
PEANO-ViT: Power-Efficient Approximations of Non-Linearities
in Vision Transformers

Mohammad Erfan Sadeghi
University of Southern California
Los Angeles, California, USA

sadeghim@usc.edu

Arash Fayyazi
University of Southern California
Los Angeles, California, USA

fayyazi@usc.edu

Seyedarmin Azizi
University of Southern California
Los Angeles, California, USA

seyedarm@usc.edu

Massoud Pedram
University of Southern California
Los Angeles, California, USA

pedram@usc.edu

ABSTRACT
The deployment of Vision Transformers (ViTs) on hardware plat-
forms, specially Field-Programmable Gate Arrays (FPGAs), presents
many challenges, which are mainly due to the substantial com-
putational and power requirements of their non-linear functions,
notably layer normalization, softmax, and Gaussian Error Linear
Unit (GELU). These critical functions pose significant obstacles to
efficient hardware implementation due to their complex mathe-
matical operations and the inherent resource count and architec-
tural limitations of FPGAs. PEANO-ViT offers a novel approach to
streamlining the implementation of the layer normalization layer
by introducing a division-free technique that simultaneously ap-
proximates the division and square root function. Additionally,
PEANO-ViT provides a multi-scale division strategy to eliminate
division operations in the softmax layer, aided by a Padé-based
approximation for the exponential function. Finally, PEANO-ViT
introduces a piece-wise linear approximation for the GELU function,
carefully designed to bypass the computationally intensive oper-
ations associated with GELU. In our comprehensive evaluations,
PEANO-ViT exhibits minimal accuracy degradation (≤ 0.5% for
DeiT-B) while significantly enhancing power efficiency, achieving
improvements of 1.91×, 1.39×, and 8.01× for layer normalization,
softmax, and GELU, respectively. This improvement is achieved
through substantial reductions in DSP, LUT, and register counts
for these non-linear operations. Consequently, PEANO-ViT en-
ables efficient deployment of Vision Transformers on resource- and
power-constrained FPGA platforms.

CCS CONCEPTS
• Hardware→ High-level and register-transfer level synthe-
sis; • Computing methodologies→ Computer vision.

KEYWORDS
Vision Transformers, FPGA Implementation, Deep Learning Effi-
ciency, Hardware Acceleration

ACM Reference Format:
Mohammad Erfan Sadeghi, Arash Fayyazi, Seyedarmin Azizi, and Mas-
soud Pedram. 2024. PEANO-ViT: Power-Efficient Approximations of Non-
Linearities in Vision Transformers. In Proceedings of the ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design (ISLPED ’24), August
5–7, 2024, Newport Beach, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3665314.3670843

1 INTRODUCTION
The landscape of computer vision has been fundamentally trans-
formed with the advent of deep learning, among which Vision
Transformers (ViTs) [4, 8, 12] have emerged as a particularly promis-
ing approach. Unlike traditional convolutional neural networks
(CNNs) that rely on local receptive fields, ViTs leverage the power
of self-attention mechanisms to capture global dependencies within
an image, enabling a more comprehensive understanding of visual
data. This capability has placed ViTs at the forefront of research,
demonstrating state-of-the-art performance across a wide range of
tasks in computer vision. Overall, deep learning has revolutionized
various domains by providing robust algorithms capable of learning
complex patterns from large datasets, thus enabling unprecedented
advancements in the application of artificial intelligence across
numerous fields, from healthcare [10] to recommendation systems
to scientific research.

ViTs rely on a series of identical encoder blocks to progressively
extract complex features from an image. These encoder blocks con-
sist of two principal components: Multi-headed Attention (MHA)
and Feed-Forward Network (FFN), each prefaced with a layer nor-
malization block. Embedded within MHA and FFN are linear layers,
GELU, and softmax, integrated via two residual connections that
bookend the normalization stages. The output of the final encoder
block goes through a classifier to obtain the class predictions.

Despite their exceptional performance, ViTs face significant chal-
lenges for practical deployment due to their extensive parameter
count and considerable computational demands. A wide range of
methods has been explored to improve the efficiency of ViTs, includ-
ing approaches like quantization [7], pruning [16], and low-rank
approximations [1]. However, the deployment of ViTs in practi-
cal applications, especially on hardware platforms such as Field-
Programmable Gate Arrays (FPGAs), presents fundamental chal-
lenges. Among these, the non-linear layers—layer normalization,
softmax, and GELU—integral to the architecture of ViTs, stand out.
While crucial for the network’s ability to model complex patterns,
these functions are computationally intensive and thus present a
critical challenge for the efficient implementation on FPGAs.

Our research delivers two key contributions. Firstly, we introduce
PEANO-ViT, a novel approach that utilizes hardware-optimized
approximation techniques for the non-linear functions within ViTs.
Our approach in PEANO-ViT offers a comprehensive solution to
the challenges posed by implementing key functions in ViTs on

ar
X

iv
:2

40
6.

