
2024-10-16

Uncovering mesa-optimization algorithms in
Transformers
Johannes von Oswalda,b,*, Maximilian Schlegela,b,*, Alexander Meulemansa,b, Seijin Kobayashia,b, Eyvind
Niklassona, Nicolas Zucchetb, Nino Scherrera, Nolan Millerd, Mark Sandlerd, Blaise Agüera y Arcasa, Max
Vladymyrovd, Razvan Pascanue and João Sacramentoa,b,*
aGoogle, Paradigms of Intelligence Team, bETH Zürich, dGoogle Research, eGoogle DeepMind, *Contributed equally to this work.

Some autoregressive models exhibit in-context learning capabilities: being able to learn as an input
sequence is processed, without undergoing any parameter changes, and without being explicitly trained
to do so. The origins of this phenomenon are still poorly understood. Here we analyze a series of
Transformer models trained to perform synthetic sequence prediction tasks, and discover that standard
next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the
model as new inputs are revealed. We show that this process corresponds to gradient-based optimization
of a principled objective function, which leads to strong generalization performance on unseen sequences.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform
the design of new optimization-based Transformer layers.

We are currently witnessing a paradigm shift in ma-
chine learning. Specialized models trained on large
labeled data sets are being replaced by generalist foun-
dation models trained with self-supervision [1]. There
is increasing evidence that these models can adapt to
a wide range of tasks after a brief period of super-
vised learning (‘fine-tuning’). Intriguingly, some foun-
dation models are capable of learning directly from
contextual input data, without having been explicitly
designed or trained to do so. In this way, parame-
ter fine-tuning can often be sidestepped altogether,
making on-the-fly adaptation to new tasks possible
simply by providing examples in context. This pow-
erful yet puzzling phenomenon, known as in-context
learning [2], was first observed in autoregressive large
language models (LLMs).

A number of recent theoretical studies have begun to
shed light on how in-context learning works, and why
it arises. A seminal analysis of Transformers, the back-
bone architecture [3] of the majority of LLMs, identi-
fied a two-layer circuit mechanism called ‘induction
head’ responsible for in-context learning in shallow
networks, and provided evidence for its likely involve-
ment in deeper and more complex networks [4, 5]. A
complementary line of work has shown that in-context
learning can emerge in small-scale models, as long as
the data distribution displays certain properties [6, 7],
and that it can vanish under long training times [8].
Building on prior recurrent neural network studies [9–
12], yet another line of investigation has studied the
metalearning abilities of Transformers, explicitly train-
ing the models to solve supervised learning problems
in-context [13–16]. In such a setup, in-context learn-

ing is no longer an emergent phenomenon, but is
‘forced’ by the training regime, simplifying the anal-
ysis. Our previous work showing that Transformers
solve linear regression tasks by gradient descent [17],
later followed by a series of refined studies and math-
ematical analyses [18–26], falls under the same cate-
gory as it also relies on explicit metalearning.

In this paper, we continue to analyze the in-context
learning abilities of Transformers, but shift our fo-
cus to autoregressive sequence prediction tasks. Like
LLMs—and most sequence models—we train Trans-
formers in a self-supervised manner by minimizing a
next-token prediction error objective. Based on our
previous results on metalearned Transformers [17],
we then investigate whether the prediction algorithm
learned by autoregressive Transformers can be inter-
preted as gradient-based learning on a suitable con-
textual objective function. We find that this holds
true for a range of synthetic sequence modeling tasks.
In such a controlled synthetic data setting, we iden-
tify a gradient-based learning mechanism spanning
multiple Transformer layers. We refer to this mech-
anism as a ‘mesa-optimizer’ to emphasize that it is
acquired through training, as opposed to being in-
herent to the model [see 27]. The mesa-optimizer
adapts the model as new contextual information be-
comes available, enabling it to improve its predictions
with near-optimal sample efficiency. Moreover, the
same mechanism enables learning downstream tasks
from contextual demonstrations only. Taken together,
our results explain, at least in the settings we have
considered, the emergence of in-context learning in
Transformers trained only to predict the next token.

Corresponding author(s): jvoswald@google.com, joaosacramento@google.com

ar
X

iv
:2

30
9.

05
85

8v
2

 [
cs

.L
G

]
 1

5
O

ct
 2

02
4

Uncovering mesa-optimization algorithms in Transformers

Results
We study autoregressive sequence modeling tasks
where the goal is to causally predict, at every time
step 𝑡 = 1, . . . , 𝑇 − 1, the next element 𝑒𝑡+1 in a se-
quence of tokens 𝑒 = (𝑒𝑡)𝑇𝑡=1, given the past (𝑒𝑡′)𝑡𝑡′=1 as
context.

We examine a range of causally masked Transformer
models [3] trained to solve such problems, from sim-
ple attention-only models to full-fledged deep Trans-
formers comprising multiple attention layers, layer
normalization [LayerNorm; 28], and nonlinear multi-
layer perceptron (MLP) blocks, cf. Materials and Meth-
ods. The objective of training is to find a set of pa-
rameters 𝜃 that minimize the cumulative next-token
prediction error

L(𝜃) = 𝔼𝑒∼𝑝(𝑒)

[
1
2

𝑇−1∑︁
𝑡=1
∥𝑒𝑡+1 − 𝑓𝑡 (𝑒1:𝑡, 𝜃)∥2

]
, (1)

where 𝑓𝑡 (𝑒1:𝑡, 𝜃) denotes the Transformer output condi-
tioned on the context 𝑒1:𝑡, and the expectation is taken
over the sequence distribution 𝑝(𝑒), which we describe
next. We focus on continuous-state problems, with
𝑒𝑡 ∈ ℝ𝑛𝑒 , and take the squared error as the per-time-
step loss, the standard objective for autoregressive
problems with continuous outputs.
Our Transformers are trained on synthetic se-

quences (𝑠𝑡)𝑇𝑡=1 of observations 𝑠𝑡 ∈ ℝ𝑛𝑠 generated by
discrete-time dynamical systems. As we detail in Ma-
terials and Methods, we consider a range of sequence
generators described in state-space representation:
(i) linear systems with full observability (𝑠𝑡 = ℎ𝑡) of
the internal system state ℎ𝑡 ∈ ℝ𝑛ℎ ; (ii) partially-ob-
served linear systems, where we only allow access to a
low-dimensional state projection, 𝑠𝑡 = 𝐶∗ℎ𝑡; (iii) non-
linear dynamics, with state transitions governed by
nonlinear neural networks. Typically, each token cor-
responds to one observation, 𝑒𝑡 = 𝑠𝑡, but we also study
tokenization schemes that aggregate several observa-
tions within one token. These aggregate token rep-
resentations play an important role in the theory we
develop below.

Next-token prediction by mesa-optimization
In this paper, we hypothesize that training Transform-
ers on next-token prediction tasks as described above
installs a gradient-based, in-context optimization algo-
rithm in the forward pass of the model. Following the
terminology of Hubinger et al. [27], we refer to this
hypothetical acquired process as mesa-optimization,
to distinguish it from the base-optimization of Eq. 1,
over which we have explicit control.
More concretely, we hypothesize that generating

the future-token prediction 𝑓𝑡 (𝑒1:𝑡, 𝜃) involves using
the current and past tokens 𝑒1:𝑡 to build a sequence-
specific latent model on the fly. We focus on the case

where this model is linear in its parameters, which we
denote by Φ.
According to our mesa-optimization hypothesis,

trained Transformers successively learn a sequence of
such parameters Φ𝑡 as input tokens are gradually re-
vealed, by minimizing an in-context objective function
𝐿𝑡 (𝑒1:𝑡,Φ) using gradient information ∇Φ𝐿𝑡 (𝑒1:𝑡,Φ).
The resulting in-context models are then used to gen-
erate the Transformer predictions. It is important to
appreciate that these in-context latent models and
their learning rules are not explicitly hardwired in the
Transformer design, but are instead a by-product of
base-optimization. The parameters Φ may thus be
thought of as an implicit type of fast (i.e., sequence-
specific) weights [29, 30] which live in the short-term
memory of a Transformer model, not in its learned
parameters.
Before verifying whether our hypothesis holds for

trained models, we first show that in theory, autore-
gressive linear Transformers are capable of optimiz-
ing quadratic loss functions in-context. We show this
constructively, by providing a set of parameters 𝜃

such that a linear Transformer implements a mesa-
optimizer. This construction will then guide our anal-
yses of trained models.

Theory of self-attention mesa-optimizers
Our first theoretical result concerns a single layer of
causally-masked self-attention, the architectural com-
ponent at the heart of an autoregressive Transformer;
we will later consider deeper, more complex archi-
tectures. Given an input sequence (𝑒𝑡)𝑇𝑡=1, one such
layer with 𝐻 heads updates each token 𝑒𝑡 ← 𝑒𝑡 + Δ𝑒sa𝑡
following the rule

Δ𝑒sa𝑡 =

𝐻∑︁
ℎ=1

𝑃ℎ𝑉ℎ,𝑡 𝛼(𝐾⊤ℎ,𝑡𝑞ℎ,𝑡), (2)

where 𝑞ℎ,𝑡 = 𝑊ℎ,𝑞𝑒𝑡 ∈ ℝ𝑛𝑎 is referred to as a query,
each column 𝑘ℎ,𝑡′ =𝑊ℎ,𝑘𝑒𝑡′ ∈ ℝ𝑛𝑎 of matrix 𝐾ℎ,𝑡 ∈ ℝ𝑛𝑎×𝑡

as a key, and each column 𝑣ℎ,𝑡′ = 𝑊ℎ,𝑣𝑒𝑡′ ∈ ℝ𝑛𝑣 of ma-
trix 𝑉ℎ,𝑡 ∈ ℝ𝑛𝑣×𝑡 as a value. The parameters of this layer
are the projection matrices {(𝑃ℎ,𝑊ℎ,𝑞,𝑊ℎ,𝑘,𝑊ℎ,𝑣)}𝐻ℎ=1
for all heads; we absorb bias terms, and assume here
for conciseness that all heads are equally sized. The
function 𝛼 applied to vector 𝑎 ∈ ℝ𝑡 returns an attention
weight vector. For the theoretical results presented be-
low, we focus on the case where 𝛼 is the identity func-
tion, which yields the linear self-attention layer, the
main building block of linear Transformers [e.g., 31–
35]. In our experimental analyses, we also study stan-
dard (softmax) self-attention layers, where 𝛼(𝑎)𝑖 =
softmax(𝑎)𝑖 := (

∑𝑡
𝑡′=1 exp(𝑎𝑡′))−1 exp(𝑎𝑖), present in

the original and still most popular Transformer archi-
tecture [3].

2

Uncovering mesa-optimization algorithms in Transformers

+

Causal self-attention layer

+
copy

mesa-optim
iza

tio
n

Token stream

Causal self-attention layer

Token stream

C
op

yi
ng

 la
ye

rs

 M

es
a-

op
tim

iz
at

io
n

la
ye

rs

Figure 1 | Illustration of mesa-optimization in autoregres-
sive Transformers. The neural dynamics implements an
optimization-based in-context learning algorithm, which
optimizes the parameters Φ of a linear model over a series
of causally-masked attention layers. Taking as inputs an
initial set of parameters Φ0 and a training set of input-target
pairs {(𝑠𝑡′ , 𝑠𝑡′+1)}𝑡−1𝑡′=1 constructed from context, this process
returns a prediction Φ̂𝑡𝑠𝑡 obtained by applying the learned
model to the current input. Early layers implement a copy
operation which binds multiple consecutive tokens together,
in agreement with previous in-context learning analyses
[4, 5]. This aggregate-token representation enables the im-
plementation of gradient-based optimizers in subsequent
attention layers, cf. Propositions 1 and 2.

Consider the cumulative squared-error loss function

𝐿𝑡 (Φ) =
𝑡−1∑︁
𝑡′=1

1
2
∥𝑠𝑡′+1 − Φ𝑠𝑡′ ∥2, (3)

where Φ ∈ ℝ𝑛𝑠×𝑛𝑠 parametrizes a first-order linear
autoregressive model which predicts 𝑠𝑡+1 from 𝑠𝑡. We
show that one linear self-attention layer can implicitly
represent such a model in its activations, with mesa-
parameters Φ learned by a step of gradient descent
on the mesa-objective 𝐿𝑡 (Φ).

Proposition 1 (1-step attention-based gradient de-
scent). Given tokens of the form 𝑒𝑡 = [Φ0𝑠𝑡, 𝑠𝑡, 𝑠𝑡−1], for
𝑡 = 2, ..., 𝑇, if the projection matrices𝑊𝑘,𝑊𝑞,𝑊𝑣, 𝑃 are
such that

𝑃𝑊𝑣 =


0 𝜂𝐼𝑠 −𝜂Φ0
0 0 0
0 0 0

 , 𝑊⊤𝑘 𝑊𝑞 =


0 0 0
0 0 0
0 𝐼𝑠 0

 ,
with 𝐼𝑠 the identity matrix of size 𝑛𝑠 × 𝑛𝑠, then the trans-
formation of every token 𝑒𝑡 by one causally-masked linear
self-attention head is identical to the gradient-induced
update 𝑒𝑡 ←

[
(Φ0 − 𝜂∇𝐿𝑡 (Φ0))𝑠𝑡, 𝑠𝑡, 𝑠𝑡−1

]
.

Proposition 1 (proven in Materials and Methods)
is an immediate extension of the main result of von
Oswald et al. [17] to the autoregressive sequence mod-
eling setting, where 𝑇 loss functions (𝐿𝑡)𝑡 must be op-
timized in sequence, see Materials and Methods for
details. Since 𝐿𝑡 is the cumulative squared error up
to time 𝑡, Proposition 1 implements a ‘full-batch’ gra-
dient step. Notably, the self-attention layer executes
this step in all 𝑇 problems in parallel. We remark that
our construction assumes a special three-channel tok-
enization, where a single token encodes the current
input 𝑠𝑡, the previous input 𝑠𝑡−1, and an initial predic-
tion Φ0𝑠𝑡. As illustrated in Fig. 1, we will later show
that trained Transformers learn to internally produce
such encodings when driven by a standard-format
(𝑒𝑡 = 𝑠𝑡) sequence, but for now we proceed under the
assumption that the tokens are structured in such a
way.

We now turn to multi-layer, self-attention-only mod-
els. Here, we find that causally-masked autoregressive
modeling complicates the problem, in the sense that
stacking 𝑘 layers following Proposition 1 yields an un-
conventional biased algorithm that is expected to be
slower than 𝑘-step gradient descent, as analyzed in
[23]. There exists, however, an alternative unbiased
mesa-optimizer for multi-layer models, which intro-
duces an additional layerwise operation for improving
the preconditioning of mesa-optimization. This algo-
rithm again makes use of self-attention layers, now
employed to transform the input data. In the limit of
many such layers, a single gradient descent step then
yields the optimal (least-squares) mesa-optimization
solution.

Proposition 2 (Multi-attention-layer mesa-optimizer).
Assume we are given for every time step 𝑡 = 2, . . . , 𝑇 a
sequence of suitably-constructed input tokens (𝑒𝑡′)𝑡𝑡′=1,
and a regularized mesa-objective we wish to minimize
𝐿𝑡 (Φ) =

∑𝑡−1
𝑡′=1

1
2 ∥𝑠𝑡′+1 −Φ𝑠𝑡′ ∥

2 + 1
2𝜆 | |Φ | |

2
F where 𝜆

−1 ∈ ℝ
is a regularization hyperparameter and 𝑆𝑡 is the data
matrix whose columns are (𝑠𝑡′)𝑡𝑡′=1. Then, there exists a
set of linear Transformer parameters 𝜃 that yield an ap-
proximation to the vectors 𝐻∗𝑡 𝑠𝑡 := (𝑆𝑡−1𝑆⊤𝑡−1 +1/𝜆𝐼)

−1𝑠𝑡
in parallel for all 𝑡 in their forward pass, with approxi-
mation error decreasing with the number of linear self-
attention layers 𝑘. As a consequence, in the many-layer
limit the Transformer can minimize the regularized
mesa-objective.

A concrete parameter construction and proof are
provided in the Materials and Methods.
Propositions 1 and 2 show that simplified Trans-

formers can, at least in theory, minimize cumulative
squared-error objectives in-context, without any ac-
tual parameter (‘in-weights’) learning taking place.
As we shall see in our experimental section below,
these ideal constructions yield solutions to our syn-

3

Uncovering mesa-optimization algorithms in Transformers

thetic tasks, and they generate testable hypotheses
that inform our experiments with trained models. Be-
fore proceeding to our empirical analyses, we present
one last theoretical result motivated by the construc-
tions above: a novel self-attention layer designed for
efficient least-squares in-context learning.

An attention layer for optimal least-squares learn-
ing
The mesa-optimizers discussed so far require in gen-
eral many layers to reach a desired error. This observa-
tion leads us to develop the mesa-layer, a self-attention
layer derived from in-context optimization first princi-
ples. More concretely, we show that an appropriately
modified attention layer yields autoregressive least-
squares solutions in sequence and in a single step, a
computation that would otherwise require infinitely
many linear self-attention layers under Proposition 2.
Thus, if the mesa-optimization hypothesis advanced
in this paper describes actual trained standard Trans-
formers, it should be possible to improve their perfor-
mance by introducing such a layer in their architecture.
The mesa-layer therefore provides one additional way
of verifying the mesa-optimization hypothesis in ex-
periments.

The mesa-layer changes a sequence of input tokens
according to the update

Δ𝑒mesa
𝑡 =

𝐻∑︁
ℎ=1

𝑃ℎΦ̂
mesa
ℎ,𝑡 𝑞ℎ,𝑡, (4)

with

Φ̂mesa
ℎ,𝑡 = argmin

Φ

1
2

𝑡∑︁
𝑡′=1
| |𝑣ℎ,𝑡′ − Φ𝑘ℎ,𝑡′ | |2 +

||Φ | |2F
2𝜆ℎ

. (5)

Above, the (learnable) scalar 𝜆−1
ℎ

> 0 controls the
strength of a regularizer added to improve generaliza-
tion, and key, value and query vectors are the usual
learned head-specific affine transformations of the to-
kens, as in Eq. 2. However, through Eq. 5 these vectors
are now assigned a precise, interpretable role: value
vectors specify targets to which an internal model with
parameters Φ should map training and test inputs, rep-
resented by keys and queries, respectively. We note
that the minimizer of a regularized squared-error ob-
jective can be mapped to Eq. 5 under an appropriate
tokenization (such as the one of Proposition 1) by ap-
propriately setting the projection matrices𝑊ℎ,𝑣,𝑊ℎ,𝑘

and 𝑊ℎ,𝑞.
At any given time step 𝑡 = 1, . . . , 𝑇 computing Δ𝑒mesa

𝑡

requires solving a regularized least-squares problem
per attention head. To efficiently solve this sequence
of 𝑇 optimization problems, we leverage the recursive
dependency of the 𝑇 solutions, which can be expressed

in closed-form as

Φ̂mesa
ℎ,𝑡 = 𝑉ℎ,𝑡𝐾

⊤
ℎ,𝑡𝑅ℎ,𝑡

=

𝑡∑︁
𝑡′=1

𝑣ℎ,𝑡′𝑘
⊤
ℎ,𝑡′

(
𝑡∑︁

𝑡′=1
𝑘ℎ,𝑡′𝑘

⊤
ℎ,𝑡′ + 1/𝜆ℎ 𝐼

)−1
. (6)

As 𝜆ℎ → 0, we recover a standard linear self-attention
layer. Thus, the mesa-layer strictly generalizes the
latter.
We now use the Sherman-Morrison formula [36]

to obtain the inverse at time 𝑡 from the inverse at
the previous time step 𝑡 − 1. This iterative update
is possible because we only change the inverse by a
rank-one update. The following solution scheme is
known as recursive least squares [37]:

𝑅ℎ,𝑡 = 𝑅ℎ,𝑡−1 −
𝑅ℎ,𝑡−1𝑘ℎ,𝑡𝑘⊤ℎ,𝑡𝑅ℎ,𝑡−1

1 + 𝑘⊤
ℎ,𝑡
𝑅ℎ,𝑡−1𝑘ℎ,𝑡

(7)

with 𝑅ℎ,0 = 𝜆ℎ 𝐼. We can then (causally in time) com-
pute

Δ𝑒mesa
𝑡 =

𝐻∑︁
ℎ=1

𝑃ℎ𝑉ℎ,𝑡𝐾
⊤
ℎ,𝑡𝑅ℎ,𝑡𝑞ℎ,𝑡, (8)

which requires 2 additional vector-matrix and 2 vector-
vector multiplications per step compared to standard
self-attention.

Naive backward gradient computation requires stor-
ing matrices of dimension 𝑛𝑎 × 𝑛𝑎 in memory across
time. However, this memory overhead can be avoided
using the Sherman-Morrison formula in reverse dur-
ing backpropagation, as we show in the SI Appendix,
enabling memory-efficient gradient computation of
the output of the mesa-layer w.r.t. its inputs. We note
that while the implementation described here has a
desirable O(1) inference memory cost, it is not paral-
lelizable across time. This is a disadvantage for train-
ing on contemporary hardware shared with nonlinear
recurrent neural networks, but not with standard self-
attention layers.
The mesa-layer is closely related to the Delta-Net

model of Schlag et al. [33], which is hardwired to do
one gradient descent step per time point. It can also
be seen as an adaptation of the intention layer pro-
posed by Garnelo & Czarnecki [38] to the sequential,
autoregressive case. The latter corresponds exactly
to a non-causally-masked version of Eq. 6. Here, we
focus on the autoregressive setting, which leads us
to develop recursive forward and backward updates,
in order to achieve efficient sequential inference and
training.

