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Abstract

We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-
centric approach. While stronger language models can enhance multimodal capabilities, the
design choices for vision components are often insufficiently explored and disconnected from
visual representation learning research. This gap hinders accurate sensory grounding in real-
world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate
various visual representations, offering new insights into different models and architectures—
self-supervised, strongly supervised, or combinations thereof—based on experiments with over
20 vision encoders. We critically examine existing MLLM benchmarks, address the difficulties
involved in consolidating and interpreting results from various tasks, and introduce a new
vision-centric benchmark, CV-Bench. To further improve visual grounding, we propose the
Spatial Vision Aggregator (SVA), a dynamic and spatially-aware connector that integrates
high-resolution vision features with LLMs while reducing the number of tokens. Additionally,
we discuss the curation of high-quality visual instruction-tuning data from publicly avail-
able sources, emphasizing the importance of data source balancing and distribution ratio.
Collectively, Cambrian-1 not only achieves state-of-the-art performance but also serves as a
comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights,
code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We
hope our release will inspire and accelerate advancements in multimodal systems and visual
representation learning.
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1. Introduction

There is a long-standing debate in philosophy about whether understanding and meaning in
language require sensory grounding. Aristotle’s emphasis on acquiring knowledge through
sensory experience and empirical observation was central to his ancient Peripatetic school
and remains influential to this day [5]; Aquinas famously formalized these ideas in the 13th
century with the Peripatetic axiom: “Nihil est in intellectu quod non sit prius in sensu” (Nothing is
in the intellect that was not first in the senses) [7]. Though many philosophers disagree [23],
it is evident that having robust and highly capable sensory grounding is at least beneficial.
Consider the Cambrian explosion, during which the emergence of vision is believed [106] to have
been crucial for early animals to not only find food and avoid predators but also to evolve
and improve. In fact, most human knowledge (and nearly all animal knowledge) is acquired
through sensory experiences like sight, hearing, touch, taste, and smell, through interactions
with the physical world [108]. These sensory experiences are fundamental to understanding the
world around us and are crucial for real-world actions and decision-making.

Beyond philosophical debates, recent advances in multimodal large language models
(MLLMs) have brought the topic of visual representation learning vs. language understanding
into practical focus. Language models have shown strong scaling behaviors [56], and recent
advancements in multimodal learning are largely driven by the development of better, larger
LLMs [52]. On the other hand, the design choices for vision components are often insufficiently
explored and disconnected from visual representation learning research. For instance, many
pioneering frameworks such as LLaVA [83] use vision transformer-based CLIP models [110,
146), which are strongly supervised by language!, as the vision feature extractor. While other
visual representations, such as self-supervised DINO [104], are being explored [127], there is a
lack of comprehensive and systematic study in this domain. This gap exists primarily because
such studies are challenging: MLLMs involve a complex training and evaluation pipeline with
numerous design decisions to consider. In this work, we aim to bridge the gap by exploring
MLLMs from a vision-centric perspective. More specifically, we use MLLM instruction tuning
as an evaluation protocol for various visual representations (illustrated in Fig. 1).

Our motivation for this study also stems from two potential concerns of the current multi-
modal learning research: 1) relying too heavily too early on language can act as a shortcut [45,
145], compensating for the deficiencies in learning effective visual representations, and 2) exist-
ing benchmarks may not provide adequate guidance for real-world scenarios—where visual
grounding is crucial for robust multimodal understanding. These concerns are not unfounded,
as researchers have started to notice that visual grounding is becoming a bottleneck for applying
MLLMs in some challenging real-world applications, despite significant progress in improving
general capabilities [41, 127, 137].

From another perspective, traditional evaluation protocols for visual representation learning
(e.g., linear probing and end-to-end fine-tuning on datasets like ImageNet-1K [114], COCO [80],
and ADE20K [155]) are becoming saturated and do not reflect the diverse perception challenges
found in real-world distributions. On the other hand, using language in the form of visual
question answering (VQA) offers a flexible and robust evaluation protocol. Our study aims to
explore this new protocol design, setting it up to gain insights that will guide the development
of better visual representations in the future. Furthermore, to better evaluate visual representa-
tions in this integrated setting, we develop a vision-centric MLLM benchmark, CV-Bench, by
transforming traditional vision benchmarks into VQA format (Section 3.2).

IWe emphasize that CLIP training should be considered as strongly supervised, as language provides significantly
richer supervision than class labels.
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Figure 1 | We draw parallels between traditional protocols and the use of MLLMs for evaluating visual
representations. MLLMs employ visual question answering to address a diverse array of real-world
perception tasks. The bottom section highlights the five key pillars studied in Cambrian-1.

Cambrian-1 is structured around five key pillars, each offering important insights into the
design space of MLLMs:

¢ Visual Representations: We explore various vision encoders and their combinations. §3.4

¢ Connector Design: We design a new dynamic and spatially-aware connector that inte-
grates vision features with LLMs while reducing the number of tokens. §4

¢ Instruction Tuning Data: We curate high-quality visual instruction-tuning data from
public sources, emphasizing the importance of distribution balancing. §5

¢ Instruction Tuning Recipes: We discuss instruction tuning strategies and practices. §3.3

¢ Benchmarking: We analyze existing MLLM benchmarks, cluster them into 4 intuitive
groups, and introduce a new vision-centric benchmark “CV-Bench”. §3.1, §3.2

As a by-product of our exploration, Cambrian-1 introduces a family of state-of-the-art
MLLMs that achieve top performance across diverse benchmarks and excel in visual-centric
tasks (Section 6). We provide model weights, open-source code, datasets, and detailed recipes for
model training and evaluation. We hope our work will strengthen the open research community
and accelerate research in both visual representation learning and multimodal systems.

2. Multimodal LLMs: Preliminaries and Related Work

The key components of MLLM research include the Large Language Model, Visual Encoder,
Multimodal Connector, Data Curation Pipeline, Instruction Tuning Strategy, and Evaluation &
Benchmarking. Each component has its intricacies, and understanding their interactions presents
significant challenges. Our study investigates these aspects from a vision-centric perspective.

Large Language Model Advanced LLMs [4, 102, 128, 129] are the foundation of an MLLM.
After instruction-tuning on multimodal data, these models can be prompted to solve a variety of
complex tasks and generate free-form responses leveraging input from a visual encoder. Recent
MLLM research focuses on enhancing the LLM backbone [10, 76, 82], resulting in improved
performance on benchmarks like MMMU [144] and AI2D [55]. However, this improvement
raises the concern that our current multimodal evaluation is biased by the development of LLMs,
neglecting a true assessment of visual perception. For example, some benchmarks such as
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Figure 2 | Examples of various vision models, objectives, and architectures studied. Image from [49].

MMMU [144] are dominated by LLM capabilities, underscoring the need for evaluations that
genuinely assess multimodality (see Section 3.1).

Visual Encoder Most MLLMs utilize language-supervised models like CLIP [110, 123, 146],
which benefit from the massive scale of noisy web image-text data. However, there is a much
broader pool of visual models that learn representations using only visual signals—such as self-
supervised models [9, 104], segmentation [69], depth-supervised [15], and diffusion models [75,
113] (see Fig. 2). Recent work [88, 127] advocates for incorporating these diverse vision models
into MLLMs. In this study, we systematically examine the impact of various vision backbones
on MLLM performance (Section 2) and explore the benefits of model ensembles (Section 3.5).

Multimodal Connector Representations from a visual encoder cannot be natively processed by
an LLM—they must be mapped into the LLM token space by a connector. There are three primary
approaches to connector design: Resamplers [6], Q-Formers [11, 37], and MLP Projectors [44, 51,
83, 158]. We begin our exploration using an MLP projector, which is highly effective but presents
challenges: the visual token count grows quadratically with image resolution, inhibiting scaling
context length input resolution. For example, LLaVA-Next [52] requires 2880 visual tokens to
process one 672px image. To address this, we explore new vision connector designs that process
high-resolution images while maintaining a smaller number of visual tokens (Section 4).

Instruction Tuning Data Visual instruction tuning data is crucial but hard to collect, as it
rarely naturally exists on the internet. Previous work [37, 81, 99] transforms existing VQA
benchmarks [51, 70] into instruction tuning data, showing marked MLLM performance im-
provements. With this inspiration, we collect all VQA benchmarks and visual interaction data
that we can find (Fig. 9), study data balancing and category mixtures (Section 5.2), and develop
an internet data collection engine to fill in the gaps (Section 5.1).

Instruction Tuning Most current MLLMs leverage pre-trained LLMs and visual encoders, fine-
tuning the LLM and connector using visual instruction tuning data. Some aspects of the tuning
recipe are up for debate, including whether to pre-train the connector before joint fine-tuning
with the LLM, and whether to freeze or unfreeze the vision encoder during fine-tuning [64, 99].
Additionally, some recent proprietary models explore end-to-end training from scratch [50, 103].
In this work, we use pre-trained models and revisit the debated recipe aspects with extensive
studies, providing more insights for future MLLM research (Section 3.3).

Evaluation & Benchmarking There is an extensive set of benchmarks that evaluate various
aspects of MLLMs, such as perception [46, 84], knowledge [92, 93], chart interpretation [85,
97], and visual capabilities [127, 137]. Instead of over-optimizing for specific benchmarks, we
advocate for examining aggregates of benchmarks that focus on specific capabilities. To achieve
this, we analyze existing benchmarks, categorize them, and assess the extent to which they
measure multimodality (Section 3.1). Additionally, we find there are currently few benchmarks
focused on vision-centric evaluation, and those that do exist contain relatively few images,
leading to higher variance during evaluation. To address this issue, we propose a new vision-
centric benchmark by reformulating classic vision tasks (Section 3.2).



3. Evaluating Visual Representations through MLLMs

Current MLLMs predominantly rely on CLIP [110] as the visual encoder due to its pre-alignment
with language and ease of adaptation to the LLM token space. However, strong language priors
can be a double-edged sword—they compensate for deficiencies in learning effective visual
representations [127] and diminish insights gained from extensive visual representation learning
research. In this section, we systematically evaluate how various visual encoder choices (see
Fig. 2) impact the multimodal capabilities of MLLMs. We also advocate for using MLLM
evaluation as a robust framework for assessing visual representation methods, moving beyond
traditional protocols like linear probing and end-to-end fine-tuning to more faithfully reflect
the diverse perception challenges in real-world scenarios and to better guide the development
of improved visual representations. Specifically, in this section we:

§3.1. Analyze the Benchmarks

§3.2. Introduce CV-Bench

§3.3. Study Instruction Tuning Recipes

§3.4. Use MLLMs as a Visual Representation Evaluator
§3.5. Investigate Combining Multiple Vision Encoders

3.1. Analyzing the Benchmarks

To effectively evaluate visual representations and MLLMs, we first need to select benchmarks
that accurately assess the multimodal capabilities of these models. We use a suite of commonly
used benchmarks [24, 46, 55, 58, 84, 85,92, 93,97, 98,121, 127, 138, 144], which is the intersection
of those used in recent MLLM research [76, 78, 138]. To help interpret our results, we begin
by analyzing the benchmarks themselves. Here, we train MLLMs with 23 different vision
backbones (see Table 10) from a variety of model families (see Fig. 2) using a 2-stage instruction
tuning process initially proposed in [83]: first training connector on 1.2M adapter data from
ShareGPT-4V [27] followed by fine-tuning both the connector and LLM on 737K instruction
tuning data (see more details in Appendices E.5 and F). Full benchmark results in Table 12.

Who's answering the question: the LLM or MLLM? Determining whether a benchmark truly
needs visual input to be solved has been a persistent challenge in vision-language research [2,
26, 51, 95]. In this study, we compare the performance of MLLMs with and without visual
input?, and also calculate the expected score via randomly guessing. These three conditions

2We note that our instruction-tuning data includes text-only data, so text-only questions are not OOD.
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Figure 3 | Left: Performance comparison of MLLMs with visual input enabled and disabled across
various benchmarks. Benchmarks are sorted by the difference between the average score with vision
enabled and disabled. Right: Principal component analysis displaying clusters of benchmarks based
on performance metrics, with bubble size corresponding to benchmark size. We label the clusters as
“General” in , “Knowledge” in , “Chart & OCR” in , and “Vision-Centric” in



are visualized in Fig. 3-left, with benchmarks sorted by the difference between the average
score with vision enabled and disabled. SQA-I3, MMMU, MathVista, and AI2D display less
than a 5% gap between vision enabled and disabled, suggesting that these benchmarks may
not significantly depend on visual input and rather heavily rely on the base LLM. TextVQA
and GQA both demonstrate a nearly 40% positive gap between random guessing and vision-
disabled scores, implying a strong language bias in these benchmarks. On the other hand, the
vision-disabled performance on benchmarks like MMVP and MME Perception is notably worse
than random guessing, suggesting that strong visual grounding is particularly crucial.

Clustering the Benchmarks To better understand the different aspects of MLLM performance,
we analyze the correlations between the performance of our 23 MLLMs on each benchmark.
A confusion matrix (Fig. 15) reveals that certain benchmarks, such as MMMU, are largely
uncorrelated with the others. We perform principal component analysis on the benchmark
scores and observe the formation of clusters corresponding to “General,” “Knowledge,” “Chart
& OCR,” and “Vision-Centric” categories (Fig. 3-right). We assign MMMU to the knowledge
category based on the types of questions it includes (see Appendix B). We also find that existing
vision-centric benchmarks [127, 138] are of insufficient size (see Fig. 3-right), challenging the
robustness of evaluating such capabilities. Furthermore, these benchmarks do not cover crucial
visual elements such as depth and spatial awareness.

Finding 1: Most benchmarks do not properly measure vision-centric capabilities, and
the ones that do have very few samples.

3.2. Cambrian Vision-Centric Benchmark (CV-Bench)

To address the limitations of existing vision-centric benchmarks, we introduce the Cambrian
Vision-Centric Benchmark (CV-Bench). With 2638 manually-inspected examples, CV-Bench
provides significantly more examples than other vision-centric MLLM benchmarks—3.5x more
than RealWorldQA [138] and 8.8x more than MMVP [127]. By repurposing standard vision
benchmarks [18, 80, 155]*, we can assess models at classic vision tasks within a multimodal
context. Leveraging the rich ground truth annotations from the benchmarks, we formulate
natural language questions that probe the fundamental 2D and 3D understanding of the models.

As visualized in Fig. 4 and detailed in Table 1, CV-Bench evaluates 2D understanding via spatial
relationships & object counting, and 3D understanding via depth order & relative distance.

CV-Bench Curation Below we describe the procedure for programmatically constructing
questions for each task. To ensure reliability, we also manually inspect each question, removing
those that are unclear, ambiguous, or erroneous. See Appendix C for details.

Spatial Relationship (2D). We consider images with two distinct ground-truth object categories
and use visual prompts (bounding boxes) to avoid ambiguity when multiple instances are
present. In these questions, we designate an anchor object, and the question asks for the
direction of the other object relative to this anchor.

Object Counting (2D). This tests the model’s ability to count objects. When generating options
for these questions, we construct multiple-choice options that are similar to the correct answer.
For example, if the correct answer is 4, the options might be 2, 3, 4, 5, & 6. We also include
existence check examples where the correct count is 0.

Depth Order (3D). We consider images with two distinct categories (i.e., object A and object
B) and use visual prompts (e.g., bounding boxes with two different colors) to avoid ambiguity.