14
85

4v
2 

 [
cs

.C
V

] 
 1

6 
A

ug
 2

02
4

https://doi.org/10.1145/3665314.3670843


FPGA platforms. By leveraging innovative techniques such as the
Padé-based approximation for the exponential function and incor-
porating bit manipulation operations for efficient division in the
softmax layer, we strive for a well-balanced and resource-efficient
implementation that prioritizes performance and resource conser-
vation. The layer normalization implementation effectively tackles
computational challenges by approximating the reciprocal of the
square root, 1√

𝑥
, in a novel manner. Furthermore, our adoption of

a piece-wise linear approximation for GELU not only minimizes
resource usage but also closely preserves the original function’s
behavior. Secondly, we demonstrate through comprehensive exper-
iments that PEANO-ViT enables the efficient execution of ViTs on
FPGAs, with minimal impact on accuracy and significant improve-
ments in computational efficiency and power consumption.

2 RELATEDWORK
Transformers [13], originally developed for tackling long sequences
in natural language processing tasks, served as the inspiration be-
hind ViT [4] for computer vision applications. ViTs achieve im-
pressive results by processing images as sequences of tokens and
leveraging the power of self-attention. However, while crucial for
performance, the core non-linear functions in ViTs – softmax, GELU,
and layer normalization – are computationally expensive and hin-
der efficient hardware implementation. Several studies have ex-
plored hardware-efficient strategies for these layers, presenting
various approximation techniques that balance approximation ac-
curacy with computational cost. Their characteristic in comparison
to PEANO-ViT is summarized in Table 1. The calculations for basic
layer normalization, softmax, and GELU are depicted in equations
(1-3), respectively. In equation 1, 𝛾 and 𝛽 are learnable parameters
while 𝜇 and 𝜎 represents the average and variance of input data of
the layer normalization function.

LayerNorm(𝑥𝑖 ) =
𝑥𝑖 − 𝜇

𝜎
∗ 𝛾 + 𝛽 (1)

Softmax(𝑥𝑖 ) =
𝑒𝑥𝑖∑
𝑒𝑥𝑖

(2)

GELU(𝑥) ≈ 0.5𝑥
(
1 + tanh

[√︂
2
𝜋

(
𝑥 + 0.044715𝑥3

)])
(3)

2.1 Softmax Implementations
The implementation of the softmax layer has emerged as a focal
point of research, with numerous studies dedicated to optimizing
its efficiency through various approximation techniques. The main
challenges for an efficient implementation of softmax on hardware
platforms arise from the non-linear function of 𝑒𝑥 and the final
division operation for normalizing the output values. Previous re-
search efforts, such as those by [11] targeted the efficient calculation
of exponential function and but were hindered by the costly divi-
sion operation. In contrast, studies by [5], [14], and [6] adopted
bit manipulation techniques to simplify the exponential function
approximation and eliminate the need for division. Although these
methods are beneficial for reducing computational demands and
are well-suited for hardware implementation, they still have a high

computational complexity due to their inherently iterative nature,
causing increased inference latency.

2.2 Layer Normalization Implementations
For hardware implementation of layer normalization, significant
hurdles include the efficient approximation of the square root func-
tion and managing division operations. the approach introduced in
[14] tackles the division operation issue but continues to employ
the exact yet resource-intensive formula of square root, resulting
in lower throughput.

2.3 GELU Implementations
Beyond layer normalization and softmax, the GELU function’s ap-
proximation also poses a significant challenge in the hardware
deployment of ViTs. This is due to its intricate non-linear nature,
which necessitates the execution of the 𝑡𝑎𝑛ℎ(𝑥) function alongside
polynomial calculations. Authors of [6] have explored the approx-
imation of the GELU function by simplifying the non-linear 2𝑥
function using bit manipulation operations. Additionally, [9] has
presented an innovative method that leverages existing softmax
hardware to facilitate GELU computations. While these approaches
are designed to be hardware-efficient and minimize resource con-
sumption, the computational latency remains a concern. This is due
to the iterative nature of some of the bit manipulation operations
in [6], and the use of non-optimized hardware for GELU in [9].

3 METHODOLOGY
In this section, we describe the techniques utilized to approximate
the layer normalization, softmax, and GELU functions. Our em-
phasis was on developing methods that avoid divisions and ensure
compatibility with hardware implementations while also aiming to
preserve the accuracy of the model as much as possible.