Aggregate internal token representations develop
through training
We begin our empirical analysis of Transformer mod-
els trained by autoregressive loss (Eq. 1) minimization

4

Uncovering mesa-optimization algorithms in Transformers

43 44 45 46 47 48 49 50
Token t ′

0.0

0.2

0.4

0.6

0.8

e t
′ p

ro
be

 M
SE

A

43 44 45 46 47 48 49 50
Token t ′

0

1

2

3

4

5

6

M
LP

* (
e t

′)
pr

ob
e

M
SE

B

1 2 3 4 5 6 7
Softmax Mesa Layer

d:Partially-observed
Fully-observed

Partially-observed
Fully-observed

Figure 2 | Early layers of trained autoregressive Transform-
ers (blue lines) produce internal token representations that
support mesa-optimization by subsequent layers. Similar
results are obtained for standard deep Transformers and
new compact, two-layer model variants which feature the
mesa-layer (red lines). (A) After training, the past token
𝑒𝑡′ (𝑡′ = 49) can be almost perfectly linearly decoded from
the current (𝑡 = 50) output of the first Transformer layer.
The decoding horizon 𝑡 − 𝑡′ increases when the Transformer
is trained to solve partially-observed tasks (dashed lines;
notice low probing error for 𝑡′ ∈ {49, 48, 47, 46}). (B) Same
analysis, now for the groundtruth hidden state MLP∗ (𝑒′𝑡) of
a nonlinear sequence generator and for varying layer depth.
Current (𝑡′ = 𝑡) and preceding (𝑡′ = 𝑡 − 1) states can be
linearly decoded from early Transformer layers (depicted
with lighter color tones) after training on nonlinear tasks.

by searching for evidence of an internal token binding
mechanism. Recall that Propositions 1 and 2 required
a non-standard token format, in which consecutive
observations were aggregated within a single token 𝑒𝑡.
In our first set of experiments, we adopt a standard to-
ken format and provide only the current observation 𝑠𝑡
as the input 𝑒𝑡 to the model. The first prediction of our
theory is that training should install a token binding
mechanism, responsible for aggregating multi-time-
step observation information within a single token.
We now show that this indeed occurs in actual trained
models.
In Fig. 2, we report the performance of linear de-

coders [probes; 39] trained to predict previous tokens
from the output of the first attention layer of a deep
Transformer model. We consider both standard Trans-
former models featuring seven softmax self-attention
layers, MLPs and LayerNorm, as well as a novel com-
pact Transformer which combines one layer of softmax
self-attention and one mesa-layer, described in detail
in Materials and Methods. We relegate architectures
solely built out of mesa-layer models to the SI Ap-
pendix, as we found that these were generally outper-
formed by hybrid softmax-mesa architectures. We see
that after training it becomes possible to decode past
tokens from the present token (see also Fig. 1A), with
decoding horizon increasing for partially-observed
problems, for both standard softmax Transformers

and the novel hybrid softmax-mesa Transformers intro-
duced in this paper. For the fully observed setting, the
probe error increases quickly when predicting more
than one step in the past, aligned with our token con-
struction that binds together only consecutive tokens.
Moreover, when the models are trained on systems
with nonlinear dynamics, the performance of linear
probes that decode the hidden state of the sequence
generator system from the outputs of MLP layers im-
proves, in particular for early MLP layers.
These results can be explained by analyzing the

tasks the Transformers are trained on. When the input
data is generated by a fully-observed linear dynami-
cal system, the maximum likelihood estimator of the
groundtruth parameters𝑊∗ corresponds to the least-
squares solution argminΦ

∑𝑡−1
𝑡′=1

1
2 ∥𝑠𝑡′+1 − Φ𝑠𝑡′ ∥2. The

mesa-optimizers described in Propositions 1 and 2, as
well as the mesa-layer, can be readily applied to solve
this problem (or a regularized variant, corresponding
to maximum a posteriori estimation under a Gaussian
prior on Φ), as long as inputs and targets are both
encoded within a single token 𝑒𝑡. This is what we
observe in Fig. 2A.
The nonlinear case can be approached similarly,

by performing least-squares estimation of 𝑊∗ after
an appropriate nonlinear feature transformation. For
a Transformer model, the MLP layers are perfectly
placed to implement this transformation. In line with
this, we find that early layers develop a set of basis
functions that align with those of the nonlinear se-
quence generator, Fig. 2B, followed by a token binding
step (cf. SI Appendix).
We find that there is a longer dependence on the

past under partial observability (Fig. 2A), where next-
token prediction is complicated due to the presence of
latent variables. This behavior can again be explained
in the light of our mesa-optimization hypothesis. First,
we note that the task our Transformers face is harder
than classical Kalman filtering [40], where knowledge
of groundtruth system parameters is assumed. Meth-
ods such as subspace identification [41] or variational
expectation maximization [42] are applicable to this
harder setting, but we found these standard meth-
ods difficult to map to a Transformer. We identified
however a less-orthodox algorithm, mathematically
related to data-driven control techniques [43, 44],
which runs online as a sequence is unveiled, and that is
based on least-squares estimation. This algorithm can
therefore be implemented by a Transformer through
Propositions 1 and 2, or by a mesa-layer. The key
step is to encode 𝑘 past observations 𝑠𝑡−𝑘+1, . . . , 𝑠𝑡 in a
single augmented variable 𝑧𝑡 ∈ ℝ𝑘𝑛𝑠 of large enough
dimensionality; it can then be shown that maximum
likelihood estimation of the next token 𝑠𝑡+1 can be
achieved by solving a least-squares problem involving
the augmented variables {𝑧𝑡}. We provide a full deriva-

5

Uncovering mesa-optimization algorithms in Transformers

tion and analysis in Materials and Methods, where
we show that the optimal value of 𝑘 depends on the
compression ratio 𝑛ℎ/𝑛𝑠. According to this theory, we
would expect to see a higher-order (𝑘 > 1) depen-
dency on past inputs for the case of partially-observed
dynamics. This corresponds to what we find in trained
Transformers, cf. Fig. 2.

A B𝑡′

𝑡

Figure 3 | Visualization of activations and parameters for
trained models. (A): Additional evidence for a token binding
mechanism on a 7-layer Transformer complementing Fig. 2,
shown by plotting first-layer attention scores averaged over a
batch of 2048 sequences. Clear data-independent attention
on the previous and current token is shown resp. by high
sub-diagonal and main diagonal attention, with zero every-
where else. (B): One trained layer of linear self-attention
implements one step of gradient descent, compare with
Proposition 1.

We thus conclude that training robustly installs a
token binding mechanism in the first Transformer lay-
ers across a range of next-token prediction tasks and
network architectures. Interestingly, this mechanism
exactly coincides with the first layer of the induction
head circuit [4, 5, 8], which has inspired the design
of new neural architectures [45–48]. Through their
analysis of Transformers trained on natural language
modeling, Olsson et al. provide compelling evidence
that the appearance of this mechanism during train-
ing is strongly correlated with improvements in in-
context learning performance. Here, we interpret this
phenomenon as part of a multi-layer circuit for mesa-
optimization. In light of our theory, token binding can
be understood as constructing an in-context training
set of appropriate input-output associations. Once
this step is concluded, the mesa-objective function is
defined, and in-context optimization can take place.

Evidence for mesa-optimizers in linear attention-
only models
We proceed with our analysis of trained Transformers,
focusing in this section on simplified linear-attention-
only architectures, that can in theory be explained
by Propositions 1 and 2. Having shown that a token
binding mechanism can be learned, and aiming for the
simplest deep Transformer setup, in this section we
directly feed our models with aggregate token inputs,
𝑒𝑡 =

[
0, 𝑠𝑡, 𝑠𝑡−1

]
, as assumed by our theory. Moreover,

we focus on fully-observable linear tasks.

1 600 1300
Training steps

0.5

1.0

1.5

2.0

Te
st

 lo
ss

A
Linear-SA-1
Interpolation-1
Proposition-1
Mesa

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

C
Proposition-1

1 20 40
Sequence length t

10 2

10 1

100

Ta
rg

et
 p

ro
be

 M
SE

E

1 1700 3500
Training steps

0.2

0.5

0.8

1.0

1.2

Te
st

 lo
ss

B
Linear-SA-6
Interpolation-6
CompressedAlg-6
Mesa

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

D
Proposition-2

1 20 40
Sequence length t

10 3

10 2

10 1

Pr
ec

on
di

tio
ni

ng
 p

ro
be

 M
SE

F

1 2 4 6 Inp. 1 2 3 4 5 6
Linear-

SA-d:
Layer

d:

Figure 4 | Evidence for mesa-optimization in linear self-
attention networks. (A) As training proceeds, the test loss
of a single layer of linear self-attention (Linear-SA-1, green
lines) converges to the loss achieved by 1-step gradient de-
scent (Proposition-1, gray line) with optimized learning
rate and initial parameters. A single mesa-layer (red lines)
strongly outperforms a single linear self-attention layer, con-
sistent with the fact that it yields recursively the optimal
(least-squares) solution at every time step. (B) Same anal-
ysis, now for a 6-layer linear self-attention model. The in-
crease in the number of attention layers reduces the gap
towards the mesa-layer. The test loss of this model con-
verges to that of the CompressedAlg-6 expression (black
line), which comprises a small fraction (0.5%) of parameters
of the original model, reflecting the highly-structured param-
eters obtained after training. (C) At convergence, trained
models exhibit the same in-context learning performance
(measured as the loss as a function of sequence length) as
1 step of gradient descent (dashed line). (D) Similarly for
6-layer models, which can be almost perfectly described
by the multi-layer mesa-optimizer of Proposition 2 (dashed
line). (E) Linear probing of next-token targets 𝑠𝑡+1 from the
internal Transformer activations improves with depth and
context length, consistent with mesa-optimization for next-
token prediction. (F) Linear probing of preconditioned in-
puts (𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)

−1𝑠𝑡 improves with depth and context
length, consistent with the mesa-optimizer of Proposition 2.

The results for single-layer networks are strikingly
clear. After next-token prediction training, these net-
works implement the one-step gradient descent algo-
rithm of Proposition 1 in a near-exact fashion. This can
be seen by visual inspection, Fig. 3, or quantitatively
by comparing the loss reached by the trained layer
with that of a linear autoregressive model learned
through one step of gradient descent, cf. Fig. 4A-C.
We find that we can perfectly fit the outputs of our
trained layer when using all degrees of freedom of our
theory, including not only a learned learning rate 𝜂,
but also a learned set of initial weights Φ0. Next-token

6

Uncovering mesa-optimization algorithms in Transformers

prediction therefore installs in the Transformer an in-
context variant of the model-agnostic metalearning
algorithm due to Finn et al. [49].

Deep linear attention networks correspond to high-
degree polynomial functions with a large number of
terms. Despite their complexity, for such deep net-
works training once again leads to highly-structured
sparse model parameters 𝜃; we provide visual ex-
amples in the SI Appendix. This allows us to con-
struct an expression (CompressedAlg-𝑑, where 𝑑 de-
notes model depth) comprising only 16 parameters
(instead of 3200) per layer head. We find that this com-
pressed, albeit convoluted, expression can describe
a trained deep linear Transformer. In particular, it
allows interpolating between actual Transformer and
CompressedAlg-𝑑 weights (or Proposition 1, for the
single-layer case) in an almost lossless fashion, cf. Fig-
ure 4C. Further details can be found in Materials and
Methods.
While the CompressedAlg-𝑑 expression explains a

trained deep linear self-attention model with a small
number of free parameters, it is difficult to interpret
it from the lens of mesa-optimization and connect it
exactly to the theoretical construction of Proposition
2. We therefore resort to a linear probing analysis
[39] to look for signatures of our hypothesized mesa-
optimization algorithms. Based on Propositions 1 and
2 we design (i) target probes measuring optimization
progress, regressing 𝑘-th layer representations 𝑒(𝑘)𝑡

against the next token 𝑠𝑡+1 to be predicted, where we
could expect multiple steps of gradient descent grad-
ually approaching the target; and (ii) precondition-
ing probes regressing against preconditioned inputs
(𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)

−1𝑠𝑡, cf. Materials and Methods. As
shown in Fig. 4D-E we see that both probes succeed,
with linear decoding performance increasing with se-
quence length and network depth. Base-optimization
has therefore discovered a hybrid algorithm that de-
scends over layers the mesa-objective 𝐿𝑡 (Φ) while si-
multaneously improving the condition number of the
mesa-optimization problem. This leads to a fast de-
scent of the mesa-objective.

Examining next-token prediction error, we find that
it decreases quickly with depth, cf. Figure 4C, with a
6-layer model coming close to but still not matching a
single mesa-layer. The high performance of the mesa-
layer in this setup can be explained by the fact that it
yields the optimal (least-squares) predictor provided
that the correct query, key and value inputs are fed to
it. Moreover, prediction error decreases monotonically
with sequence length both for the mesa-layer as well as
for multi-layer linear Transformers. This improvement
with context size matches the operational definition
of in-context learning proposed by Kaplan et al. [50];
in this sense, the models are strong in-context learn-
ers, behaving similarly to regularized least-squares.

Notably, we see in Fig. 4 that performance-wise a
deep model with 𝑘 linear attention layers can be al-
most perfectly explained by 𝑘 steps of the multi-layer
mesa-optimizer described in Proposition 2, with ap-
propriately tuned hyperparameters (cf. Materials and
Methods). Importantly, these hyperparameters are
tuned for maximal 𝑘-step performance and not to re-
produce Transformer behavior. This is one additional
point of evidence that our theoretical mesa-optimizers
describe the computations performed by Transformers
trained by next-token prediction error minimization.

Trained softmax self-attention layers behave like
linear attention
We return to standard Transformer models, which fea-
ture MLPs, LayerNorm and softmax self-attention lay-
ers. We train multi-layer versions of such networks on
fully-observed linear tasks, under a standard tokeniza-
tion scheme (𝑒𝑡 = 𝑠𝑡). Recalling that our theoretical
mesa-optimizers (Propositions 1 and 2) rely on linear
self-attention operations, we now ask whether base-
optimization renders the softmax attention nonlinear-
ity in an approximately linear regime, when driven by
sequences such as those seen during training.

4 10 20 40 60
Data dimension ns

1

2

3

4

No
rm

al
ize

d
te

st
 lo

ss

A

4 10 20 40 60
Data dimension ns

0.02

0.04

0.06

0.08

0.10

Te
st

 lo
ss

B

1 2 3 4 5 6 7
Layer

d: LSQ Softmax kernel-
regression

Figure 5 | Linearization analysis of softmax Transformers.
(A) The test loss achieved by a linearized Transformer, where
one attention layer at a given depth 𝑑 (intensity color-coded)
is linearized, normalized relative to reference model loss. As
the input dimension 𝑛𝑠 grows, the linear approximation im-
proves for all layers except for the first. The highly-nonlinear
behavior exhibited by this layer is consistent with its special
role in implementing a token binding mechanism (Figs. 1
and 5). (B) The test loss of an autoregressive linear model
learned by regularized least-squares (LSQ, yellow line), the
algorithm we hypothesize that a trained Transformer im-
plements, does not suffer from the curse of dimensionality,
whereas a generic interpolation algorithm (red line) that
can be implemented in softmax attention layers does.

In Fig. 5A, we analyze the test set loss achieved by
a Transformer after replacing a softmax self-attention
layer by its linear counterpart at a given depth, keep-
ing the architecture otherwise intact. We obtain this
control model through a process known as distilla-
tion [51]: we first record the outputs produced by
the to-be replaced softmax attention layer, when the

7

Uncovering mesa-optimization algorithms in Transformers

Transformer is applied to a set of training sequences,
and then train a linear attention layer to reproduce
these outputs by squared error minimization. As we
observe in Fig. 5, for sufficiently large input dimension
𝑛𝑠, from the second layer onwards the linear attention
models behave as their reference counterparts to a
very good approximation. We further observe that
the first attention layer behaves in an entirely differ-
ent, nonlinear manner. This is consistent with the fact
that softmax self-attention can implement near-exact
token copying [4], as required by our token binding
mechanism (cf. Figs. 1 and 2).

On induction heads
The low linearization error achieved at high enough
data dimension seen in Fig. 5 is at odds with previous
theories explaining in-context learning as best-match
(or nearest neighbor) pattern retrieval, which rely on
the softmax nonlinearity [4, 5]. To better understand
this phenomenon, let us compare the scaling behav-
ior of two competing mechanistic explanations for
in-context learning in Transformers, as we let the in-
put dimension 𝑛𝑠 grow: the theory studied here, where
a linear model is learned by regularized least-squares,
and nonparametric regression under a softmax kernel.
The latter is in fact the algorithm implemented by
the full (two-layer) induction head mechanism [4, 5].
While we have seen previously that the first token-
binding layer of an induction head circuit is precisely
what Propositions 1 and 2 require, the subsequent
layers differ in the two theories, as we briefly review
next.
In basic terms, an induction head predicts the

next token by first retrieving the most similar past
inputs, and then outputting a similarity-weighted
combination of the tokens that appeared after-
wards. This yields the next-token prediction �̂�nn

𝑡+1 =∑𝑡−1
𝑡′=1 𝑠𝑡′+1softmax(𝛽 𝑠⊤𝑡′ 𝑠𝑡). Unlike least-squares mesa-

optimizers, this method operates on the highly nonlin-
ear regime of the softmax attention function, with the
scalar 𝛽 ∈ ℝ+ set large enough so as to approximate
single-pattern retrieval (𝛽 →∞). Thus, with regards
to the linearity of the attention function, an induction
head and the mesa-optimizers studied here sit on two
opposite extremes.

The theory of nonparametric regression has sought
to characterize such interpolants, revealing that gen-
eralization error scales in general exponentially with
input dimension [52]. By contrast, it can be shown an-
alytically in the simpler non-autoregressive case that
the generalization error is independent of input di-
mension for optimally-regularized linear regression
[53, 54], assuming that the task difficulty (measured
as the context size per dimension 𝑇/𝑛𝑠) is conserved,
which is the regime we study here. These theoretical
considerations are reflected in the experiments with

fully-observed linear dynamics reported in Fig. 5B,
where we report the scaling of cumulative next-token
prediction mean-squared error loss for softmax ker-
nel regression with optimally-tuned 𝛽 (per dimen-
sion) against an autoregressive linear model learned
by optimally-regularized least-squares (LSQ). We see
that next-token prediction performance is always best
and only weakly depends on 𝑛𝑠 for the latter, whereas
it degrades for the former.

The findings presented in Fig. 5B highlight the mer-
its of performing proper latent variable inference un-
der the correct generative model, over applying a
generic interpolation algorithm. This is the curse of
dimensionality [55], here unveiled at the level of in-
context learning. One strategy to deal with this prob-
lem is to embed the data in an appropriate learned
space before applying a nearest-neighbor-type method
[56]. For the synthetic autoregressive tasks considered
in this paper, the curse of dimensionality can be de-
feated if base-optimization discovers the multi-layer
mesa-optimizer of Proposition 2. Below, we provide
further evidence that this actually occurs in trained
Transformers.

1 20 40
Sequence length t

10 2

10 1

100

Ta
rg

et
 p

ro
be

 M
SE

A

1 20 40
Sequence length t

10 2

10 1
Pr

ec
on

di
tio

ni
ng

 p
ro

be
 M

SE
B

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

C
Transformer (3)
Transformer (7)
Proposition-2 (3)
Proposition-2 (7)

Inp.1 2 3 4 5 6 7 Inp.1 2 3 4 5 6 7
Layer

d:
Layer

d:

Figure 6 | Evidence for mesa-optimization in standard (soft-
max) Transformers. (A) Linear probes decode next-token
target 𝑠𝑡+1 from internal Transformer activations, with de-
coding performance improving with depth (intensity color-
coded) and context length, consistent with gradual opti-
mization of an internal next-token prediction model. (B)
Likewise for preconditioned input (𝑆𝑡−1𝑆⊤𝑡−1+1/𝜆𝐼)

−1𝑠𝑡 prob-
ing, consistent with the mesa-optimizer of Proposition 2. (C)
Next-token prediction error of a 3-layer and a 7-layer Trans-
former (light and dark blue lines) decrease with context
length in almost exactly the same way as 3 or respectively 7
steps of Proposition 2 (light and dark dashed yellow lines),
with hyperparameters of the latter set for best performance,
not to match Transformer behavior.

Mesa-optimization theory describes complete
Transformers
We continue studying complete Transformers, repeat-
ing the analyses carried out for deep linear attention
models paired with special input tokens, as required
by Propositions 1 and 2. Moreover, we examine all
three task types — linear systems with either full or

8

Uncovering mesa-optimization algorithms in Transformers

partial observability, as well as nonlinear systems —
now always using conventional input token formatting
(𝑒𝑡 = 𝑠𝑡).