3The subset of SQA [92] with images.
4Omni3D assets are sourced from [3, 13, 20, 47, 112, 122].
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Figure 4 | Cambrian Vision-Centric Benchmark (CV-Bench). We repurpose standard vision benchmarks
to evaluate the fundamental 2D and 3D visual understanding of MLLMs. See Section 3.2 for more details.

Type Task Description Sources # Samples

D Spatial Determine the relative position of an object w.r.t. the an- ADE20K 650
Relationship  chor object. Consider left-right or top-bottom relationship. ~COCO
Object Determine the number of instances present in the image. =~ ADE20K 788
Count COCO

3D Depth Determine which of the two distinct objects is closer to the ~ Omni3D 600
Order camera.
Relative Determine which of the two distinct objects is closer to the ~ Omni3D 600
Distance anchor object.

Table 1 | Breakdown of the 2D and 3D tasks evaluated in the Cambrian Vision-Centric Benchmark
(CV-Bench). The examples are sourced from ADE20K [155], COCO [80], and Omni3D [18].

We define “closer” as follows: object A is closer to the camera than object B only if the farthest
vertex of object A is closer” to the camera than the nearest vertex of object B by a specified offset.

Relative Distance (3D). We consider images with three distinct categories (i.e., anchor, object
A, and object B), and use visual prompts (e.g., bounding boxes with three different colors) to
avoid ambiguity. Object A is closer than object B only if the farthest distance from A’s vertices is
shorter than the shortest distance from B’s vertices to the anchor object by a certain offset.

Finding 2: Existing vision benchmarks can be effectively repurposed into VQA ques-
tions, enabling the assessment of vision-centric MLLM capabilities.

3.3. Instruction Tuning Recipes

MLLMs start with pre-trained LLM and vision backbones, connecting these modules with a
connector such as a projector (MLP). The original LLaVA [51, 83] proposes a 2-stage frozen
training process: first, pre-training a connector between frozen LLM and vision backbones using
adapter data (such as VQA based on captions), and then fine-tuning both the connector and
LLM with instruction tuning data while leaving the vision encoder frozen. Various studies [27,
64, 82, 99] have drawn different conclusions regarding the optimal training methodology for
MLLMs. Here, we revisit this topic with extensive experiments.

For our experiments, we tune a set of MLLMSs using Vicuna-1.5-7B as the LLM backbone
and each of our 23 vision models (Table 10) as the visual encoder. We use a 737K instruction
tuning data mix for all experiments here (see Appendix F). All hyperparameters are matched
across each experimental setting—highlighting the impact of different tuning strategies with
each visual encoder. All experimental settings and results are tabulated in Appendix D.2.

5We use the Euclidean distance.
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Figure 5 | Effect of Training Recipe on Model Performance. Boxplots display the distribution of
benchmark scores across benchmark categories for different training recipes and types of visual encoders
(Language-Supervised, Self-Supervised, and Other). The four training recipes include freezing the
visual encoder with various amounts of adapter data (OM -, 0.5M -, 1.2M ) as well as unfreezing it
with 1.2M ) adapter data. Amount of Adapter Data: All model types show increased performance on
general and vision-centric benchmarks with more adapter data; knowledge benchmarks show mixed
results; OCR & chart benchmarks benefit from more data for language-supervised models. Unfreezing;:
Unfreezing the visual encoder with 1.2M ¢ adapter data generally benefits all categories. Language-
supervised models benefit from unfreezing across the board; self-supervised models benefit particularly
well in vision-centric benchmarks but continue to struggle in OCR.

One Stage vs Two Stage Training Recent work [64] advocates for skipping connector pre-
training, claiming this “reduces compute cost without harming downstream performance.” To explore
whether this claim holds—especially when using non-language-supervised visual encoders—
we conduct experiments using 0, 0.5M, and 1.2M adapter data. Following LLaVA's recipe [53],
we tune only the connector on the adapter data during this first phase, before unfreezing the
LLM and connector during instruction tuning on the 737K mix. Fig. 5 shows that pre-training
the connector first enhances model performance and that more adapter data further improves
performance across all domains. Thus, we subsequently adopt 2-stage training with 1.2M
adapter data as our standard setup.

[ Finding 3: Two-stage training is beneficial; more adapter data further improves results. ]

Freeze vs Unfreeze Vision Encoder There are also mixed practices in freezing [64, 81, 83] or
unfreezing [45, 82] vision backbones during fine-tuning. Some argue that unfreezing the vision
backbone significantly degrades performance [64]. Our experiments demonstrate that unfreez-
ing benefits performance across all benchmarks except for a marginal change in knowledge
benchmarks (Fig. 5). We suspect this is due to the composition of the 737K instruction tuning
data and the LLM-heavy focus of these benchmarks (see Section 3.1). We note that unfreezing
the vision backbone introduces additional computational overhead, which prohibits testing on
some larger vision models under current sharding strategies (see more details in Appendix F).

Finding 4: Unfreezing the vision encoder is widely beneficial. Language-supervised
models always benefit; SSL models particularly benefit on vision-centric benchmarks.
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Figure 6 | Evaluating Visual Representations with MLLMs While language-supervised models out-
perform self-supervised or other models, a well-trained self-supervised model like DINOv2 can also
achieve competitive performance on vision-centric tasks.
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OpenCLIP  ConvNeXt-L@512 8 7 3 7 9 MoCov3 ViT-B/16@224 8 847 7
DEN-CLIP  ViT-L/14@224 9 9 9 9 10 MoCov3 ViT-L/16@224 9 9569

SAM ViT-H/16@1024 10 10 10 10 10

Table 2 | Benchmark performance rankings for MLLMs built upon language-supervised and self-
supervised vision encoders across all benchmarks (All), and across general (G), knowledge (K), OCR &
chart (O), and vision-centric (V) benchmark categories. Full results for all models on each benchmark are
tabulated in Table 14.

3.4. MLLMs as a Visual Representation Evaluator

As discussed in earlier sections, MLLMs provide a new interface to explore aspects of vision
models beyond traditional benchmarks like ImageNet-1k linear probing. We study the 2-stage
instruction tuning setting using 1.2M adapter data, 737K fine-tuning data, and frozen visual
encoders to allow comparison of the widest range of models.

We evaluate on benchmarks detailed in Section 3.1, calculating the average performance®
for each category and visualize the results in Fig. 6 (full results in Appendix D). Our findings
highlight the advantages of language-supervised models over non-CLIP models across all
benchmark categories, with significantly better performance on chart and OCR-related bench-
marks. We hypothesize that this is due to CLIP’s training data, such as LAION [116], containing
abundant OCR and text-heavy data, whereas SSL and other vision models primarily train on nat-
ural images with significantly less text content. It is also noteworthy that language-supervised
models are typically trained with a very large pool of data, ranging from 400 million [110] to 10
billion [28] samples, whereas the largest vision self-supervised training dataset, like DINOv2,

6Before averaging, we divide the MME Perception score by 20 to have the same scale as other benchmarks.
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Figure 7 | Continued Fine-Tuning Narrows the Gap Between CLIP and DINOv2. The average per-
formance of MLLMs built upon OpenAI CLIP ViT-L/14@336 and DINOv2 ViT-L/14@336 encoders are
visualized across benchmark categories. Performance is compared with 0.7M and 5M instruction tuning
data in both frozen (- ) and unfrozen (}) settings. DINOv2 shows significant performance improvement
with increased data and unfreezing—surpassing the 0.7M - CLIP model in several benchmarks and
narrowing and bridging the gap to the 5SM¢ model in knowledge and vision-centric tasks, respectively.

consists of only 142 million samples [104].

The performance comparison in Fig. 6 between DINOv2, other SSL models, and language-
supervised models underscores the potential for training superior vision-only models with
more data and improved techniques. Additionally, we observe that higher-resolution models
particularly enhance performance on chart and vision-centric benchmarks while remaining
neutral on general VQA and knowledge-based VQAs. While the majority of the backbones we
examine are ViT-based [39], ConvNet-based architectures (such as OpenCLIP ConvNeXt [87])
are inherently well-suited for high-resolution image processing [131] and can produce superior
results on OCR & Chart and Vision-Centric benchmarks. In vision-centric benchmarks, the gap
between language-supervised and other types of vision models is smaller, with a well-trained
self-supervised DINOv2 model even outperforming some language-supervised models.

Finding 5: High-res encoders greatly enhance performance on chart & vision-centric
benchmarks, and ConvNet-based architectures are inherently well-suited for such tasks.

Narrowing the gap between Language- and Self-Supervised models Above, we observe that
DINOv2 stands midway between self-supervised models and language-supervised models on
general and knowledge benchmarks, even outperforming some language-supervised models
on vision-centric benchmarks at a higher resolution. Here, we study whether the continued
finetuning of an MLLM based on a self-supervised model can achieve performance similar
to that of a language-supervised model. Given that DINOvV2 is trained with much less data
compared to CLIP, we investigate increasing the amount of visual fine-tuning data while
unfreezing the vision backbones to bridge this gap. Specifically, we scale up the instruction
tuning data from 737K to 5M (see more details in Appendix E.5), and instruction tune MLLMs
with DINOv2 ViT-L/14@336 and OpenAl CLIP ViT-L/14@336 encoders in both frozen and
unfrozen settings. In Fig. 7, we observe that by unfreezing the vision backbone, the DINOv2-
based MLLM fine-tuned with 5M data surpasses the MLLM trained with a CLIP model on 0.7M
data. Additionally, the gap between DINOvV2 and the CLIP models is reduced under the 5M
setting.

Finding 6: Language supervision offers strong advantages, but the performance gap
can be narrowed with SSL methods given enough data and proper tuning.
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SigLIP+DINOv2 51.61| 1,432.02 61.28 65.99 63.30| 68.82 35.69 29.40 60.01{43.00 35.70 60.40 37.54|30.00 53.99 55.52 53.58
SigLIP+DINOv2+ConvNext 54.52| 1,503.51 63.83 67.97 63.95| 70.40 35.99 29.30 60.69|48.20 36.90 64.97 45.53|34.67 58.69 55.74 60.33
SigLIP+DINOv2+ConvNext+CLIP| 54.74| 1,479.46 63.32 67.63 64.04| 71.39 35.49 29.10 59.88|50.24 39.60 64.55 46.12|32.67 58.95 58.54 60.42
SigLIP+ConvNext 54.53| 1,494.97 64.60 67.98 63.58| 71.05 34.90 29.80 60.85|50.64 38.00 64.53 46.52|32.00 57.91 58.83 56.58
CLIP+ConvNext 54.45| 1,511.08 63.83 67.41 63.63| 70.80 35.09 30.40 59.91|51.32 35.00 64.45 47.88|33.33 57.25 56.32 59.08
SigLIP+DINOv2+ConvNext-L 53.78| 1,450.64 63.57 67.79 63.63| 71.34 34.80 30.20 61.04|49.32 37.70 64.05 45.83|30.00 56.21 58.08 54.33
SigLIP+CLIP+ConvNext-L 54.53| 1,507.28 63.23 68.64 63.63| 71.10 35.89 30.90 59.97|52.36 38.50 65.40 47.92|28.67 57.25 57.66 55.92

Table 3 | All Benchmark Results for Model Ensemble with 1.2M Adapter Data + 737K Instruction
Tuning Data. Here, “SigLIP” = ViT-SO400M/14@384, “DINOv2” = ViT-L/14@518, “ConvNext” =
OpenCLIP ConvNeXt-XXL@1024, and “CLIP” = OpenAlI CLIP ViT-L/14@336.

3.5. Combining Multiple Vision Encoders

As observed in Fig. 6, different vision encoders excel in different aspects of MLLM performance.
In this study, we explore the potential of combining multiple vision encoders to leverage their
distinctive representations, aiming to build a more capable MLLM.

Given that different vision encoders use varying architectures and image resolutions, we in-
terpolate to a fixed number of visual tokens (576) in this subsection (see details in Appendix D.3).
We then concatenate these tokens along the feature dimension, following a method similar to
A-MoF proposed in [127]. The results are tabulated in Table 3, where we observe consistent
performance improvements with the addition of more models.

Our study indicates that adding a non-language-supervised model (DINOv2) can improve
benchmark performance, especially in vision-centric tasks. Notably, even OCR benchmarks
benefit from incorporating DINOv2. This highlights the importance of self-supervised learn-
ing models in complementing language-supervised models to achieve robust multimodal
understanding. Detailed results and configurations are available in Appendix D.3.

However, this naive strategy has two limitations: 1) it employs interpolation, which can
lead to information loss, especially with vision encoders with high-resolution feature maps, and
2) it treats each model equally via simple concatenation. Therefore, we seek a more effective
strategy that can more flexibly leverage model combinations with less information loss.

Finding 7: Combining multiple vision encoders, including SSL models, can enhance
MLLM performance across various benchmarks, particularly in vision-centric tasks.

4. Spatial Vision Aggregator (SVA): A New Connector Design

To effectively aggregate features from multiple vision encoders and prevent the information loss
introduced by interpolation, we use a set of learnable latent queries that interact with multiple
vision features via cross-attention layers [37]. In particular, our approach incorporates two new
vision-centric design principles:

1. We introduce spatial inductive bias by explicitly defining the aggregation space for each
token in the query.

2. We aggregate vision features multiple times across the LLM layers, enabling the model to
repeatedly access and integrate necessary visual information.

Our new formulation flexibly accommodates multiple vision encoders with varying feature
resolutions, while preserving the spatial structure of visual data during the aggregation process
and its integration with the LLM. The method is elaborated below.
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Figure 8 | Spatial Vision Aggregator (SVA). We propose SVA, a dynamic and spatially-aware connector
that integrates multiple vision features with LLMs while reducing the number of tokens.

To facilitate information aggregation via cross-attention, we create a C-dimension learnable
latent token x € IRC that is repeated L x L times to form a 2D grid, serving as the query X € IREXC.
The set of visual features F from N vision encoders serve as the context (i.e., key and value). We
ensure the output resolution of every vision encoder is a multiple of L. Formally, the feature
map of the k-th vision encoder (Fy) has a resolution of miL x mL x C, where my is a positive
integer multiplier, and L is the height/width of the learnable 2D grid with hidden dimension C.

Spatial inductive bias To maintain the spatial structure during cross-attention, we align each
token in the query with a specific sub-region of the feature maps in all vision encoders. Formally,
a token at row i and column j in the query x; ; corresponds to the sub-region

Felmy-i:my- (i+1),me-j:mg-(j+1)] € Rm*C

of the k-th vision feature map. As a result, a token x; ; aggregates a total of 3, m? features from
N vision encoders through cross-attention (see Fig. 8-left).

Specifically, the updated query vector q*; ; € R€ at position (i, j) is computed as

.
. Qij- [Kij1 Kij2, o k]
q’; ; = softmax

f Ve

[Vij1, Vij2, - Vign], (1)

where
qij = WQxi,j e R,
Kij = WEB[mg i mp- (i+1), me-jime- (j+1)] € R™X,
Viik = WYF[mg-i:me- (i+1), me-j:mg- (j+1)] € R%C,
Here, q;; is the query vector at position (i, j), calculated using the query projection matrix
WQ e R®*C. The key vectors k; j and value vectors v; j are computed for each vision encoder

k using their respective key and value projection matrices WK € R*¢ and WY € R“*¢. Since
& P y proj k k
Y m2 features are aggregated into a single token, we effectively reduce the number of tokens.