3.1 Layer Normalization
As described in subsection 2.2, the main challenges of implementing
layer normalization on hardware platforms such as FPGAs are the
non-linear square root function and the costly division operation.
Inspired by SOLE [14], we propose amethod to directly approximate
1√
𝑋
. We start with the following identities:

1
√
𝑋

= 2log2
1√
𝑋 , log2

1
√
𝑋

=
−1
2 log2 𝑋 (4)

Based on [14], we use equations (5-6) to approximate log2 𝑋 , in
which 𝑘𝑥 is the leading ’1’ bit of 𝑋 and 𝑥 ∈ [0, 1):

𝑋 =

𝑛−1∑︁
𝑖=0

2𝑖𝑏𝑖 = 2𝑘𝑥 +
𝑘𝑥−1∑︁
𝑖=0

2𝑖𝑏𝑖 = 2𝑘𝑥 (1 + 𝑥) (5)

log2 𝑋 ≈ 𝑘𝑥 + 𝑥 (6)
Therefore, we can have the following approximation:

1
√
𝑋

≈ 2
−(𝑘𝑥 +𝑥 )

2 (7)

Calculating the 2
−(𝑘𝑥 +𝑥 )

2 term is the only step remaining. We note
that 2𝛼 = 2𝑢 ∗ 2𝑣 in which 𝑢 is an integer number and 𝑣 ∈ [0, 1).

2



Table 1: Comparison of state-of-the-art methods for implementation of non-linear layers

Approach Layer normalization Softmax GELU All division-free Accuracy and resource aware
approximation approximation approximation approximations flexible approximations

Softermax [11] ✗ ✓ ✗ ✗ ✗

Koca et al.[5] ✗ ✓ ✗ ✓ ✗

Peltekis et al.[9] ✗ ✓ ✓ ✓ ✗

SOLE [14] ✓ ✓ ✗ ✗ ✓

Li et al.[6] ✗ ✓ ✓ ✓ ✗

LTrans-OPU [2] ✓ ✓ ✓ ✓ ✗

PEANO-ViT (Ours) ✓ ✓ ✓ ✓ ✓

Algorithm 1 PEANO Layer Normalization

Input: 𝑥1, . . . , 𝑥𝑛 ,𝛾 , 𝛽 , 𝑓 𝑟𝑎𝑐𝑃𝑜𝑤2[2𝑚] = {2(0.0...0)2 , . . . , 2(0.1...1)2 }
Output: 𝑦1, . . . , 𝑦𝑛
1: 𝐴𝑣𝑔 = 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖 //average of inputs

2: 𝐴𝑣𝑔𝑆𝑄 = 1
𝑛

∑𝑛
𝑖=1 𝑥

2
𝑖

//average of inputs squared
3: 𝑉𝑎𝑟 = 𝐴𝑣𝑔𝑆𝑄 −𝐴𝑣𝑔2 //variance of inputs
4: 𝑘𝑉𝑎𝑟 = 𝐿𝑒𝑎𝑑𝑖𝑛𝑔𝑂𝑛𝑒 (𝑉𝑎𝑟 ) //leading ’1’ bit of variance
5: 𝑥𝑉𝑎𝑟 = 𝑉𝑎𝑟 [𝑘𝑉𝑎𝑟 − 1 : 0] //contains the bits after 𝑘𝑉𝑎𝑟

6: 𝑙𝑜𝑔2𝐴𝑝𝑝𝑟𝑜𝑥 = −(𝑘𝑉𝑎𝑟 + 𝑥𝑉𝑎𝑟 ) >> 1
7: 𝑢 = ⌊𝑙𝑜𝑔2𝐴𝑝𝑝𝑟𝑜𝑥⌋
8: 𝑣 = 𝑢 − 𝑙𝑜𝑔2𝐴𝑝𝑝𝑟𝑜𝑥
9: 𝑣 = 𝑓 𝑟𝑎𝑐𝐵𝑖𝑡𝑠 (𝑣,𝑚) //𝑣 keeps the top m fractional bits in 𝑣

10: 𝑟𝑒𝑐𝑖𝑝𝑆𝑞𝑟𝑡 = 𝑓 𝑟𝑎𝑐𝑃𝑜𝑤2[𝑣] << 𝑢 //approximation of 1√
𝑉𝑎𝑟

11: for 𝑖 = 1 to 𝑛 do
12: 𝑦𝑖 = (𝑥𝑖 −𝐴𝑣𝑔) ∗ 𝑟𝑒𝑐𝑖𝑝𝑆𝑞𝑟𝑡 ∗ 𝛾 + 𝛽

13: end for
14: return 𝑦1, 𝑦2, . . . , 𝑦𝑛

To avoid calculating 2𝑣 , we keep the top𝑚 bits of 𝑣 ’s binary rep-
resentation as 𝑣 ≈ 𝑣 = (0.𝑣−1 . . . 𝑣−𝑚)2 and pre-store 2(0.0...0)2 up
to 2(0.1...1)2 . Since 𝑢 is an integer number, 2𝑢 can be implemented
using the shift operation. Thus, the approximation of 1√

𝑋
can be

obtained from two equations below:

2
−(𝑘𝑥 +𝑥 )

2 = 2𝑢 · 2𝑣 (8)

1
√
𝑋

≈ 2�̃� << 𝑢 (9)

Figure 1b shows the 1√
𝑋

compared to our approximation and the
overall layer normalization method is described in algorithm 1.
Using these approximations, we have simultaneously tackled the
two problems of efficient implementation of the square root func-
tion and approximating the division operation. It is important to
highlight that𝑚, an adjustable integer parameter, enables a trade-
off between the precision of the approximation and the on-chip
memory requirements for storing 2�̃� . Increasing𝑚 improves the
approximation accuracy at the cost of demanding more on-chip
memory. This flexibility will be discussed in detail in Section 4.3.