In short, our main findings on simplified linear
attention-only models translate to standard Transform-
ers. We have already seen in Fig. 2 that these models
learn appropriate MLP basis functions when faced
with nonlinear tasks, and that they construct internal
training sets by binding tokens together. Repeating
our probing analysis, we now confirm that subsequent
layers execute an algorithm that simultaneously im-
proves next-token predictions and mesa-optimization
conditioning (Fig. 6), as it was the case for linear
attention-only models.

In terms of next-token prediction performance, we
see that 𝑘 steps of Proposition 2 can essentially de-
scribe the performance of 𝑘-attention-layer Transform-
ers trained on all three task types considered here
(Figs. 6C and 7), once again in line with our previ-
ous findings on simplified linear attention-only mod-
els. Moreover, we find that a hybrid two-attention-
layer architecture, stacking one mesa-layer after a
standard softmax attention layer, is the strongest of
all models considered here despite its low parameter
count and shallow depth. This hybrid architecture de-
sign is directly inspired by our mesa-optimization the-

1 20 40
Sequence length t

0.00

0.02

0.04

0.06

0.08

0.10

Ne
xt

 to
ke

n
pr

ed
ict

io
n

M
SE

A

1 20 40
Sequence length t

0

1

2

3

4

5

Ne
xt

 to
ke

n
pr

ed
ict

io
n

M
SE

B

1 20 40
Sequence length t

0.00

0.02

0.04

0.06

0.08

0.10

Ne
xt

 to
ke

n
pr

ed
ict

io
n

M
SE

C

Transformer-7 Hybrid-mesa Proposition-2-linear Proposition-2-nonlinear

Figure 7 | Comparison of the next-token prediction error
of 7-layer softmax Transformers (blue lines) and 2-layer
softmax-mesa Transformers (red lines) on three families of
tasks: fully-observed linear systems (A), partially-observed
linear systems (B), and nonlinear systems (C). To validate
themesa-optimization theory developed here, we also report
the performance achieved after applying 7 steps of the mesa-
optimizer of Proposition 2 to learn the parameters of a linear
model (Proposition-2-linear; yellow lines). For partially-
observed and nonlinear tasks, we further report the loss
achieved when the Proposition 2 is used to train a linear
model applied to the groundtruth feature transformation,
given by an optimal number of concatenated past tokens
to resolve partial observability, or the MLP∗ (𝑠𝑡) used by
the nonlinear sequence generator, respectively (Proposition-
2-nonlinear; light blue lines). These two control models
accurately describe the behavior of actual trained standard
Transformers. Moreover and also in accordance with the
theory developed here, the hybrid-mesa architecture serves
as a strong baseline for all three tasks.

ory, leveraging the fact that softmax attention layers
can easily implement a token binding operation, and
that mesa-layers implement efficient in-context least-
squares solvers. The fact that a fixed-depth, 2-layer
softmax-mesa Transformer provides a performance
upper bound approached as the depth of standard
softmax Transformers increases provides additional
evidence that such models are well described by the
mesa-optimization theory developed here.

Autoregressive Transformers are few-shot learners
Brown et al. [2] established in-context learning in
large autoregressive language models, showing that
LLMs can solve new tasks when provided with a small
number of (‘few-shot’) labeled examples in-context.
Here, we investigate whether a similar phenomenon
occurs in the autoregressive models studied thus far.
To that end, we take the Transformers analyzed above
and present them post-training with in-context linear
regression tasks (cf. Materials and Methods).
Despite the fact that the models were trained to

predict the evolution of linear dynamical systems, and
not to perform supervised in-context learning, we ob-
serve that regression loss decreases with sequence
length (Fig. 8A). The models can thus use additional
in-context training data to improve predictions. Our
results therefore show that training Transformers on
simple autoregressive tasks can give rise to in-context
few-shot learning, complementing previous evidence
for this phenomenon in large-scale models [2]. As
a control, we report the performance reached by au-
toregressive least-squares on the same dataset, which
yields a similar error curve.

We note that the autoregressive in-context learning
algorithm uncovered above is sub-optimal with respect
to linear regression. Close inspection reveals that the
origin of its sub-optimality lies in the learned token
binding mechanism (analyzed in Fig. 2) that binds
every consecutive pair of tokens, in an overlapping
fashion. In a training set of size 𝑛, this introduces 𝑛−1
spurious associations, where a regression target 𝑦𝑖 is
incorrectly associated to the next independent input
𝑥𝑖+1, whereas only inputs 𝑥𝑖 should be associated with
their respective targets 𝑦𝑖. Interestingly, this gives rise
not only to convergence to a sub-optimal solution, but
also to the early ascent phenomenon present in LLMs
[57]. This refers to in-context learning performance
first undergoing a brief but statistically significant pe-
riod of loss increase, before actual improvements start
taking place. Note that early ascent is not specific to
autoregressive Transformers; we can observe it on the
autoregressive linear least-squares control model as
well (LSQ; Fig. 8A). We therefore identify one cause
for this poorly-understood phenomenon, tracing it
back to the internal mechanics of mesa-optimization
for next-token prediction.

9

Uncovering mesa-optimization algorithms in Transformers

0 10 20 30 40 50 60
Datapoints (xi, yi) in sequence

0.5

1.0

1.5

2.0

La
be

l p
re

di
ct

io
n

M
SE

A Few-shot regression
TF
TF+EOS
TF+EOS+P
LSQ

0 10 20 30 40 50 60
Datapoints (xi, yi) in sequence

1.0

1.5

2.0

2.5

La
be

l p
re

di
ct

io
n

M
SE

B Continual few-shot regression
TF
TF+EOS
TF+EOS+P
LSQ

Figure 8 | Autoregressive Transformers display in-context
few-shot learning capabilities. After training a standard 7-
layer Transformer on autoregressive sequence prediction
problems, we measure its ability to solve linear regression
tasks in-context, without further parameter fine-tuning. The
task training set is presented to the model in sequence, with
each token corresponding either to an input or to its corre-
sponding label. A final test input is provided and the loss
is measured after completing the sequence using the au-
toregressive Transformer. (A) The mesa-optimizers installed
by autoregressive pretraining can be leveraged off-the-shelf
to solve in-context supervised regression tasks, but yield
sub-optimal regression performance (lightest blue lines).
In-context learning performance can be improved follow-
ing the standard strategies of prompt (TF+EOS, light blue
lines) and prefix fine-tuning (TF+EOS+P, dark blue lines).
For comparison, we provide the loss achieved by an autore-
gressive linear model learned by least-squares (LSQ, yellow
lines) (B) Same analysis, now presenting two tasks in a row.
The autoregressive models develop some in-context contin-
ual learning capabilities.

To mitigate this effect, we investigate a common
approach, known as prompt-tuning, which can lead
to significant performance improvements when ap-
plied to large language models [58, 59]. Con-
cretely, we fine-tune a single token, which we re-
fer to as the EOS token, on the linear regression
objective. When presenting data sequentially as
[𝑥1, 𝑦1, EOS, 𝑥2, 𝑦2, . . . , EOS, 𝑥𝑁 , 𝑦𝑁], where 𝑥𝑖 and 𝑦𝑖
resp. denote regression inputs and labels, we observe a
considerable performance improvement after prompt-
tuning, see Fig. 8A. Furthermore, to instruct the model
to perform few-shot tasks, we learn a single prefix-
prompt P which we append at the beginning of a
sequence with EOS tokens. This appears to further
improve the few-shot performance for early data-pairs.
Additional experimental details can be found in Mate-
rials and Methods.

Lastly, we demonstrate the capability of autoregres-
sive Transformers to learn multiple tasks in a row. We
study the minimal setup where the model has to learn
two tasks, generated from two distinct groundtruth
linear models, resulting in a sequence of data of the
form [𝑥11 , 𝑦

1
1 , . . . , 𝑥

1
𝑁 , 𝑦

1
𝑁 , 𝑥

2
1 , 𝑦

2
1 , . . . , 𝑥

2
𝑁 , 𝑦

2
𝑁]. In Fig. 8B,

we see that the trained Transformer can learn a second
task in-context, even though it was never explicitly
trained to solve such sequential learning problems.

This behavior is expected, given the autoregressive
linear model optimizer uncovered in the preceding
sections. This finding suggests further characterizing
the continual in-context learning abilities of Trans-
formers, as Irie et al. [60] have begun to investigate.

Discussion
We’ve presented evidence that Transformer models
develop gradient-based learning algorithms when
trained on sequence prediction tasks under a standard
autoregressive objective. Moreover, we have seen that
the resulting prediction algorithms can be repurposed
without retraining to solve supervised in-context learn-
ing tasks, capturing LLM phenomena such as early
ascent or the effectiveness of prompt fine-tuning tech-
niques in improving in-context learning. The fact that
we were able to reproduce these findings in our syn-
thetic data setup is surprising, given that the state-
space sequence generators studied here are far from
language models—most notably, they operate in con-
tinuous space, and lack deep hierarchical structure.
Our results serve as a case-in-point that autoregressive
Transformers can exhibit in-context learning capabil-
ities outside language modeling, and point towards
the universality of certain properties of these acquired
learning algorithms.

There has been significant debate on whether LLMs,
and learned next-token predictors more generally, are
limited tomemorizing correlations present in the train-
ing set [having been called stochastic parrots; 61].
This view has been challenged by a number of studies,
analyzing for example autoregressive models trained
to predict legal moves in board games [62–64]. In a
purely observational manner and without any a priori
game knowledge, self-supervised next-token predic-
tion models learn latent representations of the board
state and track the moves of each opponent. Our find-
ings provide complementary evidence that next-token
prediction objectives can lead to the discovery of al-
gorithms that correctly infer the hidden state of the
world: the in-context learning algorithm we identified
can be precisely cast as maximum a posteriori infer-
ence under the correct Bayesian prior and likelihood
function. Moreover, the multi-layer mesa-optimizers
installed by next-token prediction objectives are highly
efficient (i.e., achieve significant loss reduction in only
a few layers) thanks to precise tuning of their hyper-
parameters to the sequence generative model.
The idea that a Transformer generates its predic-

tions by solving internal optimization problems has
ties to many different lines of thought in machine
learning. One closely related line of work explores the
concept of a declarative node: a differentiable layer
whose output is defined implicitly as the solution of an
optimization problem [65–67]. We note that subsum-

10

Uncovering mesa-optimization algorithms in Transformers

ing an entire chain of layers by a single declarative
node is not only potentially more efficient, but also
more interpretable. The mesa-layer is an example
of such a node, adding to recent studies exploring
the advantages of including declarative nodes within
attention-based models [38, 68–70].

Our analysis of trained models revealed that stochas-
tic gradient descent in effect discovered a declarative
node, preferring to pick an optimization algorithm
among alternative solutions in the configuration space
of autoregressive Transformers. This can be partly
explained by the fact that recursive least-squares can
be leveraged to solve the tasks considered here, and
by the fact that Transformers can efficiently approx-
imate this algorithm through Proposition 2. Our re-
sults complement the theoretical work of Hubinger
et al. [27], by providing a concrete toy model where
mesa-optimization occurs. However, more work is
still needed to characterize this phenomenon outside
the controlled experimental setting considered in this
paper.
The mesa-layer developed here can also be seen

as a locally optimal fast weight programmer [29]. In
his seminal work [29], Schimidhuber proposed to dy-
namically reprogram the weights of a feedforward
neural network using a Hebbian rule. As pointed out
by Schlag et al. [33], this is precisely what a linear self-
attention layer does: it generates predictions using an
effective weight matrix that is learned by taking outer
products of values and keys, a Hebbian associative
rule [71]. In this work, we instead frame fast weight
learning as an optimization problem that is efficiently
solved at every moment in time by the mesa-layer.
This form of optimal fast learning is strictly superior
to Hebb’s rule, both in terms of generalization and
memory capacity [72]. The mesa-layer is therefore
also closely related to the Delta-Net [33], which uses
the delta rule [73] for fast weight learning. Unlike the
mesa-layer, which is optimal at every step, the delta
rule requires multiple steps to converge, though it is
cheaper to implement. The strong performance of the
mesa-layer observed here on synthetic tasks suggests
investigating its application to natural data at larger
scales, for which we provide preliminary language
modeling results in Appendix G.

Our work has an unexpected connection to research
on local learning rules, a question of great interest in
theoretical neuroscience [74]. Decomposing a global
learning problem into a series of local quadratic opti-
mization problems, like the objective functions of the
mesa-optimizers studied here, is at the heart of the
target propagation [75], predictive coding [76] and
control-based [77] theories of learning in the brain.
Moreover, previous studies have proposed greedy lay-
erwise learning algorithms that do not require global
error information [78–82]. Much in the same vein

but now on the fast timescale of inference, the mesa-
optimizers uncovered here implement greedy, local
learning algorithms which only use bottom-up infor-
mation.

We conclude by discussing our findings in the light
of predictive processing theories of intelligence, where
learning predictive models is presumed to underwrite
intelligent behavior [83, 84]. A number of influential
predictive processing models have adopted a Bayesian
approach, starting from the assumption that the world
obeys a certain generative model, and then hand-
designing approximate inference algorithms for the
assumed model [85–89]. Here, directly inspired by
LLMs, we took a powerful neural sequence model and
trained it to maximize the likelihood of upcoming
inputs given the past, without making explicit proba-
bilistic assumptions about the latent structure of the
world. The network was nonetheless able to discover
the correct underlying model of the data, and appro-
priately exploit its knowledge to generate predictions.
This finding provides further evidence that direct max-
imization of future prediction performance by simple
gradient-based methods — as opposed to hierarchical
probabilistic methods, and the typically intractable
inference problems that they bring — might be suffi-
cient to build the predictive processing backbone of
an intelligent system.

Methods
Transformer architectures
The Transformer models studied here follow the
widely-used GPT-2 specification [90]. This architec-
ture comprises multiple identical blocks, with one
block consisting of the softmax self-attention layer
defined in equation 2 followed by a one-hidden layer
MLP. The inputs of both layers are normalized:

𝑒𝑡 ← 𝑒𝑡 + Δ𝑒sa𝑡 (LN(𝑒𝑡))

𝑒𝑡 ← 𝑒𝑡 + Δ𝑒mlp
𝑡 (LN(𝑒𝑡)),

where LN(·) denotes the LayerNorm operation [28],
and Δ𝑒mlp

𝑡 (𝑒𝑡) =𝑊2GELU(𝑊1𝑒) with GELU(𝑒) := 𝑒G(𝑒),
and G(·) the Gaussian cumulative distribution func-
tion, applied elementwise [91]. We set𝑊1 such that
𝑊1𝑒 has four times more neurons compared to 𝑒, which
itself is four times larger than 𝑠. Additional architec-
tural details are provided in the SI Appendix.

The predictions are read-out directly from the first
dimensions of last-layer token outputs, and we add
a positional encoding to every input following the
original method of Vaswani et al. [3]. If not explic-
itly stated otherwise, for models that incorporate the
mesa-layer, we leave the architecture configuration
unchanged but replace Δ𝑒sa𝑡 with Δ𝑒mesa

𝑡 in the appro-
priate places. A hybrid-mesa Transformer features

11

Uncovering mesa-optimization algorithms in Transformers

two self-attention layers, with the first being standard
softmax self-attention, and the second a mesa-layer.

Base optimizers
All models are trained by online autoregressive loss
(Eq. 1) minimization using the AdamW [92] optimizer
with learning rate warm-up followed by a cosine decay.

Statistics
All numerical results are averaged across five random
seeds, with shaded areas representing standard devi-
ation.

Synthetic sequence generators
The tasks considered in this paper involve predicting
the next observation 𝑠𝑡+1 ∈ ℝ𝑛𝑠 from a sequences of
past observations (𝑠𝑡′)𝑡𝑡′=1 generated by discrete-time
dynamical systems, whose state is denoted by ℎ𝑡 ∈ ℝ𝑛ℎ .
Starting from a random initial state ℎ1 ∼ N(0, 1), we
generate observations by letting a groundtruth system
evolve according to

ℎ𝑡+1 =𝑊∗ 𝑓 ∗ (ℎ𝑡) + 𝜖ℎ,𝑡
𝑠𝑡 = 𝐶∗ℎ𝑡 + 𝜖𝑠,𝑡,

where 𝜖ℎ,𝑡 ∼ N(0, 𝜎2ℎ) is a noise input and 𝜖𝑠,𝑡 ∼
N(0, 𝜎2𝑠) is an observation noise term. We set the
transition matrix𝑊∗ ∈ ℝ𝑛ℎ×𝑛ℎ to a random orthogonal
matrix, and we consider both fully-observed (𝐶∗ = 𝐼)
and partially-observed tasks, where 𝑛𝑠 < 𝑛ℎ, and 𝐶∗𝑖 𝑗 ∼
N(0, 0.5). Our tasks can be further categorized as lin-
ear (by setting 𝑓 ∗ to the identity function) or nonlin-
ear. For the nonlinear case, we always take 𝐶∗ = 𝐼 and
introduce a nonlinear transformation MLP∗ (·) in state-
space, ℎ𝑡+1 = 𝑊∗MLP∗ (ℎ𝑡) + 𝜖𝑡. The MLP computation
is described by MLP∗ (ℎ𝑡) = 𝐵 · GELU(𝐴 · ℎ𝑡), where
𝐴 ∈ ℝ𝑛𝑚×𝑛ℎ ∼ N(0, 1.1) and 𝐵 ∈ ℝ𝑛ℎ×𝑛𝑚 ∼ N(0, 1.1).
Importantly, we draw new transition and readout

matrices 𝑊∗ and 𝐶∗ for every sequence. These param-
eters are analogous to task-specific variables in multi-
task learning [93], adapted to the problem of unsu-
pervised sequence modeling. We introduce sequence-
specific variables to reflect the high degree of vari-
ability that is observed in large datasets of real-world
data, such as in LLM training corpora [90]. Under
such a generative model, rote memorization solutions
are excluded from the global minimizers of Eq. 1: a
trained Transformer cannot achieve minimal loss by
memorizing a single set of𝑊∗ and 𝐶∗ in its parameters
𝜃. Instead, it must deal with inherent uncertainty in
every sequence, and infer in-context a set of latent vari-
ables whose values vary from sequence to sequence.
The main goal of this paper is to characterize this
in-context inference process.

Proof of Proposition 1
Starting with the token construction 𝑒𝑡 =[
Φ0𝑠𝑡, 𝑠𝑡, 𝑠𝑡−1

]
, we now show that the parame-

ter construction of Proposition 1 induces the following
gradient-based change to all tokens in parallel
𝑒𝑡 ←

[
(Φ0 − 𝜂∇𝐿𝑡 (Φ0))𝑠𝑡, 𝑠𝑡, 𝑠𝑡−1

]
. When plugging in

the proposed weights into a linear self-attention layer
head we obtain
ΔΦ̂𝑡𝑠𝑡
0
0

 = 𝑃𝑊𝑉

𝑡∑︁
𝑡′=1


0
𝑠𝑡′

𝑠𝑡′−1




0
𝑠𝑡′

𝑠𝑡′−1


⊺ 

0 0 0
0 0 0
0 𝐼𝑠 0



0
𝑠𝑡
𝑠𝑡−1


= 𝑃𝑊𝑉

𝑡∑︁
𝑡′=1


0

𝑠𝑡′ 𝑠
⊤
𝑡′−1𝑠𝑡

𝑠𝑡′−1𝑠⊤𝑡′−1𝑠𝑡


=


0 𝜂𝐼𝑠 −𝜂Φ0
0 0 0
0 0 0


𝑡∑︁

𝑡′=1


0

𝑠𝑡′ 𝑠
⊤
𝑡′−1𝑠𝑡

𝑠𝑡′−1𝑠⊤𝑡′−1𝑠𝑡


= −𝜂

𝑡∑︁
𝑡′=1


(Φ0𝑠𝑡′−1 − 𝑠𝑡′)𝑠⊤𝑡′−1𝑠𝑡

0
0

 =


−𝜂∇𝐿𝑡 (Φ0)

0
0

 .
Adding the above result to the layer input, an opera-
tion that is supported in Transformers by a residual
connection or a second attention head, yields the de-
sired output.

Full statement and proof of Proposition 2
We present here the linear self-attention parameter
construction which supports the claim of Proposition 2.
First, we restate the goal of the autoregressive Trans-
former, namely, to solve a regularized least-squares
problem:

min
Φ

𝑡−1∑︁
𝑡′=1

1
2
∥𝑠𝑡′+1 − Φ𝑠𝑡′ ∥2 +

1
2𝜆
| |Φ | |2F,

for all time steps simultaneously. This amounts to
computing a (recursive) least squares solution, where
time-shifted (by one) sequence elements play the role
of inputs and desired outputs in a dataset, with inputs
𝑆𝑡−1, targets 𝑆𝑡, and test input 𝑠𝑡.

With the limited expressivity of one layer, we have
already established that Transformers can, and do,
implement a single gradient step on the correspond-
ing regression problems

∑𝑡−1
𝑡′=1 ∥𝑠𝑡′+1 − Φ𝑠𝑡′ ∥2 ∀𝑡 in

parallel both in theory and in practice. The key ob-
servation here is that given a preconditioning ma-
trix 𝐻∗𝑡 = (𝑆𝑡−1𝑆⊤𝑡−1 +

1
𝜆
𝐼)−1 which changes the loss

to
∑𝑡−1
𝑡′=1 ∥𝑠𝑡′+1 − Φ𝐻∗𝑡 𝑠𝑡′ ∥2, a single gradient descent

step immediately yields the desired regularized least-
squares solution.

