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Abstract
Segmenting text into fine-grained units of
meaning is important to a wide range of NLP
applications. The default approach of segment-
ing text into sentences is often insufficient, es-
pecially since sentences are usually complex
enough to include multiple units of meaning
that merit separate treatment in the downstream
task. We focus on the task of abstractive
proposition segmentation (APS): transforming
text into simple, self-contained, well-formed
sentences. Several recent works have demon-
strated the utility of proposition segmentation
with few-shot prompted LLMs for downstream
tasks such as retrieval-augmented grounding
and fact verification. However, this approach
does not scale to large amounts of text and may
not always extract all the facts from the input
text. In this paper, we first introduce evalu-
ation metrics for the task to measure several
dimensions of quality. We then propose a scal-
able, yet accurate, proposition segmentation
model. We model proposition segmentation as
a supervised task by training LLMs on existing
annotated datasets and show that training yields
significantly improved results. We further show
that by using the fine-tuned LLMs (Gemini Pro
and Gemini Ultra) as teachers for annotating
large amounts of multi-domain synthetic distil-
lation data, we can train smaller student models
(Gemma 1 2B and 7B) with results similar to
the teacher LLMs. We then demonstrate that
our technique leads to effective domain gener-
alization, by annotating data in two domains
outside the original training data and evaluating
on them. Finally, as a key contribution of the
paper, we share an easy-to-use API1 for NLP
practitioners to use.

1 Introduction

From retrieval systems that build indices over pas-
sages rather than documents (Tiedemann and Mur,

*Work done as an intern at Google.
1Our Gemma-APS API (Gemma 1 2B and 7B) can be

found on Hugging Face.

2008), to automatic evaluation metrics for gen-
erative tasks that evaluate sentence-level similar-
ity to references (e.g. Amplayo et al. (2023)),
to structured event representations used for cross-
document summarization (Zhang et al., 2023), seg-
menting a document into significantly finer units
that retain relevant meaning is a major component
of many NLP systems.

In “well-formed” prose, an easy and frequently
used choice for segmenting documents is sentence
segmentation. But for most applications, sentences
are an imperfect fit: they are often still too complex,
containing multiple units of underlying information
(Chen et al., 2023b; Min et al., 2023); they typically
require context from elsewhere in the document to
understand the meaning (Choi et al., 2021). Fur-
thermore, well-formed sentences are not always
available in situations ranging from casual speech
(Stainton, 2005) to non-prose formats (Fang et al.,
2024; Maheshwari et al., 2024), where “sentences”
are not even a natural unit of discourse.

To provide useful fine-grained segmentation, sev-
eral recent works have taken the approach of propo-
sition segmentation2 (Chen et al., 2023b; Min et al.,
2023; Wanner et al., 2024), seeking to break text
into fine-grained, minimal units of meaning that to-
gether convey all the information in the source text.
Similarly to the extractive-vs-abstractive contrast
in the summarization literature, the two strands of
proposition segmentation work so far have consid-
ered either (a) an extractive approach, representing
propositions as one or more spans in the source text
(Chen et al. (2023b); Gunel et al. (2023); etc.); or
(b) few-shot LLM prompts for abstractive propo-
sition segmentation, generatively writing out each
unit as a well-formed sentence (Kamoi et al., 2023;
Wanner et al., 2024; Scirè et al., 2024).

2Others in the literature have also used terms such as
“claim decomposition”, “claim extraction”, and “atomic fact
extraction” for the same concept. We follow the naming in
(Chen et al., 2023b).
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More formally, abstractive proposition segmen-
tation (APS), the focus of this paper, is to transform
a given document into a collection of propositions
represented as natural-language sentences which: 1.
are atomic and minimal semantic unit that cannot
be further decomposed into meaningful units (Liu
et al., 2023); 2. are fully decontextualized (Choi
et al., 2021) — i.e. they can be understood just as
well with no access to the rest of the document; 3.
present information explicitly given in the docu-
ment; and 4. when taken together, cover all of the
information in the document.

APS has already found applications in grounding
(Gao et al., 2023a), summarization evaluation (Liu
et al., 2023; Scirè et al., 2024), and fact checking
(Min et al., 2023). In this paper, we focus on mak-
ing abstractive proposition segmentation practical.
The few-shot prompting approaches are typically
too costly to run at large scales, and, furthermore,
we show that they tend to under-extract compared
to our proposed solutions. Our core contributions
are:

1. A suite of automatic evaluation metrics
to measure the quality of APS methods
along several relevant dimensions, allowing
informed comparisons between methods

2. Supervision by existing datasets (Liu et al.,
2023), which empirically shows improvement
on APS over few-shot prompting baselines.

3. Scalable, domain-general student models
(Gemma 1 2B and 7B, Mesnard et al.
(2024)) for APS distilled from the super-
vised models over synthetic multi-domain
data (Hosseini et al., 2024), yielding perfor-
mance comparable to the teacher models even
on domains not seen in the human-annotated
training data.

4. An APS API for NLP practitioners to use.

2 Related Work

Linguistic compositionality, the idea that sentences
are comprised by smaller units of meaning, has
been debated since the early 1800s (Janssen, 2012),
and understood surely long beforehand. In the
context of modern NLP, the value of proposition
segmentation for standard tasks can be seen from
the empirical measurements in, e.g., (Chen et al.,
2023b), which shows for document-level NLI that
72% of sentences partially aligned between two
highly related documents don’t fully entail each
other, and in (Min et al., 2023), which shows that

40% of ChatGPT sentences at that time contained
a mix of supported and unsupported propositions.

Indeed, several previous results have shown APS
by few-shot prompted LLMs benefits retrieval-
augmented fact verification and grounding (Kamoi
et al., 2023; Min et al., 2023). A concurrent result
in (Wanner et al., 2024) looks more specifically at
APS itself with few-shot prompting. Scirè et al.
(2024) also perform few-shot prompting followed
by distillation.

Other formats of proposition segmentation have
also been explored. Extractive proposition segmen-
tation is shown in (Chen et al., 2023b,c) to benefit
document-level NLI and retrieval. Several open-
book QA and grounding works have generated fine-
grained questions corresponding implicitly to the
fine-grained claims in the text (Gao et al., 2023a;
Chen et al., 2022, 2023a). In the summarization
evaluation literature, “Summary Content Units”,
initially human-annotated (Nenkova and Passon-
neau, 2004), later generated from syntactic signals
(Gao et al., 2019) have long been used for summary
evaluation. Before the LLM era, decomposing text
into semantic triples, known as Open Information
Extraction (Etzioni et al., 2008), drove a variety of
downstream applications.

Our desiderata for proposition segmentation in-
clude context-independence, earlier studied at the
sentence level by Choi et al. (2021). Deng et al.
(2024) perform document-level claim extraction
for fact checking. They specifically extract claims
that are check-worthy, where these claims are de-
contextualized, but not necessarily atomic.