3.2 Softmax
Ourmethod for softmax approximation includes two steps. First, we
introduce a Padé-based approximation for the exponential function.

In the second step, we eliminate the division operations by propos-
ing a multi-scale reciprocal approximation (MSR-approx) method.
The Padé approximation 𝑃𝑎𝑑𝑒 [𝑚,𝑛] (𝑥) =

𝑎0+𝑎1𝑥+...+𝑎𝑚−1𝑥𝑚

𝑏0+𝑏1𝑥+...+𝑏𝑛−1𝑥𝑛 of a
function 𝑓 (𝑥) is the ratio of 2 polynomial functions. It represents a
better approximation of an arbitrary nonlinear function compared
to pure polynomial approximations of the same degree. For ap-
proximating the 𝑒𝑥 term, we have set 𝑚 = 𝑛 = 2 to get a Padé
approximation as follows:

𝑒𝑥 ≈ 12 + 6𝑥 + 𝑥2

12 − 6𝑥 + 𝑥2
(10)

To compute the 𝑃𝑎𝑑𝑒 [2,2] (𝑥) approximation of 𝑒𝑥 , we only need
to compute 𝑥2 = 𝑥 · 𝑥 and 6𝑥 = 𝑥 << 2 + 𝑥 << 1 thanks to
the numerator and denominator having similar functional forms.
Figure 1a illustrates the Pade-based approximation of the function
compared to 𝑒𝑥 . As can be seen, the proposed approximation is
very accurate for 𝑥 ∈ [−3, 2]. This observation motivated us first
to add 2 to all inputs (after subtracting the maximum value) and
then set 𝑒𝑥 to 0 for the values of less than −3 after the first step’s
calculations. Our final approximation of the exponential function
is thus as follows:

𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝 (𝑥) =
{
0 if 𝑥 < −3
12+6�̃�+�̃�2

12−6�̃�+�̃�2 if 𝑥 ≥ −3
(11)

Where 𝑥 = 𝑥 −𝑚𝑎𝑥 (𝑥𝑖 ) + 2. The above approximation adds an-
other division operation to the main calculation of softmax. The
first division is for the computation of 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝 (𝑥) while the
second division is needed for the softmax’s output normalization.
Since 𝑥 ∈ [−3, 2], values of the 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝 (𝑥)’s denominator lie
in the interval of [4, 39]. This motivated us to pre-store some of 1

𝑥
values and subsequently use them to approximate the reciprocal
function. However, unlike the denominator of 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝 (𝑥), the
denominator of the second division has a huge range of values.
Therefore, pre-storing values to approximate the second division is
not feasible (unless a very large lookup table is used, which would
result in high memory usage.)

To solve the aforesaid problem, we propose a multi-scale re-
ciprocal approximation (MSR-approx) scheme for both division
operations in the softmax. First we replace 𝑋 (the denominator)
with �̃� using the equation below:

�̃� = 𝑆𝑐𝑎𝑙𝑒 · ⌊ 𝑋

𝑆𝑐𝑎𝑙𝑒
⌋ (12)

3



And the reciprocal function approximation is described as,
1
𝑋

≈ 1
�̃�

=
1

𝑆𝑐𝑎𝑙𝑒
· 1
⌊ 𝑋
𝑆𝑐𝑎𝑙𝑒

⌋
(13)

Next, we force 𝑆𝑐𝑎𝑙𝑒 = 2𝛼 to be an integer power of 2 so that 1
𝑆𝑐𝑎𝑙𝑒

can be implemented by using a right shift by 𝛼 . This constraint
also helps with the calculation of ⌊ 𝑋

𝑆𝑐𝑎𝑙𝑒
⌋ since it simply means

dropping out the 𝛼 right bits of 𝑋 . The only thing we need to do
is to pre-store ⌊ 𝑋

𝑆𝑐𝑎𝑙𝑒
⌋ values, which is still problematic due to

the fact that the range of 𝑋 can be extremely wide for the second
division operation. This arises from the assumption of fixed 𝛼 for
all X values while using a dynamic value of 𝛼 will solve the problem
of 𝑋 ’s large variable range as described in algorithm 2.