Based on this simple observation, we provide a theo-
retical construction that shows how Transformers can
approximate (𝑆𝑡−1𝑆⊤𝑡−1 +

1
𝜆
𝐼)−1𝑠𝑡 layer by layer in their

12

Uncovering mesa-optimization algorithms in Transformers

forward pass, leading to improved single-step gradi-
ent descent performance. Note that this is equivalent
to iteratively solving the systems of linear equations
{(𝑆𝑡′−1𝑆⊤𝑡′−1 +

1
𝜆
𝐼)𝑥 = 𝑠𝑡′ }𝑡𝑡′=1. Let us now approximate

the above expression with a truncated Neumann se-
ries:

𝐻∗𝑡 𝑠𝑡 ≈ �̃�𝐾=1𝑡 =

𝐾∑︁
𝑘=0
(𝐼 − (𝑆𝑡−1𝑆⊤𝑡−1 +

1
𝜆
𝐼))𝑘𝑠𝑡

=

𝐾∑︁
𝑘=0
((1 − 1

𝜆
) 𝐼 − 𝑆𝑡−1𝑆⊤𝑡−1)

𝑘𝑠𝑡

= �̃�𝐾𝑡 + ((1 −
1
𝜆
) 𝐼 − 𝑆𝑡−1𝑆⊤𝑡−1) �̃�

𝐾
𝑡 = �̃�𝐾𝑡 + �̃�∗𝑡 �̃�𝐾𝑡

with �̃�∗𝑡 := ((1 − 1
𝜆
) 𝐼 − 𝑆𝑡−1𝑆⊤𝑡−1). This corresponds to

the Richardson iteration [94] method for solving lin-
ear systems iteratively, which can be augmented with
a stepwise parameter (or learning rate) 𝛼𝐾 and an
additional term adding the difference between former
approximations, resembling a momentum term. This
variant is termed second-order Richardson or Cheby-
shev [95] iteration, and it can speed up convergence:

�̃�𝐾+1𝑡 = �̃�𝐾𝑡 − 𝛼𝐾 �̃�∗𝑡 �̃�𝐾𝑡 − 𝛽𝐾 (�̃�𝐾𝑡 − �̃�𝐾−1𝑡). (9)

We now show that a single step of these iteration
methods can be mapped to a single layer of linear
self-attention, allowing deep Transformers to solve
the aforementioned set of linear equations efficiently
in parallel. Starting with a token construction sim-
ilar to the one of Proposition 1, i.e., with aggre-
gate tokens

[
�̃�𝐾𝑡′ , �̃�

𝐾−1
𝑡′ , 𝑠𝑡′−1

]
with �̃�0𝑡 = 𝑠𝑡, we can com-

pute �̃�𝐾+1𝑡 with a single causally masked linear self-
attention, in parallel for ∀𝑡. Indeed, with 𝑊⊤

𝑘
𝑊𝑞 =

0 0 −𝛼𝐾 𝐼𝑠
0 0 0
0 0 0

 and 𝑃𝑊𝑣 =


0 0 0
0 0 0
−𝛼𝐾 𝐼𝑠 0 0

 the linear

self-attention equation, similar to the derivation above,

results in 𝑃𝑊𝑣

∑𝑡
𝑡′=1


�̃�𝐾𝑡′
�̃�𝐾−1𝑡′

𝑠𝑡′−1



�̃�𝐾𝑡′
�̃�𝐾−1𝑡′

𝑠𝑡′−1


⊺

𝑊⊤
𝑘
𝑊𝑞


�̃�𝐾𝑡
�̃�𝐾−1𝑡

𝑠𝑡−1

 =


−𝛼𝐾𝑆𝑡−1𝑆⊤𝑡−1 �̃�

𝐾
𝑡

0
0

 . Therefore, the matrix-matrix-vector

products needed to compute equation 9 can be com-
puted inside a single linear self-attention layer in par-
allel, for all time steps. The remaining terms in equa-
tion 9 are simple scaled additions of �̃�𝐾𝑡 , �̃�𝐾+1𝑡 for which
multiple alternative constructions exist. Note that for
the construction above to hold, we need to have 𝑠𝑡−1
available at every layer and push forward �̃�𝐾𝑡 such that
it can be used to compute (�̃�𝐾+1𝑡 − �̃�𝐾𝑡) in the next it-
eration which again is easy to accomplish within the
residual stream.

We therefore conclude that deep Transformer mod-
els can approximate the solutions of the set of sys-
tems of linear equations {(𝑆𝑡′−1𝑆⊤𝑡′−1 +

1
𝜆
𝐼)𝑥 = 𝑠𝑡}𝑡𝑡′=1

efficiently in parallel. This results in a precondi-
tioning of the least-squares problems {∑𝑡′−1

𝑡′′=1 ∥𝑠𝑡′′+1 −
Φ𝐻∗𝑡′ 𝑠𝑡′′ ∥2}𝑡𝑡′=1, which can then be solved with a single
gradient step, again in parallel and by a single addi-
tional linear self-attention layer, built after Proposition
1.

Mesa-optimizers solve partially-observed linear
tasks
We now show that Propositions 1 and 2 can be lever-
aged to solve next-token prediction problems involving
linear latent variable dynamics, as in our experiments
with partially-observed linear dynamical systems. We
analyze here the deterministic setting, i.e., when no
noise is added to the state transitions and observa-
tions; for an extension to the stochastic case, see the
SI Appendix. We investigate a simple construction
where we concatenate the last 𝑘 observations into a
single ‘state’ vector 𝑧, and use this state vector in a
least-squares problem to estimate the linear transition
between 𝑧𝑡+1 and 𝑧𝑡. As 𝑧𝑡+1 contains 𝑠𝑡+1, this state
prediction can be used straight-forwardly to predict
the next observation. Let us define

𝑧𝑘𝑡 =


𝑠𝑡−𝑘+1
...

𝑠𝑡

 .
We first investigate whether the transition between 𝑧𝑘𝑡
and 𝑧𝑘

𝑡+1 is a linear operator. For this, let us define the
observation matrix as

O𝑘 =


𝐶∗

𝐶∗𝑊∗

...

𝐶∗𝑊∗𝑘−1


.

Now we have that 𝑧𝑘𝑡 = O𝑘ℎ𝑡−𝑘+1 and 𝑧𝑘
𝑡+1 =

O𝑘𝑊∗ℎ𝑡−𝑘+1. We want to find a matrix Φ𝑘 such that
𝑧𝑘
𝑡+1 = Φ𝑘𝑧

𝑘
𝑡 . As this should hold for all possible sys-

tem initializations and hence ℎ𝑡−𝑘+1, we have that
O𝑘𝑊∗ = Φ𝑘O𝑘. If 𝑘𝑛𝑠 ≥ 𝑛ℎ, we have an underdeter-
mined or fully-determined (in case of equality) set of
linear equations, assuming no rank-deficient matrices.
The minimum-norm solution for Φ𝑘 is given by

Φ𝑘 = O𝑘𝑊∗O†𝑘 ,

with O†
𝑘
the Moore-Penrose pseudoinverse of O𝑘. If

the dimension of the concatenated observations 𝑧𝑘 is
smaller than the dimension of the groundtruth state
ℎ (𝑘𝑛𝑠 < 𝑛ℎ), the linear system is overdetermined
and in general there does not exist a solution for Φ𝑘.
Hence, in order to do optimal predictions, we need
to concatenate enough observations into 𝑧𝑘𝑡 such that
𝑘𝑛𝑠 ≥ 𝑛ℎ.

13

Uncovering mesa-optimization algorithms in Transformers

As there exists a linear map between 𝑧𝑘
𝑡+1 and 𝑧𝑘𝑡 ,

and 𝑧𝑘
𝑡+1 can be used directly to predict 𝑠𝑡+1, a Trans-

former can solve the least-squares problem in-context
on 𝑧𝑘

𝑡+1. One possible implementation is the following
construction: (i) copy the last 𝑘 observations into a
concatenated state vector 𝑧𝑘𝑡 ; (ii) format tokens as re-
quired by Propositions 1 and 2, now with 𝑧𝑘𝑡 instead
of ℎ𝑡, which can be done by the same self-attention
layer as the first step; (iii) solve the mesa-optimization
problem by directly leveraging the aforementioned
propositions.

CompressedAlg-𝑑
After training a single- or multi-layer linear atten-
tion model, we obtain structured matrix products
𝑊⊤𝐾𝑊𝑄 , 𝑃𝑊𝑣 per head and layer. When inspecting the
trained weight matrix products, we observe strong
block-diagonal structure across all layers. We extract
the mean values of these block-diagonals and con-
struct sparse weight matrices, consisting only of iden-
tity sub-matrices scaled by the resp. obtained mean
value, and compute the evaluation of this constructed
compressed algorithm on test sequences. Then, dur-
ing a second training run (for the same initial con-
ditions), we compute the test loss achieved by an a
control model with interpolated parameters, obtained
by averaging (with equal averaging weight) the com-
pressed per-head weight-matrix-products and the ac-
tual trained layer parameters.

Probing analyses
In Figs. 2, 4 and 6 we show the performance of linear
decoders trained to predict certain features (e.g., a
given past input token 𝑒𝑡′ , in Fig. 2A) from internal
model activations at various depths, time steps, and
stages of training. For every such probing experiment
(i.e., for each layer, context length, or base training
step, depending on the analysis at hand) we train a
separate linear decoder on a batch of activations to pre-
dict the respective probing targets by mean-squared
error minimization (linear regression). For the precon-
ditioning probings, we compute the 6-step Chebyshev
approximation of (𝑆𝑡′−1𝑆⊤𝑡′−1 +

1
𝜆
𝐼)𝑠𝑡′ at each time step

𝑡′, and linearly regress the activations after each layer
at the respective time step against this preconditioning
target.

In-context few-shot learning: generative model
To generate a few-shot task, we sample a groundtruth
𝑊∗ random orthogonal matrix as done during train-
ing, but now use this groundtruth model to gen-
erate a labeled training set {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1, with inputs
𝑥𝑖 ∼ N(0, 𝐼𝑥) and targets 𝑦𝑖 = 𝑊∗𝑥𝑖. We then present
this dataset to our autoregressive Transformers as a
sequence of tokens, 𝑒few-shot = [𝑥1, 𝑦1, . . . , 𝑥𝑁 , 𝑦𝑁] of

length 𝑇 = 2𝑁, cf. Figure 8. As the sequence un-
folds, and more training data is presented, we mea-
sure in-context learning performance through the
mean squared error between the Transformer out-
put 𝑓𝜃(𝑒2𝑖−1; 𝑒few-shot

1:2𝑖−1) and the corresponding target
𝑦𝑖 = 𝑒2𝑖. We emphasize that both the sequence genera-
tive model and loss function differ from the ones used
during training; compare the task performance met-
ric 𝐿few-shot = 1

2
∑𝑁
𝑖=1 ∥𝑒2𝑖 − 𝑓𝜃(𝑒2𝑖−1; 𝑒few-shot

1:2𝑖−1)∥
2 used to

evaluate in-context learning performance in this sec-
tion with the actual loss used to train the Transformer,
Eq. 1.
As a control, we further report the performance

reached by the least-squares solution (LSQ) obtained
on the dataset 𝐷mesa

𝑁 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ∪ {(𝑦𝑖, 𝑥𝑖+1)}
𝑁−1
𝑖=1 ,

and observe a similar decrease in loss after a phase
of early ascent. This dataset, where half of the associ-
ations consist of wrong input-output pairs 𝐷spurious

𝑁 =

{(𝑦𝑖, 𝑥𝑖+1)}𝑁−1𝑖=1 as illustrated in Figure 8A, corresponds
to the training set an autoregressive Transformer im-
bued with the mesa-optimizers uncovered in the pre-
vious section learns from.

Acknowledgements João Sacramento and Jo-
hannes von Oswald thank Angelika Steger and Jyrki
Alakuijala for their support and guidance. The
authors also thank Marc Kaufmann, Yassir Akram,
Andrey Zhmoginov, Yanick Schimpf, Oliver Sieber-
ling and Luca Versari for fruitful discussions and
insights, and to Luke Sernau, Maciej Wolczyk, Si-
mon Schug and Robert T. Lange for valuable com-
ments on the manuscript. João Sacramento and Nico-
las Zucchet were supported by an Ambizione grant
(PZ00P3_186027) from the Swiss National Science
Foundation and ETH Research Grant (ETH-23 21-1).

References
[1] Rishi Bommasani, Drew A. Hudson, Ehsan

Adeli, Russ Altman, Simran Arora, Sydney
von Arx, Michael S. Bernstein, Jeannette Bohg,
Antoine Bosselut, Emma Brunskill, Erik Bryn-
jolfsson, Shyamal Buch, Dallas Card, Rodrigo
Castellon, Niladri Chatterji, Annie Chen, Kath-
leen Creel, Jared Quincy Davis, Dora Demszky,
Chris Donahue, Moussa Doumbouya, Esin Dur-
mus, Stefano Ermon, John Etchemendy, Kawin
Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah Good-
man, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt,
Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Juraf-
sky, Pratyusha Kalluri, Siddharth Karamcheti,
Geoff Keeling, Fereshte Khani, Omar Khattab,
Pang Wei Koh, Mark Krass, Ranjay Krishna, Ro-

14

Uncovering mesa-optimization algorithms in Transformers

hith Kuditipudi, Ananya Kumar, Faisal Ladhak,
Mina Lee, Tony Lee, Jure Leskovec, Isabelle
Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Su-
vir Mirchandani, Eric Mitchell, Zanele Mun-
yikwa, Suraj Nair, Avanika Narayan, Deepak
Narayanan, Ben Newman, Allen Nie, Juan Car-
los Niebles, Hamed Nilforoshan, Julian Nyarko,
Giray Ogut, Laurel Orr, Isabel Papadimitriou,
Joon Sung Park, Chris Piech, Eva Porte-
lance, Christopher Potts, Aditi Raghunathan,
Rob Reich, Hongyu Ren, Frieda Rong, Yusuf
Roohani, Camilo Ruiz, Jack Ryan, Christopher
Ré, Dorsa Sadigh, Shiori Sagawa, Keshav San-
thanam, Andy Shih, Krishnan Srinivasan, Alex
Tamkin, Rohan Taori, Armin W. Thomas, Flo-
rian Tramèr, Rose E. Wang, William Wang, Bo-
han Wu, Jiajun Wu, Yuhuai Wu, Sang Michael
Xie, Michihiro Yasunaga, Jiaxuan You, Matei
Zaharia, Michael Zhang, Tianyi Zhang, Xikun
Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn
Zhou, and Percy Liang. On the opportunities
and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2022.

[2] Tom B. Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Win-
ter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learn-
ers. In Advances in Neural Information Process-
ing Systems, volume 33, 2020.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

[4] Nelson Elhage, Neel Nanda, Catherine Olsson,
Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom
Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernan-
dez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown,
Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. A Mathematical Framework
for Transformer Circuits. Transformer Circuits
Thread, 2021.

[5] Catherine Olsson, Nelson Elhage, Neel
Nanda, Nicholas Joseph, Nova DasSarma,
Tom Henighan, Ben Mann, Amanda Askell,
Yuntao Bai, Anna Chen, Tom Conerly, Dawn
Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Scott Johnston, Andy
Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack
Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. In-context learning and induction
heads. Transformer Circuits Thread, 2022.

[6] Stephanie C. Y. Chan, Adam Santoro, An-
drew K. Lampinen, Jane X. Wang, Aaditya
Singh, Pierre H. Richemond, Jay McClelland,
and Felix Hill. Data distributional properties
drive emergent in-context learning in trans-
formers. In Advances in Neural Information
Processing Systems, volume 35, 2022.

[7] Sang Michael Xie, Aditi Raghunathan, Percy
Liang, and Tengyu Ma. An explanation of in-
context learning as implicit Bayesian inference.
In International Conference of Learning Repre-
sentations, 2022.

[8] Aaditya Singh, Stephanie Chan, Ted Moskovitz,
Erin Grant, Andrew Saxe, and Felix Hill. The
transient nature of emergent in-context learn-
ing in transformers. In Advances in Neural Infor-
mation Processing Systems, volume 36, 2023.

[9] Sepp Hochreiter, A. Steven Younger, and Pe-
ter R. Conwell. Learning to learn using gra-
dient descent. In Artificial Neural Networks —
ICANN 2001, 2001.

[10] Yan Duan, John Schulman, Xi Chen, Pe-
ter L. Bartlett, Ilya Sutskever, and Pieter
Abbeel. RL2: Fast reinforcement learning via
slow reinforcement learning. arXiv preprint
arXiv:1611.02779, 2016.

[11] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tiru-
mala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, andMatt
Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[12] Neil C. Rabinowitz. Meta-learners’ learning
dynamics are unlike learners’. arXiv preprint
arXiv:1905.01320, 2019.

[13] Shivam Garg, Dimitris Tsipras, Percy S. Liang,
and Gregory Valiant. What can transformers
learn in-context? A case study of simple func-
tion classes. In Advances in Neural Information
Processing Systems, volume 35, 2022.

15

Uncovering mesa-optimization algorithms in Transformers

[14] Ekin Akyürek, Dale Schuurmans, Jacob An-
dreas, Tengyu Ma, and Denny Zhou. What
learning algorithm is in-context learning? In-
vestigations with linear models. In Interna-
tional Conference of Learning Representations,
2023.

[15] Damai Dai, Yutao Sun, Li Dong, Yaru Hao,
Zhifang Sui, and Furu Wei. Why Can GPT
Learn In-Context? Language Models Secretly
Perform Gradient Descent as Meta-Optimizers,
December 2022. URL http://arxiv.org/
abs/2212.10559. arXiv:2212.10559 [cs].

[16] Louis Kirsch, James Harrison, Jascha Sohl-
Dickstein, and Luke Metz. General-purpose in-
context learning by meta-learning transform-
ers. In Sixth Workshop on Meta-Learning at
the Conference on Neural Information Processing
Systems, 2022.

[17] Johannes von Oswald, Eyvind Niklasson, Et-
tore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vla-
dymyrov. Transformers learn in-context by gra-
dient descent. In International Conference on
Machine Learning, 2023.

[18] Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett.
Trained transformers learn linear models in-
context. arXiv preprint arXiv:2306.09927,
2023.

[19] Arvind Mahankali, Tatsunori B. Hashimoto,
and Tengyu Ma. One step of gradient descent
is provably the optimal in-context learner with
one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

[20] Kwangjun Ahn, Xiang Cheng, Hadi Danesh-
mand, and Suvrit Sra. Transformers learn
to implement preconditioned gradient de-
scent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.

[21] Yingcong Li, Muhammed Emrullah Ildiz, Dim-
itris Papailiopoulos, and Samet Oymak. Trans-
formers as algorithms: Generalization and sta-
bility in in-context learning. In International
Conference on Machine Learning, 2023.

[22] Allan Raventós, Mansheej Paul, Feng Chen,
and Surya Ganguli. Pretraining task diver-
sity and the emergence of non-Bayesian in-
context learning for regression. arXiv preprint
arXiv:2306.15063, 2023.

[23] Nan Ding, Tomer Levinboim, Jialin Wu, Sebas-
tian Goodman, and Radu Soricut. CausalLM

is not optimal for in-context learning. arXiv
preprint arXiv:2308.06912, 2023.

[24] Max Vladymyrov, Johannes von Oswald, Mark
Sandler, and Rong Ge. Linear transformers
are versatile in-context learners. arXiv preprint
arXiv:2402.14180, 2024.

[25] Deqing Fu, Tian-Qi Chen, Robin Jia, and Vat-
sal Sharan. Transformers learn higher-order
optimization methods for in-context learning:
A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

[26] Angeliki Giannou, Liu Yang, Tianhao Wang,
Dimitris Papailiopoulos, and Jason D Lee.
How well can transformers emulate in-
context Newton’s method? arXiv preprint
arXiv:2403.03183, 2024.

[27] Evan Hubinger, Chris van Merwijk, Vladimir
Mikulik, Joar Skalse, and Scott Garrabrant.
Risks from learned optimization in advanced
machine learning systems. arXiv preprint
1906.01820, 2019.

[28] Jimmy Lei Ba, Jamie Ryan Kiros, and Geof-
frey E. Hinton. Layer normalization. arXiv
preprint 1607.06450, 2016.

[29] Jürgen Schmidhuber. Learning to control fast-
weight memories: an alternative to dynamic
recurrent networks. Neural Computation, 4(1):
131–139, 1992.

[30] Jimmy Ba, Geoffrey E. Hinton, Volodymyr
Mnih, Joel Z. Leibo, and Catalin Ionescu. Us-
ing fast weights to attend to the recent past.
In Advances in Neural Information Processing
Systems, volume 29, 2016.

[31] Angelos Katharopoulos, Apoorv Vyas, Nikolaos
Pappas, and François Fleuret. Transformers are
RNNs: fast autoregressive transformers with
linear attention. In International Conference on
Machine Learning, 2020.