In our work, we propose a suite of automatic
evaluation metrics. Previous efforts have not fo-
cused much on metric definition. The exceptions
are two concurrent works: A) Wanner et al. (2024)
propose a specific single metric for APS, Decomp-
Score, that combines our reference-free precision
metric (§3.2) with the count of claims generated.
B) Scirè et al. (2024) propose metrics based on
ROUGE (Lin, 2004) and similar to our reference-
based precision and recall. Our metrics are based
on NLI that is more suitable for checking semantic
equivalence of predicted and gold propositions.

3 Abstractive Proposition Segmentation

In this section, we formally define the task (§3.1)
and propose metrics (§3.2).



3.1 Task Definition
We are given an input text t, which comprises
a naturally-occurring sequence of English words,
possibly split into multiple sentences, i.e., t =
{s1, ..., sn}. In text t, there are k latent gold propo-
sitions (claims) {p1, ..., pk}. The task is then to
segment t into a list of propositions {q1, ..., qk}
with the following conditions:

1. Well-formed: Proposition qi should be gram-
matically correct and conform to the rules of
the English language.

2. Atomic: Proposition qi should contain a sin-
gle atomic fact.

3. Self-contained: Proposition qi should not
need additional context to be understood.

4. Supported: Proposition qi should be found in
the given text t.

5. Comprehensive: The list of propositions
{q1, ..., qk} should cover all the latent gold
propositions (claims) in text t.

3.2 Evaluation Metrics
To evaluate systems that produce propositions fol-
lowing the conditions above, we propose two sets
of metrics that make use of an entailment model.
We employ Natural Language Inference (NLI) as
backbone to our metrics because by definition (Da-
gan et al., 2013), it can be used to check factual sup-
port (i.e., one entails another) and semantic equiva-
lence (i.e., both entail each other). In addition, NLI
has been successfully used for evaluating factual
consistency (Anil et al., 2023a; Gao et al., 2023b;
Fierro et al., 2024; Honovich et al., 2022).

We use a T5-11B model (Raffel et al., 2020)
fine-tuned on the ANLI dataset (Nie et al., 2020)
as our entailment model NLI(premise, claim) that
returns an entailment score between 0 and 1. This
model is shown to obtain the highest factual consis-
tency results on the TRUE benchmark in Honovich
et al. (2022)’s experiments.

Reference-free (RF) The first set of metrics
compare the system-generated propositions Q =
{q1, ..., qk′} with input text t = {s1, ..., sn}, which
helps us evaluate whether the propositions are sup-
ported and comprehensive. Specifically, we calcu-
late precision RFp and recall RFr as follows:

RFp =

∑
qi∈Q NLI(premise = t, claim = qi)

k
(1)

RFr =

∑
sj∈t NLI(premise = Q̄, claim = sj)

n
(2)

where Q̄ is the space-concatenated version of Q
to create a single text. Here, precision essentially
evaluates whether each proposition qi in Q is sup-
ported in text t, while recall evaluates whether each
latent gold proposition mentioned in each sentence
sj is covered in Q. We can then combine both pre-
cision and recall by calculating the f1-score RFf1.

Reference-based (RB) The second set of met-
rics rely on a gold-standard set of propositions
P = {p1, ..., pk} and check whether each proposi-
tion in P is semantically equivalent to a predicted
proposition (and vice versa). To this end, we use
a bidirectional version of NLI where premise and
claim need to entail each other, i.e.:

BiNLI(pi, qj) = min
(
NLI(pi, qj), NLI(qj , pi)

)
(3)

The first NLI call (i.e., does gold entail pre-
dicted?) ensures atomicity: If the predicted propo-
sition qj is not as atomic as a gold proposition pi,
then pi will not entail qj (since qj has more infor-
mation that pi). The second NLI call (i.e., does pre-
dicted entail gold?) ensures self-containedness: If
the predicted proposition qj is not as self-contained
as a gold proposition pi, then qj will not entail pi
(since pi has more information than qj).

qj should not need further context (otherwise,
the entailment does not hold). We calculate preci-
sion RBp and recall RBr as follows:

RBp =

∑
qj∈Q argmaxpi∈P BiNLI(pi, qj)

k′ (4)

RBr =

∑
pi∈P argmaxqj∈QBiNLI(pi, qj)

k
(5)

In RBp metric, for each predicted qj , we find
the most equivalent pi based on BiNLI(pi, qj), and
then average over all predicted propositions. RBr

is calculated similarly in the other direction. Fi-
nally, we can combine both precision and recall by
calculating the f1-score RBf1. We note that our
reference-based scores are equivalent to SMART
metrics proposed by Amplayo et al. (2023) as an
evaluation metric for text generation. They treat
sentences as basic units of information, and com-
pare the set of gold and predicted sentences. We
compare propositions as basic units of information
rather than sentences.

Note that we do not measure well-formedness
since we assume such property for system predic-
tions, given the advancements of pretrained LMs.

In order to validate the effectiveness of our met-
rics, we perform human correlation studies and



show positive results (§6). We show examples of
how metrics are calculated in Appendix A.

4 Domain-General APS

Given an input text (passage) t, our goal is to gen-
erate a list of propositions {p1, . . . , pk}, where
propositions should be well-formed, atomic, self-
contained, supported, and comprehensive.

In this section, we discuss our proposed method
to distill a relatively small, yet domain general
proposition segmentation model: A) We train a
teacher LLM on an existing proposition segmenta-
tion dataset (§4.1). B) We generate a large set of
multi-domain synthetic data with different lengths
(§4.2). C) We generate a large synthetic dataset
with pairs of (text, propositions list) and train a
student model on it (§4.3).

4.1 Training an APS Model

We train a teacher APS model based on an LLM. In
particular, we train a model by using examples in
the ROSE dataset (Liu et al., 2023). Each example
contains an input text t, and a list of propositions
{p1, . . . , pk}. We trained using two approaches:
ungrouped propositions and grouped propositions.

In the ungrouped propositions version, the input
contains an instruction and a passage (Figure 1 top).
We add an instruction since we use instruction-
tuned LLMs for training. The output contains the
list of propositions each prepended by “-” and sep-
arated by a newline character (Figure 1 bottom).

In the grouped propositions version, we leverage
the existing sentence structure from the passage.
We split the passage into sentences before feeding
it into the proposition segmentation model. We
specify the sentence boundaries with special start
of sentence (<s>) and end of sentence (</s>) tokens.
In addition, we group the propositions of each sen-
tence together and place them inside start and end
of sentence tokens. Figure 2 shows an example.