Algorithm 2 shows the multi-scale approximation of the recip-
rocal function, which uses an adjustable integer threshold 𝛼∗ and
pre-stored values of { 11 , . . . ,

1
2𝛼∗+1−1 }. TheMSR-approx maps all val-

ues of𝑋 into the interval of [1, 2𝛼∗+1−1] via defining a flexible Scale
value, which solves the problem of the dynamic range of 𝑋 . For
instance, if 𝛼∗ = 4 then for 𝑋 ∈ [1, 31] then ⌊ 𝑋

𝑆𝑐𝑎𝑙𝑒
⌋ ∈ {1, . . . , 31},

and ⌊ 𝑋
𝑆𝑐𝑎𝑙𝑒

⌋ ∈ {16, . . . , 31} for the other values of 𝑋 . Hence, we
only need to pre-store { 11 , . . . ,

1
31 }. Figure 1c illustrates our MSR-

approx method compared to original reciprocal function for 𝛼∗ = 4.
Choosing 𝛼∗ is a trade-off between the accuracy of MSR-approx
and the memory required for pre-storing values (see Section 4.3).
Larger 𝛼∗ proposes a more accurate approximation of reciprocal
function while requiring larger memory for pre-stored values. The
softmax using the MSR-approx scheme is presented in algorithm 3.

An alternative approach for improving the accuracy of the multi-
scale division is to use linear interpolation between pre-stored
points (instead of directly using any of these points.) For instance,
if 𝑋 = 59 and 𝛼∗ = 4, the scale is equal to 2, so in the basic MSR-
approx method, we approximate 1

59 using 1
⌊ 592 ⌋ = 1

29 . Instead, we

can do linear interpolation between 1
29 and 1

30 to have a more
accurate approximation of 1

59 . The MSR approximation enhanced
with linear interpolation (called LMSR-approx) attains superior
accuracy at the expense of a slight increased resource consumption
and computational cycles, illustrating a clear trade-off between
accuracy and resource efficiency.

3.3 GELU
PEANO-ViT uses a piece-wise linear approach to approximate the
Gaussian Error Linear Unit (GELU). Unlike ViT’s other non-linear
functions, such as the square root and exponential functions, GELU
exhibits a predominantly linear behavior across both the lower and
upper extremes of its domain. Additionally, the GELU activation
function maintains a narrow range of values within its non-linear
region. These characteristics motivate the adoption of a piece-wise
linear approximation as a highly suitable method for replicating
the functionality of the GELU function.

Our method employs six breakpoints for GELU computations,
resulting in seven linear segments. The initial breakpoints are set
at 𝑥 = −3 and 𝑥 = 3, chosen to emulate the GELU’s linear be-
havior as 𝑥 approaches ±∞. Importantly, like many established
activation functions (e.g., ReLU, PReLU, GELU, SiLU), our approxi-
mation ensures that the activation function intersects the origin,

5 0
x

0

5

10

15

20

Fu
nc

tio
n 

Va
lu

e

ex

Pade[2, 2](x)

(a) Exponential func.

50 100
x

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fu
nc

tio
n 

va
lu

e

Basic 1
x

Our 1
x

(b) Reciprocal square root func.

10 20 30 40
x

0.05

0.10

0.15

0.20

0.25

Fu
nc

tio
n 

Va
lu

e

Basic 1
x

MSR approx(x)

(c) Reciprocal func.

2 0 2
x

0

1

2

3

Fu
nc

tio
n 

va
lu

e

GELU(x)
PEANO GELU(x)

(d) GELU func.

Figure 1: Comparison of standard functions with our approxima-
tions.

introducing a third breakpoint at 𝑥 = 0. To capture GELU’s capa-
bility for generating negative outputs, a breakpoint at 𝑥 = −0.75
approximates its minimum value, enhancing the fidelity of our ap-
proximation. To optimize the representation of GELU’s transitional
non-linear behavior within the intervals [−3,−0.75] and [0, 3], ad-
ditional breakpoints at 𝑥 = −2.1 and 𝑥 = 0.5 are introduced. These
points were determined through the minimization of the mean
square error, ensuring a more accurate approximation in the speci-
fied ranges. With the mentioned breakpoints, figure 1d visualizes
our final approximation which is described in the equation below:

𝑃𝐸𝐴𝑁𝑂−𝐺𝐸𝐿𝑈 (𝑥) =


0 if 𝑥 < −3
−0.0414(𝑥 + 3) if − 3 ≤ 𝑥 < −2.1
−0.0982(𝑥 + 2.1) − 0.0373 if − 2.1 ≤ 𝑥 < −0.75
0.2266(𝑥 + 0.75) − 0.17 if − 0.75 ≤ 𝑥 < 0
0.6914𝑥 if 0 ≤ 𝑥 < 0.5
1.0617(𝑥 − 0.5) + 0.3457 if 0.5 ≤ 𝑥 < 3
𝑥 if 𝑥 ≥ 3

3.4 FPGA Implementation
The overall FPGA implementation of PEANO-ViT’s non-linear lay-
ers is illustrated in Figure 2. Notably, each non-linear function pro-
cesses 𝑁 elements concurrently, enabling an approximate 𝑁 − 𝑓 𝑜𝑙𝑑

reduction in computation time. To enhance processing speed fur-
ther, FIFO queues have been integrated between the reading, storing,
and computing stages across all three implementations. Distinct
from GELU, both layer normalization and softmax necessitate dual
readings of input data—the initial for preliminary calculations and
the subsequent for the normalization phase. Integrating an extra
FIFO in parallel to the primary data stream notably decreases the
latency for both the layer normalization and softmax modules by
eliminating the requirement to temporarily store input values for a
second calculation phase. Increasing the parameter 𝑁 accelerates
the processing of non-linear functions at the cost of more FPGA