Multi-layer vision aggregation Although our proposal effectively aggregates features from
multiple vision encoders, there is still potential information loss with high-resolution input
(large my) or multiple vision encoders (large N). Here, a single token would have to han-
dle a larger amount of context information during aggregation. To prevent this, we allow
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cross-attention to occur multiple times by inserting our proposal throughout the LLM layers—
allowing consistent access to the uncompressed visual information (see Fig. 8-right).

Hyperparameters To flexibly modulate capacity, we introduce two hyperparameters D and G,
which indicate the number of cross-attention layers and distinct groups of learnable queries
used between the vision models and the LLM, respectively. Intuitively, a larger D allows for
more stacked cross-attention operations to facilitate the aggregation process, while a larger G
enables a wider range of aggregation patterns to be captured. The G groups of queries aggregate
visual information separately in parallel and then are concatenated to form the final visual
tokens for the LLM. D and G are always set to 1 for cross-attention layers within LLM layers.

Connector General Knowledge OCR & Chart Vision-Centric
Concat. [127] 67.2 48.9 50.1 52.6
Resampler [59] 63.1 46.5 27.1 42.6
SVA-no-multi-agg 68.0 49.5 55.2 52.6
SVA 68.5 49.7 55.5 53.2

Table 4 | Comparison between our SVA and other aggregation approaches. The SVA module consistently
outperforms other baselines and excels in aggregating high-resolution vision information.

We demonstrate the efficacy of SVA module using the best vision model combination results
from the previous section and a Vicuna-1.5-7B base LLM. Specifically, we employ a combination
of four vision encoders: OpenAl CLIP ViT-L/14@336, SigLIP ViT-50400M /14@384, OpenCLIP
ConvNeXt-XXL@1024, and DINOv2 ViT-L/14@518. We compare our method with two strong
baselines: 1) concatenation-based [127] and 2) Re-sampler [11, 73], which utilizes a similar cross-
attention form but lacks both spatial inductive biases and multi-layer vision aggregation. Here,
we include two variants of our SVA module. The standard one, “SVA”, uses D =3, G =1, and
inserts cross-attention blocks inside the LLM with a layer stride of 3. To isolate the advantages
of spatial inductive biases, we include another SVA variant, “SVA-no-multi-agg”, that does
not add cross-attention blocks inside the LLM and sets D = 3 and G = 3. Table 4 shows that
SVA outperforms both baselines in all benchmark categories, with a significant improvement in
the OCR & chart category (requiring high-resolution feature understanding). In contrast, the
Resampler—which lacks spatial inductive biases—struggles to condense concatenated tokens
from various vision towers into a limited number of learnable queries via global cross-attention.

Compared with other spatial-based connectors like C/D-Abstractor [21] which are designed
for single vision feature maps, our SVA module can dynamically combine visual features from
multiple vision models with varying resolutions. Besides, our spatial inductive bias in SVA
can better compress spatial information compared with such methods. To isolate the effect of
spatial inductive bias, we consider the case of token reduction using a single vision encoder.
Specifically, we use OpenAI CLIP ViT-L as the vision model and compress its original 576 tokens
to 36 tokens using our SVA module and other connectors. We compare our SVA module with
three baselines: 1) Direct interpolation + MLP, 2) C-Abstractor [21], and 3)LDPv2 Projector [35]
(similar to C-Abstractor but more lightweight). For fair comparisons, we do not include multi-
layer aggregation inside the LLM for our SVA baseline, and the results are shown in Table 5.
Compared with the simple MLP baseline, C-Abstractor performs better on General and Vision-
Centric tasks but inferior on Knowledge and OCR & Chart tasks. LDPv2 performs similarly
to the MLP baseline. Our SVA consistently demonstrates superior performance across all
categories, especially in OCR & Chart and Vision-Centric tasks, demonstrating its effectiveness
in information compression.

We further conduct ablation experiments using OpenAl CLIP ViT-L/14@336 + OpenCLIP
ConvINeXt-L@1024 as our base model combination. We focus on the OCR & chart categories to
assess the impact on high-resolution visual understanding. The results show that increasing
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Method General Knowledge OCR & Chart Vision-Centric

Interpolate + MLP 63.4 43.8 28.1 43.7
C-Abstractor [21] 64.4 42.8 26.1 443
LDPv2 [35] 62.5 43.9 28.7 43.9
SVA 65.5 44.5 31.4 46.9

Table 5 | Comparison between SVA and other spatial-based connectors vision token com-
pression. The SVA module with spatial inductive bias more effectively compresses the vision
information.

D OCR & Chart G OCR & Chart Multi-agg OCR & Chart
2 52.1 1 52.4 No 52.4
3 52.4 2 52.6 Yes 53.3
4 52.8 3 53.1
(a) # layers (b) # groups (c) Multi-layer aggregation

Table 6 | Ablations on hyperparameter choices for SVA. Enlarging the model capacity of the
SVA module can further improve the performance.

capacity via D or G improves performance and that allowing vision aggregation across multiple
layers by adding cross-attention layers within the LLM also enhances performance. More
detailed experimental setups and analyses are provided in the Appendix F.

Finding 8: Spatial inductive bias and deep interaction between LLM and vision feature
help to better aggregate and condense vision features.

5. Instruction Tuning Data for Training MLLMs

Previous work highlights the importance of data in training MLLMs [45, 81, 99], but explicit
investigations are limited. Here, we gather all available instruction tuning data and examine
data curation by enhancing diversity, balancing sources, and improving mixtures. Unless
specified otherwise, experiments involve fine-tuning an OpenAl CLIP ViT-L/14@336px vision
encoder [110] with a Vicuna-1.5-7B LLM base [152].

M RenderedText [135] (10.0 K) RefCOCO [141] (30.0 K) M CLEVR [60] (350.0 K)
\‘l Filtered DVQA (1550.0K) M VisText [125] (9.0K) VizWiz [52] (20.0 K) M TallyQA [1] (250.0 K)
DVQA [62] (775.0 K) M FinQA [31] (6.0K) Visual7W [160] (14.0 K)
EE SynthDog [68] (500.0 K) B InfoVQA [16] 2.0 K) LAION GPT-4V [71] (11.0K) Filtered WebSight (790.0 K)
ArxivQA [77] (100.0 K) B TAT-QA [159] (2.0 K) IDK [22] (110 K) B WebSight [72] (10.0K)
OCRVQA [101] (80.0 K) W HiTab [32] 2.0 K) OKVQA [96] (9.0K) W DaTikz [11] (47.0K)
ScreenQA [57] (79.0 K) M HatefulMemes [67] (8.0 K) M Design2Code [119] (05 K)
WIKISQL [154] (74.0 K) ALLaVA [25] (700.0 K) W OODVQA [130] (8.0 K)
Low-Level Vision [27] (50.0K) - Q-Instruct [136] (400.0 K) H SketchyVQA [130] (8.0K) B Geol70K [43] (170.0K)
. w Cambrian-7M DocVQA [95] (39.0 K) LNQA [109] (302.0 K) M Visualmre [124] (3.0 K) B RAVEN [149] (420 K)
i) B WTQ[107] (38.0 K) LVIS-Instruct4V [132] (220.0 K) B GeomVerse [65] (9.0 K)
) M ChartQA [97] (28.0K) LLaVA150K [83] (150.0 K) OpenOrca [79] (994.0 K) B MathVision [133] (3.0 K)
O% M IconQA [90] (27.0K) VisualGenome [70] (86.0 K) MathInstruct [143] (262.0 K) M Inter-GPS [91] (1O K)
D, M Chart2Text [63] (26.0 K) VQAV2[51] (83.0 K) H OrcaMath [100] (200.0 K) B TQA [5] (1.0K)
00@ ’ M TabMWP [59] (23.0 K) GPT4V Rewritten (77.0 K) M WizardCoder [94] (143.0 K)
( ¢ \ H TextCaps [120] (22.0 K) GQA [58] (72.0K) B OpenCodelnterpreter [153] (66.0 K) M Data Engine (161.0 K)
/ 2 B LLAVAR [150] (20.0 K) A-OKVQA [117] (50.0K) M Dolly [36] (11.0K) M PathVQA [54] (32.0 K)
W ST-VQA [17] (17.0K) AlfWorld [147] (45.0 K) M ScienceQA [92] (12.0 K)
B AD [66] (15.0 K) ShareGPT [27] (40.0 K) Filtered CLEVR (350.0 K)

Figure 9 | Cambrian-7M: A Large-Scale Curated Instruction Tuning Dataset for MLLM. Left: The inner
circle shows the original distribution of Cambrian-10M. The outer circle shows the curated Cambrian-7M.
Right: All the data sources in the Cambrian dataset as well as the ones filtered in data curation.
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Average | General Knowledge OCR & Chart Vision-Centric
150k 53.7 68.0 51.3 45.2 50.5
250k 54.3 68.1 51.5 45.3 52.2
350k 54.3 67.4 51.4 46.0 52.3
450k 54.2 68.0 52.2 45.5 50.7

Table 7 | Threshold t value between 250k and 350k obtains better performance. We observe an “elbow”
effect in the data balancing experiment. A threshold t between 250k and 350k works best.

5.1. Data Collection

Collecting Instruction Tuning Data from existing data sources Unlike language data, mul-
timodal (visual) instruction-tuning data is much rarer and harder to collect. To address this,
we use existing multimodal benchmarks and datasets involving visual interaction data, such
as Visual Question Answering (VQA) and OCR data. Previous work [148] highlights the
catastrophic forgetting that commonly occurs when fine-tuning multimodal LLMs. To help
maintain conversational abilities, we also collect a small volume of high-quality language-only
instruction-following data. We categorize data into General conversation, OCR, Counting,
Code, Math, Science, and Language-only data. We list the data sources in Fig. 9, and the details
of data preparation in Appendix E.

Targeted Internet Data Collection Engine As observed in Fig. 9, there is an unbalanced
distribution of data. Some categories, such as science, have very few data sources, and each
source has limited samples. In the existing data sources, there are 32k samples in PathVQA [54]
and 12k in ScienceQA [92]. This scarcity may be due to the difficulty of producing large-scale
yet reliable scientific visual instruction tuning data. Previous work [74] has demonstrated the
potential of using the internet to automatically gather targeted visual data for specific task; we
employ similar ideas to address the scarcity, introducing a data engine to create large-scale,
reliable, high-quality knowledge-based instruction tuning data (see Fig. 18). The engine selects
a target field and subfield, such as “Physics”, and uses an LLM like GPT-4 [103] to identify
topics (e.g., “Newton’s Laws”). It then searches reliable sources like Wikipedia for each topic.
We find that image-text pairs extracted from Wikipedia pages are of high-quality. A parser
extracts image-caption tuples and feeds the caption text to an LLM, such as GPT-3.5 [102], to
generate instruction-type Q&A pairs about the image using an engineered prompt. These Q&A
pairs and the image form our VQA dataset. Details are in Appendix E.3. Our data engine
produces a large volume of reliable scientific data, increasing the diversity in the data pool. We
generate 161k science-related data points—400% more than the previous combined data sources.

Cambrian-10M We create a large pool of instruction tuning data, which we refer to as
Cambrian-10M. This pool contains approximately 9784k data points, offering a diverse range of
data for our work and future research. We visualize its composition in Fig. 9.

5.2. Data Curation

Cambrian-10M is a large pool of instruction tuning data sourced from a variety of data sources,
with an unbalanced data ratio between categories. Here, we take a preliminary step to study
data curation by improving data balancing and adjusting data ratios.

Data Balancing We follow previous work [110, ] to set thresholds t for the number of data
points from a single data source. To study the effect of the number t, we plot the cumulative
sum of counts for entries sorted by counts from tail to head (see Fig. 10). We choose t =
150k, 250k, 350k, and 450k in this section and observe an elbow effect in Table 7—finding that a
threshold between 250k and 350k work the best for Cambrian-10M.
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Figure 10 | Data Balancing via Applying Thresholds on Data Sources. Applying threshold t alleviates
the exponential tail of Cambrian-10M.
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Figure 11 | Exploring instruction tuning data mixture ratios. We explore the impact of different ratios
on the overall performance of the model with a controlled data size of 1.35M. We find that different ratios
have a non-trivial impact on the overall performance, and exp-5 is the most optimal.

Data Ratio Unlike previous work in VLM data curation [42, 139] which curate noisy raw
image-text pairs by scraping the internet, Cambrian-10M is designed for visual instruction
tuning. Given the various capabilities of different types of data, it is essential to balance the
ratio of these data types. We conduct pilot experiments with a fixed dataset size of 1350k,
examining the impact of different data ratios on downstream performance. We visualize the
results in Fig. 11 and summarize our findings as follows: (i) Balancing General, OCR and
Language data is crucial. The model’s OCR capability is proportional to the OCR data ratio;
however, an excessive OCR ratio compromises general VQA and vision-centric performance.
(ii) Performance on knowledge-intensive tasks is influenced by multiple factors, often requiring
a mix of OCR, chart, reasoning, and general perception. Increasing the science data ratio can
help, but a very low ratio leads to poor performance.

Cambrian-7M By applying data filtering to Cambrian-10M with our identified data ratio, we
create a smaller but higher-quality dataset called Cambrian-7M. Table 8 showcases the benefits
of a well-balanced and carefully curated dataset. Despite having fewer samples, Cambrian-7M
demonstrates improved performance.
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Average | General Knowledge OCR & Chart Vision-Centric
LLaVA-665K 40.7 64.7 45.2 20.8 32.0
Cambrian-10M 54.8 68.7 51.6 47.3 51.4
Cambrian-7M 55.9 69.6 52.6 47.3 54.1

Table 8 | Performance improves with better instruction tuning data curation. The model gains significant
improvements when scaling up to Cambrian-10M. With data curation, the model further improves
performance across all categories while enjoying more efficient training.

w /o0 system prompt w/ system prompt
How many people are in this image? Based on this chart, what is the most popular tea?

There are six people in the image. Black Tea

There are six people in the image. Based on the chart, black tea appears to be the most popular
type of tea in the U.S. Bubble Tea Market, as it consistently

has the highest sales volume across all years displayed.

Cat in bathtub New York City

The image captures a serene moment in a bathroom
setting. A fluffy, gray cat is comfortably seated
on the edge of a white bathtub. The cat's gaze is
directed upwards, possibly at something outside the

This is New York City, and the prominent landmark in the image
is the Washington Square Arch, which is located in the Greenwich
Vvillage neighborhood. To tour around this landmark, you should
visit the nearby Washington Square Park, which is a popular spot
frame, giving it a contemplative expression. The for locals and tourists alike. The park offers a variety of
backdrop is a simple white tiled wall, which activities, including walking paths, a fountain, and a statue of
contrasts with the cat's fur, making it the focal George Washington. Additionally, the surrounding area is rich
point of the image. The overall scene suggests a with historical buildings, art galleries, and restaurants,
quiet, peaceful moment in a domestic setting. making it a vibrant and culturally diverse place to explore.

Please solve this question step by step. What is unusual about this image? Please answer in details.