The grouped propositions approach has two ben-
efits: A) The trained model could use the sentence
boundaries to obtain improved performance, since
it can learn how to generate propositions per sen-
tence rather than generating a longer list of proposi-
tions for the full passage. B) During inference, we
can automatically attribute each proposition to its
corresponding sentence. This is useful for down-
stream applications. For example, in grounding
applications, we can spot which sentences have
propositions that are supported or contradicted by

an arbitrary source.
We fine-tuned two different LLMs as our teach-

ers: Gemini Pro and Gemini Ultra (Anil et al.,
2023a).3

4.2 Generating Multi-Domain Synthetic Data

In order to generate a synthetic dataset for distil-
lation, we require a large set of passages so that
we can apply the teacher LLM to them and pro-
duce (text, propositions) pairs. The ROSE dataset
contains examples only in the news domain. To
have maximum generalization to new domains, the
passages should cover as many domains as possi-
ble. In addition, the passage should have different
lengths so that the model works well with new texts
of different lengths.

We follow Hosseini et al. (2024) that take a prac-
tical approach and consider various text properties
as contributing factors to domains: text genre, topic,
and even the platform or venue that the text comes
from. They design a prompt with 18 few-shot ex-
amples, where each example is a triple of (length,
domain, text). The length can take either the value
short (just one or a few sentences) or paragraph.
Appendix B shows an example.4 The set of 18
few-shot examples cover 8 seed domains such as
shopping reviews, twitter and reddit post. How-
ever, to have a wide range of domains, they first
prompt FLAN-PaLM2 L (Unicorn) model (Anil
et al., 2023b) to generate new domains. Then,
they manually select a number of non-repetitive
domains. Finally, they prompt the LLM to generate
text in those domains with the two lengths.

We replicated their approach using Gemini Ultra
(Anil et al., 2023a). We first prompted Gemini
Ultra 4, 000 times to generate new domains.5 We
obtained a set of 105 domains, from which we
manually selected 75. We then prompted the LLM
and generated 226K examples with the selected
domains and the two lengths.6

4.3 Distillation

The teacher proposition segmentation LLMs learn
the task well since they have a large number of
parameters and are supervised trained on the ROSE

3Available from https://cloud.google.com/apis
4The full list can be found in Hosseini et al. (2024).
5Many of the calls generate one of the existing domains

from the few-shot examples. Therefore, in order to obtain
many unseen domains, we prompted the LLM 4, 000 times.

6We first generated 228K examples, but filtered examples
with n ≥ 4-gram overlap with any of the seed examples
(≈ 2K examples).

https://cloud.google.com/apis


I will provide a passage and a list of propositions in the passage. Propositions should be sentences that contain a 
single fact mentioned in the passage written as briefly and clearly as possible.

Passage: Dante de Blasio, 17, to make his decision by the end of the month. His father has said that despite his 
six-figure salary the family will struggle to meet cost to send son to Ivy League school.

Propositions:
- Dante de Blasio is 17 years old.
- Dante de Blasio needs to make a decision by the end of the month.
- Dante de Blasio's father has six-figure salary. 
- Dante's father has said his family will struggle to meet cost to send Dante to Ivy League school.

Figure 1: The input (top) and output (bottom) for training an APS model with ungrouped propositions. The input
contains an instruction and a passage. The output contains the list of propositions.

I will provide a passage split into sentences by <s> and </s> markers. For each sentence, generate its list of 
propositions. Each proposition contains a single fact mentioned in the corresponding sentence written as briefly and 
clearly as possible.

Passage: <s> Dante de Blasio, 17, to make his decision by the end of the month. </s> <s> His father has said that 
despite his six-figure salary the family will struggle to meet cost to send son to Ivy League school. </s>

Propositions:
<s>
- Dante de Blasio is 17 years old.
- Dante de Blasio needs to make a decision by the end of the month.
</s>
<s>
- Dante de Blasio's father has six-figure salary. 
- Dante's father has said his family will struggle to meet cost to send Dante to Ivy League school.
</s>

Figure 2: The input (top) and output (bottom) for training an APS model with grouped propositions. The input
contains an instruction and a passage. The output contains the list of propositions. The input passage is separated by
special start and end of sentence tokens. Similarly, the output propositions of each sentence are grouped together
using special tokens.

dataset (§4.1). However, they are too costly for
direct use in practical applications. Therefore, we
distill them into student models.

In our preliminary experiments, we observed
better results from the grouped propositions version
(§5.3), so we trained the student model based on
this type of teacher. We apply the teacher LLMs to
the synthetic multi-domain set of texts (§4.2) and
produce 226K (text, propositions) pairs. We then
train a model with the same input and output format
as the teacher models with grouped proposition.
We used Gemma 17 (2B and 7B) (Mesnard et al.,
2024), a lightweight state-of-the-art LM8, as our
student model.

5 Experiments

We explore the effectiveness of our distillation ap-
proach for training a scalable and domain-general
proposition segmentation approach. We describe
the datasets we have used for training and evalua-

7We used Gemma 1 in all our experiments, but we refer to
the language model as Gemma for simplicity throughout most
of the following text.

8https://ai.google.dev/gemma

tion (§5.1). We then introduce our baselines (§5.2).
We first compare our proposed method with multi-
ple baselines on the ROSE dataset (§5.3). We then
show that our method is effective on two datasets
from new and unseen domains (§5.4).

5.1 Datasets

We use the annotated ROSE dataset for supervised
training. The ROSE dataset has examples from
the news domain. We manually annotate two out-
of-domain datasets, ensuring that the propositions
have the desired properties (§3). We use these
datasets for assessing the domain generalization
capabilities of our models.

ROSE dataset. This dataset is built by manu-
ally splitting news summaries into Atomic Content
Units (ACUs) for the purpose of evaluating such
summaries (Liu et al., 2023). The ACUs are anno-
tated based on a set of well-defined rules to extract
atomic facts, i.e., elementary information units in
the input text which no longer need to be further
split for the purpose of ambiguity reduction for
human evaluation (Liu et al., 2023).

The ACU definition in the ROSE dataset are very

https://ai.google.dev/gemma


close to our propositions definition, therefore we
used them for training. We observed some cases
in the dataset where the propositions are either not
supported or not comprehensive, but we filtered
those examples automatically. The dataset contains
2, 500 passages (21, 797 propositions). We ran-
domly split the dataset into a training and develop-
ment set (for hyper-parameter tuning9). The train-
ing set contains 2, 089 passages (18, 994 proposi-
tions), and the development set contains 411 pas-
sages (2, 803 propositions).

The original dataset contains the full set of propo-
sitions for each passage. However, for training
the grouped propositions version (§4.1), we need
to align each proposition to a sentence. We pre-
process the dataset to obtain such alignment. We
use the NLI score (from T5 11B trained on ANLI)
between sentences (premise) and propositions (hy-
pothesis) to obtain the alignment. In particular, for
each proposition, we find the sentence with the
maximum NLI score. If the NLI score from that
sentence ≥ τ = 0.9, we align the proposition to
the sentence. Otherwise, we discard the example
(unsupported proposition). After aligning all the
propositions, if a sentence is not aligned with any
proposition, we again discard the example (a spe-
cial case of non-comprehensive propositions). We
provide more details about the alignment, filtering,
and pre-processing in Appendix D.