4



Algorithm 2 Multi-Scale Reciprocal approximation (MSR-approx)

Input: 𝑥, 𝛼∗, 𝑆𝑡𝑜𝑟𝑒𝑑𝑅𝑒𝑐𝑖𝑝 [2𝛼∗+1 − 1] = { 11 , . . . ,
1

2𝛼∗+1−1 }
Output: 𝑦 //approximation of 1

𝑥
1: 𝑙𝑜𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝐿𝑒𝑎𝑑𝑖𝑛𝑔𝑂𝑛𝑒 (𝑥)
2: if 𝑙𝑜𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ≤ 𝛼∗ then
3: 𝛼 = 0
4: else
5: 𝛼 = 𝑙𝑜𝑔𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 − 𝛼∗

6: end if
7: 𝑆𝑐𝑎𝑙𝑒 = 2𝛼
8: 𝑦 = (𝑆𝑡𝑜𝑟𝑒𝑑𝑅𝑒𝑐𝑖𝑝 [⌊𝑥 >> 𝛼⌋]) >> 𝛼

9: return 𝑦

Algorithm 3 PEANO Softmax
Input: 𝑥1, . . . , 𝑥𝑛
Output: 𝑦1, . . . , 𝑦𝑛
1: 𝑀𝑎𝑥𝐼𝑛𝑝𝑢𝑡 =𝑚𝑎𝑥 (𝑥𝑖 ) //Maximum of inputs
2: 𝑥𝑖 = 𝑥𝑖 −𝑀𝑎𝑥𝐼𝑛𝑝𝑢𝑡 + 2 //Shifting inputs by 2 - MaxInput
3: for 𝑖 = 1 to 𝑛 do
4: if 𝑥𝑖 < −3 then
5: 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝𝑖 = 0
6: else
7: 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝𝑖 = (12 + 6𝑥𝑖 + 𝑥2

𝑖
)

8: ×MSR-approx(12 − 6𝑥𝑖 + 6𝑥2
𝑖
)

9: end if
10: end for
11: 𝑆𝑢𝑚 =

∑𝑛
𝑖=1 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝𝑖 //Summation of exponential terms

12: for 𝑖 = 1 to 𝑛 do
13: 𝑦𝑖 = 𝑃𝐸𝐴𝑁𝑂𝑒𝑥𝑝𝑖×MSR-approx(𝑆𝑢𝑚)
14: end for
15: return 𝑦1, . . . , 𝑦𝑛

Table 2: Accuracy Loss of approximations on ImageNet-1K
benchmark. The results of [14] and [6], if available, are di-
rectly sourced from the papers. FP32 and FiP16 stand for
32-bit floating-point and 16-bit fixed-point, respectively.

Model Approach Approximations Accuracy

DeiT-S

Baseline(FP32) - 79.85%
SOLE [14](FP32) Layer normalization + softmax 79.27%

PEANO-ViT(Ours)(FP32) Layer normalization + softmax 79.36%
PEANO-ViT(Ours)(FiP16) All non-linearities 79.13%

DeiT-B

Baseline(FP32) - 81.85%
SOLE [14](FP32) Layer normalization + softmax 81.60%

PEANO-ViT(Ours)(FP32) Layer normalization + softmax 81.55%
PEANO-ViT(Ours)(FiP16) All non-linearities 81.35%

PEANO-ViT(Ours) W LMSR-approx(FiP16) All non-linearities 81.65%

Swin-B

Baseline(FP32) - 83.60%
SOLE [14](FP32) Layer normalization + softmax 83.05%

PEANO-ViT(Ours)(FP32) Layer normalization + softmax 83.60%
PEANO-ViT(Ours)(FiP16) All non-linearities 83.56%

ViT-L

Baseline(FP32) - 85.15%
Li et al.[6](FiP16) Softmax + GELU 84.78%

PEANO-ViT(Ours)(FiP16) Softmax + GELU 85.03%
PEANO-ViT(Ours)(FiP16) All non-linearities 84.83%

resource consumption. Consequently, PEANO-ViT becomes a con-
figurable hardware framework alongside its software flexibilities.

4 RESULTS AND DISCUSSIONS
In this study, the PEANO-ViT model was implemented on a Xil-
inx UltraScale+ VU9P board running at a frequency of 250 MHz.
We utilized the Vivado power report from Xilinx to evaluate the
power consumption of each design. To evaluate the performance
of PEANO-ViT, we employed the publicly available ImageNet-1K
dataset [3] and three different model architectures, namely ViT
[4], DeiT [12] and Swin [8], across various sizes (small, base, and
large). It is important to point out that our experimental setup does
not require extensive retraining. Instead, we conducted only two
epochs of fine-tuning after integrating each approximation into the
model. We utilized pre-trained models from the TIMM library [15]
as our starting point and implemented our approximations using
PyTorch.