VEFZ-x-0 The image is unusual because it features a church with a design

that incorporates elements typically associated with a face. The

Answer is C.
In the equation above, k isa constant. If x= 9, what|

is the value of k 7 two circular windows on the tower serve as eyes, and the cross

N1 . on top of the tower is positioned to resemble a nose. This
B 7 To solve the equation (\sart{k+2} - x = @), we need anthropomorphic design is not commonly found in church
o 16 to isolate (k). Let's start by adding (x) to both architecture, which often favors more traditional and

sides of the equation to get rid of the subtraction:
(\sqrt{k+2} = x)

Now, to isolate (k), we square both sides of the
equation:

((\sgrt{k+2})"2 = x"2)

This simplifies to:

0 7 conventional styles. The presence of the palm trees adds a
tropical or subtropical feel to the scene, which may not be the
usual setting for such a building. The overcast sky suggests a
gloomy or somber mood, which contrasts with the whimsical nature
of the church's design.

,52;2 wexsﬁ.’,mme (6 = ) fintie (e CEEEEns The unusual aspect of this image is the anthropomorphic design of
(ke2 = 982) the church's bell tower, which is given human-like features.

(k+2 = 81) Specifically, the two windows on the tower are designed to
Finally, we subtract 2 from both sides to solve for resemble eyes, and the cross at the top of the tower is stylized
@ to look like a nose. This creative design choice is not typical
(k=81 - 2) for church architecture, which usually favors more traditional
(k = 79) and less whimsical features. The intention behind such a design
Therefore, the value of (k) when (x = 9) is 79. The could be to add a playful or artistic element to the building,
correct answer to the question is D. possibly to attract attention or to reflect a unique character of

the church or the community it serves.

Figure 12 | Incorporating System Prompt in Instruction Tuning Data alleviates the “Answer Machine
Phenomenon” By adding system prompts in Cambrian-7M, the model exhibits better chat ability while
retaining strong question answering abilities. The model without system prompts requires additional
prompting to elicit longer responses.

5.3. Alleviating the “Answer Machine Phenomenon” via System Prompts

Here, we investigate a phenomenon we term the “answer machine phenomenon”. We observe
that a well-trained MLLM may excel at VQA benchmarks, but lack basic conversational abilities
and default to outputting short, curt responses (see examples in Fig. 12). This discrepancy arises
because benchmark questions typically require responses that are limited to a single option,
choice, or word—diverging from the more broad and realistic use cases of MLLMs. Similar
phenomena have been discussed in other LLM studies [115, 152, 156].

We suspect that this issue stems from instruction tuning data containing an excessive number
of short-response VQA tasks, leading to catastrophic forgetting in LLMs. To address this, we
incorporate additional system prompts during training. We append prompts such as “Answer
the question using a single word or phrase.” before questions that generate a single word or phrase
in the response. Full details of the system prompts used are provided in Appendix E.2. After
integrating these system prompts, we observe that while the model’s benchmark performance
remains unchanged, its conversational ability improves dramatically. For example, in Fig. 12,
models with system prompts produce longer and more engaging responses while answering
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Method < = = » 0|< ® =2 =2 <|&4£ U O & AQ|< s K O O

GPT-4V UNK. | 63.0 14094 758 69.1 368|652 757 56.8 499 782|774 785 645 78.0 884|624 500 614 643 73.8

Gemini-1.0 Pro UNK. | - 14966 736 707 - - 795 479 452 - - 659 - - - - - - -

Gemini-1.5Pro  UNK. | - - - - - - - 585 521 803| - 813 - 735 85| - 67.5 - -
Grok-1.5 UNK. | - - - - - - - 536 528 883| - 761 - 781 856/ - - 687

MM-1-8B 144 - 15293 723 699 - - 726 370 359 - - - - - - - - R - _

MM-1-30B 144 - 16376 751 721 - - 810 447 394 - - - - - - - - - - -

Base LLM: Llama-3-Ins-8B
Mini-Gemini-HD-8B 2880 [ 72.7 1606.0 72.7 732 645|557 751 373 370 735|629 59.1 477 702 746|515 187 621 622 63.0
LLaVA-NeXT-8B 2880 | 72.5 1603.7 721 727 652|556 728 41.7 363 716|639 695 49.0 646 726|56.6 387 60.1 622 653
Cambrian-1-8B 576 | 73.1 1,547.1 759 747 646|613 804 427 49.0 730|713 733 624 717 778|650 513 642 723 72.0

Base LLM: Vicuna-1.5-13B
Mini-Gemini-HD-13B 2880 | 70.7 1597.0 68.6 70.6 63.7|541 719 373 37.0 70.1|60.8 56.6 46.6 702 69.8|494 193 575 536 67.3
LLaVA-NeXT-13B 2880 | 69.9 1575.0 70.0 65.6 65.4 |53.7 735 362 351 70.0]629 622 514 671 709|559 360 59.1 627 657
Cambrian-1-13B 576 | 73.7 1,6104 75.7 744 64.3|60.2 79.3 40.0 48.0 73.6 | 71.3 73.8 619 728 768|622 413 63.0 725 718

Base LLM: Hermes2-Yi-34B
Mini-Gemini-HD-34B 2880 | 76.2 1659.0 80.6 753 658|624 777 48.0 434 805|681 67.6 51.8 741 789|638 373 672 715 79.2
LLaVA-NeXT-34B 2880 | 76.0 16332 79.3 759 67.1 625 81.8 46.7 465 749|677 687 545 695 781|640 473 610 730 748
Cambrian-1-34B 576 | 76.8 1689.3 814 753 658 | 67.0 85.6 49.7 532 79.7 (719 75.6 60.0 76.7 755|685 527 67.8 740 79.7

Table 9 | Comparison of Cambrian-1 with other leading MLLM framework. Cambrian-1 outperforms
other open-source models and achieves competitive performance on a number of benchmarks, compared
to proprietary models such as GPT-4V, Gemini, and Grok-1.5. Despite using only 576 visual tokens,
Cambrian-1 performs better on OCR & Chart and Vision-Centric benchmarks compared to Mini-Gemini-
HD and LLaVA-NeXT, which use 2880 tokens.
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Figure 13 | Comparison of model average performances on each category. Cambrian-1 outperforms
other open-source models across all sizes. The lead is especially large on OCR & Chart and Vision-Centric
benchmarks, highlighting the advantage of our vision-centric design.

questions correctly. The system prompts also enhance the model’s performance on reasoning-
related tasks, such as math problems, by encouraging a chain of thoughts [134] followed by the
answer.

This underscores the necessity of developing evaluation protocols like the Chatbot Arena [34]
for MLLMs, despite the challenges in collecting large-scale, real-world interaction data. While
performing well on benchmarks is important, it is equally crucial to ensure the model can
engage in meaningful and natural interactions. The overall user experience and the model’s
conversational abilities are paramount, as a model that excels in benchmarks but fails to converse
effectively cannot meet the needs of practical applications.

6. State of the Art Performance

Finally, we leverage the insights from all our previous studies to train a family of MLLMs we call
Cambrian-1. We train models using LLM backbones of various scales: LLaMA-3-Instruct-8B [4],
Vicuna-1.5-13B [152], and Hermes-2-Yi-34B [140]. Our vision component combines four models—
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ROSES'ARERED Why is this image funny?

What does this image remind you of?

The humor in this image comes from the
unexpected twist on the classic poem
'Roses are red, violets are blue.' Instead
of a romantic or sweet sentiment, the poem
is humorously altered to a more mundane
and slightly unsettling scenario, which is
a bug in the bed. This juxtaposition of a
traditional romantic poem with a common,
albeit slightly unpleasant, household

BI'G I" 'n 'm occurrence creates a comedic effect.

Which character is this?

The image might remind you of a playful
and creative culinary presentation,
possibly inspired by a world map, where
each piece of food represents a different
continent. It could also evoke thoughts of
a fun cooking challenge or a themed meal
where the food is arranged to mimic the
shape of the Earth.

The character in the image is Homer Simpson,
a central character from the animated
television series 'The Simpsons.' Homer is
known for his distinctive yellow skin,

Please solve the problem step by step:

To solve this problem, we need to

casual attire, and often humorous or determine which option correctly completes

oblivious behavior. the sentence in a way that adheres to the

conventions of Standard English. The
sentence is:

"In 1937, Chinese American screen actor
Anna May Wong, who had portrayed numerous
villains and secondary characters but
never a heroine, finally got a starring
role in Paramount Pictures' Daughter of
are the flags here? Shanghai, a film that

List all the countries in this image in D) critic Stina Chyn, claims,
the format of a json {1: 2:, etc}. Why

e “expanded the
@ O ) range of possibilities for Asian images on
O = O C O O { screen.”

000000 "1": "Austria®, The correct option should be the one that

maintains the subject-verb agreement and
the appropriate punctuation.

Option A: "critic, Stina Chyn, claims" -
This option is incorrect because it uses a
comma after the name, which is not
standard in English.

Option B: "critic, Stina Chyn, claims," -
This option is also incorrect because it

000000

The flags are here to represent the uses a comma after the name and an extra
participating countries in the UEFA EURO comma at the end of the sentence, which is
2024 tournament, which is hosted by not standard in English. X

Germany. Each flag corresponds to a Option C: "critic Stina Chyn claims” -
country that is either a host or a This option is correct because it
participant in the event, as indicated by maintains the subject-verb agreement and
the tickets below the flags. The tickets doe§ not use any unnecessary commas.
suggest that these countries are either Option D: "critic Stina Chyn, claims,” -
hosting matches or have qualified to play This option is incorrect because it uses a
in the tournament. comma after the name and an extra comma at

the end of the sentence, which is not
standard in English.

Therefore, the correct answer is Option C:
“critic Stina Chyn claims."

Figure 14 | Examples of Cambrian-1-34B. Cambrian-1 showcases impressive abilities in visual intersec-
tion. The model demonstrates instruction-following ability such as output in json format, as illustrated
in the bottom-left example. Cambrian-1 also demonstrates remarkable OCR ability (See model handles

“" oy

different Comma “,” in the right down example).

OpenAI CLIP ViT-L/14@336, SigLIP ViT-50400M/14@384, OpenCLIP ConvNeXt-XXL@1024,
and DINOv2 ViT-L/14@518 (Section 3.5)—via the Spatial Vision Aggregator (Section 4). We
pre-train the connector using 2.5M adapter data and instruction tune using our Cambrian-7M
data mix (Section 5.2). Our models are evaluated on the benchmarks categorized in Section 3.1,
with results presented in Table 9 and Fig. 137.

Cambrian-1 surpasses open-source models like LLaVA-NeXT and Mini-Gemini. Thanks to
the SVA, Cambrian-1 excels in tasks requiring high-resolution image processing, even with only
576 image tokens—about 1/5 of the tokens used by LLaVA-NeXT and Mini-Gemini. Cambrian-1
also achieves comparable performance to the best proprietary models, such as GPT-4V, Gemini-
Pro, and MM-1, on several benchmarks. We showcase some examples in Fig. 14, demonstrating
that the model effectively attends to details in images despite using only 576 tokens.

Additionally, we emphasize the importance of post-processing a model’s output and as-
sessing its accuracy. For instance, if the correct answer is " (a) Apple" and the model outputs
"Apple", it is crucial to recognize the response as correct. We use fuzzy matching to evaluate
the accuracy of our model’s outputs and conduct an ablation study with LLMs like GPT-3.5 to
validate this method. Our findings indicate that fuzzy matching provides reliable judgments.
Further details can be found in Appendix G.2.

7For the General Average, we note that GPT-4’s performance on the GQA test set is low, possibly because other
models are trained on the GQA training set, whereas the training set used for GPT-4 is unclear.
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7. Discussion

We advocate for using MLLMs as an interface to evaluate visual representations, as previous
benchmarks are becoming saturated and do not adequately reflect the diverse and complex
perception challenges of the real world. Our work highlights the current gap between language-
supervised models and self-supervised learning models and demonstrates the potential of
bridging this gap. However, it is known that features of language-supervised models behave
like a bag-of-words [126, 145], underscoring the need for advancements in vision-only models
to ensure better visual understanding. We hope to inspire future research into developing
better vision-only models intended to be adapted into the MLLM setting, that more effectively
leverage large-scale datasets [86] and preserve the advantages in visual grounding [127].

As we observe in Table 9, a well-trained open-source model such as Cambrian-1 can match
or even outperform proprietary models on many existing benchmarks. However, the use and
evaluation of MLLMs extend far beyond the current scope of benchmarks—to conversational
ability, creativity, reliability, and overall user experience. Developing models solely based on
benchmark results can result in an “answer machine”, over-optimized for benchmarks but
lacking in practical interaction capabilities. Therefore, the development of MLLMs that better
align with human and societal needs is a continuously evolving process, both in terms of
evaluation and model development.

Our current Cambrian-1 model uses a moderate number of visual tokens and does not adopt
the any-resolution strategy [30, 78, 82] to handle ultra high-resolution images or those with
extreme aspect ratios, which require a larger number of visual tokens. For specialized tasks like
V*Bench [137], which require processing ultra high-resolution images, increasing the resolution
and number of visual tokens could lead to an HD version of the Cambrian-1 model.

One promising direction for post-training alignment is through reinforcement learning
rather than supervised fine-tuning. Many MLLM studies, including Cambrian, primarily
focus on supervised fine-tuning. Yet, recent advancements in LLMs [38, 105, 111, 157] and
some in MLLMs [142, 147] suggest that reinforcement learning from human or environmental
feedback can further improve models, potentially surpassing the limits of supervised fine-
tuning, especially in decision-making abilities.

Cambrian-10M (Fig. 9 and Section 5) provides a rich pool of data for studying data curation
in fine-tuning MLLMs. Our work takes an initial step in curating higher-quality data to
enable more efficient and effective instruction tuning. We believe there is room for further
improvement in the data curation pipeline, and we hope this work can serve as a foundation
for future research.

Additionally, training large-scale models requires careful design of model sharding, data
sharding, and infrastructure adaptations. In this work, we train our model on TPU-V4 [61]
with FSDP [151] using TorchXLA. We share our experiences, technical challenges, and solutions
in Appendix A. We also open-source our implementation and provide tutorials to help the
community undertake large-scale training more efficiently.

To conclude, Cambrian-1 introduces a family of state-of-the-art MLLM models that achieve
top performance across diverse benchmarks and excel in visual-centric tasks. We provide
model weights, open-source code, datasets, and detailed recipes for model training and evalua-
tion. We hope our work will strengthen the open research community and accelerate future
advancements in both visual representation learning and multimodal systems.
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A. Training, Infrastructure, and Implementation

All models in this paper were trained using TPU-V4 pods [61]; we evaluate using NVIDIA
A6000, A100, and H100 cards. The experiments in Section 3.4 require less than 24 hours on a
TPU-V4-128, while our final Cambrian-1 models are trained in less than 4 days on a TPU-V4-512.

To enable and facilitate large-scale parallel training on TPUs, we employ TorchXLA with
FSDP [151] to handle training sharding and parallelism. Training a large-scale multimodal
model with TorchXLA on TPU is a challenging journey, as there are no open-source codebases
and many critical features are not supported in the TorchXLA or TorchXLA FSDP libraries. To
provide a brief taste of the difficulties: TPUs require a static graph throughout the program,
which requires ground-up rewrites of dynamically-written open-source PyTorch codebases;
model resuming is not implemented in TorchXLA, which is especially crucial when training on
preemptable TPUs; existing TorchXLA FSDP tutorials fail to compile due to version changes in
TorchXLA, updates in Hugging Face Transformers & Accelerate, or simply inherent issues with
the tutorial; loading very large models (over 30 billion parameters) with the TorchXLA FSDP
library is natively impossible due to the 100GB memory constraints of TPU-V4s, and requires
extensive workarounds.