The final dataset has high RLp (supported) and
RLr (comprehensive) scores (§5.3). We manually
evaluated the alignment on ≈ 200 propositions
from the ROSE development set, and the error rate
of this approach was ≈ 2%. The final training and
development sets contain 1, 923 examples (15, 092
propositions) and 383 examples (2, 237 proposi-
tions), respectively.

Since the examples in the ROSE dataset are
based on news summaries, they are quite general
and cover many linguistic forms such as presup-
positions, attribution to the speaker, modals, and
sentence connectors (e.g., because and however).

Reddit. The Reddit dataset contains 20 ran-
domly sampled human-written answer passages
from WebGPT (Nakano et al., 2021), which is a
subset of ELI5 dataset, originally used for long-
form question answering (Fan et al., 2019). We
sampled from one paragraph long answers. We
manually annotated the passages with propositions.

Amazon Review. The Amazon Review dataset

9See details of hyper-parameters in Appendix C.

contains 20 randomly sampled reviews with 3 to 7
sentences from the 2018 version10 of the Amazon
Review Data (Ni et al., 2019). We specifically sam-
pled from the 5-core subset. Finally, we manually
annotated each review with propositions.

The manual annotations for the Reddit and Ama-
zon Review datasets were done by two of the au-
thors (each annotated one dataset). The instructions
were based on the task definition (§3.1). The au-
thors looked at examples from the ROSE dataset to
be mostly aligned with those examples as well.

5.2 Baselines
We compare the following set of models:

Gold has the human annotated propositions.
Sentence is a trivial baseline where we consider

each sentence as a proposition.
Few Shot extracts propositions by few-shot

prompting an LLM. For each test example, we se-
lected the most similar K = 10 examples from the
training set based on ROUGE-1 score (Lin, 2004).
We report the results for two LLMs, Gemini Pro
and Gemini Ultra. We also tried two additional few-
shot prompting approaches: A) Randomly sam-
pling few-shot examples (average of 5 runs), B)
The few-shot examples from (Wanner et al., 2024).
In both cases, the results were overall worse than
the dynamic approach and had a similar pattern
compared to our models (Appendeix E).

Trained on ROSE are cases where we super-
vised trained a LM. We trained two versions for
each language model (§4.1): ungrouped propo-
sitions (UG) and grouped propositions (G). We
trained Gemma 7B, Gemini Pro and Gemini Ultra.
We also tried Gemma 2B and obtained consistent
results with 7B (Appendix E). Moreover, we did
preliminary experiments with T5 and obtained con-
sistent results, although lower than Gemma.

Gemma 7B Distilled Models are our final mod-
els (§4.3). We fine-tuned Gemma 7B as the student
model on distillation data from Gemini Pro and
Ultra teacher models (grouped propositions).

5.3 In-Domain Results
We first compare our method with all the baselines
on ROSE development set. Table 1 shows the re-
sults. We split the metrics (columns) into two main
blocks: reference-less and reference-based (§3.2).
In addition, we report the average number of propo-
sitions per baseline. In the ideal scenario, the aver-

10https://cseweb.ucsd.edu/~jmcauley/datasets/
amazon_v2/

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/


REFERENCE-LESS METRICS REFERENCE-BASED METRICS
Precision Recall F1 Precision Recall F1 # Props

Gold 99.71 96.54 97.53 100.00 100.00 100.00 5.84
Sentence 100.00 100.00 100.00 24.71 18.24 20.42 2.52

FEW SHOT
Gemini Pro Dyn 99.21 93.26 94.31 47.10 41.41 43.20 4.22
Gemini Ultra Dyn 99.37 89.75 91.88 49.49 47.49 47.74 5.29

TRAINED ON ROSE
Gemma 7B UG 98.09 96.57 96.54 52.16 50.93 51.02 5.57
Gemma 7B G 98.57 97.48 97.48 53.70 51.43 51.93 5.61
Gemini Pro UG 99.51 97.84 98.20 54.76 52.48 53.02 5.54
Gemini Pro G 99.31 96.66 97.23 55.96 54.87 54.83 5.66
Gemini Ultra UG 99.46 98.05 98.33 57.69 56.32 56.45 5.72
Gemini Ultra G 99.53 98.16 98.50 57.62 56.50 56.49 5.77

GEMMA 7B DISTILLED MODELS
Gemini Pro Data 98.98 97.91 98.02 55.14 53.02 53.50 5.53
Gemini Ultra Data 98.93 98.08 98.23 56.82 55.18 55.41 5.65

Table 1: Results on the ROSE dataset. The methods are split into 4 blocks. The first block has gold and sentence
baselines. The second one has few-shot baselines with dynamically (Dyn) selected examples. The third block has
baselines directly trained on ROSE with ungrouped (UG) and grouped (G) propositions. The fourth block contains
the distilled models results. The best result for each metric (excluding gold and sentence baselines) is boldfaced.

REFERENCE-LESS METRICS REFERENCE-BASED METRICS
Precision Recall F1 Precision Recall F1 # Props

Gold 98.72 99.22 98.86 100.00 100.00 100.00 10.70
Sentence 100.00 100.00 100.00 32.99 17.80 22.43 4.40

FEW SHOT
Gemini Pro Dyn 100.00 83.40 89.31 56.98 42.03 47.74 7.30
Gemini Ultra Dyn 98.99 72.61 80.44 54.59 44.73 48.53 8.15

TRAINED ON ROSE
Gemma 7B G 98.25 98.73 98.35 35.49 38.30 36.57 10.25
Gemini Pro G 98.80 94.41 96.08 41.80 43.44 42.06 10.65
Gemini Ultra G 99.68 96.66 97.83 40.82 44.69 42.39 11.20

GEMMA 7B DISTILLED MODELS
Gemini Pro Data 99.47 97.08 98.00 45.22 48.08 46.20 10.90
Gemini Ultra Data 98.88 99.96 99.40 40.43 43.21 41.46 11.00

Table 2: Results on the REDDIT dataset. See Table 1’s caption for details.

age number of predicted propositions should be as
close as possible to gold propositions.

Gold and sentence baselines. The gold propo-
sitions have very high RLp (99.71%) and RLr

(96.54%), which shows that the pre-processed
dataset (§5.1) has high quality and satisfy the sup-
ported and comprehensive conditions. The RB
metrics, on the other hand, are 100% by defini-
tion. The average number of propositions is 5.84%.
The sentence baseline has perfect RL metrics by
definition. However, the RB metrics are very low.

Few-shot models. These baselines (Gemini Pro
Dyn and Gemini Ultra Dyn) have very high RLp

(99.21% and 99.37%), but their RLr (93.26% and
89.75%) is relatively low compared to supervised
baselines. The RB metrics are considerably lower
than trained models.