[32] Sinong Wang, Belinda Z. Li, Madian Khabsa,
Han Fang, and Hao Ma. Linformer: self-
attention with linear complexity. arXiv preprint
arXiv:2006.04768, 2020.

[33] Imanol Schlag, Kazuki Irie, and Jürgen Schmid-
huber. Linear transformers are secretly fast
weight programmers. In International Confer-
ence on Machine Learning, 2021.

[34] Krzysztof Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis,

16

http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559

Uncovering mesa-optimization algorithms in Transformers

Afroz Mohiuddin, Lukasz Kaiser, David Be-
langer, Lucy Colwell, and Adrian Weller. Re-
thinking attention with performers. In Interna-
tional Conference of Learning Representations,
2021.

[35] Kwangjun Ahn, Xiang Cheng, Minhak Song,
Chulhee Yun, Ali Jadbabaie, and Suvrit Sra.
Linear attention is (maybe) all you need (to un-
derstand transformer optimization). In Inter-
national Conference of Learning Representations,
2024.

[36] Jack Sherman and Winifred J. Morrison. Ad-
justment of an inverse matrix corresponding
to a change in one element of a given matrix.
The Annals of Mathematical Statistics, 21(1):
124–127, 1950.

[37] Carl Friedrich Gauss. Theoria combinationis
observationum: erroribus minimis obnoxiae. So-
cietas Regia Scientiarum Gottingensis, 1821.

[38] Marta Garnelo and Wojciech Marian Czar-
necki. Exploring the space of key-value-
query models with intention. arXiv preprint
arXiv:2305.10203, 2023.

[39] Guillaume Alain and Yoshua Bengio. Under-
standing intermediate layers using linear clas-
sifier probes. In International Conference of
Learning Representations, 2017.

[40] R. E. Kalman. A new approach to linear filter-
ing and prediction problems. Journal of Basic
Engineering, 82(1):35–45, March 1960.

[41] Arun K. Tangirala. Principles of system identifi-
cation: theory and practice. CRC Press, 2018.

[42] Joseph Marino, Milan Cvitkovic, and Yisong
Yue. A general method for amortizing varia-
tional filtering. In Advances in Neural Informa-
tion Processing Systems, volume 31, 2018.

[43] Jan C. Willems, Paolo Rapisarda, Ivan
Markovsky, and Bart L. M. De Moor. A note
on persistency of excitation. Systems & Control
Letters, 54(4):325–329, April 2005.

[44] Claudio De Persis and Pietro Tesi. Formulas for
data-driven control: stabilization, optimality,
and robustness. IEEE Transactions on Automatic
Control, 65(3):909–924, March 2020.

[45] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W.
Thomas, Atri Rudra, and Christopher Ré. Hun-
gry hungry hippos: towards language model-
ing with state space models. In International
Conference of Learning Representations, 2023.

[46] Simran Arora, Sabri Eyuboglu, Aman
Timalsina, Isys Johnson, Michael Poli, James
Zou, Atri Rudra, and Christopher Ré. Zo-
ology: Measuring and improving recall in
efficient language models. arXiv preprint
arXiv:2312.04927, 2023.

[47] Michael Poli, Stefano Massaroli, Eric Nguyen,
Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré.
Hyena hierarchy: Towards larger convolutional
language models. In International Confer-
ence on Machine Learning, pages 28043–28078,
2023.

[48] Soham De, Samuel L. Smith, Anushan Fer-
nando, Aleksandar Botev, George Cristian-
Muraru, Albert Gu, Ruba Haroun, Leonard
Berrada, Yutian Chen, Srivatsan Srinivasan,
Guillaume Desjardins, Arnaud Doucet, David
Budden, Yee Whye Teh, Razvan Pascanu,
Nando De Freitas, and Caglar Gulcehre. Griffin:
mixing gated linear recurrences with local at-
tention for efficient language models, February
2024. URL http://arxiv.org/abs/2402.
19427. arXiv:2402.19427 [cs].

[49] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Confer-
ence on Machine Learning, 2017.

[50] Jared Kaplan, SamMcCandlish, TomHenighan,
Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, JeffreyWu, and Dario
Amodei. Scaling laws for neural language mod-
els. arXiv preprint arXiv:2001.08361, 2020.

[51] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.
Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[52] László Györfi, Michael Kohler, Adam Krzyzak,
and Harro Walk. A distribution-free theory of
nonparametric regression. Springer, New York,
2002.

[53] A. Krogh and J. A. Hertz. Generalization in
a linear perceptron in the presence of noise.
Journal of Physics A: Mathematical and General,
25(5):1135, March 1992.

[54] Madhu S. Advani, Andrew M. Saxe, and Haim
Sompolinsky. High-dimensional dynamics of
generalization error in neural networks. Neural
Networks, 132:428–446, December 2020.

[55] Richard Bellman. Adaptive Control Processes: A
Guided Tour. Princeton University Press, 1961.

17

http://arxiv.org/abs/2402.19427
http://arxiv.org/abs/2402.19427

Uncovering mesa-optimization algorithms in Transformers

[56] Jake Snell, Kevin Swersky, and Richard Zemel.
Prototypical networks for few-shot learning.
Advances in Neural Information Processing Sys-
tems, 30, 2017.

[57] Ziqian Lin and Kangwook Lee. Dual operating
modes of in-context learning. arXiv preprint
arXiv:2402.18819, 2024.

[58] Xiang Lisa Li and Percy Liang. Prefix-tuning:
optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics, 2021.

[59] Brian Lester, Rami Al-Rfou, and Noah Con-
stant. The power of scale for parameter-
efficient prompt tuning. In Proceedings of the
2021 Conference on Empirical Methods in Natu-
ral Language Processing, 2021.

[60] Kazuki Irie, Róbert Csordás, and Jürgen
Schmidhuber. Automating continual learning.
arXiv preprint arXiv:2312.00276, 2023.

[61] Emily M. Bender, Timnit Gebru, Angelina
McMillan-Major, and Shmargaret Shmitchell.
On the dangers of stochastic parrots: can lan-
guage models be too big? In Proceedings of the
2021 ACM Conference on Fairness, Accountabil-
ity, and Transparency, 2021.

[62] Shubham Toshniwal, Sam Wiseman, Karen
Livescu, and Kevin Gimpel. Chess as a testbed
for language model state tracking. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, 2022.

[63] Yingcong Li, Kartik Sreenivasan, Angeliki Gi-
annou, Dimitris Papailiopoulos, and Samet Oy-
mak. Dissecting chain-of-thought: a study
on compositional in-context learning of MLPs.
arXiv preprint arXiv:2305.18869, 2023.

[64] Neel Nanda, Andrew Lee, and Martin Wat-
tenberg. Emergent linear representations in
world models of self-supervised sequence mod-
els. arXiv preprint arXiv:2309.00941, 2023.

[65] Brandon Amos and J. Zico Kolter. OptNet: Dif-
ferentiable optimization as a layer in neural
networks. In International Conference on Ma-
chine Learning, 2017.

[66] Stephen Gould, Richard Hartley, and Dy-
lan John Campbell. Deep declarative networks.
IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021.

[67] Nicolas Zucchet and João Sacramento. Beyond
backpropagation: bilevel optimization through

implicit differentiation and equilibrium propa-
gation. Neural Computation, 34(12), 2022.

[68] Hubert Ramsauer, Bernhard Schäfl, Johannes
Lehner, Philipp Seidl, Michael Widrich, Lukas
Gruber, Markus Holzleitner, Thomas Adler,
David Kreil, Michael K. Kopp, Günter Klam-
bauer, Johannes Brandstetter, and Sepp
Hochreiter. Hopfield networks is all you need.
In International Conference on Learning Repre-
sentations, 2021.

[69] André Martins, António Farinhas, Marcos Tre-
viso, Vlad Niculae, Pedro Aguiar, and Mario
Figueiredo. Sparse and continuous attention
mechanisms. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[70] Benjamin Hoover, Yuchen Liang, Bao
Pham, Rameswar Panda, Hendrik Strobelt,
Duen Horng Chau, Mohammed Zaki, and
Dmitry Krotov. Energy transformer. In
Advances in Neural Information Processing
Systems, volume 36, 2023.

[71] Donald O. Hebb. The Organization of Behavior:
A Neuropsychological Theory. Wiley, New York,
1949.

[72] John Hertz, Richard G. Palmer, and Anders S.
Krogh. Introduction to the Theory of Neural
Computation. Perseus Publishing, 1st edition,
1991.

[73] BernardWidrow andMarcian E. Hoff. Adaptive
switching circuits. In IRE WESCON convention
record, volume 4, 1960.

[74] Timothy P. Lillicrap, Adam Santoro, Luke Mar-
ris, Colin J. Akerman, and Geoffrey Hinton.
Backpropagation and the brain. Nature Reviews
Neuroscience, 21(6):335–346, 2020.

[75] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer,
and Yoshua Bengio. Difference target propaga-
tion. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
2015.

[76] James C. R. Whittington and Rafal Bogacz. An
approximation of the error backpropagation
algorithm in a predictive coding network with
local Hebbian synaptic plasticity. Neural Com-
putation, 29(5):1229–1262, 2017.

[77] Alexander Meulemans, Nicolas Zucchet, Sei-
jin Kobayashi, Johannes von Oswald, and João
Sacramento. The least-control principle for lo-
cal learning at equilibrium. In Advances in Neu-
ral Information Processing Systems, volume 35,
2022.

18

Uncovering mesa-optimization algorithms in Transformers

[78] Geoffrey Hinton, Simon Osindero, and
Yee Whye Teh. A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation, 18:
1527–1554, 2006.

[79] Arild Nøkland and Lars Hiller Eidnes. Training
neural networks with local error signals. In
International Conference on Machine Learning,
2019.

[80] Eugene Belilovsky, Michael Eickenberg, and
Edouard Oyallon. Greedy layerwise learning
can scale to ImageNet. In International Confer-
ence on Machine Learning, 2019.

[81] Sindy Löwe, Peter O’Connor, and Bastiaan Veel-
ing. Putting an end to end-to-end: Gradient-
isolated learning of representations. In Ad-
vances in Neural Information Processing Systems,
volume 32, 2019.

[82] Geoffrey Hinton. The forward-forward algo-
rithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

[83] Jeff Hawkins and Sandra Blakeslee. On intelli-
gence. Macmillan, 2004.

[84] Andy Clark. Whatever next? Predictive brains,
situated agents, and the future of cognitive
science. Behavioral and Brain Sciences, 36(3):
181–204, 2013.

[85] Geoffrey E. Hinton, Peter Dayan, Brendan J.
Frey, and Radford M. Neal. The "wake-sleep"
algorithm for unsupervised neural networks.
Science, 268(5214):1158–1161, 1995.

[86] Rajesh P. N. Rao and Dana H. Ballard. Predic-
tive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-
field effects. Nature Neuroscience, 2(1):79–87,
1999.

[87] Tai Sing Lee and David Mumford. Hierarchical
Bayesian inference in the visual cortex. Journal
of the Optical Society of America A, 20(7):1434,
July 2003.

[88] Karl Friston, James Kilner, and Lee Harrison. A
free energy principle for the brain. Journal of
Physiology-Paris, 100(1-3):70–87, 2006.

[89] Georg B. Keller and Thomas D. Mrsic-Flogel.
Predictive processing: a canonical cortical com-
putation. Neuron, 100(2):424–435, 2018.

[90] Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. Lan-
guagemodels are unsupervisedmultitask learn-
ers. OpenAI blog, 1(8), 2018.

[91] Dan Hendrycks and Kevin Gimpel. Gaussian
Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[92] Ilya Loshchilov and Frank Hutter. Decoupled
weight decay regularization. In International
Conference of Learning Representations, 2019.

[93] Rich Caruana. Multitask learning. Machine
Learning, 28(1):41–75, July 1997.

[94] Lewis Fry Rirchardson. The approximate arith-
metical solution by finite differences of physical
problems involving differential equations, with
an application to the stresses in a masonry dam.
Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Math-
ematical or Physical Character, 210(459-470):
307–357, January 1911.

[95] Gene H. Golub and Richard S. Varga. Cheby-
shev semi-iterative methods, successive over-
relaxation iterative methods, and second or-
der Richardson iterative methods: Part I. Nu-
merische Mathematik, 3(1):147–156, Decem-
ber 1961.

[96] Richard M Johnstone, C Richard Johnson Jr,
Robert R Bitmead, and Brian DO Anderson.
Exponential convergence of recursive least
squares with exponential forgetting factor. Sys-
tems & Control Letters, 2(2):77–82, 1982. Pub-
lisher: Elsevier.

[97] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of
Python+NumPy programs, 2018.

[98] Diederik P. Kingma and Jimmy Ba. Adam: a
method for stochastic optimization. In Interna-
tional Conference on Learning Representations,
2015.

[99] Leo Gao, Stella Biderman, Sid Black, Lau-
rence Golding, Travis Hoppe, Charles Fos-
ter, Jason Phang, Horace He, Anish Thite,
Noa Nabeshima, Shawn Presser, and Connor
Leahy. The pile: an 800GB dataset of diverse
text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

[100] Richard H. R. Hahnloser, Rahul Sarpeshkar,
Misha A. Mahowald, Rodney J. Douglas, and
H. Sebastian Seung. Digital selection and ana-
logue amplification coexist in a cortex-inspired
silicon circuit. Nature, 405(6789):947–951,
2000.

19

Uncovering mesa-optimization algorithms in Transformers

[101] Charles R. Harris, K. Jarrod Millman, Sté-
fan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, War-
ren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):
357–362, 2020.

[102] J. D. Hunter. Matplotlib: A 2D graphics envi-
ronment. Computing in Science & Engineering,
9(3):90–95, 2007.

[103] Tom Hennigan, Trevor Cai, Tamara Norman,
Lena Martens, and Igor Babuschkin. Haiku:
Sonnet for JAX, 2020.

[104] Igor Babuschkin, Kate Baumli, Alison
Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan
Clark, Ivo Danihelka, Antoine Dedieu, Claudio
Fantacci, Jonathan Godwin, Chris Jones,
Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas
Keck, Iurii Kemaev, Michael King, Markus
Kunesch, Lena Martens, Hamza Merzic,
Vladimir Mikulik, Tamara Norman, George
Papamakarios, John Quan, Roman Ring, Fran-
cisco Ruiz, Alvaro Sanchez, Laurent Sartran,
Rosalia Schneider, Eren Sezener, Stephen
Spencer, Srivatsan Srinivasan, Miloš Stanojević,
Wojciech Stokowiec, Luyu Wang, Guangyao
Zhou, and Fabio Viola. The DeepMind JAX
Ecosystem, 2020.

20

Uncovering mesa-optimization algorithms in Transformers

A. Visualization of weights and attention maps of trained multi-layer Transform-
ers

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

1

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

2

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

3

0 10 20 30

0

5

10

15

20

25

30

35

PWV
0

0 10 20 30

0

5

10

15

20

25

30

35

PWV
1

0 10 20 30

0

5

10

15

20

25

30

35

PWV
2

0 10 20 30

0

5

10

15

20

25

30

35

PWV
3

0.03

0.02

0.01

0.00

0.01

0.02

0.03

W
T K
W

Q

0.03

0.02

0.01

0.00

0.01

0.02

0.03

PW
V

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

1

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

2

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

3

0 10 20 30

0

5

10

15

20

25

30

35

PWV
0

0 10 20 30

0

5

10

15

20

25

30

35

PWV
1

0 10 20 30

0

5

10

15

20

25

30

35

PWV
2

0 10 20 30

0

5

10

15

20

25

30

35

PWV
3

0.10

0.05

0.00

0.05

0.10

W
T K
W

Q

0.075

0.050

0.025

0.000

0.025

0.050

0.075

PW
V

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

1

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

2

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

3

0 10 20 30

0

5

10

15

20

25

30

35

PWV
0

0 10 20 30

0

5

10

15

20

25

30

35

PWV
1

0 10 20 30

0

5

10

15

20

25

30

35

PWV
2

0 10 20 30

0

5

10

15

20

25

30

35

PWV
3

0.3

0.2

0.1

0.0

0.1

0.2

0.3

W
T K
W

Q

0.2

0.1

0.0

0.1

0.2

PW
V

Figure 9 | Weights of the deep 6-layer linear Transformer trained on constructed tokens 𝑒𝑡 = (0, 𝑠𝑡 , 𝑠𝑡 , 𝑠𝑡−1). We
observe clear structure in the trained Transformer weight products 𝑊⊤

𝐾
𝑊𝑄 as well as 𝑃𝑊𝑉 in all 4 heads. Note that this

structure seems to be sufficient to approximate (𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)
−1𝑠𝑡, cf. probing experiments and weight construction in

the main text. We show here all 4 heads (f.l.t.r.) of the first (top 2 rows), the second (next 2 rows), and the fourth (last 2
rows) linear layer.

21

Uncovering mesa-optimization algorithms in Transformers

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

1

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

2

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

3

0 10 20 30

0

5

10

15

20

25

30

35

PWV
0

0 10 20 30

0

5

10

15

20

25

30

35

PWV
1

0 10 20 30

0

5

10

15

20

25

30

35

PWV
2

0 10 20 30

0

5

10

15

20

25

30

35

PWV
3

0.6

0.4

0.2

0.0

0.2

0.4

0.6

W
T K
W

Q

0.2

0.1

0.0

0.1

0.2

PW
V

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

1

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

2

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

3

0 10 20 30

0

5

10

15

20

25

30

35

PWV
0

0 10 20 30

0

5

10

15

20

25

30

35

PWV
1

0 10 20 30

0

5

10

15

20

25

30

35

PWV
2

0 10 20 30

0

5

10

15

20

25

30

35

PWV
3

1.0

0.5

0.0

0.5

1.0

W
T K
W

Q

0.2

0.1

0.0

0.1

0.2

PW
V

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

1

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

2

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

3

0 10 20 30

0

5

10

15

20

25

30

35

PWV
0

0 10 20 30

0

5

10

15

20

25

30

35

PWV
1

0 10 20 30

0

5

10

15

20

25

30

35

PWV
2

0 10 20 30

0

5

10

15

20

25

30

35

PWV
3

1.0

0.5

0.0

0.5

1.0

W
T K
W

Q

0.4

0.2

0.0

0.2

0.4

PW
V

Figure 10 | Weight products of the deep 7-layer softmax Transformers trained on unconstructed tokens 𝑒𝑡 = 𝑠𝑡. We
observe diagonal structure in the trained Transformer weight products𝑊⊤

𝐾
𝑊𝑄 as well as 𝑃𝑊𝑉 . Note that this structure seems

to be sufficient to approximate layer-wise the final prediction 𝑠𝑡+1 as well as (𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)
−1𝑠𝑡 , cf. probing experiments

and weight construction in the main text. We show here all 4 heads (f.l.t.r.) of the first (top 2 rows) the second (middle 2
rows) and the fourth (last 2 rows) layers after the first (potential) copying-softmax-layer.

22

Uncovering mesa-optimization algorithms in Transformers

B. Additional details on the mesa-layer
In this section, we provide a detailed derivation of the forward and backward (reverse-mode differentiation)
pass of the mesa-layer. For completeness, we consider a generalized version of the mesa-layer, which includes
an additional forget factor Γℎ,𝑡 = (𝛾ℎ,𝑡′)𝑡𝑡′=1, where 𝛾ℎ,𝑡′ ∈ (0, 1], inspired by the recursive least-squares with
forget factor algorithm [96]. Given again a set of tokens 𝐸𝑡, the generalized mesa-layer changes the tokens as
follows:

Δ𝑒mesa
𝑡 =

𝐻∑︁
ℎ=1

𝑃ℎΦ̂
mesa
ℎ,𝑡 𝑞ℎ,𝑡, (10)

with Φ̂mesa
ℎ,𝑡 = argmin

Φ

{
1
2

𝑡∑︁
𝑡′=1

(
𝑡∏

𝑡′′=𝑡′+1
𝛾ℎ,𝑡′′

)
| |Φ𝑘ℎ,𝑡′ − 𝑣ℎ,𝑡′ | |2 +

∏𝑡
𝑡′′=1 𝛾ℎ,𝑡′′

2𝜆ℎ
| |Φ | |2F

}
. (11)

For notational simplicity we drop the subscript in ℎ and ignore the sum over the heads in the following
derivation. It can be shown that the analytical solution of the optimization problem is

Φ̂mesa
𝑡 =

(
𝑡∑︁

𝑡′=1

(
𝑡∏

𝑡′′=𝑡′+1
𝛾𝑡′′

)
𝑣𝑡′𝑘

⊤
𝑡′

) (
𝑡∑︁

𝑡′=1

(
𝑡∏

𝑡′′=𝑡′+1
𝛾𝑡′′

)
𝑘𝑡′𝑘

⊤
𝑡′ +

∏𝑡
𝑡′′=1 𝛾𝑡′′

𝜆
𝐼

)−1
(12)

We will now see how Δ𝑒mesa
𝑡 can be efficiently computed in a forward pass.