To this end, we have rewritten or developed many new functions to make this research
possible. For instance, we rewrote the TorchXLA FSDP Sharding API to load very large
models; we implemented model resuming on TorchXLA; we rewrote parts of the Hugging Face
Transformers FSDP and gradient checkpointing implementations to enable large-scale FSDP
training. We are committed to open-sourcing our codebase and publishing a comprehensive
tutorial to share our insights, with the hope of inspiring and supporting future research and
open-source contributions to the TPU and TorchXLA ecosystem.
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Figure 15 | Correlation matrix for MLLM benchmarks. The correlation matrix for MLLM benchmarks
with respect to different vision backbones. The correlation matrix helps us to analysis and group
benchmarks.

B. Analyzing the Benchmarks

MLLM Benchmark Performance Confusion Matrix

We evaluate the benchmark scores for our one-stage, two-stage finetune-only and hybrid
models, and then plot the correlation matrix for the pool of MLLM benchmarks. The correlation
plot displays in Fig. 15. The result demonstrates that MMMU is less correlated in measuring
model performance to other benchmarks. Nonetheless, we acknowledge it is widely used and
therefore cluster it into knowledge-based QAs based on the nature of their questions.
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Figure 16 | CV-CB Benchmark Filtering. We reformulate classic 2D and 3D CV benchmarks into Q&A
questions to evaluate MLLM'’s visual capabilities.

C. Cambrian Vision-Centric Benchmark (CV-Bench)

Curation Procedure We provide an overview of the data curation process in Fig. 16, which is
conducted in a semi-automatic manner. The procedure consists of two main steps:

1. using the original benchmarks and their associated ground truth annotations, we generate
query and answer pairs. These pairs are tailored to specific tasks: 2D-related tasks with
COCO and ADE20K datasets, and 3D-related tasks with Omni3D.

2. after generating the query and answer pairs, we engage human experts to manually filter
out any incorrect or ambiguous queries to enhance the quality of benchmark. Each query
is assigned one of three statuses: accepted (used as is), modified (where the incorrect
answer is modified), and rejected (queries that are ambiguous, such as those too small or
difficult to discern, even for human experts).

Following this two-stage process, we finalize the benchmark, which results in a total of 2638
image queries with improved accuracy and reliability.

Human verification There are multiple reasons for the above generated data to be inaccurate.
One of the main reasons is sparse annotations, but occasionally there could be wrong annotations
as well. Thus, we need manual inspection to change/remove these examples generated. Here
are a few criteria we followed while manually filtering COCO and ADE20k data.

¢ For Counting question types, if all instances of a category are not annotated, the ground
truth would have fewer instances than actually appear in the image. In a few cases
where the image has distinctly different countable instances of the object, we change the
options/answer. In case the count is ambiguous, we reject the data sample altogether.

* For Relative Distance question types without annotation, if the question is asked about
two objects A and B and if there are two instances of a specific category (say A), the
relative location of A w.r.t B can be have multiple correct answers. We reject the sample in
this case. We also reject cases with clear incorrect annotations.

Benchmark Evaluation To ensure that equal importance is given to both 2D and 3D tasks,
we use an evaluation metric that is the average of the accuracies obtained from these tasks.
Specifically, the overall performance is calculated as follows:

Accuracy oo +Accuracy s ppagx
2

Accuracy,,, + Accuracys,, )
2

Accuracy,,, = (

Overall Accuracy = (
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D. Vision Models in MLLMs

As mentioned in Section 3.4, we use MLLM as an interface to evaluate vision model’s different
capabilities. Here, we list details in terms of the model selection, full results, and data split.

D.1. Details of Vision Models

In our exploration of versatile vision models, we select thirteen models and group them into
four categories: language-supervised models (i.e., OpenAl CLIP [110], SigLIP [146], DEN-CLIP [40],
EVA-CLIP [123] and OpenCLIP [33]), self-supervised models (i.e., DINOv2 [104], I-JEPA [9],
MAE [53], MoCo v3 [29]), class-supervised models (ImagetNet22K ViT [39]) and other models
such as stable diffusion [113]®, segmentation models like SAM [69], and depth estimation
models like MiDaS [15]. To provide a clear understanding of the specific variant evaluated,
we meticulously detail their backbone architectures, resolution, number of tokens, and hidden
dimension sizes in Table 10. For models that output a large number of patches in the last layer
(e.g., SAM and ConvNeXt) we interpolate to the number of tokens specified in Table 10, and
denote interpolation with L.

Supervision Method Architecture Patch Res. #Tok. Hidden
Type Size Size
Language-Supervised
Language OpenAl CLIP ViT-L 14 336 576 768
DEN-CLIP ViT-L 14 224 256 1024
DEN-CLIP ViT-H 14 378 729 1280
EVA-CLIP-02 ViT-L 14 336 576 1024
SigLIP ViT-L 16 384 576 1024
SigLIP ViT-50400M 14 384 729 1152
OpenCLIP ConvNeXT-L - 512 1576 1536
OpenCLIP ConvNeXT-L - 1024 1576 1536
OpenCLIP ConvNeXT-XXL - 1024 1576 3072
Self-Supervised
Contrastive DINOv2 ViT-L 14 336 576 1024
DINOv2 ViT-L 14 518 1576 1024
MoCo v3 ViT-B 16 224 196 768
MoCo v3 ViT-L 16 224 196 1024
Masked MAE ViT-L 16 224 196 1024
MAE ViT-H 14 224 256 1280
JEPA I-JEPA ViT-H 14 224 256 1280
Other
Segmentation = SAM ViT-L 16 1024 1576 1024
SAM ViT-L 16 1024 1576 1280
Depth MiDaS 3.0 ViT-L 16 384 576 1024
MiDaS 3.1 ViT-L 16 518 1024 1024
Diffusion Stable Diffusion 2.1 VAE+UNet 16 512 1024 3520
Class Labels SupViT ViT-L 16 224 196 1024
SupViT ViT-H 14 224 256 1280

Table 10 | Catalog of all vision backbones tested. ! denotes that the visual tokens have been

interpolated down to the specified length.

8We extract features following the practice in [12]
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Method Architecture Patch Size Resolution # Tokens Linear Probing (%)
EVA-CLIP-02 ViT-L 14 336 576 85.0
DEN-CLIP ViT-L 14 224 256 83.6
DINOv2 ViT-L 14 336 576 83.1
OpenCLIP ConvNeXt-L - 512 576 82.9
OpenAI CLIP ViT-L 14 336 576 80.3
I-JEPA ViT-H 14 224 256 77.0
Supervised ViT-L 16 224 196 74.5
MoCo v3 ViT-B 16 224 196 71.9
MiDa$S ViT-L 16 384 576 70.1
MAE ViT-L 16 224 196 68.3

Table 11 | Linear Probing Results of Different Vision Backbones

D.2. Full Results of Different Vision Backbones

For the above-listed vision models in Table 10, they are integrated as the vision encoder of the
MLLMs. These MLLMs are trained on various adapter adapter data splits (i.e., 0, 0.5 and 1.2
million), and subsequently fine-tuned on a 737K instruction tuning dataset provided in LLaVA-
1.5[81]. For the adapter data splits, the OM split indicates that no initial adapter pertaining
phase is employed for the MLLM. The 0.5M data split utilizes the 558K adapter data from
LLaVA-1.5[81], while the 1.2M variant uses ShareGPT4V-PT dataset [27].

OM Adapter Data + 737K Instruction Tuning Data As shown in Table 12, we provide 20
results for different variants of the above-mentioned thirteen vision backbones. Among them,
language-supervised models show superior performance. Especially, OpenCLIP ConvNeXT-
XXL@1024 model surpasses all other models on DocVQA with over 12%, indicating its potential
to handle OCR-related benchmarks.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
<
2 = g & &8

: 5 2 |5 38 & . £ G

Plm a B <= = 2z a|l¥% 8 9 g8 2 &2 2

tl 2 2 2 9|5 2 E 9|2 § % %8|/2 3§ * 2
Model Architecture < = p= @ O F =2 = < |0 O & A = & O 0O
Language Supervised
OpenAI CLIP ViT-L/14@336 48.37|1,419.43 61.45 59.85 62.26(69.87 34.50 27.80 59.82|33.73 31.70 55.39 28.00|11.33 53.46 56.44 57.40
DFN-CLIP  ViT-L/14@224 38.78(1,172.50 49.53 49.74 52.94|67.74 34.00 27.30 56.99|16.75 4.87 44.81 11.19| 6.67 46.97 40.29 52.08
DFN-CLIP  ViT-H/14@378 36.79|1,091.76 41.28 44.32 50.48|65.54 33.65 26.50 56.76|15.56 2.70 43.41 10.15| 4.67 47.06 39.07 52.91
EVA-CLIP-02 ViT-L/14@336 45.84(1,325.17 58.21 62.99 62.03|68.67 35.00 27.50 58.26|19.40 22.50 51.08 16.36 24.67 52.68 52.98 54.83
SigLIP ViT-L/16@384 48.80(1,383.42 61.02 63.56 61.85(68.91 35.29 29.70 57.87|34.96 29.60 56.73 28.31|23.33 52.68 52.95 54.83
SigLIP ViT-50400M/14@384 |47.57|1,376.75 58.76 60.59 60.92|69.01 34.40 26.50 58.35|30.72 28.60 55.10 28.31|19.33 50.71 52.33 58.67
OpenCLIP  ConvNeXt-L@512 47.38|1,404.01 57.62 61.90 60.34(69.06 33.90 29.10 58.39|28.04 25.20 55.45 28.41|24.00 54.12 53.46 48.91
OpenCLIP  ConvNeXt-L@1024 |39.02|1,139.60 14.64 49.59 37.91|65.71 34.30 27.30 54.13|32.97 12.05 52.61 38.36| 9.67 47.45 52.68 38.04
OpenCLIP  ConvNeXt-XXL@1024|41.83|1,219.47 48.00 49.88 55.09(66.14 35.69 27.60 56.67|16.92 5.00 46.90 40.98|16.00 47.32 43.40 52.75
Self Supervised
DINOv2 ViT-L/14@336 41.181,262.66 49.62 56.80 60.30(65.10 35.00 26.40 56.41|16.48 3.10 44.04 11.90|18.67 50.20 49.43 52.25
DINOv2 ViT-L/14@518 40.60(1,242.48 51.00 53.39 60.38|64.55 34.50 26.20 57.53|15.11 2.90 44.28 10.95|14.00 48.63 46.13 57.90
MoCo v3 ViT-B/16@224 34.94| 966.45 36.77 33.00 47.35|62.96 32.80 26.20 55.05|16.04 2.60 43.81 10.31| 6.67 45.36 39.03 52.83
MoCo v3 ViT-L/16@224 34.70| 1010.18 34.64 41.71 47.46|64.70 33.70 26.30 55.05|16.24 2.70 42.60 10.39| 4.00 45.36 44.67 35.16
MAE ViT-L/16@224 37.69(1,114.07 42.30 35.93 55.20|63.51 34.60 26.00 56.10|16.11 2.70 43.63 10.83|14.00 44.80 45.81 55.75
MAE ViT-H/14@224 38.58|1,083.35 41.15 50.99 55.30|64.90 34.10 26.00 56.49|15.63 3.20 43.98 11.00|12.00 46.30 47.18 54.90
I-JEPA ViT-H/14@224 38.88|1,132.07 44.68 51.74 55.37|66.04 34.20 26.40 56.09|15.84 3.00 43.66 11.48|10.67 46.01 46.74 53.50
Other
SAM ViT-L/16@1024 31.74| 585.78 20.34 36.34 39.85|65.49 34.50 25.10 53.92|16.16 2.70 42.37 9.25| 2.00 44.44 35.65 50.50
SAM ViT-H/16@1024 32.37| 648.96 22.30 36.31 40.52|65.20 34.10 26.00 54.44|15.56 2.40 42.39 8.75| 2.00 45.36 34.83 55.25
MiDaS3.0  ViT-L/16@384 35.65| 981.36 38.57 40.93 49.04|63.41 31.80 25.70 54.72|16.36 2.60 43.19 11.24| 6.67 44.97 38.78 53.40
MiDaS3.1  ViT-L/16@518 35.44| 983.34 34.79 40.20 48.53|64.60 33.90 25.00 55.18|15.64 2.60 42.76 12.08| 6.66 43.66 39.63 52.58
Diffusion SD2.1/16@512 36.59|1,044.28 37.71 42.00 48.38|64.55 33.40 25.70 56.99(15.56 3.10 43.14 10.40| 9.33 45.88 44.68 52.40
SupViT ViT-L/16@224 40.13(1,197.39 46.55 54.72 57.27|65.94 34.00 28.00 56.22|16.44 3.10 43.52 11.82|16.67 46.67 48.49 52.75
SupViT ViT-H/14@224 37.45|1,082.43 42.61 48.45 52.98|63.51 35.29 26.50 55.78|15.16 3.30 44.16 11.49| 4.66 43.79 44.55 52.91

Table 12 | All Benchmark Results for OM Adapter Data + 737K Instruction Tuning Data
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0.5M Adapter Data + 737K Instruction Finetune As shown in Table 13 and Table 12, the
inclusion of an alignment stage with 0.5M data split results in a notable increase in performance
for DEN-CLIP ViT-H/14@378, from 36.21 to 49.94. This substantial improvement highlights the
value of the alignment stage for enhancing certain vision backbones, suggesting its importance
in harnessing the full potential of vision models.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
<
.z g g 8 %