Grouped vs Ungrouped versions. Among the
trained models, we observe that the grouped ones
outperform the ungrouped ones (with only a few ex-

ceptions). For examples, Gemma 7B G has 97.48%
RLf1 (51.93% RBf1), while the UG version has
96.54% RLf1 (51.02% RBf1). Therefore, we per-
formed distillation data generation (§4.3) using the
grouped propositions version. We also note that the
grouped propositions trained models always output
the correct format in our experiments, i.e., they out-
put an equal number of start and end tokens, and
the same number of groups as the sentences.

Size of trained LMs. Larger LMs get better
results than smaller ones when trained on ROSE
(with only a few exceptions): Gemini Ultra gets
better results compared to Gemini Pro, which itself
gets better results than Gemma 7B.

Student models. We trained two different
Gemma 7B student models, one trained on dis-
tillation data from Gemini Pro teacher model, and
one from Gemini Ultra teacher model. The Gemma
7B student models outperform Gemma 7B trained
directly on ROSE (i.e., with no distillation) on all



REFERENCE-LESS METRICS REFERENCE-BASED METRICS
Precision Recall F1 Precision Recall F1 # Props

Gold 100.00 99.98 99.99 100.00 100.00 100.00 6.55
Sentence 100.00 100.00 100.00 37.94 24.50 29.21 3.55

FEW SHOT
Gemini Pro Dyn 99.54 62.97 71.82 50.02 46.74 47.89 6.10
Gemini Ultra Dyn 85.09 53.10 57.17 44.41 44.38 42.06 11.60

TRAINED ON ROSE
Gemma 7B G 99.98 99.99 99.99 51.90 48.88 49.83 6.25
Gemini Pro G 99.53 97.98 98.50 55.62 54.09 54.52 6.60
Gemini Ultra G 99.83 96.98 98.09 56.75 57.08 56.65 6.80

GEMMA 7B DISTILLED MODELS
Gemini Pro Data 98.30 96.72 97.30 56.00 57.09 56.25 7.05
Gemini Ultra Data 99.27 99.16 99.21 53.43 53.03 53.09 6.55

Table 3: Results on the AMAZON REVIEW dataset. See Table 1’s caption for details.

metrics. In addition, Gemma 7B student models
(the last two rows) perform close to their corre-
sponding teacher models (the last two rows of the
trained on ROSE block).

Number of predicted propositions. The number
of predicted propositions correlate well with RB
metrics and follow similar patterns.

5.4 Out-of-Domain Results

Table 2 and Table 3 show the results of different
models on the Reddit and Amazon Review datasets.

Gold and sentence baselines. The gold data has
high RL metrics confirming that our annotations
satisfy supported and comprehensive conditions.
The sentence baselines have perfect RL metrics by
definition, but very low RB metrics.

Student models vs teacher models and train-
ing directly on ROSE. In both datasets, all the
trained and distilled models have very high RL
metrics (RLf1 ≥ 96%). However, the student
models perform significantly better than Gemma
7B trained directly on ROSE (i.e., with no distilla-
tion) in RB metrics. This confirms that our distil-
lation approach using synthetic multi-domain data
leads to successful domain adaptation. In addi-
tion, the student models get results on par with
teacher models (and sometimes even better) on out-
of-domain datasets.

Few-shot models compared to student and
teacher. The few-shot models have very low RLr

(53% to 83%) compared to the student models
(≥ 97%). This makes the few-shot models un-
reliable for downstream applications such as fact
verification that require to have access to all the
claims in the input passage. Table 13 in Appendix
F shows examples. The RB metrics for few-shot
models is slightly better than the student models
on Reddit, but much worse on Amazon Review.

Note on RB metrics. The RB metrics are very
strict when comparing gold and predicted proposi-
tions, and some minor changes from the gold propo-
sitions could lead to low RB metrics. In particular,
when computing RBp, if a predicted proposition
is not a paraphrase of any gold proposition, then it
will have a score = 0 (§3.2).

In many cases, it is challenging and subjective
to decide on the right level of atomicity and decon-
textualization, which directly affects RB metrics
(§3.2). Table 4 shows a number of examples where
our annotated and predicted propositions (Gemma
7B distilled from Gemini Pro data) are different, al-
though the predicted ones are not necessarily wrong
especially when it comes to the atomicity level. For
example, the sentence “There are lots of things that
feel good that carry some kind of risk” has the right
level of atomicity to be considered as a proposi-
tion if we want to emphasize on the two points
jointly (“feeling good” and “carrying some kind of
risk”). Otherwise, the sentence could be split into
two propositions. In our work, since we trained the
teacher LLMs on the ROSE dataset, we expect the
trained models to mirror the atomicity levels in the
dataset.

6 Human Correlation Studies for APS
Metrics

We measure how well our defined metrics (§3.2)
align with human judgements in order to vali-
date the metrics’ effectiveness. We performed
a study on 40 passages (142 sentences, 263 pre-
dicted propositions, and 262 gold propositions)
from the Amazon Review dataset. We used the
predictions from two models: Gemini Pro few-shot
and Gemma 7B distilled from fine-tuned Gemini
Pro. The annotations were done by two of the au-
thors (each example were annotated by one author).



Input text Gold Propositions Predicted Propositions Category
There are lots of things that
feel good that carry some
kind of risk.

There are lots of things that feel
good that carry some kind of risk.

- There are lots of things that feel
good. - There are lots of things that
carry some kind of risk.

Atomicity

Fits well and is stylish!
Light weight and great op-
tions such as the stand. Cant
beat this one for the money.

- It fits well. - It is stylish! - It is light
weight. - It has great options. - One
great option of it is the stand. - Cant
beat it for the money.

- Fits well. - Is stylish. - Light weight.
Great options such as the stand. -
Cant beat this one for the money.

Atomicity

I’ve always used this type of
pick for playing bass. I like
the material and the thick-
ness is just right.

- I’ve always used this type of pick for
playing bass. - I like the material of
this type of pick. - The thickness of
this type of pick is just right.

- I’ve always used this type of pick for
playing bass. - I like the material. -
the thickness is just right.

Decont

But fish near reefs (or in
small streams) have other
options. They have shelter
to hide behind if they spot
a predator (meaning camou-
flage isn’t as important).

- Fish near reefs have other options. -
Fish in small streams have other op-
tions. - Fish near reefs have shelter
to hide behind if they spot a preda-
tor. - Fish in small streams have
shelter to hide behind if they spot a
predator. - Camouflage isn’t as im-
portant as hiding behind shelters.

Fish near reefs have other options. -
Fish in small streams have other op-
tions. - Fish have shelter to hide
behind. - Fish can hide behind if
they spot a predator. - Camouflage
isn’t as important.

Decont

Table 4: Examples where gold propositions and predicted propositions are not paraphrase because they do not have
the exact atomicity or decontextualization level (boldfaced propositions). However, the predicted propositions are
not necessarily wrong especially when it comes to the atomicity level. In these cases, the RB scores will be 0.