B.1. Computing the inverse term within Φ̂mesa
𝑡

Computing the full-fledged inverse at every timestep is computationally too expensive. We resort to using the
Sherman-Morrison formula to efficiently compute the inverse term for all timestep sequentially in time. We
redefine

𝑅𝑡 =

(
𝑡∑︁

𝑡′=1

(
𝑡∏

𝑡′′=𝑡′+1
𝛾𝑡′′

)
𝑘𝑡′𝑘

⊤
𝑡′ +

∏𝑡
𝑡′′=1 𝛾𝑡′′

𝜆
𝐼

)−1
. (13)

It satisfies the recursive formula
𝑅𝑡+1 =

(
𝛾𝑡𝑅
−1
𝑡 + 𝑘𝑡+1𝑘⊤𝑡+1

)−1
(14)

with 𝑅0 = 𝜆𝐼, and the Sherman-Morrison formula thus gives

𝑅𝑡+1 = 𝛾−1𝑡+1

(
𝑅−1𝑡 + 𝛾−1𝑡+1𝑘𝑡+1𝑘

⊤
𝑡+1

)−1
(15)

= 𝛾−1𝑡+1

(
𝑅𝑡 −

𝛾−1
𝑡+1𝑅𝑡𝑘𝑡+1𝑘

⊤
𝑡+1𝑅𝑡

1 + 𝛾−1
𝑡+1𝑘

⊤
𝑡+1𝑅𝑡𝑘𝑡+1

)
(16)

= 𝛾−1𝑡+1

(
𝑅𝑡 −

𝑅𝑡𝑘𝑡+1𝑘⊤𝑡+1𝑅𝑡

𝛾𝑡+1 + 𝑘⊤𝑡+1𝑅𝑡𝑘𝑡+1

)
. (17)

B.2. Computing Δ𝑒mesa
𝑡

Given 𝑅ℎ,𝑡 for all heads, we can rewrite the token update as

Δ𝑒mesa
𝑡 =

𝐻∑︁
ℎ=1

𝑃ℎ

(
𝑡∑︁

𝑡′=1

(
𝑡∏

𝑡′′=𝑡′+1
𝛾ℎ,𝑡′′

)
𝑣ℎ,𝑡′𝑘

⊤
ℎ,𝑡′

)
𝑅ℎ,𝑡𝑞ℎ,𝑡 (18)

=

𝐻∑︁
ℎ=1

𝑃ℎ𝑉ℎ

((
1𝑡′≤𝑡

𝑡∏
𝑡′′=𝑡′+1

𝛾ℎ,𝑡′′

)⊤
𝑡′=1

⊙ 𝐾⊤ℎ 𝑞ℎ,𝑡

)
(19)

=

𝐻∑︁
ℎ=1

𝑃ℎ𝑉ℎ
(
𝑀:,𝑡 ⊙ 𝐾⊤ℎ 𝑞ℎ,𝑡

)
(20)

where 𝑞ℎ,𝑡 = 𝑅ℎ,𝑡𝑞ℎ,𝑡 and 𝑀𝑡′,𝑡 := 1𝑡′≤𝑡
∏𝑡

𝑡′′=𝑡′+1 𝛾ℎ,𝑡′′ . Note that we apply some form causal masking here: we
take the key 𝐾ℎ ∈ ℝ𝐷𝑎×𝑇 and value matrices 𝑉ℎ ∈ R𝐷𝑎×𝑇 with all the sequence timesteps and select the entries
occurring before time 𝑡. The main difference with the usual causal mask (1𝑡′≤𝑡)𝑡′,𝑡 is the inclusion of the forget
factors. It can be efficiently computed leveraging partial products. We conclude by remarking that the same
mask can be applied to softmax attention layers, applying it to the key-queries products before the softmax.

23

Uncovering mesa-optimization algorithms in Transformers

C. Mesa-layer differentiation
C.1. Mesa-layer backward pass computation via Sherman-Morrison
We now detail how to compute the backward pass of the mesa-layer. Summarizing the results above, its forward
pass is computed recursively following:

𝑅ℎ,𝑡+1 = 𝛾−1ℎ,𝑡+1

(
𝑅ℎ,𝑡 −

𝑅ℎ,𝑡𝑘ℎ,𝑡+1𝑘⊤ℎ,𝑡+1𝑅ℎ,𝑡

𝛾ℎ,𝑡+1 + 𝑘⊤ℎ,𝑡+1𝑅ℎ,𝑡𝑘ℎ,𝑡+1

)
(21)

Δ𝑒𝑡,mesa =
𝐻∑︁
ℎ=1

𝑃ℎ𝑉ℎ
(
𝑀:,𝑡 ⊙ 𝐾⊤ℎ 𝑞ℎ,𝑡

)
(22)

with 𝑅ℎ,0 = 𝜆ℎ 𝐼. These computations can be decomposed into 3 steps:

1. First, the matrices 𝑅𝑡,ℎ are computed sequentially.

2. Then, for all 𝑡 and ℎ, the transformed queries 𝑞ℎ,𝑡 = 𝑅ℎ,𝑡𝑞ℎ,𝑡 are computed.

3. Finally, using the transformed queries �̃�ℎ = (𝑞ℎ,𝑡)𝑡 as the queries, a standard cross-attention operation is
computed from (𝑉ℎ, 𝐾ℎ, �̃�ℎ) using the causal mask 𝑀 that includes forgetting rates.

While the backward pass of steps 2 and 3 can be computed easily with automatic differentiation tools without
much overhead compared to standard attention layers, the same thing cannot be said about 1. We will here
discuss how the backward pass of the computation of �̃�ℎ can be computed in a memory-efficient way. Without
loss of generality, we drop the subscript ℎ for notational simplicity.

The issue with out-of-the-box automatic differentiation. For all time steps 𝑡, 𝑞𝑡 = 𝑅𝑡𝑞𝑡 depends on 𝑞𝑡, but
also 𝐾𝑡, Γ𝑡 and 𝜆 through the variable 𝑅𝑡.
In the backward pass, we are given as input the gradient of the loss function w.r.t. �̃�, namely dL

d𝑞𝑡 for all 𝑡.
The goal is then to compute the gradient of the loss w.r.t. the input of �̃�, namely dL

d𝑘𝑡 ,
dL
d𝛾𝑡 ,

dL
d𝑞𝑡 and

dL
d𝜆 , which can

be achieved via the chain rule.
While using automatic differentiation out of the box would take care of this computation, it would require in

particular the storing of all intermediate variables 𝑅𝑡, which can be prohibitively expensive.

Memory efficient custom backward pass. Instead, we will show that storing the matrices 𝐾, Γ, 𝑄 as well as
𝑅𝑇 where 𝑇 is the last time step of the training sequence, is sufficient to exactly compute the backward pass.
Indeed, given the aforementioned inputs, all 𝑅𝑡 can be recomputed in linear complexity w.r.t. 𝑇, which means
we can reconstruct recursively the inputs of 𝑞𝑡 at all time steps.

By noticing that 𝑅𝑡−1 = 𝛾𝑡 (𝑅−1𝑡 − 𝑘𝑡𝑘⊤𝑡)−1, we can apply the Sherman-Morrison formula backwards to obtain
𝑅𝑡−1 as

𝑅𝑡−1 = 𝛾𝑡

(
𝑅𝑡 −

𝑅𝑡 (−𝑘𝑡)𝑘⊤𝑡 𝑅𝑡
1 + (−𝑘𝑡)⊤𝑅𝑡𝑘𝑡

)
(23)

= 𝛾𝑡

(
𝑅𝑡 −

𝑅𝑡𝑘𝑡𝑘
⊤
𝑡 𝑅𝑡

𝑘⊤𝑡 𝑅𝑡𝑘𝑡 − 1

)
(24)

We will now show how accumulating the right error signal and leveraging the vector-jacobian product trick
together with automatic differentiation tools is sufficient for computing the full backward pass recursively.
Firstly, given the error signal and reconstructed 𝑅𝑡 allows the computation of dL

d𝑞𝑡 via

dL
d𝑞𝑡

=
dL
d𝑞𝑡

d𝑞𝑡
d𝑞𝑡

=
dL
d𝑞𝑡

𝑆𝑡 (25)

Secondly, we rewrite 𝑞𝑡 as a function of 𝑘𝑡, 𝛾𝑡, 𝑅𝑡−1 and 𝑞𝑡, i.e.

𝑞𝑡 = Rforward (𝑅𝑡−1, 𝑘𝑡, 𝛾𝑡)𝑞𝑡 (26)

24

Uncovering mesa-optimization algorithms in Transformers

Since L depends on 𝑘𝑡 only via both 𝑞𝑡 and 𝑅𝑡, we can then rewrite

dL
d𝑘𝑡

=
dL
d𝑞𝑡

d𝑞𝑡
d𝑘𝑡
+ dL
d𝑅𝑡

d𝑅𝑡
d𝑘𝑡

(27)

=
dL
d𝑞𝑡

𝜕𝑞𝑡

𝜕𝑘𝑡
+ dL
d𝑅𝑡

𝜕𝑅𝑡

𝜕𝑘𝑡
(28)

where, provided 𝑅𝑡−1, 𝑘𝑡, 𝛾𝑡 and 𝑞𝑡, 𝜕𝑞𝑡
𝜕𝑘𝑡

can be computed easily using e.g. automatic differentiation tools.
Similarly, we have,

dL
d𝛾𝑡

=
dL
d𝑞𝑡

𝜕𝑞𝑡

𝜕𝛾𝑡
+ dL
d𝑅𝑡

𝜕𝑅𝑡

𝜕𝛾𝑡
(29)

Notice that dL
d𝑅𝑡 can be computed recursively following the chain rule

dL
d𝑅𝑡−1

=
dL
d𝑅𝑡

𝜕𝑅𝑡

𝜕𝑅𝑡−1
+ dL
d𝑞𝑡

𝜕𝑞𝑡

𝜕𝑅𝑡−1
(30)

where again, provided 𝑅𝑡−1, 𝑘𝑡, 𝛾𝑡 and 𝑞𝑡, both terms can be computed efficiently with standard automatic
differentiation tools coupled with the well known vector-Jacobian product trick given the quantities dL

d𝑅𝑡 and
dL
d𝑞𝑡 .
Thirdly, we can show that

dL
d𝜆

= Tr
[
dL
d𝑅0

]
(31)

Combining everything, we can now implement the backward computation recursively via the following
equations:

𝑅𝑡−1 = 𝛾𝑡

(
𝑅𝑡 −

𝑅𝑡𝑘𝑡𝑘
⊤
𝑡 𝑅𝑡

𝑘⊤𝑡 𝑅𝑡𝑘𝑡 − 1

)
(32)

dL
d𝑅𝑡−1

=
dL
d𝑅𝑡

𝜕𝑅𝑡

𝜕𝑅𝑡−1
+ 𝜕L
𝜕𝑞𝑡

𝜕𝑞𝑡

𝜕𝑅𝑡−1
(33)

dL
d𝑘𝑡

=
dL
d𝑞𝑡

𝜕𝑞𝑡

𝜕𝑘𝑡
+ dL
d𝑅𝑡

𝜕𝑅𝑡

𝜕𝑘𝑡
(34)

dL
d𝛾𝑡

=
dL
d𝑞𝑡

𝜕𝑞𝑡

𝜕𝛾𝑡
+ dL
d𝑅𝑡

𝜕𝑅𝑡

𝜕𝛾𝑡
(35)

dL
d𝑞𝑡

=
dL
d𝑞𝑡

𝑅𝑡 (36)

dL
d𝜆

= Tr
[
dL
d𝑅0

]
(37)

𝑅𝑇 is assumed to be given and dL
d𝑅𝑇 = 0. The above equations only require the storage of dL

d𝑅𝑡 ,
dL

d𝑅𝑡−1 , 𝑅𝑡, 𝑅𝑡−1 at all
time, and computes the backward pass in a similar time and memory complexity as for the forward pass. The
derivation is identical without forgetting factors, by setting all 𝛾 to 1.
Comment on runtime. We highlight that, although this implementation of the mesa-layer reduces the

memory footprint of the forward and backward pass substantially, the layer still runs forward (and backward)
in time. This prevents the computation of all mesa-layer outputs in parallelization during training, a crucial
advantage of softmax as well as linear attention. On the other hand, during test time, the mesa-layer benefits
from the same advantages of linear self-attention or RNNs and predicts the next token without the necessity to
store and attend to the past. In the next sections, we present two potential avenue to improve the training time
by a solution based in linear solvers or by a solution approximating the necessary inversions by a Neumann
series running in parallel.

C.2. Alternative derivation through the implicit function theorem
We here present an alternative way of deriving the gradients presented above that leverages the implicit function
theorem. The key here is to remark that Φ̂mesa

𝑡 satisfies that the gradient of the least-square regression loss

25

Uncovering mesa-optimization algorithms in Transformers

𝐿 is 0. For simplicity, we restrict ourselves to the case in which the output dimension of Φ̂mesa
𝑡 is one, that is

Φ̂mesa
𝑡 = 𝜙⊤𝑡 for 𝜙𝑡 some column vector, and remark that we have to repeat the same operation over all rows

of Φ̂mesa
𝑡 to obtain the full gradient, as all output coordinates are independent in the least-square regression

problem. Therefore, we 𝑤 defined through the implicit function

d𝐿
d𝜙
(𝜙𝑡) =

𝑡∑︁
𝑡′=1

𝑀𝑡′,𝑡 (𝜙⊤𝑡 𝑘𝑡′ − 𝑣𝑡′)𝑘⊤𝑡′ +
𝑀1,𝑡

𝜆
𝜙⊤𝑡 = 0. (38)

We can then use the implicit function theorem and compute the derivative of 𝑤 with respect to any quantity ·
through

d𝜙𝑡
d · = −

(
d2𝐿𝑡
d𝜙2 (𝜙𝑡)

)−1 d2𝐿𝑡 (𝜙𝑡)
d · d𝜙 (39)

= −𝑅𝑡
d2𝐿𝑡 (𝜙𝑡)
d · d𝜙 . (40)

For example, this yields
d𝜙𝑡
d𝑣𝑡′

= 𝑀𝑡′,𝑡𝑅𝑡𝑘𝑡′ . (41)

Finally, we can recover the desired gradient by combining the previous equation with the chain rule.

C.3. Parallel backward pass through Neumann series approximation
Although the previous custom backward gradient computation allows for dramatic memory savings during
training, the underlying recursive least squares computation still suffers from linear scaling in time, similar to
recurrent neural networks, as we cannot parallelize computation across time dimension.

Here, we discuss an alternative forward pass that can be used when one can afford storing all intermediate
matrices 𝑅ℎ,𝑡 in time. This forward pass leverages a 𝐾-step truncated Neumann series to approximate the
inverses in parallel, and is compatible with automatic differentiation tools out of the box. Interestingly, we can
do this by simply repeating (with the same weights) a slightly altered linear self-attention layer 𝐾 times.
Our goal is now to efficiently compute the terms 𝑞𝑡 := 𝑅𝑡𝑞𝑡 = (𝐾𝑡𝐾⊤𝑡 + 1

𝜆
𝐼)−1𝑞𝑡 for all time steps in parallel.

Indeed, once give these vectors, one can leverage Equation 20 and efficient dot-product attention (DPA) layers
implementations1. Note that we here ignore the forgetting factors, but their partial products can easily be
integrated in one of the 𝐾𝑡 in 𝐾𝑡𝐾

⊤
𝑡 to recover the version with forget rates described above.

Given an invertible matrix 𝑋 with operator norm less than 1, the truncated Neumann series approximates its
inverse by

𝑋−1 ≈ 𝑋−1(𝐾) :=
𝐾∑︁
𝑘=0
(𝐼 − 𝑋)𝑘. (42)

When multiplying a vector from the right, we see that

𝑥 (𝐾) := 𝑋−1(𝐾) 𝑥 =

𝐾∑︁
𝑘=0
(𝐼 − 𝑋)𝑘𝑥 (43)

=

𝐾∑︁
𝑘=1
(𝐼 − 𝑋)𝑘𝑥 + 𝑥 (44)

= (𝐼 − 𝑋)
𝐾−1∑︁
𝑘=0
(𝐼 − 𝑋)𝑘𝑥 + 𝑥 (45)

= (𝐼 − 𝑋)𝑥 (𝐾−1) + 𝑥 (46)

An advantage of the truncated Neumann series compared to other approximate inverse techniques such as
Newton-Iteration is that we can compute more series elements without passing intermediate matrices across
algorithmic steps – which in turn makes it memory efficient and straightforward to use in the light of automatic

1See https://flax.readthedocs.io/en/latest/_modules/flax/linen/attention.html for an implementation of DPA
in JAX [97].

26

https://flax.readthedocs.io/en/latest/_modules/flax/linen/attention.html

Uncovering mesa-optimization algorithms in Transformers

differentiation. We only need to keep the original matrix we wish to invert in memory at all times and store the
intermediate vectors 𝑥 (𝑘) for the backward pass.
We now look at the quantities we wish to compute, that is 𝑞𝑡 = (𝐾𝑡𝐾⊤𝑡 + 1

𝜆
𝐼)−1𝑞𝑡, and approximate it by

𝑞
(𝐾)
𝑡 , obtained by multiplying 𝑞𝑡 to the 𝐾-step truncated Neumann series approximating the inverse term
(𝐾𝑡𝐾⊤𝑡 + 1

𝜆
𝐼)−1. Note that a normalization by the operator norm of the matrix inside the inverse is necessary for

the approximation to hold.
Then, 𝑞(𝐾)𝑡 can be computed recursively as

𝑞
(𝑘+1)
𝑡 =

(
𝐼 −

(
𝐾𝑡𝐾

⊤
𝑡 +

1
𝜆
𝐼

))
𝑞
(𝑘)
𝑡 + 𝑞𝑡 (47)

= 𝑞𝑡 +
(
1 − 1

𝜆

)
𝑞
(𝑘)
𝑡 − 𝐾𝑡𝐾⊤𝑡 𝑞

(𝑘)
𝑡 (48)

and thus by denoting �̃� (𝑘)𝑡 := (𝑞(𝑘)
𝑡′)𝑡𝑡′=1, we have

�̃�
(𝑘+1)
𝑘+1 = 𝑄𝑡 +

(
1 − 1

𝜆

)
�̃�
(𝑘)
𝑡 − 𝐾𝑡𝐾⊤𝑡 �̃�

(𝑘)
𝑡 (49)

which is the sum of simple terms with a DPA computed between 𝐾𝑡, 𝐾𝑡, �̃�
(𝑘)
𝑡 .

After obtaining �̃� (𝐾)𝑡 to approximate �̃�𝑡, we compute the approximate least-squares solution as described
above. Note that other implementations could save us from effectively recomputing (𝐾𝑡𝐾⊤𝑡) at every iteration of
Equation 49 by simply pre-computing these terms before running the Neumann approximation. We nevertheless
observe the former version to be faster when timing for forward and backward computation and speculate the
reason being the highly optimized implementation of DPA as the backbone of the self-attention layer. Note that
a simple byproduct of the derivations here is the insight that chaining linear self-attention layers can actually
easily implement truncated Neumann series computation – especially if the goal is an inverse multiplied by a
known vector. See materials and methods section of the main text for an in-depth analysis.

27

Uncovering mesa-optimization algorithms in Transformers

D. Probabilistic latent-state inference in Transformers
In this section, we generalize our results on latent-state inference in partially-observed deterministic linear
systems towards noisy linear systems. Our aim is to show that the optimal maximum-likelihood estimator
(MLE) of the next observation 𝑠𝑡+1 is a linear map of the concatenated previous observations, possibly encoded
into a lower-dimensional subspace by a linear encoder. First, we show that in the Gaussian noise setting, the
MLE of 𝑠𝑡+1 is a linear map of the MLE of the latent state ℎ𝑡+1. Second, we show that the MLE of the latent
state ℎ𝑡+1 is a linear map of a concatenation of the previous 𝑘 observations. Finally, we generalize our setting to
allow for a linear encoding of all the previous observations into a fixed low-dimensional subspace, instead of
explicitly concatenating 𝑘 observations. Taken together, these results show that performing least-squares linear
regression on tokens that encode or concatenate previous observations is an optimal strategy for predicting the
next observation according to the maximum-likelihood estimator.

D.1. The MLE of 𝑠𝑡+1 is a linear map of the MLE of ℎ𝑡+1
As we consider linear dynamics with additive Gaussian noise, the distributions 𝑝(𝑠𝑡+1 | 𝑧𝑘𝑡) and 𝑝(𝑠𝑡+1, ℎ𝑡+1 | 𝑧𝑘𝑡)
are multivariate Gaussians. Let us now consider the MLE estimators of the marginal 𝑝(𝑠𝑡+1 | 𝑧𝑘𝑡) and joint
distribution 𝑝(𝑠𝑡+1, ℎ𝑡+1 | 𝑧𝑘𝑡).