4.1 ImageNet Classification
Table 2 provides a comparison of accuracy losses for four ViT-
based models utilizing the PEANO-ViT approximations against
techniques proposed by [14] and [6] implemented on FPGA and
GPU platforms, respectively. In our analysis, we set the layer nor-
malization parameter𝑚 = 4 and the MSR-approximation parameter
𝛼∗ = 4 without any linear interpolation. The superior performance
of PEANO-ViT compared to [6] and [14] stems from its independent
approximations of the softmax, GELU, and layer normalization func-
tions, while [6] focuses solely on softmax and GELU, and [14] on
layer normalization and softmax. The results of Table 2 indicate that
PEANO-ViT exhibits minimal accuracy degradation when applying
approximations to all non-linear blocks. Furthermore, when us-
ing a similar approximation approach, PEANO-ViT achieves lower
accuracy reduction across DeiT-S, Swin-B, and ViT-L models com-
pared to the methods outlined in [6] and SOLE [14]. For the DeiT-B
model, PEANO-ViT shows reduced accuracy degradation compared
to SOLE [14] when switching from MSR-approximation to LMSR-
approximation. Notably, PEANO-ViT offers the ability to further
minimize accuracy loss by adjusting𝑚 and 𝛼∗ and by incorporating
linear interpolation in the MSR approximation (LMSR-approx).

4.2 Hardware Cost
Table 3 details the power efficiency gain and reduction in resource
usage achieved by implementing PEANO-ViT. By utilizing the rapid
and hardware-compatible approximations introduced by PEANO-
ViT, the significant power consumption and resource usage asso-
ciated with hardware-intensive and costly iterative methods for
exact non-linear implementation have been greatly diminished.
Furthermore, Table 3 provides the resource utilization breakdown
for each non-linear layer of PEANO-ViT. In processing layers such
as normalization, softmax, and GELU, we simultaneously handle
16 elements, resulting in a Level of Parallelism (LoP) of 16 to en-
able a fair comparison with LTrans-OPU. This LoP can be adjusted
to align with resource availability and latency objectives, making
PEANO-ViT a versatile framework for enhancing the speed of ma-
chine learning tasks. Increasing the LoP enhances processing speed
but may lead to higher resource consumption and power usage.

5



Input Activation BRAM

Sum and sum squared 
calculation 1

Sum and sum squared 
calculation N

Output Activation 
BRAM

FIFO
.
.
.

FIFO

Adder tree FIFO
Average and 

variance 
calculation

Reciprocal Square 
root approximation 
and normalization

FIFO

Input Activation BRAM

PEANOexp and 
MSR-approx 1

PEANOexp and 
MSR-approx N

Output Activation 
BRAMFIFO

.

.

.

FIFO

Adder Tree
.
.
.

FIFO

MSR-approx of 
summation and 
normalization

FIFO

Layer Normalization

Softmax

GELU

Input Activation BRAM

Comparators 1

Comparators N

Output Activation 
BRAM

FIFO FIFO

GELU-LUTs 1

GELU-LUTs N

Linear Calculation 1

Linear Calculation N

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2: Overall FPGA implementation of PEANO-ViT

Table 3: Hardware metrics for DeiT-B Implementation

Non-linear layer Approach DSP DSP (Reduction) LUT LUT (Reduction) Register Register (Reduction) Power efficiency

Layer normalization
Standard layer normalization 51 - 24609 - 29831 - 1×

LTrans-OPU [2] 0 100% 60902 -147.4% 7850 73.6% 0.99×
PEANO layer normalization (Ours) 52 -1.9% 8157 66.8% 8621 71.1% 1.91×

Softmax

Standard softmax 64 - 9745 - 10648 - 1×
LTrans-OPU [2] 0 100% 238569 -2348.1% 13837 -29.9% 0.19×

PEANO softmax W MSR-approx (Ours) 48 25% 5595 42.5% 3831 64% 1.39×
PEANO softmax W LMSR-approx (Ours) 49 23.4% 5741 41.1% 3876 63.6% 1.38×

GELU
Standard GELU 128 - 101267 - 88293 - 1×
LTrans-OPU [2] 0 100% 11314 88.8% 2499 97.1% 6.76×

PEANO GELU (Ours) 16 87.5% 2940 97.1% 2951 96.6% 8.01×

Table 4: Effect of PEANO-ViT parameters on approximations
accuracy

Fuction Test input interval Changed parameter MSE

Reciprocal square root [1, 128]
𝑚 = 3 4.93 × 10−5
𝑚 = 4 9.56 × 10−6
𝑚 = 5 7.86 × 10−6

Reciprocal [8, 64]

𝛼∗ = 4, 𝑀𝑆𝑅 4.19 × 10−6
𝛼∗ = 5, 𝑀𝑆𝑅 4.03 × 10−6
𝛼∗ = 4, 𝐿𝑀𝑆𝑅 3.63 × 10−9
𝛼∗ = 5, 𝐿𝑀𝑆𝑅 3.58 × 10−9