For each input sentence, we annotated whether
the predicted propositions cover all the claims in
the sentence (used for measuring reference-less
recall). For each predicted proposition, we anno-
tated whether it is supported by the input passage
(reference-less precision) and whether it is equiv-
alent to any of the gold propositions (reference-
based precision). For each gold proposition, we
annotated whether it is equivalent to any of the
predicted propositions (reference-based recall).

The Pearson correlation coefficients of example-
level metrics and human annotations were gener-
ally high (Table 5), confirming that our proposed
metrics do correlate well with human judgements
(p-value < 0.01).11

Metric Pearson Correlation Coef-
ficient

Reference-based Pr 0.718
Reference-based Rec 0.731
Reference-less Pr 0.476
Reference-less Rec 0.647

Table 5: Pearson correlation coefficients of metrics and
human judgements (p-value < 0.01).

7 The propositions API

We showed that our student models resolve two
issues with the commonly used few-shot prompt-
ing approach: under-extraction (low RLr) and cost.

11The reference-less precision metric is almost always equal
to 1 except for a few examples. The NLI accuracy compared
to human annotation is 0.985. In addition, both the automatic
metric and the human evaluated metric are >= 0.98.

As part of this paper, we release the Gemma-APS
API on Hugging Face based on Gemma 1 2B G and
Gemma 1 7B G student models trained from Gem-
ini Pro data (grouped propositions version). We
invite researchers that require proposition segmen-
tation on input text to try out our models instead of
few-shot prompting LLMs.

8 Conclusion

We define the abstractive proposition segmenta-
tion task more formally by specifying the desired
properties of propositions and present a suite of
automatic evaluation metrics that allow us to mea-
sure different dimensions of quality. While previ-
ous work often uses few-shot prompting, we show
that supervision from existing datasets yields sig-
nificant quality improvement. We then propose
a distillation approach for training scalable and
domain-general models that get on-par results with
the teachers (and sometimes even better). We re-
lease an API based on Gemma 7B student models
and invite researchers to use that instead of few-
shot prompting LLMs.

9 Limitations

In our analysis we showed that reference-based
metrics depend on the atomicity and decontextu-
alization level of propositions. On the other hand,
the right level of atomicity and decontextualization
depends on the downstream applications and how
propositions will be used. In addition, our models

https://huggingface.co/collections/google/gemma-aps-release-66e1a42c7b9c3bd67a0ade88


outputs mirror the atomicity and decontextualiza-
tion levels of the ROSE dataset examples. Future
models and metrics could be flexible in these two
levels and let the user decide on the actual style
needed for their downstream application.

We used NLI as the backbone to our metrics.
We note that NLI as a task is not fully solved, and
there are some levels of disagreement in human an-
notation (Pavlick and Kwiatkowski, 2019; Weber-
Genzel et al., 2024). However, we showed strong
correlations between human judgements and the
defined metrics. In addition, NLI computation is
done using a fine-tuned language model, so it is not
very lightweight. However, the metric computation
usually needs to be done on a small dataset.

We performed our experiments only on English;
however, our abstractive proposition segmentation
definition and proposed metrics are language in-
dependent. In addition, we observed multilingual
capabilities with the teacher models when tried on
examples from multiple languages. This capabil-
ity could be used for training multilingual student
models in the future.

We note that although our proposition segmenta-
tion model is quite accurate and outperforms exist-
ing approaches, it is still possible for it to generate
wrong and hallucinated outputs, as with all other
baselines. Downstream applications should be at-
tuned to the possibility of APS outputs that are
occasionally not supported by the original docu-
ments.
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A Metric Calculation Examples

We show examples of how metrics are calculated
in Table 6. In each row, we show an example
and the expected and calculated metrics for it. We
also mention which propositions property is mainly
measured by the metric. Finally, we provide an ex-
planation about how the property affects the score.

B Few-shot Prompting Example for
Synthetic Multi-Domain Text
Generation

Table 7 shows one of the 18 few-shot examples
used to generate synthetic multi-domain data (Sec-
tion 4.2). The full list can be found in Hosseini
et al. (2024).

C Hyper-parameters

For training Gemma modals, we used a batch size
of 8, and an initial learning rate of 5e− 5 and min-
imum learning rate of 5e− 7 with linear warmup
cosine annealing (warmup step of 100 and cosine
decay exp 1.0). We trained for 1 epoch.

For all few-shot models, we used a temperature
of 0. We tried higher temperatures, but the results
were worse.

We trained Gemini Pro with two different learn-
ing rates, 1e− 4 and 1e− 5, and selected the first
one since it gave better results on ROSE develop-
ment set. We trained the model with a batch size
of 32 for around 4 epochs. We saved checkpoints
every 50 steps and selected the one with lowest loss
on the development set.

D Pre-processing the ROSE Dataset,
Aligning Propositions with Sentences,
and Filtering Problematic Examples

We pre-process the dataset to improve its quality
based on the following steps:

A) In some cases, ACUs end with a space before
the period. We remove the extra space. Addition-
ally, some ACUs do not end with a period (and do
not end with “...” either). In these cases, we add a
period to the ACU.

B) For each sentence, the ROSE dataset annota-
tors first write an ACU consisting the main infor-
mation from the subject of the main clause. Then,
they add one ACU for each additional information
in the sentence by adding minimal necessary infor-
mation to the original ACU (Liu et al., 2023). In
some cases, the original ACU is exactly repeated

in other ACUs. In these cases, we removed the
first ACU as they are often very short and not very
informative. For example, the ACU “Many seals
are shot” is removed because we also have another
ACU “Many seals are shot to death for their fur”.

C) As explained in §5.1, we align propositions
in the ROSE dataset with their corresponding sen-
tences, and filter problematic examples. In particu-
lar, we follow these steps:

1. For each proposition j:

(a) compute NLI (sentence i, proposition j)
for all sentences. If the sentence with
maximum NLI score to proposition j has
a score ≥ τ=0.9, then we use that sen-
tence as the alignment. Otherwise:

(b) Compute NLI (prefix (i− 1)+ sentence
i) for all sentences, where prefix (i− 1)
means the sentences up to sentence i, and
+ means space concatenation. Find the
first sentence which yields entailment
score ≥ τ=0.9 (if any). If such a sen-
tence exists, we use that as the alignment.
Otherwise, we discard the example.

2. If a sentence is not aligned with any proposi-
tion, we discard the whole example.

The reason that in step 1 (b), we add the prefix
of the sentences before computing the NLI score
is that sometimes the full context is necessary to
obtain a high NLI score, e.g., cases where the sen-
tence contains a pronoun, but the proposition has
the full name. After aligning all the propositions
with the above approach, we autoamtically remove
examples that have unsupported propositions, and
cases where a sentence might not have any proposi-
tions, a special case of non-comprehensive propo-
sitions.

Table 8 and Table 9 show filtered examples with
unsupported propositions and non-comprehensive
propositions list, respectively.

E Full Results on All Datasets

In this section, we show all the results reported in
§5 plus two additional sets of results. Table 10, 11,
and 12 show the full results.

