00) 0.09 (+0.19) 0.79 (-0.01) 0.65 (+0.01) 0.20 (+0.26) 0.78 (-0.01) 0.46 (+0.09) 0.51 (+0.08)

GPT-4o-mini 0.74 (+0.08) 0.66 (+0.16) 0.75 (+0.01) 0.74 (+0.05) 0.70 (+0.12) 0.76 (+0.02) 0.64 (+0.13) 0.61 (+0.24)

GPT-4o 0.72 (+0.16) 0.78 (+0.09) 0.74 (+0.04) 0.72 (+0.12) 0.76 (+0.11) 0.77 (+0.02) 0.68 (+0.12) 0.66 (+0.26)

(b) Kappa scores.

SAG (+- GAG diff)

judge kappa

Phi-3-mini 0.09 (+0.00)

Mistral 0.03 (+0.23)

Llama-3.1-8b 0.12 (+0.27)

Ensemble 0.06 (+0.20)

Llama-3.1-70b 0.36 (+0.29)

GPT-3.5-turbo 0.02 (+0.08)

GPT-4o-mini 0.25 (+0.27)

GPT-4o 0.34 (+0.26)

5 Discussion

Teaching and Learning Implications. While the educational com-
munity has been focused on leveraging proprietary models, our
study aims to show that alternative solutions are accessible to edu-
cators and practitioners. In particular, Llama-3.1-70B performs on
par withGPT-3.5-turbo for feedback generation and competeswith
GPT-4o for judging the quality of other language models gener-
ated feedback. Educators could leverage such a model in building
their feedback tools or for benchmarking purposes [17, 31]. No-
tably, the size of a language model no longer correlates directly
with performance. For example, a smaller language model like the
Phi-3-mini competes with the 7B Mistral and 8B Llama models,
offering promising feedback generation and judging performance.
While this model (like multiple of the others) struggles with hal-
lucination, we believe that fine-tuning techniques might alleviate
this issue, and strengthen the results [16].

Practical deployment. Importantly, these open-sourcemodels are
also easy to access thanks to APIs offered by companies such as
HuggingFace. For instance, for conducting our experiments, us-
ing the Transformers library, all models were freely accessible,
except for Llama-3.1-70B (which required paying 9 dollars for a
month of rate-limited access). We acknowledge that using an ex-
ternal API to query open-source language models might defeat
the purpose of data privacy. However, several institutions leverage
ChatGPT APIs in one way or another [24], and HuggingFace plat-
forms, which are dedicated to open-source, offer the same data pri-
vacy guarantees.Moreover, priorworks show evidence that smaller
models (such as Phi-3-mini) could be deployed on consumer de-
vices [25], or even in browsers [16], alleviating the need to rely on
external API.

Limitations. Our work has limitations. The prompts we used
likely influenced the results, and more specific prompts or alter-
native prompting strategies (which we did not explicitly compare)
could impact model performance. Also, we only considered intro-
ductory programming assignments written in Python and not other
programming languages. Moreover, we only considered two types
of feedback, but other types such as hints, (with potentially more
pedagogical benefits) exist. Our selection of language models, al-
though considered the recent state-of-the-art at the time of writ-
ing, does not exhaust all possible alternatives to popular models.
Our labelling process is also not perfect, as we only used two raters,

which resulted in amoderate inter-rater reliability score (0.54), and
our grading criteria did not use actual students (the intended au-
dience) to rate the clarity of the outputs. Additionally, for judging
feedback, we could have used judge language models which are
specifically designed for evaluation, but we used generic language
models instead. Finally, our report lacks a discussion (and exam-
ples) of the specific type of issues encountered when generating
and judging feedback.

Future Work. In the future, we will conduct a larger-scale eval-
uation of open-source language models’ ability to generate (and
judge) other types of feedback and support. In particular, we are ex-
tending the Socratic benchmark to include ground truth next-step
hints [35], and we are running an evaluation of language models’
ability to generate such hints [16], as well as their ability for being
Socratic guides. Beyond tracking models’ performances, we aim
to improve the ability of small language models (e.g. Phi-3-mini)
to be teaching assistants by using Reinforcement Learning tech-
niques to tackle the selectivity problem [36]. The varied strengths
of different models also suggest that a combined approach (ensem-
ble methods) might yield even better results for feedback genera-
tion. As our LLM jury results contrasted those by Verga et al. [37],
we also intend to conduct a study on how the variability, individ-
ual performance, and the number of judges in the LLM jury affect
judging performance.