% . 2 £ S 8§ 5 5| & 2 %

s 3 2 B o< |z g E n|E 2 2 2|z 2 & &

tl 2 2 28 9|85 2 2 8/ O % %|/2 3§ % 2
Model Architecture < = = @ 0|& = = <|]0 O & Aa|=2 & U O
Language-Supervised
OpenAI CLIP ViT-L/14@336 49.03/1,413.51 60.34 62.17 60.81|69.76 36.49 29.90 58.48| 36.80 30.20 57.63 30.98|21.33 51.63 52.57 54.75
DEN-CLIP  ViT-L/14@224 45.59|1,382.75 57.36 63.26 60.54|66.81 35.09 29.20 57.71| 22.88 23.45 52.27 18.82|21.33 51.31 49.59 50.63
DEN-CLIP  ViT-H/14@378 50.62|1,500.45 62.64 66.44 62.53 70.75 35.69 30.30 58.78| 39.20 29.80 56.98 31.39 29.33 53.59 54.96 52.58
EVA-CLIP-02 ViT-L/14@336 47.1311,362.07 62.64 63.96 61.66|69.46 35.89 27.90 56.96| 20.96 26.10 53.93 19.07|20.00 53.07 56.28 58.16
SigLIP ViT-L/16@384 48.11|1,381.48 61.79 61.87 59.45|70.25 35.99 28.80 57.58| 28.76 28.20 54.90 25.60|26.00 52.29 52.89 56.33
SigLIP ViT-SO400M /14@384 |50.41|1,327.79 62.13 63.92 61.31|70.38 36.99 30.00 59.52| 40.08 33.20 60.37 36.58|22.00 53.99 55.59 54.08
OpenCLIP  ConvNeXt-L@512 48.01/1,366.85 59.66 62.89 61.31|68.77 36.99 28.50 59.29| 27.88 28.50 57.57 29.48|16.00 53.20 53.81 55.91
OpenCLIP  ConvNeXt-L@1024  |40.29|1,084.62 12.94 51.02 49.78|65.47 34.20 27.60 56.36| 29.92 13.25 50.37 43.67|13.33 49.08 51.85 41.58
OpenCLIP  ConvNeXt-XXL@1024|50.45|1,405.65 57.96 63.58 62.41|68.02 34.30 29.40 59.62| 42.96 26.20 61.82 42.67|28.67 55.16 49.92 54.16
Self-Supervised
DINOv2 ViT-L/14@336 42.64|1,283.95 54.64 59.03 60.19]66.39 35.29 25.70 58.03| 16.00 3.20 45.39 11.79|20.00 50.59 53.51 58.33
MoCo v3 ViT-B/16@224 38.50(1,159.10 40.00 51.37 54.97|65.25 33.70 27.20 55.51| 16.36 3.30 44.42 11.42|10.67 46.14 45.80 52.00
MoCo v3 ViT-L/16@224 37.71]1,074.13 41.19 49.46 53.61|63.66 33.70 27.40 55.83| 17.04 3.40 43.84 11.98| 8.00 46.27 48.69 45.59
MAE ViT-L/16@224 39.99|1,138.35 44.60 54.91 56.69 |65.64 36.19 27.90 56.48| 17.20 3.20 44.45 12.42|14.00 47.32 48.83 53.08
I-JEPA ViT-L/14@224 39.91/1,180.12 44.26 52.86 55.32|65.94 34.40 27.00 57.16| 15.88 3.20 44.36 11.61|13.33 46.27 52.19 55.83
Other
SAM ViT-H/16@1024 32.18| 649.99 22.47 36.37 40.46|64.60 32.50 25.80 54.66| 15.80 2.70 42.40 8.89| 0.00 45.62 37.02 53.08
MiDaS3.0  ViT-L/16@384 40.07|1,183.95 47.40 53.00 56.15|66.19 32.90 27.60 56.61| 17.00 3.00 44.34 11.55|19.33 47.32 45.01 54.58
Diffusion SD2.1/16@512 38.26|1,123.46 42.04 50.66 53.63|65.74 33.30 24.50 57.48| 14.52 3.30 43.95 10.62|10.00 43.53 48.24 54.50
SupViT ViT-L/16@224 39.66|1,186.88 48.43 54.28 56.35|65.49 33.00 28.10 57.16| 17.56 2.80 44.92 12.23|12.67 47.06 43.59 51.67

Table 13 | All Benchmark Results for 0.5M Adapter Data + 737K Instruction Tuning Data

1.2M Adapter Data + 737K Instruction Finetune As we increase the amount of data in
the alignment phase, we observe a consistent performance improvement for SigLIP ViT-
SO400M /14@384 from 46.79 to 49.72 to 53.09 across OM, 0.5M to 1.2M data splits as shown in
Table 12, Table 13 and Table 14.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
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Language-Supervised
OpenAI CLIP ViT-L/14@336 50.49| 1,476.65 61.96 65.45 62.78|69.06 35.00 29.50 58.94|37.84 30.90 58.21 32.11|28.66 54.90 54.14 54.60
DEN-CLIP  ViT-L/14@224 46.01| 1,341.14 56.68 63.74 60.75|66.96 33.80 28.65 57.04|23.32 23.20 52.85 18.97|26.67 51.44 52.91 52.08
DEN-CLIP  ViT-H/14@378 51.17| 1,426.32 62.38 67.29 62.89(69.01 35.89 30.00 60.01|41.08 30.60 57.53 31.69|32.67 55.95 55.46 55.00
EVA-CLIP-02 ViT-L/14@336 49.71| 1,449.78 64.00 67.53 63.60(69.91 35.49 28.40 59.16|24.76 27.10 55.39 21.63|34.67 55.69 57.83 57.75
SigLIP ViT-L/16@384 50.87| 1,424.20 59.40 65.48 62.56|68.67 35.99 29.70 59.29|40.52 33.50 59.59 35.20|28.00 53.33 55.42 56.08
SigLIP ViT-SO400M/14@384 | 53.91| 1,455.64 63.66 67.62 63.70(72.10 36.09 29.30 61.59/43.76 37.20 61.82 40.19|36.60 56.99 59.61 59.58
OpenCLIP  ConvNeXt-L@512 49.16| 1,416.87 60.60 63.87 61.87|69.92 35.79 29.50 59.36|34.40 28.00 58.36 28.41|27.33 51.90 54.64 51.80
OpenCLIP  ConvNeXt-L@1024 | 51.00| 1,392.92 58.21 65.47 62.89|67.43 34.90 29.90 59.13|46.08 25.50 62.14 44.13|26.67 55.29 53.57 55.08
OpenCLIP  ConvNeXt-XXL@1024 | 52.18| 1,402.94 59.40 65.21 62.73|68.27 33.10 29.30 59.84|48.00 28.00 63.27 48.11|34.67 55.95 53.83 55.08
Self-Supervsied
DINOv2 ViT-L/14@336 41.85| 1,190.81 51.83 56.90 60.38|66.04 34.20 27.40 56.41|16.44 3.30 45.12 11.79|21.33 49.67 53.91 55.33
MoCo v3 ViT-B/16@224 38.88| 1,129.32 41.62 52.19 55.03|65.89 33.30 28.30 56.44|16.48 3.00 44.09 11.47|12.00 47.58 45.17 53.00
MoCo v3 ViT-L/16@224 37.07| 1015.20 37.28 48.31 52.63|65.49 34.50 27.60 55.41|16.92 3.10 43.57 11.50|14.67 45.49 45.17 40.75
MAE ViT-L/16@224 40.39| 1,132.80 43.40 55.67 57.42|66.04 35.59 27.80 56.48|17.36 3.30 44.53 12.30|16.00 47.71 49.24 56.75
I-JEPA ViT-H/14@224 40.27| 1,207.88 45.79 54.51 56.15|65.29 34.40 27.10 56.19|16.20 3.20 43.45 11.58|18.00 45.88 49.57 56.58
Other
SAM ViT-H/16@1024 32.54| 682.81 23.32 36.16 40.32|65.20 33.20 26.50 54.21|15.68 2.50 41.76 8.98| 1.33 46.80 37.66 52.90
MiDaS 3.0 ViT-L/16@384 39.15| 1,132.18 46.21 51.75 55.57|66.30 33.70 26.70 56.06|17.08 3.10 43.65 11.66|15.30 45.75 44.44 52.58
Diffusion SD2.1/16@512 39.51| 1,168.52 40.00 53.80 55.33|64.60 35.00 26.10 57.16|15.36 3.10 44.23 11.06|18.67 47.32 48.04 53.90
Supervised ~ ViT-L/16@224 39.12| 1,216.11 45.28 51.46 55.88|64.15 34.70 26.80 55.76|16.80 2.80 44.42 11.61|11.33 47.97 44.62 51.60

Table 14 | All Benchmark Results for 1.2M Adapter Data + 737K Instruction Tuning Data

35



1.2M Adapter Data + 737K Instruction Finetune with Unfrozen Vision Model Here, we
present the results of different vision models trained with 1.2m adapter data and 737K in-
struction tuning data in Appendix D.2. Comparing to Appendix G.2, we observe nearly all
the models see improvement on most of the benchmarks, especially on the OCR & Chart and
Vision-Centric benchmarks. The percentage change of each model from frozen — unfrozen is

visualized in Fig. 17.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
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Other
OpenAI CLIP ViT-L/14@336 52.90|1,477.15 63.15 68.49 64.24|69.21 34.90 28.70 61.24|47.68 40.20 58.92 35.22|26.00 58.82 59.65 56.16
DEN-CLIP  ViT-L/14@224 45.80(1,364.91 55.15 63.06 59.94|67.28 35.59 29.80 58.65|20.48 23.40 52.23 18.29(22.67 50.85 53.59 53.50
EVA-CLIP-02 ViT-L/14@336 51.30|1,492.35 65.53 69.75 65.18|68.62 35.00 29.50 60.78|29.32 29.90 56.87 21.59|44.67 58.95 54.66 55.91
SigLIP ViT-L/16@384 52.47|1,429.11 63.57 67.34 63.44(68.02 36.09 29.70 61.56|46.68 35.70 59.86 35.93|32.67 55.29 55.24 57.00
SigLIP ViT-SO400M/14@384 |55.27|1,489.05 66.55 69.59 64.58|70.45 35.69 29.20 62.34|51.28 40.80 63.28 43.02|38.00 59.61 61.58 53.91
OpenCLIP  ConvNeXt-L@512  |52.76|1,467.38 63.40 66.92 63.17|69.16 34.90 29.70 58.45 52.04 35.40 61.87 38.79|30.67 56.21 54.24 55.91
Other
DINOv2 ViT-L/14@336 43.26|1,261.43 53.96 63.22 62.61(65.49 34.50 27.70 56.90|15.40 3.40 44.87 11.22|26.00 54.38 53.06 56.40
MoCo v3 ViT-B/16@224 39.51|1,175.34 41.70 53.31 56.15|65.25 33.40 28.30 55.76(15.48 3.20 44.42 11.10|18.00 46.67 45.38 55.25
MoCo v3 ViT-L/16@224 37.59|1,075.39 39.15 50.14 53.65|65.49 34.60 27.30 55.44(17.28 3.00 44.21 11.70|14.67 44.58 45.38 41.12
MAE ViT-L/16@224 41.43|1,181.51 45.53 58.92 58.75|64.65 35.00 29.20 57.12|16.88 3.10 44.67 11.74|18.67 49.67 53.04 56.83
I-JEPA ViT-H/14@224 41.90|1,175.70 48.00 59.60 59.35|64.45 35.09 27.60 57.32|16.20 3.00 45.50 11.40(22.67 49.93 52.38 59.08
Other
MiDaS3.0  ViT-L/16@384 38.28|1,065.26 42.64 50.95 56.10|65.39 35.00 27.20 52.98|15.96 2.80 43.49 11.23|12.00 46.14 43.41 53.90
Supervised ~ ViT-L/16@224 40.01|1,222.41 47.40 54.15 57.26|64.35 34.40 26.40 56.09|16.20 3.20 44.73 11.74|14.00 46.41 49.33 53.40

Table 15 | All Benchmark Results for 1.2M Adapter Data + 737K Instruction Tuning Data with

Unfrozen vision model.

1.2M Adapter Data + 5M Instruction Finetune We present the results of 5M instruction
tuning experiments in Fig. 7 here. In Table 15, we observe that after 5m instruction tuning,
the gap between DINOv2 and CLIP models continue to bridge on general, knowledge and
vision-centric benchmarks.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
<
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OpenAI CLIP ViT-L/14@336 X 55.85|1,577.33 69.70 70.22 63.33|73.67 36.19 36.60 64.80|49.12 36.90 60.33 39.79|32.67 55.56 66.11 59.75
DINOv2 ViT-L/14@336 X 45.36|1,373.14 57.02 64.58 61.67|67.13 36.19 30.70 60.62|19.04 3.40 46.39 13.27|26.67 52.68 59.81 57.91
OpenAI CLIP ViT-L/14@336 v 57.44|1,585.34 68.68 71.47 63.96|77.39 36.09 37.30 65.12|59.36 48.00 62.39 45.24|31.33 56.21 61.09 56.16
DINOv2 ViT-L/14@336 v 47.40|1,366.65 61.62 69.72 63.68|68.72 36.29 35.50 60.88|18.64 4.40 47.92 14.66|34.67 54.64 60.98 57.83

Table 16 | All Benchmark Results for 1.2M Adapter Data + 5M Instruction Tuning Data
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Figure 17 | Percentage (%) Change in Benchmark Performance (Frozen — Unfrozen)

Heatmap depicting the percentage change in performance across multiple benchmarks when vi-
sual encoders are unfrozen compared to when they are kept frozen during fine-tuning. The color
gradient indicates the magnitude of the performance change after unfreezing visual encoders—
white indicates no change, red is a positive change, and blue is a negative change. Notably,
unfreezing leads to significant gains in OCR & Chart tasks for most Language-Supervised Mod-
els, as reflected by the deep red cells. ConvNeXt, in particular, shows substantial improvements,
demonstrating the benefits of updating this visual encoder during fine-tuning.
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D.3. Model Ensemble

Model Ensemble Details We introduce the implementation details of the model ensemble
in Section 3.5. For a given image, the image passes through each vision encoder to obtain
the features from the last layer. The shape of each model’s output differs depending on the
resolution and patch size of each vision model. To resolve these differences, we interpolate the
output of each model to a fixed number of tokens, using 576 tokens in our implementation, as
described in Section 3.5. Our example code for interpolation can be seen below.

# Exzample code for interpolation

b, n_tokens, dim = img_feats.shape

if n_tokens != self.image_token_len:
tgt_h = tgt_w = int(np.sqrt(self.image_token_len))
h = w = int(np.sqrt(n_tokens))
img_feats = img_feats.view(b, h, w, dim)

img_feats = img_feats.permute(0, 3, 1, 2).contiguous ()

img_feats F.interpolate(img_feats, size=(tgt_h, tgt_w),
mode=’bilinear’, align_corners=False)

img_feats = img_feats.permute(0, 2, 3, 1).contiguous()

img_feats img_feats.flatten(1l, 2)

We then concatenate the model outputs along the feature dimension and use a larger MLP
to project the concatenated visual tokens into the LLM token space.

Full results on Model Ensemble We present all the benchmarks from the model ensemble
experiment in Section 3.5 in Table 3. As discussed in Section 1 and Section 3.4, this compre-
hensive view of benchmarks provides a better understanding of the model’s performance
compared to simply averaging across benchmarks. Adding a vision-only SSL model enhances
the MLLM’s performance in vision-centric benchmarks while maintaining strong capabilities in
other categories.
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E. Data

E.1. Catalog of Visual Instruction Data

Here, we provide a comprehensive catalog of visual instruction datasets utilized in our study.
The datasets are categorized based on their primary focus, including general conversation and
VQA data, OCR-related data, counting data, knowledge-based data, and language-only data.
Table 17 summarizes these datasets and their respective references.