Few-shot results with random examples and
examples from Wanner et al. (2024). In §5, we
showed few-shot prompting results with dynami-
cally selected examples. In this section, we also
add few-shot prompting results with few-shot ex-
amples randomly selected per test example. We



Metric Property Example Expected
Score

Calculated
Score

Explanation

Reference-less
precision

Supported Passage = "The price of the
books are all less than ten
dollars, and they download
before you can get up for a
cup of coffee." – Predicted
Propositions = ["The books
download before you can
get up for a cup of coffee."]

1 0.9999 The predicted proposi-
tion is entailed by the
passage.

Reference-less
recall

Comprehensive Passage = "The price of the
books are all less than ten
dollars, and they download
before you can get up for a
cup of coffee." – Predicted
Propositions = ["The price
of the books are all less than
ten dollars."]

0 0 The predicted proposi-
tions do not cover all the
information in the pas-
sage.

Reference-
based precision

Self-contained Predicted Propositions =
["The price of the books are
all less than ten dollars.",
"They download before you
can get up for a cup of cof-
fee."] – Gold Propositions
= ["The price of the books
are all less than ten dollars.",
"The books download be-
fore you can get up for a cup
of coffee."]

0.5 0.5 The second predicted
proposition is not as
self-contained as the
second gold proposi-
tion ("They" vs "The
books"). Therefore, the
second predicted propo-
sition should get a score
of 0 when calculating
reference-based preci-
sion.

Reference-
based recall

Self-contained Predicted Propositions =
["The price of the books are
all less than ten dollars.",
"They download before you
can get up for a cup of cof-
fee."] – Gold Propositions
= ["The price of the books
are all less than ten dollars.",
"The books download be-
fore you can get up for a cup
of coffee."]

0.5 0.5 The second gold
proposition is more
self-contained than the
second predicted propo-
sition ("The books" vs
"They"). Therefore, the
second gold proposition
should get a score of
0 when calculating
reference-based recall.

Reference-
based precision

Atomic Predicted Propositions =
["The price of the books
are all less than ten dollars.
They download before you
can get up for a cup of cof-
fee."] – Gold Propositions
= ["The price of the books
are all less than ten dollars.",
"The books download be-
fore you can get up for a cup
of coffee."]

0 0 The predicted proposi-
tion is not as atomic as
any of the gold proposi-
tion. Therefore, it gets a
score of 0 when calculat-
ing reference-based pre-
cision.

Reference-
based recall

Atomic Predicted Propositions =
["The price of the books
are all less than ten dollars.
They download before you
can get up for a cup of cof-
fee."] – Gold Propositions
= ["The price of the books
are all less than ten dollars.",
"The books download be-
fore you can get up for a cup
of coffee."]

0 0 The gold propositions
are more atomic than
the predicted proposi-
tion. Therefore, they
both get a score of
0 when calculating
reference-based recall.

Table 6: Examples with expected and calculated metrics. For each example, we provide the propositions property
that is mainly measured by the metric. In addition, we explain how the property affects the score.

performed the experiment 5 times. In most cases,
the dynmaic approach outperforms the random ap-

proach. This is expected since the LLM can learn
more from more similar few-shot examples than



Domain Length Text

reddit post paragraph

Hey there everyone! I often see people asking where to start when getting into
prog metal, so I thought instead of answering every one of them individually
I’d make a list. I’m not going into too much depth because otherwise this will
become endless, but I’ll try to give a brief explanation of all styles I’m going
over. So let’s get started!

Table 7: A few-shot example used to generate synthetic multi-domain text. The example has a domain, a length, and
a text.

INPUT TEXT
Packs of wild boar are hunting newborn lambs in Britain, experts claim. Boar at the Forest of Dean usually feed only
on plants and dead animals. But in recent weeks, groups of boar have reportedly killed four lambs. Serious
implications for animal health and spread of disease, vet says.

PROPOSITIONS

• newborn lambs are hunted.
• Packs of wild boar are hunting in Britain.
• Packs of wild boar are hunting, experts claim.
• Boar usually feed only on plants.
• Boar usually feed only on dead animals.
• The boar is from the Forest of Dean.
• groups of boar have reportedly killed lambs.
• In recent weeks, four lambs are killed.
• Serious implications for animal health.
• Serious implications for spread of disease.
• They are serious implications, vet says.

Table 8: Example from the ROSE dataset where propositions are not supported by the input text, but we filter the
example out. The relevant sentence and unsupported propositions is boldfaced.

INPUT TEXT
Wembley was almost full for England’s 4-0 win over Lithunia. Raheem Sterling linked well with Wayne Rooney and
Danny Welbeck. Roy Hodgson must prepare his side for the stiffer tests at Euro 2016. Italy are a different
proposition to the side that beat England last summer.

PROPOSITIONS

• Wembley was almost full.
• England won.
• The score was 4-0.
• England played Lithuania.

Table 9: Example from the ROSE dataset where propositions are not comprehensive, but we filter the example out.
The sentences that are not covered by propositions are boldfaced.

random examples.

We also experimented with 21 few-shot prompts
from Wanner et al. (2024). These examples are
annotated based on Bertrand Russell’s theory of
logical atomism (Russell, 2014) and neo David-
sonian analysis (Davidson, 1967; Parsons, 1990).
This few-shot prompting approach led to gener-
ally worse results on all datasets and all metrics,
including RLr (with only one exception).

Gemma 2B results. In §5, we trained Gemma
7B on ROSE and also trained it as a student on dis-
tillation data. In this section, we additionally report
the results with Gemma 2B. Gemma 2B generally

performs slightly worse than Gemma 7B, but we
obtain the same trends for Gemma 2B as Gemma
7B. For example, Gemma 2B student models ob-
tain similar results to teacher models and generally
obtain better results than Gemma 2B trained on
ROSE.

F Few-shot Models Recall Issues

Table 13 shows examples where a few-shot model
(Gemini Pro with dynamically selected examples)
does not cover some of the facts from the input text,
but our student model (Gemma 7B distilled from
Gemini Pro data) successfully covers those facts.