6 Conclusions

In this paper, we evaluated (1) how language models perform in
providing explanations of issues in programs and generating bug
fixes (RQ1), and (2) how well different language models, including
open-source ones, perform in evaluating the quality of feedback
generated by other LMs (RQ2). Our paper highlights that top open-
source language models are valid competitors to proprietary lan-
guage models for both generating and assessing the quality of pro-
gramming feedback. Open-source language models could provide
benefits for powering free tools, which is particularly important
for institutions with limited funding. As an additional contribution,
we release the code used to conduct our experiments, including the
models’ outputs and the annotators’ responses1.

1https://github.com/KoutchemeCharles/feed_genju

https://github.com/KoutchemeCharles/feed_genju

Evaluating Language Models for Generating and Judging Programming Feedback

Acknowledgments

This research was partially supported by the Research Council of
Finland (Academy Research Fellow grant number 356114).

References
[1] Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed

Awadallah, Hany Awadalla, et al. 2024. Phi-3 Technical Report: A Highly Capa-
ble Language Model Locally on Your Phone. arXiv:2404.14219

[2] Erfan Al-Hossami, Razvan Bunescu, Justin Smith, and Ryan Teehan. 2024. Can
Language Models Employ the Socratic Method? Experiments with Code Debug-
ging. In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2024). Association for Computing Machinery, New York,
NY, USA, 53–59. https://doi.org/10.1145/3626252.3630799

[3] Rishabh Balse, Bharath Valaboju, Shreya Singhal, Jayakrishnan Madathil War-
riem, and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1. 292–298.

[4] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, et al. 2024. The Llama 3Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[5] John Edwards, Arto Hellas, and Juho Leinonen. 2024. On the Opportunities
of Large Language Models for Programming Process Data. arXiv preprint
arXiv:2411.00414 (2024).

[6] Google. 2024. Gemma: Our open-source models for machine learning fairness.
https://blog.google/technology/developers/gemma-open-models/

[7] Qiang Hao, David H Smith IV, Lu Ding, Amy Ko, Camille Ottaway, JackWilson,
Kai H Arakawa, et al. 2022. Towards understanding the effective design of au-
tomated formative feedback for programming assignments. Computer Science
Education 32, 1 (2022), 105–127.

[8] Arto Hellas, Juho Leinonen, and Leo Leppänen. 2024. Experiences from Inte-
grating Large Language Model Chatbots into the Classroom. arXiv preprint
arXiv:2406.04817 (2024).

[9] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and
Juha Sorva. 2023. Exploring the Responses of Large Language Models to Begin-
ner Programmers’ Help Requests. In Proceedings of the 2023 ACM Conference on
International Computing Education Research - Volume 1. ACM, 93–105.

[10] Yann Hicke, Anmol Agarwal, Qianou Ma, and Paul Denny. 2023. AI-TA: To-
wards an Intelligent Question-Answer Teaching Assistant using Open-Source
LLMs. arXiv:2311.02775 [cs.LG]

[11] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, et al. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

[12] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proc. of the
2023 CHI Conf. on Human Factors in Computing Systems. ACM, New York, NY,
USA, Article 455, 23 pages.

[13] Hieke Keuning, Johan Jeuring, and BastiaanHeeren. 2016. Towards a Systematic
Review of Automated Feedback Generation for Programming Exercises. In Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education. ACM, 41–46.

[14] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A Systematic Liter-
ature Review of Automated Feedback Generation for Programming Exercises.
ACM Trans. Comput. Educ. 19, 1, Article 3 (2018), 43 pages.

[15] Natalie Kiesler, Dominic Lohr, and Hieke Keuning. 2023. Exploring the Poten-
tial of Large Language Models to Generate Formative Programming Feedback.
arXiv preprint arXiv:2309.00029 (2023).