Category Datasets
General Conversation LVIS-Instruct4V [132], SketchyVQA [130], OODVQA [130], VizWiz [52],
& VQA Data ALLaVA [25], IDK [22], Q-Instruct [136], LAION GPT-4V [71], Hate-

fulMemes [67], Visual7W [160], Visualmrc [124], AlfWorld [118],
LNQA [109], LLaVA150K [83], ShareGPT [27], VQAV2 [51], GQA [58],
OKVQA [96], A-OKVQA [117], RefCOCO [141], VisualGenome [70], GPT-
4V recorded chat

OCR Related Data LLAVAR [150], ChartQA [97], DocVQA [98], DVQA [62], ArxivQA [77],
AI2D [66], ScreenQA [57], SynthDog [68], IconQA [90], WTQ [107],
WikiSQL [154], FinQA [31], HiTab [32], TAT-QA [159], TabMWP [89],
Chart2Text [63], VisText [125], InfoVQA [16], ST-VQA [17], Rendered-
Text [135], OCRVQA [101], TextCaps [120], ShareGPTOCRData [27]

Counting Data TallyQA [1], CLEVR [60]

Knowledge-Based Data Code: Design2Code [119], WebSight [72], Datikz [14]
Math: MathVision [133], Geol70K [43], TQA [5], Inter-GPS [91],
RAVEN [149], GeomVerse [65]
Science: ScienceQA [92], PathVQA [54]

Language Only Data Dolly [36], MathInstruct [143], WizardCoder [94], OrcaMath [100], Open-
Codelnterpreter [153], OpenOrca [79]

Table 17 | Visual Instruction-Tuning Data Catalog

E.2. Additional System Prompts used in Cambrian Data

As our Cambrian data includes instructions/questions and responses of different types and
formats (e.g., Short response with a single word or regular response as a complete sentence), it is
important to specify the required response format in the instruction prompt to avoid ambiguity
and possible conflicts. Some of the datasets already include such prompts and we add proper
prompts for the remaining datasets. The detailed response formatting prompts we additionally
add are listed in Table 18.
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Index Response formatting prompts

1 Answer the question using a single word or phrase.

2 Answer the question using a single number or phrase.

3 Answer with the option’s letter from the given choices directly.

4 Give the short answer directly.

5 Answer the question using a single word or phrase.

6 When the provided information is insufficient, respond with <no answer>.

7 Directly provide the HTML code.

8 First show your reasoning process and then give the final answer.

9 When the provided information is insufficient, respond with "Unanswerable’.
Answer the question using a single word or phrase.

10 Answer with the letter.

Dataset Prompts added

SketchyVQA | 1

OODVQA 1

VizWiz 9

Q-Instruct 1,3

ChartQA 2

DocVQA 4

DVQA 1

AI2D 1

ScreenQA 1,6

CLEVR 1

TallyQA 1

PathVQA 1

MathInstruct | 8

Design2Code | 7

IconQA 1,10

HiTab 1

WTQ 1

WikiSQL 1

Inter-GPS 10

Visual7W 3

TQA 10

RAVEN 1

Table 18 | Response formatting prompts for Cambrian Data
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Figure 18 | Targeted Internet Data Collection Engine. We build a targeted internet data engine to collect
high-quality and large-scale multimodal instruction tuning data for domains like knowledge.

E.3. Data Engine

Parser

Filtered
Web Data

VQA Data

Relevant
Text

Comprehensive Implementation Details of the Data Engine

The data engine is designed to generate instruction tuning data for knowledge-based fields,
where previous works rarely covers and MLLMs are not reliable to distill for from. The data
engine takes in a given field, such as “Physics”, utilizing reliable web sources like Wikipedia.
Below are the various stages involved in the process. We also visualize this process in Fig. 18:

Stage 1 - Topic Generation: We start by compiling a list of fields and subfields and subsequently
generate topics for each field using a Large Language Model (LLM), such as GPT-4. In this
stage, we processed 30 fields, resulting in 3660 topics. We then post-process the output of LLMs
into json formats. For example, the topic data for Physics looks like below.

Physics
{

"Classical Mechanics": [
"Newton’s Laws of Motion",
"Conservation of Energy",
"Conservation of Momentum",
"Harmonic Motion",
"Rotational Dynamics",
"Gravitation and Orbits",
"Fluid Dynamics",
"Elasticity and Plasticity",
"Friction",
"Waves and Sound",
"Velocity and Acceleration",
"Angular Momentum",
"Statics and Equilibrium",
"Kinematics of Particles",
"Dynamics of Systems of Particles",
"Collisions",
"Centripetal Force and Acceleration",
"Lagrangian and Hamiltonian Mechanics",
"Chaos Theory",
"Equations of Motion"

1,

"Electromagnetism": [
"Coulomb’s Law",
"Electric Field and Electric Potential",
"Gauss’s Law",
"Capacitance and Dielectrics",
"Current and Resistance",
"Direct Current Circuits",
"Magnetic Fields and Magnetic Forces",
"Ampere’s Law",
"Faraday’s Law of Induction",
"Inductance",
"Alternating Current Circuits",
"Electromagnetic Waves",
"Maxwell’s Equations",
"Electromagnetic Radiation",
"Optics and Light",
"Quantum Electrodynamics",
"Special Theory of Relativity Implication",
"Magnetostatics",
"Electrostatics",
"Bioelectromagnetism"

Stage 2 - Filtering Web Data: For each generated topic, we utilize search engine APIs to fetch
relevant high-quality web pages. For each topic, we query for 10 relevant links. Thus, we get
36,600 webpages post this stage. Here is an example of the data retrieved for the topic "Electric
Field and Electric Potential:

"Electric Field and Electric Potential": [
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"https://en.wikipedia.org/wiki/Electric_potential",
"https://en.wikipedia.org/wiki/Electric_field",
"https://en.wikipedia.org/wiki/Electric_potential_energy",
"https://en.wikipedia.org/wiki/Voltage",
"https://en.wikipedia.org/wiki/Electricity",
"https://en.wikipedia.org/wiki/Electrostatics",
"https://en.wikipedia.org/wiki/Electric_dipole_moment",
"https://en.wikipedia.org/wiki/Magnetic_vector_potential",
"https://en.wikipedia.org/wiki/Electric-field_screening",
"https://en.wikipedia.org/wiki/Electric_flux"

1,

Stage 3 - Parsing: In this stage, we parse each web page to extract image-caption-text tuples.
We aim to identify the blocks containing an image, the image’s caption, and relevant textual
content. Below is an example of the parsed data for the same topic, "Electric Field and Electric
Potential":

{

"Electric Field and Electric Potential",

L
{
"section": "Electrostatics",
"text": "An electric potential at a point r in a static electric field E is given by the line integral where C is an arbitrary
path from some fixed reference point to r; it is uniquely determined up to a constant... The generalization of electric potential

to this case is described in the section Generalization to electrodynamics.",
"images": [
{

"url": https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/VFPt_plus_thumb_potential+contour.svg/142px-VFPt_pl
us_thumb_potential+contour.svg.png,

"caption": "Electric potential of separate positive and negative point charges shown as color range from magenta (+), through
yellow (0), to cyan (-). Circular contours are equipotential lines. Electric field lines leave the positive charge and enter the
negative charge."

1,
{

"url": https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/VFPt_charges_plus_minus_potential+contour.svg/288p
x-VFPt_charges_plus_minus_potential+contour.svg.png,

"caption": "Electric potential in the vicinity of two opposite point charges."

}
1,

"link": https://en.wikipedia.org/wiki/Electric_potential,

"title": "Electric potential",
"field": "Physics",
"subfield": "Electromagnetism",
"topic": "Electric Field and Electric Potential"
1,
]

}

Stage 4 - Data Generation: We generate dataset in this stage, ensuring high quality. We first
filter out data samples with fewer than 50 words in the text. Then, instead of downloading images
directly from the links retrieved during web parsing, we download high-resolution images from
the original sources. We then convert formats like SVG or GIF into a common standardized
format, PNG.

Question-Answer pairs are generated by using LLM such as GPT-3.5 from the image meta-
data, caption, and contextual text. These Q&A pairs and the image form our VQA dataset. We
generated 165k data samples. Here is an example of the generated data:
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https://en.wikipedia.org/wiki/Electric_potential

Figure 19 | Dataset Image Id: 96232.png

{

"id": "96232.png",

"image_id": "450px-Magnetic_Vector_Potential_Circular_Toroid",

"image_url": "...",

Iltextll? n . n s

"caption": "Representing the Coulomb gauge magnetic vector potential A, magnetic

flux density B, and current demnsity J fields around a toroidal inductor of circular
cross section. Thicker lines indicate field lines of higher average intensity. Circles
in the cross section of the core represent the B-field coming out of the picture,

plus signs represent B-field going into the picture. \u2207 \u22c5 A = O has been
assumed",

"section": "Depiction of the A-field",

n n

"Question": "What do the thicker lines signify?",

"Answer": "The thicker lines in the image represent paths of higher average

intensity in the magnetic vector potential A field. Shorter paths have higher intensity,
ensuring that the path integral remains constant. These lines are drawn to visually
convey the general behavior and intensity distribution of the A-field around the
toroidal inductor"

¥

This data engine is designed for scalability and efficiency and is capable of handling exten-
sive data generation tasks using multithreading techniques.
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t = 350k 5883k
t = 450k 6383k

54.27
54.15

1,461.9 66.2 68.9 61.6
1,534.1 67.6 66.3 61.9

73.8 36.4 32.8 62.5
729 35.1 369 63.8

46.8 38.3 59.3 39.3
45.8 38.6 58.4 39.4

31.3 549 62.68 60.4
28.0 53.6 64.60 56.8

Table 19 | All Benchmark Results for Data Balancing Experiments

Average
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= —
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MMB

Knowledge

MMMUY
MathVistaM

<
o3}

AI2D

OCR & Chart

ChartQA
CRBench

TextVQA

DocVQA

O

Vision-Centric

RealworldQA
CV-Bench?P
CV-Bench®P

MMVP

expl
exp2
exp3
exp4
expb

47.49
47.78
48.28
47.47
48.96

1,309.10 58.00 60.10 54.00
1,351.70 60.30 61.20 55.40
1,299.53 60.56 61.79 55.74
1,288.98 58.16 61.47 55.00
1,363.26 60.48 63.18 55.92

72.40 34.80 31.20 59.10
72.80 35.20 29.50 59.10
72.04 34.90 32.10 59.40
71.05 37.10 28.20 58.50
70.35 35.70 31.40 57.19

34.20 34.50 54.20 33.00
31.20 33.40 54.20 30.50
33.20 33.90 54.15 31.90
33.72 34.50 55.07 31.69
32.88 34.60 54.74 32.10

13.30 47.60 57.40 50.58
15.30 48.20 58.40 52.25
21.30 48.60 58.52 49.41
20.66 47.06 56.30 46.58
22.70 47.30 58.83 57.75

Table 20 | All Benchmark Results for Data Ratio Experiments with fixed 1350k data

E.4. Full results on data curation experiment

Data Balance via Fitlering ¢t As discussed in Section 5.2, if left unfiltered, the data pool is domi-
nated by noisy, unbalanced data sources such as CLEVR and DVQA, leading to pronounced
exponential tails. However, as we apply different t values to filter data from each source, the
exponential tails become less pronounced, resulting in a more balanced dataset. We also present
all the results in Table 19. t value 250k has the highest average across all benchmarks; 250k and
350k also have the highest performance across many individual benchmarks.

Data Ratio Studies We present the full results of our data ratio study in Table 20. The table
highlights the importance of finding an optimal data ratio that balances different aspects of
MLLM. Experiment 5 achieves well-rounded performance with its selected data ratio.

E.5. 737K and 5M Mixes

0.7M For the 0.7M data we used in Section 3.4, We add a small number of OCR and chart data
to LLaVA 665K, specifically 15,501 AI2D, 14,999 DocVQA, and 13,000 DVQA data points. This
results in a 737K mix, which covers all categories in training MLLMs. This data mix allows us
to study visual representations efficiently.

5.0M For the 5M data mixes we use in Section 3.4, we apply data filtering discussed in Section 5.2
and apply t=150k on all multimodal instruction data in Cambrian-10M.
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Category Test Set #Images Data Eng. Cambrianl0OM  LLaVA-665k

General MMEF 2,374  0(0.00%)  332(13.98%) 82 (3.45%)
MMB 4377  7(0.16%) 1,122 (25.63%) 533 (12.18%)
SEED! 17,990 6 (0.03%) 26 (0.14%) 0 (0.00%)
GQA 398  0(0.00%) 1 (0.25%) 0 (0.00%)
Knowledge SQA! 2,017 0(0.00%) 1,263 (62.62%) 0 (0.00%)
MMMUY 900 1(0.11%) 3 (0.33%) 0 (0.00%)
MathVistaM 1,000 2(0.20%) 259 (25.90%) 15 (1.50%)
AI2D 3,088  0(0.00%) 1,458 (47.22%) 0 (0.00%)
OCR & Chart  ChartQA 2,500 14 (0.56%) 670 (26.80%) 0 (0.00%)
OCRBench 1,000 0 (0.00%) 177 (17.70%) 59 (5.90%)
TextVQA 5,000 2(0.04%) 1,122 (22.44%) 9 (0.18%)
DocVQA 5,188 0 (0.00%) 53 (1.02%) 0 (0.00%)
Vision-Centric MMVP 300 0 (0.00%) 0 (0.00%) 0 (0.00%)
RealWorldQA 765 0 (0.00%) 0 (0.00%) 0 (0.00%)
CV-Bench 2,638  0(0.00%) 758 (28.73%) 336 (12.74%)
Total 49,535 32 (0.06%) 7,244 (14.62%) 1,034 (2.07%)

Table 21 | Number of leaked test set images. Using image hashing, we assess the overlap of
test images across three training datasets: Cambrian10M Data Engine 161k subset (“Data Eng.”),
Cambrian10M, and LLaVA-665k. We list the number of images in each test set, as well as the
number of matching images and percentage of overlap for each training set in blue. Our Data
Engine finds a neglible 0.06% of test images, dispelling any concerns that it is targeting the test
sets. The full Cambrian10M training set contains 7,244 test set images, whereas LLaVA-665k
contains 1,034. Despite being a 15x larger dataset, Cambrian10M only has 6x more overlapping
images. Such overlap is inevitable since many test sets use validation images from standard
benchmarks (like COCO). It is worth highlighting: although exact image matches are found,
this does not mean that exact image-question pairs have been found. Unlike in prior unimodal
paradigms of computer vision research, in the multimodal setting, a single data point is composed
of an image-text (question) pair, not just the image itself. Thus, seeing a test image during
training is not equivalent to “training on the test set” so long as the training image does not
have the same text pair as the test data point. See more discussion in Appendix E.6.

E.6. Test Image Leakage in Visual Instruction Training Data

One potential concern with our targeted data engine (Section 5.1) is that instruction-tuning data
collected from the open web could introduce data leakage. To address this, we systematically
analyze the extent of direct image matches between our training data and our test sets. Using
difference hashing (dHash) [19], we compute hashes for all images in the training data and test
sets. We then compare these hash sets to determine how many test images overlap with our
training data, reporting the number of collisions in Table 21.

Across all fifteen datasets, our targeted data engine finds only 32 test images in total,
amounting to just 0.06% of the test data. This low overlap percentage dispels concerns that
our data engine inadvertently targets specific test sets. When analyzing the full Cambrian10M
dataset—which is 15x larger than LLaVA-665k—we observe only 6x more matching test images
(7,244 compared to 1,034 in LLaVA-665k). This discrepancy suggests that Cambrian10M’s
scale does not inherently result in excessive overlap with test sets. Instead, any overlap likely
arises from the natural reuse of training images across benchmark datasets rather than targeted
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duplication.

It is important to emphasize that while some exact image matches are found, this does not
imply that the exact image-question pairs have been encountered during training. Unlike in tra-
ditional unimodal computer vision research, where an image alone constitutes a data point, the
multimodal paradigm treats each image-text (question-answer) pair as unique. Consequently,
seeing a test image during training is not equivalent to “training on the test set” as long as
the associated text (question-answer) pairs differ. This distinction ensures that Cambrian10M
respects the integrity of test evaluations, even in cases where images might appear in both
training and test sets.