REFERENCE-LESS METRICS REFERENCE-BASED METRICS
Precision Recall F1 Precision Recall F1 # Props

Gold 99.71 96.54 97.53 100.00 100.00 100.00 5.84
Sentence 100.00 100.00 100.00 24.71 18.24 20.42 2.52

FEW SHOT
Gemini Pro Ran 94.58 93.11 91.05 45.96 48.25 45.49 6.01
Gemini Pro R-ND 94.63 90.43 89.48 40.08 50.82 42.58 8.00
Gemini Pro Dyn 99.21 93.26 94.31 47.10 41.41 43.20 4.22
Gemini Ultra Ran 89.10 91.01 85.89 44.86 50.71 45.58 8.39
Gemini Ultra R-ND 97.70 89.55 90.92 33.97 51.24 39.72 8.93
Gemini Ultra Dyn 99.37 89.75 91.88 49.49 47.49 47.74 5.29

TRAINED ON ROSE
Gemma 2B UG 96.49 92.64 92.67 51.75 49.75 50.20 5.56
Gemma 2B G 97.46 94.49 94.39 53.29 51.59 51.89 5.62
Gemma 7B UG 98.09 96.57 96.54 52.16 50.93 51.02 5.57
Gemma 7B G 98.57 97.48 97.48 53.70 51.43 51.93 5.61
Gemini Pro UG 99.51 97.84 98.20 54.76 52.48 53.02 5.54
Gemini Pro G 99.31 96.66 97.23 55.96 54.87 54.83 5.66
Gemini Ultra UG 99.46 98.05 98.33 57.69 56.32 56.45 5.72
Gemini Ultra G 99.53 98.16 98.50 57.62 56.50 56.49 5.77

GEMMA 2B DISTILLED MODELS
Gemini Pro Data 98.20 96.40 96.61 54.13 52.29 52.61 5.46
Gemini Ultra Data 97.55 97.31 96.92 54.73 53.04 53.30 5.64

GEMMA 7B DISTILLED MODELS
Gemini Pro Data 98.98 97.91 98.02 55.14 53.02 53.50 5.53
Gemini Ultra Data 98.93 98.08 98.23 56.82 55.18 55.41 5.65

Table 10: Full results on the ROSE dataset. The methods are split into 5 blocks. The first block has gold and
sentence baselines. The second one has few-shot baselines with randomly (Ran) selected examples, examples from
Wanner et al. (2024) based on based on Russellian and neo-Davidsonian theories (R-ND), and dynamically (Dyn)
selected examples. The third block has baselines directly trained on ROSE with ungrouped (UG) and grouped (G)
propositions. The fourth and fifth blocks contain Gemma 7B and Gemma 2B distilled models results, respectively.
The best result for each metric (excluding gold and sentence baselines) are boldfaced.

REFERENCE-LESS METRICS REFERENCE-BASED METRICS
Precision Recall F1 Precision Recall F1 # Props

Gold 98.72 99.22 98.86 100.00 100.00 100.00 10.70
Sentence 100.00 100.00 100.00 32.99 17.80 22.43 4.40

FEW SHOT
Gemini Pro Ran 97.06 80.48 84.36 54.10 47.24 49.79 8.92
Gemini Pro R-ND 94.27 75.33 81.57 54.83 50.98 51.98 11.60
Gemini Pro Dyn 100.00 83.40 89.31 56.98 42.03 47.74 7.30
Gemini Ultra Ran 97.87 71.44 78.37 48.69 43.35 45.04 9.04
Gemini Ultra R-ND 96.48 64.60 73.07 43.51 41.70 42.00 11.40
Gemini Ultra Dyn 98.99 72.61 80.44 54.59 44.73 48.53 8.15

TRAINED ON ROSE
Gemma 2B G 93.95 97.49 95.30 33.78 32.22 32.49 10.40
Gemma 7B G 98.25 98.73 98.35 35.49 38.30 36.57 10.25
Gemini Pro G 98.80 94.41 96.08 41.80 43.44 42.06 10.65
Gemini Ultra G 99.68 96.66 97.83 40.82 44.69 42.39 11.20

GEMMA 2B DISTILLED MODELS
Gemini Pro Data 98.85 97.08 97.87 46.78 46.07 45.57 11.00
Gemini Ultra Data 99.54 99.71 99.61 40.00 42.36 40.84 10.80

GEMMA 7B DISTILLED MODELS
Gemini Pro Data 99.47 97.08 98.00 45.22 48.08 46.20 10.90
Gemini Ultra Data 98.88 99.96 99.40 40.43 43.21 41.46 11.00

Table 11: Full results on the REDDIT dataset. See Table 10’s caption for details.



REFERENCE-LESS METRICS REFERENCE-BASED METRICS
Precision Recall F1 Precision Recall F1 # Props

Gold 100.00 99.98 99.99 100.00 100.00 100.00 6.55
Sentence 100.00 100.00 100.00 37.94 24.50 29.21 3.55

FEW SHOT
Gemini Pro Ran 99.14 66.64 74.33 46.51 43.43 44.50 6.09
Gemini Pro R-ND 97.48 55.97 65.97 38.90 43.89 40.80 7.75
Gemini Pro Dyn 99.54 62.97 71.82 50.02 46.74 47.89 6.10
Gemini Ultra Ran 95.80 49.00 57.19 42.62 39.81 40.22 6.82
Gemini Ultra R-ND 98.75 44.38 56.02 29.99 36.42 32.47 8.45
Gemini Ultra Dyn 85.09 53.10 57.17 44.41 44.38 42.06 11.60

TRAINED ON ROSE
Gemma 2B G 97.60 98.98 98.01 50.89 49.53 49.99 6.35
Gemma 7B G 99.98 99.99 99.99 51.90 48.88 49.83 6.25
Gemini Pro G 99.53 97.98 98.50 55.62 54.09 54.52 6.60
Gemini Ultra G 99.83 96.98 98.09 56.75 57.08 56.65 6.80

GEMMA 2B DISTILLED MODELS
Gemini Pro Data 98.99 94.72 96.55 56.29 56.87 56.35 6.70
Gemini Ultra Data 99.77 96.30 97.77 54.19 53.97 53.89 6.60

GEMMA 7B DISTILLED MODELS
Gemini Pro Data 98.30 96.72 97.30 56.00 57.09 56.25 7.05
Gemini Ultra Data 99.27 99.16 99.21 53.43 53.03 53.09 6.55

Table 12: Full results on the AMAZON REVIEW dataset. See Table 10’s caption for details.

Input text Few-shot Gemma 7B distilled from Gemini Pro
In the 1940’s, the NAACP
charged the film with giving
the impression of "an idyllic
master-slave relationship."

- The NAACP charged the film with giving
the impression of "an idyllic master-slave
relationship."

- In the 1940’s, the NAACP charged the
film. - the NAACP charged the film with
giving the impression of "an idyllic master-
slave relationship."

The scope of such restric-
tions and requirements varies
widely from state to state
and business to business, but
in almost all cases there are
a ton of boxes which need to
be checked before anyone can
move forward.

- The scope of restrictions and require-
ments varies widely. - There are a ton of
boxes which need to be checked before
anyone can move forward.

- The scope of governmental restrictions
varies widely from state to state. - The
scope of governmental requirements varies
widely from state to state. - The scope
of governmental restrictions varies widely
from business to business. - The scope of
governmental requirements varies widely
from business to business. - In almost all
cases there are a ton of boxes which need
to be checked. - There are a ton of boxes
which need to be checked before anyone
can move forward.

Table 13: Examples where a few-shot model (Gemini Pro with dynamically selected examples) does not cover some
the facts (boldfaced) from a sentence. However, our student model (Gemma 7B distilled from Gemini Pro data)
covers those facts.
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