�̂�
marginal
𝑡+1 = argmax

𝑠𝑡+1
𝑝(𝑠𝑡+1 | 𝑧𝑘𝑡)

�̂�
joint
𝑡+1 , ℎ̂

joint
𝑡+1 = argmax

𝑠𝑡+1,ℎ𝑡+1

𝑝(𝑠𝑡+1 | 𝑧𝑘𝑡)𝑝(ℎ𝑡+1 | 𝑠𝑡+1, 𝑧𝑘𝑡)

𝑝(ℎ𝑡+1 | 𝑠𝑡+1, 𝑧𝑘𝑡) is Gaussian, as conditional distributions of jointly distributed Gaussian variables are also
Gaussian. Furthermore, the covariance of a Gaussian conditional distribution only depends on the covariance of
the joint distribution, not on the specific value of the conditioned variable 𝑠𝑡+1. Hence, the maximum (not the
argmax) of 𝑝(ℎ𝑡+1 | 𝑠𝑡+1, 𝑧𝑘𝑡) is independent from 𝑠𝑡+1, and we hence have that the MLE �̂�

marginal
𝑡+1 is equal to �̂�joint

𝑡+1 .
Rewriting the joint distribution as 𝑝(ℎ𝑡+1 | 𝑧𝑘𝑡)𝑝(𝑠𝑡+1 | ℎ𝑡+1, 𝑧𝑘𝑡), and repeating the same arguments, we have that

�̂�
marginal
𝑡+1 = 𝐶∗ℎ̂joint

𝑡+1 = 𝐶∗ℎ̂marginal
𝑡+1

with ℎ̂
marginal
𝑡+1 the MLE of 𝑝(ℎ𝑡+1 | 𝑧𝑘𝑡). Hence, the MLE of 𝑠𝑡+1 is a linear map of the MLE of the latent state ℎ𝑡+1.

D.2. The MLE of ℎ𝑡+1 is a linear map of 𝑧𝑘𝑡
Now we turn our focus on showing that ℎ̂MLE

𝑡+1 = argmaxℎ𝑡+1 𝑝(ℎ𝑡+1 | 𝑧
𝑘
𝑡) as a linear map of 𝑧𝑘𝑡 . First, by similar

arguments as before, we have that ℎ̂MLE
𝑡+1 = 𝐴ℎ̂MLE

𝑡 , with ℎ̂MLE
𝑡 = argmax 𝑝(ℎ𝑡 | 𝑧𝑘𝑡). In the following, we show

that ℎ̂MLE
𝑡 is a linear map of 𝑧𝑘𝑡 , thereby completing our goal of this section.

Running the noisy dynamics backwards gives us ℎ𝑡−1 =𝑊∗−1 (ℎ𝑡 − 𝜖ℎ,𝑡−1). Repeating this 𝑘 times gives us

𝑧𝑘𝑡 = 𝑣𝑘𝑡 +


𝐶∗𝑊∗−(𝑘−1)

...

𝐶∗𝑊∗−1

𝐶∗


ℎ𝑡 −


𝐶∗𝑊∗−(𝑘−1)

...

𝐶∗𝑊∗−1

0


𝜖ℎ,𝑡−1 −



𝐶∗𝑊∗−(𝑘−2)

...

𝐶∗𝑊∗−1

0
0


𝜖ℎ,𝑡−2 − . . . (50)

= 𝑣𝑘𝑡 + F𝑘ℎ𝑡 − F 1
𝑘 𝜖ℎ,𝑡−1 − F

2
𝑘 𝜖ℎ,𝑡−2 − . . . (51)

= 𝑣𝑘𝑡 + F𝑘ℎ𝑡 −
𝑘−1∑︁
𝑙=1
F 𝑙
𝑘 𝜖ℎ,𝑡−𝑙 (52)

with 𝑣𝑘𝑡 the concatenated observation noise variables 𝜖𝑠,𝑡 of the last 𝑘 timesteps, and F 𝑙
𝑘
shifted versions of the

filter matrix F𝑘 by inserting 𝑙 zero blockmatrices from below:

F𝑘 =


𝐶∗𝑊∗−(𝑘−1)

...

𝐶∗𝑊∗−1

𝐶∗


28

Uncovering mesa-optimization algorithms in Transformers

Now we want to extract the maximum-likelihood estimate of ℎ𝑡. We have that

𝑝(ℎ𝑡, 𝑣𝑘𝑡 , 𝜖ℎ,𝑡−(𝑘−1):𝑡−1 | 𝑠𝑡−(𝑘−1):𝑡) = 𝑝(ℎ𝑡 | 𝑠𝑡−(𝑘−1):𝑡)𝑝(𝑣𝑘𝑡 , 𝜖ℎ,𝑡−(𝑘−1):𝑡−1 | ℎ𝑡, 𝑠𝑡−(𝑘−1):𝑡) (53)

Importantly, all variables are Gaussian, as we have linear dynamics and Gaussian noise. Due to the property of
Gaussian conditional distribution conditioned before,

the maximum of 𝑝(𝑣𝑘𝑡 , 𝜖ℎ,𝑡−(𝑘−1):𝑡−1 | ℎ𝑡, 𝑠𝑡−(𝑘−1):𝑡) only depends on the covariance matrix of the distribution
and hence does not depend on the value of ℎ𝑡. Consequently, we have that the value of ℎ𝑡 that maximizes
𝑝(ℎ𝑡, 𝑣𝑘𝑡 , 𝜖ℎ,𝑡−(𝑘−1):𝑡−1 | 𝑠𝑡−(𝑘−1):𝑡) is the same one that maximizes 𝑝(ℎ𝑡 | 𝑠𝑡−(𝑘−1):𝑡). This is convenient, as it is
much more tractable to maximize the joint distribution w.r.t. ℎ𝑡 and the noise variables, compared to maximizing
the marginal distribution w.r.t. ℎ𝑡, for which we need to compute integrals.
As the noise variables are Gaussian (with covariances which we assume to be equal to 𝜎𝐼 for simplicity),

maximizing the joint log-probability is equivalent to the following optimization problem:

argmin
ℎ𝑡 ,𝜖ℎ,𝑡−1:𝑡−𝑘+1,𝑣𝑘𝑡

1
2𝜎2
∥𝑣𝑘𝑡 ∥2 +

1
2𝜎2

𝑘−1∑︁
𝑙=1
∥𝜖ℎ,𝑡−1∥2 s.t. 𝑧𝑘𝑡 = 𝑣𝑘𝑡 + F𝑘ℎ𝑡 −

𝑘−1∑︁
𝑙=1
F 𝑙
𝑘 𝜖ℎ,𝑡−𝑙 . (54)

We solve it with the Lagrange multiplier method:

L =
1
2𝜎2
∥𝑣𝑘𝑡 ∥2 +

1
2𝜎2

𝑘−1∑︁
𝑙=1
∥𝜖ℎ,𝑡−1∥2 + 𝜆⊤

(
−𝑧𝑘𝑡 + 𝑣𝑘𝑡 + F𝑘ℎ𝑡 −

𝑘−1∑︁
𝑙=1
F 𝑙
𝑘 𝜖ℎ,𝑡−𝑙

)
(55)

Taking the gradients of this Lagrangian and equating them to zero gives us the following linear system with
𝑘𝑛ℎ + 2𝑘𝑛𝑠 equations and 𝑘𝑛ℎ + 2𝑘𝑛𝑠 variables:

∇ℎ𝑡L = F ⊤𝑘 𝜆 = 0 (56)
∇𝜖ℎ,𝑡−𝑙L = 𝜖ℎ,𝑡−𝑙 − F 𝑙⊤

𝑘 𝜆 = 0 (57)
∇𝑣𝑘𝑡 L = 𝑣𝑘𝑡 + 𝜆 = 0 (58)

∇𝜆L = 𝑧𝑘𝑡 + 𝑣𝑘𝑡 + F𝑘ℎ𝑡 −
𝑘−1∑︁
𝑙=1
F 𝑙
𝑘 𝜖ℎ,𝑡−𝑙 = 0 (59)

We can structure this set of equations in a big matrix equation

𝑆



ℎ𝑡
𝜖ℎ,𝑡−1
...

𝜖ℎ,𝑡−(𝑘−1)
𝑣𝑘𝑡
𝜆


=



0
0
...

0
𝑧𝑘𝑡


(60)

Where 𝑆 contains the terms of the equations that multiply with the variables, and the right-hand-side of the
above equation contains all other terms (only 𝑧𝑘𝑡 in our case). We can solve this system by inverting 𝑆 (assuming
it is invertible). Now we can extract our maximum likelihood estimate of ℎ𝑡 as

ℎ̂𝑡 =
[
𝐼 0 . . . 0

]
𝑆−1



0
0
...

0
𝑧𝑘𝑡


=

[
𝑆−1

]
0,𝑘+2 𝑧

𝑘
𝑡 (61)

with
[
𝑆−1

]
0,𝑘+2 the upper right block of 𝑆−1. So after this slightly more complicated derivation, we again end

up with a simple linear map from 𝑧𝑘𝑡 to decode the maximum likelihood hidden state. Let us rename it for ease
of notation: 𝑈 =

[
𝑆−1

]
0,𝑘+2:

ℎ̂𝑡 = 𝑈𝑧
𝑘
𝑡 (62)

29

Uncovering mesa-optimization algorithms in Transformers

Using this state estimation, we can predict the next observation as �̂�𝑡+1 = 𝐶∗𝑊∗ℎ̂𝑡. This leads us to the following
optimal candidate for the linear map 𝑧𝑘

𝑡+1 = Φ𝑧𝑡:

Φ =


0 𝐼 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 0 𝐼

𝐶∗𝑊∗𝑈


(63)

As there exists an optimal map between 𝑧𝑘𝑡 and 𝑧𝑘
𝑡+1 that is linear, this map can be found by performing

least-squares on an autoregressive dataset with 𝑧𝑘𝑡 .

D.3. Capacity constraints on the representation
Previously, we derived results for a fixed 𝑘. Now, we consider the case with a capacity bottleneck on the
representations of the transformer. Let us assume that the transformer can allocate a 𝑑-dimensional subspace
to store some representation of the past observations 𝑠0:𝑡−1. Instead of concatenating 𝑘 previous observations
into this subspace with the constraint that 𝑘 ≤ 𝑑/𝑛𝑠 with 𝑛𝑠 the observation dimension, we can consider a
more general case where we have an encoding 𝑢𝑡 = 𝐸𝑠0:𝑡 = 𝐸𝑧𝑇𝑡 . Here, 𝐸 ∈ ℝ𝑑×𝑇𝑛𝑠 , with 𝑇 the sequence length.
For 𝑡 < 𝑇, we prepend zeros to 𝑠0:𝑡 to make the dimensions fit. When 𝐸 consists of identity matrices on the
diagonals corresponding to the 𝑘 last observations, we recover the previous case. However, it might be more
optimal to copy partial information from more than 𝑘 observations, resulting in a different encoding matrix 𝐸.

We are interested in three main points. First, we need to formalize a bottleneck objective that the encoding
matrix 𝐸 should optimize. Second, we need to show that the MLE for 𝑠𝑡 is still a linear map of the encoded
observations 𝑢𝑡. Finally, we need some algorithm or strategy to compute the optimal encoding matrix 𝐸, such
that we can compare it to the learned weights of the transformer.

Bottleneck objective. We want the encoding to capture as much useful information about past observations
as possible, to predict the future observation. Hence, we want the MLE �̂�𝑡+1 conditioned on 𝑢𝑡 to be as close as
possible to the MLE conditioned on the full past 𝑦0:𝑡. We can formalize this in the following bilevel optimization
problem

min
𝐸
| | argmax

𝑠𝑡+1
𝑝(𝑠𝑡+1 | 𝑠0:𝑡) − argmax

𝑠𝑡+1
𝑝(𝑠𝑡+1 | 𝑢𝑡) | |2 (64)

As both 𝑝(𝑠𝑡+1 | 𝑠0:𝑡) and 𝑝(𝑠𝑡+1 | 𝑢𝑡) are Gaussian, we have that the MLE of 𝑝(𝑠𝑡+1 | 𝑠0:𝑡) and 𝑝(𝑠𝑡+1, ℎ𝑡+1 | 𝑠0:𝑡) are
the same (see previous section), and hence we can rewrite the bilevel optimization problem into an equivalent
form:

min
𝐸
| |𝐶

[
argmax

ℎ𝑡+1

𝑝(ℎ𝑡+1 | 𝑠0:𝑡) − argmax
ℎ𝑡+1

𝑝(ℎ𝑡+1 | 𝑢𝑡)
]
| |2 (65)

MLE of ℎ𝑡+1 is a linear map of 𝑢𝑡. For a fixed encoding 𝐸, it is easy to see that the MLE ℎ̂𝑡+1, and hence the
MLE �̂�𝑡+1 = 𝐶ℎ̂𝑡+1 as well, are a linear map of 𝑢𝑡. We have that 𝑢𝑡 = 𝐸𝑧𝑇𝑡 . Hence, we can repeat the calculations of
the previous section, now with a new linear constraint 𝑢𝑡 = 𝐸

[
𝑣𝑇𝑡 + F𝑇ℎ𝑡 −

∑𝑇−1
𝑙=1 F 𝑙

𝑇 𝜖ℎ,𝑡−𝑙
]
for the MLE objective

equation 54. The main result that the MLE ℎ̂𝑡+1 is a linear map of 𝑢𝑡 holds in this case as well, as all equations
for the first-order optimality conditions remain linear.

How to compute the optimal encoding? Now that we derived argmaxℎ𝑡+1 𝑝(ℎ𝑡+1 | 𝑢𝑡) as a function of 𝐸, we
can use this to optimize the encoding objective equation 65 w.r.t. 𝐸, by computing its gradients. Concretely, we
need to iterate the following two steps:

1. Compute the MLE �̂�𝑡 = 𝐶∗ℎ̂𝑡 conditioned on 𝑢𝑡, by solving the linear system resulting from the MLE objective
equation 54 with the new constraint 𝑢𝑡 = 𝐸

[
𝑣𝑇𝑡 + F𝑇ℎ𝑡 −

∑𝑇−1
𝑙=1 F 𝑙

𝑇 𝜖ℎ,𝑡−𝑙
]
. Use a differentiable linear solver

(e.g. torch.linalg.solve), such that we can backpropagate through it in step 2.

2. Compute the encoding loss equation 65 and compute the gradients w.r.t. 𝐸 on a training dataset consisting
of multiple teacher systems.

30

Uncovering mesa-optimization algorithms in Transformers

E. Additional experiments with different sequence generator distributions
For our main text experiments, the groundtruth transition matrix 𝑊∗ was set to a random orthogonal matrix.
Here we briefly analyze Transformers trained on systems with different transition matrix statistics. For all
settings in this section, we assume full observability, that is 𝑠𝑡 = ℎ𝑡 for all time steps 𝑡.

E.1. Contracting linear dynamics
We show here the preliminary result when diverging from purely orthogonal teachers 𝑊 to construct the
sequence presented to the Transformer and restrict the eigenvalues of𝑊 ∼ N(0, 𝐼) in a band of [0.3, 0.9]. We
notice that with these 𝑊 approximately 2% of the sequences lead to very large values. To ease trainability, we
therefore clip all the values of those sequences to values between [−2, 2].
When training a single layer of linear self-attention, see Figure 11, we again observe that the trained layer

matches the performance of a single step of gradient descent. We furthermore find clean weight structure,
comparable to the weights trained on sequences which are generated by an orthogonal teacher, see Figure 13.
For multi-layer linear transformers we find both gradually increasing probing of preconditioned inputs

as necessary for our hypothesis, Proposition 2, as well as gradual performance improvement for deeper
Transformers.

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

2.0

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

A
Linear-SA-1
GD-1

1 20 40
Sequence length t

10 3

10 2

Pr
ec

on
di

tio
ni

ng
 p

ro
be

 M
SE

B

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

2.0

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

C
Mesa
Proposition-2

Inp. 1 2 3 4 5 6 1 2 4 6
Layer

d:
Linear-

SA-d:

0 20

0

10

20

WT
KWQ Head 1

0 20

0

10

20

WT
KWQ Head 2

0 20

0

10

20

PWV Head 1

0 20

0

10

20

PWV Head 2

D

Figure 11 | Evidence for mesa-optimization in Transformers trained on contracting linear dynamics. (A) At convergence,
models trained on contracting sequences exhibit the same in-context learning performance (measured as the loss as a
function of sequence length) as 1 step of gradient descent (dashed line), as in our findings for models trained on data
generated by an orthogonal teacher. (B) In six-layer linear self-attention models trained on constructed tokens, we find
that linear probing of preconditioned inputs (𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)

−1𝑠𝑡 improves with depth and context length, consistent
with the mesa-optimizer of Proposition 2 and our findings for the orthogonal-teacher setting. (C) For deeper models,
performance in this setting increases. We find that the mesa-layer outperforms any other model and that a six-layer linear
self-attention model can be explained by Proposition 2. (D) We again find highly structured weights that, in the shown
two-head-one-layer case, can implement an update step of gradient descent.

E.2. Fixed-teacher linear dynamics
Here we analyse the setting where every sequence shares the same single fixed orthogonal transition matrix
𝑊∗ ∈ ℝ𝑛ℎ×𝑛ℎ , and only the initial state ℎ1 ∼ N(0, 1) is sequence-specific. Thus, in this setting there is no need
to infer 𝑊∗ in-context.

We report the results for the experiments in Figure 12. We observe that for this case even a one-layer linear
self-attention Transformer drastically outperforms an update step of gradient descent. Furthermore, we find no
evidence for the mesa-optimizers of Propositions 1 and 2, neither in the weights, which appear less structured
and less interpretable, nor in linear probings of preconditioned tokens, where we barely observe a gradual
improvement over layers as well as an overall worse probing performance. Lastly, all trained transformers,
including a single mesa-layer seem to outperform optimization-algorithms in this settings, indicating that the
models learn the fixed teacher and thereby predict with very low error already very early in the sequence, as
we also find in next-token prediction analyses.

31

Uncovering mesa-optimization algorithms in Transformers

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

2.0

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

A
Linear-SA-1
GD-1

1 20 40
Sequence length t

10 2

10 1

100

Pr
ec

on
di

tio
ni

ng
 p

ro
be

 M
SE

B

1 20 40
Sequence length t

0.0

0.5

1.0

1.5

2.0

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

C
Mesa
Proposition-2

Inp. 1 2 3 4 5 6 1 2 4 6
Layer

d:
Linear-

SA-d:

0 20

0

10

20

WT
KWQ Head 1

0 20

0

10

20

WT
KWQ Head 2

0 20

0

10

20

PWV Head 1

0 20

0

10

20

PWV Head 2

D

Figure 12 | No evidence for mesa-optimization in Transformers trained on fixed-teacher linear dynamics, as predicted
by our theory. (A) At convergence, one layer linear self-attention transformers trained on fixed-teacher linear sequences
significantly outperform the performance achieved by a single update step of gradient descent (dashed line). (B) In six-layer
linear self-attention models trained on constructed tokens, we only find very weak linear probing of preconditioned inputs
(𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)

−1𝑠𝑡 and only barely see gradual improvement over depth. (C) Various deep linear self-attention and mesa-
transformers drastically outperform optimization algorithms when evaluated on test sequences for the same fixed teacher.
(D) We find less structured and less interpretable weights in a trained one-layer transformer.

F. Experimental details
F.1. Training Transformers on fully observable linear dynamical systems
We provide here details about the training details of the Transformer models when training on the fully
observable linear dynamics setting. As already stated in the main text, we train all Transformer models by
minimizing the following classical autoregressive prediction error objective regression loss:

L(𝜃) = 𝔼𝑒∼𝑝(𝑒)

[
1
2

𝑇−1∑︁
𝑡=1
∥𝑒𝑡+1 − 𝑓𝑡 (𝑒1:𝑡, 𝜃)∥2

]
. (66)

In all of our experiments, we employ causal masking during self-attention, implemented in the same way as in
the majority of auto-regressive language modeling experiments. Specifically, during the self-attention operation
we zero out the elements corresponding to the upper triangular matrix of the attention map, except for the
diagonal itself. We do this both for the linear attention layer and for the mesa-layer. In practice, for softmax
self-attention the incoming logits to the softmax are set to −1𝑒30. We ran into stability issues especially when
training models with linear layers. To mitigate those, we simply clipped the activations of the forward pass
to values between [−4, 4] for linear self-attention Transformer-layers, which stabilized training significantly.
Hyperparameters and other experimental details can be found in table 1.

F.1.1. Single-layer linear self-attention Transformer
We analyze single-layer, two-head, key-size-20 linear self-attention Transformers, trained on constructed
tokens, by comparing their performance with other models and providing an interpolation in parameter space
between trained Transformers and the provided construction for Proposition 1, which is described by only a
few hyper-parameters. We read out the predictions from the first 𝐷𝑠 entries of the outputs (which initially
contain a zero-vector). For the performance analysis, these models are compared to a Proposition 1, thus a
single gradient descent update step on the auto-regressive loss. The optimal learning rate for this gradient
descent step is line-searched.
Interpolation details: We first train a Transformer, then extract scalar parameters of the mesa-optimization

algorithm, from the 𝐷𝑠 × 𝐷𝑠-shaped sub-matrices by taking the mean of the sub-diagonals of the matrix products
𝑊⊤
𝑘
𝑊𝑞, 𝑃𝑊𝑣 (cf. 13). We proceed by using these to both build a construction of sparse weight matrices, each

consisting only of identity-sub-matrices (scaled by the resp. parameters), and, for the single-layer case, also
directly compute a loss for the hard-coded implementation of Proposition 1with the respective hyper-parameters.
Then, during a second training-run of a Transformer for the same initial conditions, we simultaneously compute
the test loss for an interpolation, where we average equally not between the single weight matrices, but between
the correct weight-matrix-products per head to obtain a new, interpolated model. The reason for this procedure

32

Uncovering mesa-optimization algorithms in Transformers

Table 1 | Hyperparameters for all settings and model variants when training on simple fully observable linear dynamics.