[16] Nachiket Kotalwar, Alkis Gotovos, and Adish Singla. 2024. Hints-In-Browser:
Benchmarking Language Models for Programming Feedback Generation.
arXiv:2406.05053 [cs.LG] https://arxiv.org/abs/2406.05053

[17] Charles Koutcheme, Nicola Dainese, and Arto Hellas. 2024. Using Program Re-
pair as a Proxy for Language Models’ Feedback Ability in Programming Educa-
tion. In Proceedings of the 19thWorkshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2024), Ekaterina Kochmar, Marie Bexte, Jill Burstein,
Andrea Horbach, Ronja Laarmann-Quante, Anaïs Tack, Victoria Yaneva, and
Zheng Yuan (Eds.). Association for Computational Linguistics, Mexico City,
Mexico, 165–181.

[18] Charles Koutcheme, Nicola Dainese, Sami Sarsa, Arto Hellas, Juho Leinonen,
and Paul Denny. 2024. Open Source Language Models Can Provide Feedback:
Evaluating LLMs’ Ability to Help Students Using GPT-4-As-A-Judge. In Proceed-
ings of the 2024 Innovation and Technology in Computer Science Education, Vol-
ume 1 (Milan, Italy) (ITICSE ’24). https://doi.org/10.1145/3649217.3653612

[19] Charles Koutcheme, Nicola Dainese, Sami Sarsa, Juho Leinonen, Arto Hel-
las, and Paul Denny. 2024. Benchmarking Educational Program Repair.
arXiv:2405.05347 [cs.SE] https://arxiv.org/abs/2405.05347

[20] Sanjay Kukreja, Tarun Kumar, Amit Purohit, Abhijit Dasgupta, and De-
bashis Guha. 2024. A Literature Survey on Open Source Large Lan-
guage Models. In Proceedings of the 2024 7th International Conference on

Computers in Management and Business (Singapore, Singapore) (ICCMB
’24). Association for Computing Machinery, New York, NY, USA, 133–143.
https://doi.org/10.1145/3647782.3647803

[21] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein,
Joanne Kim, et al. 2023. Comparing Code Explanations Created by Students
and Large Language Models. In Proceedings of the 2023 Conference on Innova-
tion and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE
2023). Association for Computing Machinery, New York, NY, USA, 124–130.
https://doi.org/10.1145/3587102.3588785

[22] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, et al. 2023.
Using Large Language Models to Enhance Programming Error Messages. In
Proc. of the 54th ACM Technical Symposium on Computer Science Education V.
1. ACM, New York, NY, USA, 563–569.

[23] Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. CodeHelp:
Using Large Language Models with Guardrails for Scalable Support in Program-
ming Classes. In Proc. of the 23rd Koli Calling Int. Conf. on Computing Education
Research. ACM, New York, NY, USA, Article 8, 11 pages.

[24] Rongxin Liu, Carter Zenke, Charlie Liu, Andrew Holmes, Patrick Thornton, and
David J. Malan. 2024. Teaching CS50 with AI: Leveraging Generative Artifi-
cial Intelligence in Computer Science Education. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 2 (Portland, OR, USA)
(SIGCSE 2024). Association for ComputingMachinery, New York, NY, USA, 1927.
https://doi.org/10.1145/3626253.3635427

[25] Suqing Liu, Zezhu Yu, Feiran Huang, Yousef Bulbulia, Andreas Bergen, and
Michael Liut. 2024. Can Small Language Models With Retrieval-Augmented
Generation Replace Large LanguageModelsWhen LearningComputer Science?.
In Proceedings of the 2024 on Innovation and Technology in Computer Science Ed-
ucation V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing Machinery,
New York, NY, USA, 388–393. https://doi.org/10.1145/3649217.3653554

[26] Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chen-
guang Zhu. 2023. G-Eval: NLG Evaluation using Gpt-4 with Better Hu-
man Alignment. In Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika
Bali (Eds.). Association for Computational Linguistics, Singapore, 2511–2522.
https://doi.org/10.18653/v1/2023.emnlp-main.153

[27] Marcus Messer, Neil CC Brown, Michael Kölling, and Miaojing Shi. 2024. Au-
tomated grading and feedback tools for programming education: A systematic
review. ACM Transactions on Computing Education 24, 1 (2024), 1–43.

[28] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-
ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3, Article 34 (2022), 40 pages.