GELU [−4, 4] 7 segments 2.65 × 10−4
10 segments 8.31 × 10−5

4.3 Flexibility of PEANO-ViT
PEANO-ViT is a highly versatile framework that can be tailored to
meet specific accuracy goals, hardware resource limitations, and
power consumption requirements. This adaptability is achieved
through the adjustment of key parameters such as 𝑚 for layer
normalization, 𝛼∗ for softmax, and the selection between MSR or
LMSR approximations for softmax. Furthermore, the framework
offers flexibility in determining the number of linear segments for
approximating the GELU function. Table 4 illustrates the impact
of different configurations on the mean square error accuracy of
approximated functions. Increasing the values of𝑚 and 𝛼∗, expand-
ing the number of linear segments in GELU, and choosing LMSR
over MSR result in improved accuracy but also consume higher
hardware resources, resulting in increased power consumption.

5 CONCLUSION
PEANO-ViT optimizes ViT models by approximating non-linear
blocks and eliminating division operations, maintaining high ac-
curacy with minimal reduction. This approach enhances power
efficiency and resource savings, setting a new benchmark for sus-
tainable deep learning. Its flexibility allows for customized adjust-
ments in accuracy, hardware resources, and power consumption,
ensuring it meets specific performance requirements without sacri-
ficing efficiency or accuracy.

Acknowledgment: This research is supported by a grant from
the Software and Hardware Foundations program of the NSF.

REFERENCES
[1] Seyedarmin Azizi, Mahdi Nazemi, and Massoud Pedram. 2024. Memory-Efficient

Vision Transformers: An Activation-Aware Mixed-Rank Compression Strategy.
arXiv:2402.06004 [cs.CV]

[2] Yueyin Bai et al. 2023. LTrans-OPU: A Low-Latency FPGA-Based Overlay
Processor for Transformer Networks. In 33rd International Conference on Field-
Programmable Logic and Applications, FPL 2023. IEEE, 283–287.

[3] Jia Deng et al. 2009. ImageNet: A large-scale hierarchical image database. In 2009
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4] Alexey Dosovitskiy et al. 2021. An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale. In 9th International Conference on Learning
Representations.

[5] Nazim Altar Koca et al. 2023. Hardware-efficient Softmax Approximation for Self-
Attention Networks. In IEEE International Symposium on Circuits and Systems.

[6] Tianyang Li et al. 2023. A high speed reconfigurable architecture for softmax
and GELU in vision transformer. Electronics Letters 59, 5 (2023), e12751.

[7] Zhenhua Liu et al. 2021. Post-Training Quantization for Vision Transformer. In
Annual Conference on Neural Information Processing Systems 2021.

[8] Ze Liu et al. 2021. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In 2021 IEEE/CVF International Conference on Computer Vision.

6

https://arxiv.org/abs/2402.06004


[9] Christodoulos Peltekis et al. 2024. Reusing Softmax Hardware Unit for GELU
Computation in Transformers. (2024). arXiv:2402.10118

[10] Parsa Razmara, Tina Khezresmaeilzadeh, and B. Keith Jenkins. 2024. Fever
Detection with Infrared Thermography: Enhancing Accuracy through Machine
Learning Techniques. arXiv:2407.15302 [cs.LG] https://arxiv.org/abs/2407.15302

[11] Jacob R. Stevens et al. 2021. Softermax: Hardware/Software Co-Design of an
Efficient Softmax for Transformers. In 58th ACM/IEEE Design Automation Conf.

[12] Hugo Touvron et al. 2021. Training data-efficient image transformers & distilla-
tion through attention. In Proceedings of the 38th Int. Conf. on Machine Learning.

[13] Ashish Vaswani et al. 2017. Attention is All you Need. In Annual Conference on
Neural Information Processing Systems 2017.

[14] Wenxun Wang et al. 2023. SOLE: Hardware-Software Co-design of Softmax
and LayerNorm for Efficient Transformer Inference. In IEEE/ACM International
Conference on Computer Aided Design.

[15] Ross Wightman. 2019. PyTorch Image Models. https://github.com/rwightman/
pytorch-image-models. https://doi.org/10.5281/zenodo.4414861

[16] Fang Yu et al. 2022. Width & Depth Pruning for Vision Transformers. In Thirty-
Sixth AAAI Conference on Artificial Intelligence.

7

https://arxiv.org/abs/2402.10118
https://arxiv.org/abs/2407.15302
https://arxiv.org/abs/2407.15302
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

	Abstract
	1 Introduction
	2 Related Work
	2.1 Softmax Implementations
	2.2 Layer Normalization Implementations
	2.3 GELU Implementations

	3 Methodology
	3.1 Layer Normalization
	3.2 Softmax
	3.3 GELU
	3.4 FPGA Implementation

	4 Results and Discussions
	4.1 ImageNet Classification
	4.2 Hardware Cost
	4.3 Flexibility of PEANO-ViT

	5 Conclusion
	References