We encourage future research exploring the impact of image-only leakage on the perfor-
mance of MLLMs. Understanding this influence may yield insights into the boundaries of
model generalization and guide future best practices for dataset construction in multimodal
learning.

E.7. Broader Impacts

We conducted a preliminary analysis of the Cambrian dataset, focusing on the distribution of
male, female, and neutral pronouns. Our findings show the following distribution: 38.35% male
pronouns, 17.99% female pronouns, and 43.66% neutral pronouns.

We recognize that training models on biased data can perpetuate these biases. Addressing
bias by artificially modifying data distributions—such as through rebalancing or applying
fairness constraints—can help mitigate this issue, but it also presents challenges. These include
the potential loss of generalization and the risk of introducing new biases. Additionally,
identifying and mitigating bias in Multimodal Large Language Models (MLLMs) is particularly
complex, given the interaction between different data modalities. We believe that openness in
model development and data curation will accelerate research aimed at understanding and
mitigating these potential harms.

F. Implementation Details

Cambrian Models For our final Cambrian models, we use 2.5M adapter data which is comprised
of 1.2M captioning data from shareGPT4V [27] and 1.2M captioning data used in MiniGemini
[78].

SVA We introduce learnable k,, x k;, positional encodings in the vision features when k;, > 1.
Besides, during cross-attention, the query is augmented with a global feature obtained by global
pooling over the vision features, which is concatenated with q; ; to better guide the aggregation
process. In our experiments, the feature maps of all vision encoders except for ConvNext are
interpolated to 576x576 (mj = 1 for L = 24). For ConvNext, we first interpolate the feature maps
from its 4 stages to 96 x 96 (my = 4 for L = 24) and then channel-wise concatenate them to form
its final vision feature map similar to [78].

For experiments in Section 4, we set D = 3, G = 1 and add cross-attention layers between the
layers of LLM with a stride equal to 3. For our final Cambrian models, we set D =3, G =1 and
insert multiple cross-attention layers in LLM considering the tradeoff between performance and
efficiency. For Cambrian-8B, Cambrian-13B, and Cambrian-34B, the strides of cross-attention
layers inside the LLM are 3, 4, and 9 respectively.

To study the importance of visual features from different vision models to different image
categories, we further investigate the attention score distribution in our SVA module. We evalu-
ate our Cambrian-8b model on GQA, DocVQA, and ScienceQA (representing three different
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benchmark categories), and the attention distribution results are shown in Table 22. We can
see that on real-world images (GQA), the contribution of different vision models is relatively
uniform, in part due to the similar characteristics of SigLIP and CLIP. On document-type images
(DocVQA) which are text-heavy and often high-resolution, the influence of SigLIP increases
and that of ConvNext greatly increases to aid in high-resolution information processing. For
scientific images (ScienceQA) composed of illustrations and diagrams about different science
categories, the contribution of SigLIP is further increased while the portion of DINOv2 decreases
compared to GQA.

Model GQA DocVQA ScienceQA
SigLIP 29.7% 31.1% 35.2%
CLIP 18.5% 13.4% 16.3%
DINOV2  24.1% 11.0% 17.6%
ConvNext 27.7% 44.5% 30.9%

Table 22 | Attention distribution studies. The attention distribution among different vision
encoders varies with different image categories.

Unfreezing While unfreezing is largely beneficial (Section 3.3 and Fig. 17), it has a significant
speed drawback. Given fixed computational resources, unfreezing visual encoders slows
down the fine-tuning process by approximately 50-55%. For initial explorations or when
computational overhead is a concern, leaving the visual encoders frozen can be a practical
strategy. This allows for quicker iterations and tuning, especially during early research phases,
while still providing valuable insights. Ultimately, unfreezing is recommended for achieving
the best performance once the setup has been optimized.

G. Evaluation Details

G.1. System Prompts Used in Evaluation

To ensure the reproduction of our results, we also include the system prompts we used in this
work. The system prompts for our models can be found in Table 25. Additionally, we release the
prompts we used while evaluating our models on the various benchmarks in Table 26. We hope
this sets a precedent for future research to improve the reproducibility of benchmark results.

G.2. Ablation Study on Fuzzy Matching Vs LLM Judgement

We use fuzzy matching to evaluate responses in some benchmarks, since MLLMs can answer
questions with auxillary phrases. To study the effectiveness of our fuzzy matching, we compare
our model accuracy through fuzzy matching with the model accuracy obtained when we use
LLM as a grader.

The LLM grader is sensitive to the prompt given to it while grading, and we prompt the
LLM (we use OpenAl GPT-3.5-turbo and GPT-4-turbo as our graders) with few shot grading
examples, which we notice significantly improves grading accuracy. An example of such a
prompt is given below.

LLM Grader Prompt

You are a reliable grader. Reply with only either of the following
2 words: CORRECT or INCORRECT.
You will be given an ’answer’ and a ’gt_answer’ (ground truth answer)

47



Backbone Data Adapter Instruction Tuning
Experiment LLM Vision Adapter Instruction Tuning | Ir wd bs | Ir wd bs |visionlr
OM Adapter+737KIT | Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0 737k - - - |25 0 512 -
0.5M Adapter+737K IT| Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0.5M 737k le-3 0 512|2e-5 0 512 -
1.2M Adapter+737KIT| Vicuna-1.5-7B  OpenAl CLIP ViT-L/14@336 1.2M 737k le-3 0 512|2e-5 0 512 -
Unfreeze Vision Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 1.2M 737k le-3 0 512{2e-5 0 512| 1le-5
Model Ensemble Vicuna-1.5-7B  Chosen Combination 1.2M 737k le-3 0 512|2e-5 0 512
Data Balance Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0 Mix Based on threet | - - - |2¢-5 0 512 -
Data Ratio Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0 1350k Based on Ratio| - - - |2¢5 0 512 -
LLaVA 665K Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0 LLaVA 665K - - - |25 0 512 -
Cambrian-10M (Data) | Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0 Cambrian-10M - - - 125 0 512 -
Cambrian-7M (Data) Vicuna-1.5-7B  OpenAI CLIP ViT-L/14@336 0 Cambrian-7M - - - 125 0 512 -
Cambrian-1-8B Llama-3-Ins-8B SVA with 4 encoders* 2.5M Cambrian-7M le-4 0 512|2e-5 0 512 -
Cambrian-1-13B Vicuna-1.5-13B  SVA with 4 encoders* 2.5M Cambrian-7M le-4 0 512|2e-5 0 512 -
Cambrian-1-34B Hermes-2-Yi-34B SVA with 4 encoders* 2.5M Cambrian-7M le-4 0 512|2e-5 0 1024 -

Table 23 | Implementation details and hyperparameters for all experiments. *4 encoders
are: OpenAl CLIP ViT-L/14@336, SigLIP ViT-SO400M /14@384, DINOv2 ViT-L/14@518, Open-
CLIP ConvNeXt-XXL@1024

,and you must reply with either CORRECT or INCORRECT based on the
response. Tolerate a 0.05 relative error for numerical answers.
answer: 25

gt_answer: 29
evaluation: INCORRECT
answer: Yes

gt_answer: Yes
evaluation: CORRECT
answer: 80

gt_answer: 80
evaluation: CORRECT
answer: Ireland
gt_answer: Italy
evaluation: INCORRECT
answer: UK

gt_answer: UK
evaluation: CORRECT
answer: 2019
gt_answer: 2011
evaluation: INCORRECT
answer: {answer}
gt_answer: {gt_answer}
evaluation:

We conduct an ablation study on the benchmarks that require fuzzy matching and present
the results in Table 24. We discover that fuzzy matching provides reliable results compared to
an LLM grader. We recommend using a more capable model (such as GPT-4-turbo) for grading
benchmarks that have more subjective responses (such as numbers and words).
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ChartQA
OCRBench
TextVQA
MMVP
RealWorldQA

; S
-5 358
Method Eval n 0 ® =2 <
Cambrian-1 8B Fuzzy Matching|74.7 64.6 80.4 42.7 73.0 73.3 62.4 71.7 51.3 64.2
Cambrian-1 8B GPT3.5 Grading|78.4 65.8 82.0 38.9 78.1 71.2 67.0 69.2 49.3 63.5
A +3.7 +1.2 +1.6 -3.8 +5.1 2.1 +4.6 2.5 -2.0 -0.7
Cambrian-1 13B Fuzzy Matching|74.7 64.6 80.4 40.4 73.0 73.3 62.4 71.7 51.3 64.2
Cambrian-1 13B GPT3.5 Grading|77.3 64.7 81.3 37.2 78.2 71.4 67.1 75.6 46.0 64.3
A +2.9 +04 +2.0 -3.2 +4.6 2.4 +5.2 +2.8 +4.7 +1.3

Table 24 | Comparison between Fuzzy Matching Accuracy and LLM Judged Accuracy. Fuzzy
matching and LLM referee yield similar accuracies for the benchmarks that require matching.

LLM
Backbone System Prompt

Vicuna 1.5 | A chat between a curious user and an artificial intelligence assistant. The

7B assistant gives helpful, detailed, and polite answers to the user’s questions.
LLAMA-3 You are Cambrian, a highly intelligent multimodal Al trained by NYU Vision
8B X. As a multimodal Al, you have the ability to process and analyze images.

Whenever an image is present in the conversation, very carefully examine it
and consider its content when formulating your response.You should give
concise responses to very simple questions, but provide thorough responses to
more complex and open-ended questions.

Nous-Yi 34B | You are Cambrian, a highly intelligent multimodal Al trained by NYU Vision
X. As a multimodal Al, you have the ability to process and analyze images.
Whenever an image is present in the conversation, very carefully examine it
and consider its content when formulating your response. You should give
concise responses to very simple questions, but provide thorough responses to
more complex and open-ended questions.

Table 25 | LLM Backbone System Prompts
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Table 26 | Listing the prompts used in the evaluation of each benchmark

Benchmark | Prompt Example

AI2D \nAnswer with | USER: <image>\nwhich of these define dairy
the option’s letter | item\n(A) c\n(B) D\n(C) b\n(D) a\nAnswer with
from the given | the option’s letter from the given choices directly. AS-
choices directly. | SISTANT:

ChartQA \nAnswer the | USER: <image>\nHow many food item is shown in
question using a | the bar graph?\nAnswer the question using a single
single number or | number or phrase. ASSISTANT:
phrase.

DocVQA \nGive the short | USER: <image>\nWhat is the dividend payout in
answer directly. 2012?\nGive the short answer directly. ASSISTANT:

GOQA \nAnswer  the | USER: <image>\nls it overcast?\nAnswer the ques-
question  using | tion using single word or phrase. ASSISTANT:
single word or
phrase.

MathVista | \nFirst show | USER: <image>\nwhat is the total volume of the mea-
your reasoning | suring cup?\nFirst show your reasoning process and
process and then | then give the final answer. ASSISTANT:
give the final
answer.

MM-Bench | \nAnswer with | USER: <image>\nWhich of the following was a

EN the option’s letter | dependent variable in this experiment?\n(A) co-
from the given | coon\n(B) chrysalis\n(C) nan\n(D) nan\nAnswer
choices directly. | with the option’s letter from the given choices directly.

ASSISTANT:

MME \nPlease answer | USER: <image>\nls a python code shown in the pic-
the question us- | ture? Please answer yes or no.\nAnswer the question
ing a single word | using a single word or phrase. ASSISTANT:
or phrase.

MMMU \nAnswer with | USER: <image>\nWhat causes these unusual forma-
the option’s letter | tions on Mountain papaya? Options:\nA. Abiotic\nB.
from the given | Confused\nC. Biotic\nD. Normal\nAnswer with the
choices directly. | option’s letter from the given choices directly. ASSIS-

TANT:

MMVP \nAnswer with | USER: <image>\nAre the butterfly’s wings closer
the option’s letter | to being open or closed? Options:\n(a) Open\n(b)
from the given | Closed\nAnswer with the option’s letter from the
choices directly. given choices directly. ASSISTANT:

OCR Bench | \nGive the short | USER: <image>\nwhat is written in the im-
answer directly. age?\nGive the short answer directly. ASSISTANT:

RealWorld | \nAnswer the | USER: <image>\nIn which direction is the front wheel

QA question  using | of the car on the right side facing?\n\nA. Left\nB.
a single word or | Straight\nC. Right\nAnswer the question using a sin-
phrase. gle word or phrase. ASSISTANT:

SQA-I \nAnswer with | USER: <image>\nWhat is the name of the colony

the option’s letter
from the given
choices directly.

shown?\nA. Maryland\nB. New Hampshire\nC.
Rhode Island\nD. Vermont\nAnswer with the op-

tion’s letter from the given choices directly. ASSIS-
TANT:
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Benchmark

Prompt

Example

SEED-I

\nAnswer with
the option’s letter
from the given
choices directly.

USER: <image>\nHow many towels are in the im-
age? Options:\nA. One\nB. Two\nC. Three\nD.
Four\nAnswer with the option’s letter from the given
choices directly. ASSISTANT:

Text-VQA

\nAnswer the
question  using
a single word or
phrase.

USER: <image>\nwhat is the time?\nReference OCR
tokens: N, u, g0\nAnswer the question using a single
word or phrase. ASSISTANT:

ADE

\nAnswer with
the option’s letter
from the given
choices directly.

USER: <image>\nConsidering the relative positions
of the cushion and the sofa in the image provided,
where is the cushion located with respect to the sofa?
Select from the following choices. \n(A) right\n(B)
left\nAnswer with the option’s letter from the given
choices directly. ASSISTANT:

COCO

\nAnswer with the
option’s letter from
the given choices
directly.

USER: <image>\nHow many trains are in the image? Se-
lect from the following choices. \n(A) 3\n(B) 0 \n(C) 1
\n(D) 2 \n(E) 4\nAnswer with the option’s letter from the
given choices directly. ASSISTANT:

Omni3D

\nAnswer with
the option’s letter
from the given
choices directly.

USER: <image>\nEstimate the real-world distances
between objects in this image. Which object is closer to
the traffic cone (highlighted by a red box), the motorcy-
cle (highlighted by a blue box) or the bus (highlighted
by a green box)?\n(A) motorcycle\n(B) bus\nAnswer
with the option’s letter from the given choices directly.
ASSISTANT:

H. Potential Misuse & Mitigation Strategies

We recognize that there are ethical concerns regarding the potential misuse of multimodal large
language models like Cambrian-1, particularly in generating misleading content or spreading

misinformation. Below, we outline the main risks and provide strategies to address them:

1. Misinformation Cambrian-1 could be used to create misleading text descriptions of
images, leading to false narratives or misrepresentations. For instance, such models might
be leveraged by social media bots to manipulate public opinion during elections or other

critical events.

2. Hallucination Similar to any large language model, Cambrian-1 may produce information
that is not based on facts or actual input data. This phenomenon, often called "hallucina-
tion," can be dangerous if users assume the model’s output is entirely accurate without

verification.

To mitigate these risks, users should exercise caution and critical thinking when interpreting
outputs generated by Cambrian-1. It is important to verify the information produced by the
model, particularly if the results are intended for sensitive or high-stakes applications. Users
must be aware of the potential for hallucinations, where the model produces information not
grounded in facts, and take steps to cross-check and validate any critical outputs. Additionally,
implementing content filtering as a safeguard can help flag potentially harmful or misleading

content before it is disseminated.
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