[29] Maciej Pankiewicz and Ryan S. Baker. 2023. Large Language Models (GPT) for
automating feedback on programming assignments. arXiv:2307.00150 [cs.HC]

[30] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
et al. 2023. GeneratingHigh-Precision Feedback for Programming Syntax Errors
using language Models. arXiv:2302.04662 [cs.PL]

[31] Tung Phung, Victor-Alexandru Pădurean, José Cambronero, Sumit Gulwani, To-
bias Kohn, et al. 2023. Generative AI for Programming Education: Benchmark-
ing ChatGPT, GPT-4, and Human Tutors. Int. J. of Management 21, 2 (2023),
100790.

[32] Tung Phung, Victor-Alexandru Pădurean, Anjali Singh, Christopher Brooks,
José Cambronero, et al. 2023. Automating Human Tutor-Style Programming
Feedback: Leveraging GPT-4 Tutor Model for Hint Generation and GPT-3.5 Stu-
dent Model for Hint Validation. arXiv:2310.03780 [cs.AI]

[33] James Prather, Juho Leinonen, Natalie Kiesler, Jamie Gorson Benario, Sam Lau,
StephenMacNeil, NargesNorouzi, Simone Opel, Virginia Pettit, Leo Porter, et al.
2024. How Instructors Incorporate Generative AI into Teaching Computing. In
Proceedings of the 2024 on Innovation and Technology in Computer Science Edu-
cation V. 2. 771–772.

[34] Nazneen Rajani, Nathan Lambert, Sheon Han, Jean Wang, Osvald Nit-
ski, et al. 2023. Can foundation models label data like humans?
https://huggingface.co/blog/llm-v-human-data.

[35] Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024. Next-Step Hint Gen-
eration for Introductory Programming Using Large Language Models. In Pro-
ceedings of the 26th Australasian Computing Education Conference (Sydney, NSW,
Australia) (ACE ’24). Association for ComputingMachinery, NewYork, NY, USA,
144–153. https://doi.org/10.1145/3636243.3636259

[36] Alexander Scarlatos, Digory Smith, Simon Woodhead, and Andrew Lan. 2024.
Improving the Validity of Automatically Generated Feedback via Reinforce-
ment Learning. In Artificial Intelligence in Education, Andrew M. Olney, Irene-
Angelica Chounta, Zitao Liu, Olga C. Santos, and Ig Ibert Bittencourt (Eds.).
Springer Nature Switzerland, Cham, 280–294.

[37] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Pik-
tus, Arkady Arkhangorodsky, Minjie Xu, NaomiWhite, and Patrick Lewis. 2024.
Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Di-
verse Models. arXiv:2404.18796 [cs.CL] https://arxiv.org/abs/2404.18796

https://arxiv.org/abs/2404.14219
https://doi.org/10.1145/3626252.3630799
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://blog.google/technology/developers/gemma-open-models/
https://arxiv.org/abs/2311.02775
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2406.05053
https://arxiv.org/abs/2406.05053
https://doi.org/10.1145/3649217.3653612
https://arxiv.org/abs/2405.05347
https://arxiv.org/abs/2405.05347
https://doi.org/10.1145/3647782.3647803
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3626253.3635427
https://doi.org/10.1145/3649217.3653554
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://arxiv.org/abs/2307.00150
https://arxiv.org/abs/2302.04662
https://arxiv.org/abs/2310.03780
https://doi.org/10.1145/3636243.3636259
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796

Charles Koutcheme et al.

[38] SierraWang, JohnMitchell, and Chris Piech. 2024. A large scale RCTon effective
error messages in CS1. In Proceedings of the 55th ACM Technical Symposium on
Computer Science Education V. 1. 1395–1401.

[39] Lixiang Yan, Lele Sha, Linxuan Zhao, Yuheng Li, Roberto Martinez-Maldonado,
et al. 2023. Practical and Ethical Challenges of Large Language Models in Edu-
cation: A Systematic Scoping Review. British Journal of Educational Technology

(2023).
[40] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,

et al. 2023. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena.
arXiv:2306.05685 [cs.CL]

https://arxiv.org/abs/2306.05685

	Abstract
	1 Introduction
	2 Related Work
	2.1 Using Language Models For Feedback
	2.2 Using Language Models as Judges

	3 Methodology
	3.1 Dataset
	3.2 Generating High-Quality Feedback
	3.3 Automatic Feedback Evaluation

	4 Results
	4.1 Generating Feedback
	4.2 Evaluating Feedback

	5 Discussion
	6 Conclusions
	Acknowledgments
	References