Hyperparameter Value/Description
Context size We used length 50, except for the ICL experiments, where we used length 224

and the softmax-linearization experiments where we vary the context size
according to the ratio context size = 4 · 𝑛ℎ.

Optimizer Adam [98] with 𝜖 = 1𝑒−8, 𝛽1 = 0.9, 𝛽2 = 0.999
Weight decay 0.1 for constructed tokens, 0.05 otherwise
Batchsize 256, except for ICL and Linearization due to memory constraints, here 128 and 64, resp.
Gradient clipping 1.0 across models
Activation clipping Clip [−4, 4] for all linear models trained on constructed tokens, no clipping otherwise.
Positional encodings We concatenate positional encodings of dimension 40 to queries and keys before

computing the self-attention in the first layer for models trained on
unconstructed tokens, otherwise no positional encodings.

Dropout We do not use Dropout for any model.
Architecture 1-L., Constr. We use a 1-layer, 2-head, key-size 20, dim-40-tokens, no input- or output-embedding

architecture for single-layer models trained on constructed tokens.
Architecture k-L. (𝑘 > 1), Constr. We use a 𝑘-layer, 4-head, key-size 20, dim-40-token, no input- or output-

embedding architecture for the multi-layer models (softmax and linear)
trained on constructed tokens for the probing analysis and used
key-size 40 for the interpolation.

Architecture Full-softmax, No Constr. We use a 7-layer, 4-head, key-size 20, dim-10-tokens, dim-40-
embedding- architecture with input- and output-embedding layers for
full-fledged softmax-only-models.

Architecture Hybrid-mesa, No Constr. We use 2-layer, 4-head, key-size 20, dim-10-tokens, dim-40-
embedding-architecture with inputs- and output embedding layers. First a
softmax-self-attention layer, then a single Mesa-layer.

Architecture Full-mesa, No Constr. We use 2-layer, 4-head, key-size 20, dim-10-tokens, dim-40-
embedding-architecture with inputs- and output embedding layers. Both layers are
mesa-layers.

Weight initialization 𝑊 ∼ N(0, 𝜎2) with 𝜎2 = 0.0002 for models trained on constructed tokens
and 𝜎 = 0.05 for all other models. We always fixed the bias parameters to zero.

Learning rate (& scheduler) For models trained on non-constructed tokens, we used linear warm-up
starting from 0 to 7𝑒−4 in 1000 steps, Cosine annealing to 1𝑒 − 5 for the next
10000 (single-layer interpolation experiments), 30000 (other experiments) steps.
We note here that we train the models only for at most 10000 steps, except for the ICL-
setting where we do Cosine annealing for 60000 steps and train for 40000 steps.
For models trained on constructed tokens, we used a fixed learning rate of 1𝑒−4.

Mesa regularization 𝜆 We initialize the learnable regularization parameter 𝜆 for every mesa-head to 1.

0 10 20

0

10

20

WT
KWQ Head 1

0 10 20

0

10

20

PWV Head 1

0 10 20

0

10

20

WT
KWQ Head 2

0 10 20

0

10

20

PWV Head 2

0.2

0.1

0.0

0.1

0.2

Figure 13 | Mesa-optimization in a trained linear self-attention layer. We inspect the parameters of a two-headed, linear self-
attention layer trained to predict the future state of a linear dynamical system. The dominant pattern obtained after learning
corresponds to our mesa-gradient descent construction. The faint additional structure can be further reverse-engineered,
and results from a modified mesa-objective function, 𝐿𝑡 (Φ) =

∑𝑡−1
𝑡′=1

1
2 ∥𝑠𝑡′+1 − Φ𝑠𝑡′ ∥2, discovered by base-optimization of

Equation F.1. Please compare to the similar structure of the weight matrix products of our construction. Please note that
these matrices are actually of shape 40 × 40. Here we only show the 30 × 30 dimensional sub-matrix containing nonzero
entries.

is the non-uniqueness of weight matrices to obtain the found matrix products. We repeat this procedure for
5 different seeds, train a newly initialized Transformer each time and plot the obtained mean and standard
deviation values for the test loss during training.

33

Uncovering mesa-optimization algorithms in Transformers

F.1.2. Multi-layer linear self-attention Transformer
For the multi-layer experiments, we use different settings: For the experiments with constructed tokens, we
use a 𝑘-layer (𝑘 > 1), no input- or output-embedding layer architecture, we found that forward-pass activation
clipping in linear self-attention based Transformers after each layer greatly stabilized training and hence clip
activations in a band of [−4, 4].
Interpolation details: The interpolation of multi-layer transformers when training on the token construction,

we follow the procedure described in the previous subsection, per layer, but extend it to 4-head key-size
40 self-attention layers: We read off the parameters as the mean of the diagonals of the respective 𝑛𝑠 × 𝑛𝑠
sub-matrices of the resulting matrix weight products 𝑊⊤

𝑘
𝑊𝑞, 𝑃𝑊𝑣 per head of a trained Transformer. Then we

construct sparse weight matrices consisting of identity-sub-matrices (scaled by the resp. parameters). We name
this algorithm Compressed-Alg-6. We proceed as for the single-layer experiment and re-train the Transformer
from the initial conditions, but during training also report the test loss of a model that is obtained by equally
averaging the weight products of our construction for Compressed-Alg-6 and the Transformer. We average the
products and not the single weight matrices for the same reasons stated in the previous subsection F.1.1 and
report the loss obtained in runs for 5 different seeds.

F.1.3. Full-fledged Transformers
For the experiments with full-fledged Transformers, we use either a 7-layer full-softmax architecture or 1+1
softmax-mesa and mesa-mesa hybrid-models. In all full-fledged models, we have input- and output-embedding
layers, and the first layer always incorporates the logic for the positional encodings, while the other Transformer
layers are either 6 softmax self-attention layers, or 1 mesa layer (1+1-layer architecture). The positional
encodings are concatenated to the outputs of the key- and query projections before the computation of the
attention.
Analysing copying behaviour in full-fledged Transformers: We examine Transformers trained on linear sequence

models to understand if they learn a token-binding process in early layers to construct aggregate internal
token representations, which are necessary for the proposed mesa-optimization algorithms in subsequent
layers. We analyse the causally masked attention maps of trained models (cf. 14, 15) and find clear data-
independent attention on both the current and the previous token at each time-step. Furthermore, we propose
a token-probing and a gradient sensitivity experiment (cf. 16, 17) to understand if the transformed tokens
after the first Transformer layer contain both the current as well as the previous token in the sequence, as
necessary for our hypothesis. For the token probing, we report the performance of linear decoders trained
to predict previous tokens from output. There, we linearly regress a batch of sequences at a single time-step
against a range of previous time-steps and report the obtained MSE loss. We find that, as predicted by our
hypothesis, Transformers learn a process that data-independently binds previous and current tokens at each
time steps to construct the proposed representations internally. We support this evidence by further analyses
where we compute the sensitivity norm ∥∇𝑠𝑡′ 𝑓

(1)
𝑡 (𝑠1:𝑡, 𝜃)∥ of the output of the first layer for all time steps 𝑡′ ≤ 𝑡.

Furthermore we analyse full-mesa (first and second layer mesa) models and report the findings for the above
experiments. Here, we find weaker and less clear - but still existing binding of previous tokens at each time-step.

0 10 20 30 40

0

10

20

30

40

Attention-map, head 0

0 10 20 30 40

0

10

20

30

40

Attention-map, head 1

0 10 20 30 40

0

10

20

30

40

Attention-map, head 2

0 10 20 30 40

0

10

20

30

40

Attention-map, head 3

Figure 14 | Softmax attention maps of the first softmax self-attention layer when training a softmax-only Transformer on
unconstructed inputs. We visualize all four heads of the first softmax-attention layer and observe strong copying behavior,
as predicted by the provided theory, in the heads i.e. full attention on the current and the previous token. We average the
attention maps over a batch of 2048.

Analysing optimization algorithms in full-fledged Transformers: We proceed by analysing later layers in a
variety of experiments. First, we compare the performance across fresh test sequences of the full-fledged model
architectures and a hard-coded implementation of our proposed mesa-optimization that consists of six steps of

34

Uncovering mesa-optimization algorithms in Transformers

0 10 20 30 40

0

10

20

30

40

Attention-map, head 0

0 10 20 30 40

0

10

20

30

40

Attention-map, head 1

0 10 20 30 40

0

10

20

30

40

Attention-map, head 2

0 10 20 30 40

0

10

20

30

40

Attention-map, head 3

Figure 15 | Softmax attention maps of the first softmax self-attention layer when training a hybrid-mesa Transformer on
unconstructed inputs. We visualize all four heads of the first softmax-attention layer and observe strong copying behavior,
as predicted by the provided theory, in the heads i.e. full attention on the current and the previous token. We average the
attention maps over a batch of 2048.

0 1500 3000
Train steps

0.0

0.2

0.5

0.8

1.0

1.2

s t
′f(1

)
50

A

0 1500 3000
Train steps

0.0

0.1

0.2

0.3

0.4

s t
′f(1

)
50

B

0 1500 3000
Train steps

0.0

0.5

1.0

1.5

s t
′f(1

)
50

C

0 : 44 46 48 50 0 : 44 46 48 50 0 : 44 46 48 50
Token

st ′:
Token

st ′:
Token

st ′:

Figure 16 | Gradient sensitivity analysis of activations after the first layer in various Transformer models over the course of
training. The first softmax layer groups together neighboring tokens. This can be seen in the high sensitivity to the current
and previous tokens of the outputs of the first layer of a softmax-only Transformer. For full-mesa models we find less clear
binding of all previous tokens, which is also reflected in the token probing analyses, cf. 17.

43 44 45 46 47 48 49 50
Token t ′

0.0

0.1

0.1

0.2

0.2

0.2

To
ke

n
pr

ob
e

R2

A

43 44 45 46 47 48 49 50
Token t ′

0.0

0.1

0.1

0.2

0.2

0.2

To
ke

n
pr

ob
e

R2

B

43 44 45 46 47 48 49 50
Token t ′

0.0

0.1

0.1

0.2

0.2

0.2

To
ke

n
pr

ob
e

R2

C

Full-softmax Hybrid-mesa Full-mesa

Figure 17 | Token probing for various full-fledged Transformer models trained on fully observable linear sequences models.
We find further evidence for a learned token binding process in the first layer, indicated by a very low decoding-loss for
both the current and the previous token at a chosen time-step (50) over batches of test-sequences.

preconditioning an internal optimization problem which is then solved in the last layer by an update step of
gradient descent. Previously, we learn the parameters for the Chebyshev-iteration method for inverting matrices
(as necessary for the proposed optimization procedure) by optimizing directly for solving fully observable linear
sequence models generated by the same teacher as used in this setting. Furthermore, we find strong evidence
for mesa-optimization in various activation-probing experiments. We linearly regress activations separately per
time-step against targets and preconditioned inputs as predicted by our Proposition-2, (𝑆𝑡−1𝑆⊤𝑡−1 + 1/𝜆𝐼)

−1𝑠𝑡
and find gradually increasing performance over layers in both experiments.

F.1.4. Testing autoregressively trained Transformers on few-shot in-context-learning
We provide here details about the post-training in-context learning experiment. For this experiment, we
exclusively analyse full-fledged Transformers. After training, we "prompt" the model with few-shot regres-
sion datasets i.e. simply switch from sequences [𝑥1, 𝑥2, . . . , 𝑥𝑡−1, 𝑥𝑡] where 𝑥𝑡+1 = 𝑊𝑥𝑡 and 𝑥0 ∼ N(0, 𝐼) to

35

Uncovering mesa-optimization algorithms in Transformers

[𝑥1, 𝑦1, . . . , 𝑥𝑁 , 𝑦𝑁] where 𝑦𝑖 = 𝑊𝑥𝑖 and all 𝑥𝑖 ∼ N(0, 𝐼). Note that there is no relation between 𝑦𝑖, 𝑥𝑖+1 as in
the autoregressive case. In both cases we sample 𝑊, if not stated otherwise from the same distribution i.e. as
random orthogonal matrices. This results in a sequence length of 𝑡 = 2𝑁 and 𝑡 = 3𝑁 when incorporating EOS
tokens. Throughout the sequence we measure

L𝑖 = 𝔼

[
1
2
∥𝑦𝑖 − 𝑓2𝑖−1 (𝑥𝑖; {(𝑦 𝑗, 𝑥 𝑗)}𝑖−1𝑗=1)∥

2
]
. (67)

for 𝑖 ≥ 2 depicted e.g. in Figure 18.
For the EOS-token fine-tuning experiments, we initialize a single vector EOS ∼ N(0, 𝐼) and optimize this

single vector on the same loss

L(EOS) = 𝔼

[
1
2

𝑁∑︁
𝑖=1
∥𝑦𝑖 − 𝑓3𝑖−2 (𝑥𝑖, EOS; {(𝑦 𝑗, 𝑥 𝑗)}𝑖−1𝑗=1)∥

2

]
(68)

via batch gradient descent for 5000 steps with batchsize 256 on randomly sampled training data. Note that
we interleave every datapair with an EOS token i.e. [𝑥1, 𝑦1, EOS, 𝑥2, . . . , 𝑦𝑁−1, EOS, 𝑥𝑁 , 𝑦𝑁] and we therefore
increase the sequence length from 2𝑁 to 3𝑁.
For the prefix-prompt P, we fine-tune a single sequence of 20 tokens which we append at the beginning

of every in-context learning sequence. We initialize here again all vectors before training of the soft-prompt
P𝑖 ∼ N(0, 𝐼) and optimize again the same loss with or without the additional (pre-trained, see above) EOS
token,

L(P) = 𝔼

[
1
2

𝑁−20∑︁
𝑖=21
∥𝑦𝑖−20 − 𝑓3𝑖−2+20 (𝑥𝑖−20, P, EOS; {(𝑦 𝑗, 𝑥 𝑗)}𝑖−21𝑗=1)∥

2

]
, (69)

via batch gradient descent for 5000 steps with batchsize 256 on randomly sampled training data resulting in
sequences [𝑃1, . . . , 𝑃20, 𝑥1, 𝑦1, EOS, 𝑥2, . . . , 𝑦𝑁−1, EOS, 𝑥𝑁 , 𝑦𝑁].

We extend this analysis by a continual-in-context learning experiment where we demonstrate the in-context
learning capabilities of autoregressively trained Transformers on two tasks shown in sequence in context.

0 10 20 30 40 50 60
Datapoints (xi, yi) in sequence

0.5

1.0

1.5

2.0

2.5

La
be

l p
re

di
ct

io
n

M
SE

A Few-shot regression
Mesa
Mesa+EOS
Mesa+EOS+P
LSQ

0 10 20 30 40 50 60
Datapoints (xi, yi) in sequence

1.0

1.5

2.0

2.5

La
be

l p
re

di
ct

io
n

M
SE

B Continual few-shot regression
Mesa
Mesa+EOS
Mesa+EOS+P
LSQ

Figure 18 | Autoregressive Transformers display in-context few-shot learning capabilities. After training a hybrid-mesa
Transformer on autoregressive sequence prediction problems, we measure its ability to solve linear regression tasks in-
context, without further parameter fine-tuning. The task training set is presented to the model in sequence, with each
token corresponding either to an input or to its corresponding label. A final test input is provided and the loss is measured
after completing the sequence using the autoregressive Transformer. (A) The mesa-optimizers installed by autoregressive
pretraining can be leveraged off-the-shelf to solve in-context supervised regression tasks, but yield sub-optimal regression
performance (lightest red lines). In-context learning performance can be improved following the standard strategies of
prompt (TF+EOS, light red lines) and prefix fine-tuning (TF+EOS+P, dark red lines). For comparison, we provide the loss
achieved by an autoregressive linear model learned by least-squares (LSQ, yellow lines) (B) Same analysis, now presenting
two tasks in a row. The autoregressive models develop some in-context continual learning capabilities.

F.2. Linearizing softmax-Transformers
We provide here details and additional results about the linearization experiments. For the linearization
analysis presented in the main text, we proceed as follows: First, we fix the ratio of context-size to (observed)

36

Uncovering mesa-optimization algorithms in Transformers

Trained softmax model Distilled linear model

Layer 1 Layer 2 Layer 1 Layer 2

Figure 19 | The weights of a distilled linear layer are surprisingly similar to those of the original full-softmax model. Here,
we present the resulting weights for a linearization of a full-softmax, 2-layer-1-head model trained on constructed data
with 𝑇 = 80, 𝑛𝑠 = 20.

data-dimension to 4 : 1. Then, for each of the listed settings (𝑛𝑠 ∈ [4, 6, 10, 20, 40, 60] and 𝑇 according to the
fixed ratio) we first train a classical full-fledged softmax-attention Transformer model on data generated by a
linear-sequence generating teacher. We note here that for larger dimensions, the training becomes significantly
more difficult in this setting. Then, for each layer in the model, we distill a separate linear self-attention layer
by training it to ‘behave’ like its softmax-counterpart. To this end, we record the outputs of the softmax-layer
for a new input-sequence. Note that the inputs to the linear layer that we are training are not the original
input-sequences, but rather the (transformed) sequences that are the activations before the softmax-layer in the
multi-layer softmax-Transformer. Hence, the distillation process is described by optimizing this objective:

L(𝜃𝑙𝑖𝑛𝑒𝑎𝑟) = 𝔼

[
1
2

𝑇−1∑︁
𝑡=1
| |SA(𝑙) (𝑠1:𝑡, 𝜃softmax,𝑙) − LSA(𝑓 (𝑙−1)𝑡 (𝑠1:𝑡, 𝜃TF), 𝜃linear) | |

]
. (70)

Here, SA(𝑙) denotes the softmax attention operation at the 𝑙-th layer of the full-softmax transformer, 𝜃softmax,𝑙 the
(learned) parameters for this operation, LSA the linear self-attention layer and 𝑓

(𝑙−1)
𝑡 (𝑠1:𝑡, 𝜃TF) the activation

after the (𝑙 − 1)-th layer in the trained full-softmax Transformer, which will be the input to the linear layer
we aim to distill. After this distiallation process is completed, we construct a model where we swap out the
softmax operation at the respective layer and replace it by the distilled layer in the full-softmax model. Then
we compare the performance of this new ‘linearized’ Transformer with the original full-softmax model on a
batch of test sequences and report the measured test loss. Furthermore, we find that the distilled weights that
were trained on the in- and outputs of a specific softmax-layer appear to be very similar to softmax-attention
layers in structure, cf. 19.
Furthermore, we analyse and compare the performance of autoregressive models learned by regularized

least squares and an generic interpolation algorithm, softmax-kernel-regression, in various settings as described
above. We line-search the parameters necessary for regularization. Here, we extend these results and also
analyse these settings for varying noise settings in the generating model. We report mean and standard
deviation for three different seeds, each using generated data of batch-size 32, in 20.

F.3. Training Transformers on partially observable linear dynamical systems
For the experiments with partially observable linear dynamical systems, we directly analyze full-fledged
Transformers trained on the observations. In detail, we use either a 7-layer full-softmax architecture or 1+1
softmax-mesa hybrid-models. In all models, we have input- and output-embedding layers, and the first layer
always incorporates the logic for the positional encodings, while the other Transformer layers are either 6
softmax self-attention layers, or 1 mesa layer. The positional encodings are concatenated to the outputs of the

37

Uncovering mesa-optimization algorithms in Transformers

46 10 20 40 60
Data dimension ns

0

5

10

15
Te

st
 lo

ss
2 = 0.1

A

46 10 20 40 60
Data dimension ns

0

5

10

15

Te
st

 lo
ss

2 = 0.25

B

46 10 20 40 60
Data dimension ns

0

5

10

15

Te
st

 lo
ss

2 = 0.5

C

LSQ Softmax kernel-regression

Figure 20 | For different noise levels 𝜎2
ℎ
in the sequence generation process, we analyse the performance of autoregressive

models learned by regularized least squares and softmax kernel regression for increasing dimensions to underline the effect
of the ‘curse of dimensionality’ in our setting.

key- and query projections before the computation of the attention. Generally, our models are trained on 𝑛𝑠 = 5
- dimensional observations from a process with 𝑛ℎ = 15 - dimensional hidden states. Further training details
can be found in Table 2.

Table 2 | Hyperparameters for all settings and model variants when training on partially observable linear dynamics.

Hyperparameter Value/Description
Context size We use context size 𝑇 = 50
Optimizer Adam [98] with 𝜖 = 1𝑒−8, 𝛽1 = 0.9, 𝛽2 = 0.999
Weight decay 0.05 across models
Batchsize Batchsize 256
Gradient clipping 1.0 across models
Activation clipping No activation clipping
Positional encodings We concatenate positional encodings of dimension = embedding-dimension

to queries and keys before computing the self-attention in the first layer for all models
Dropout We do not use Dropout for any model.
Architecture Full-softmax, No Constr. We use a 7-layer, 4-head, key-size min (20, embedding-dim.), dim-5-input-tokens,

architecture with varying embedding dimensions in [5, 10, 15, 20, 30, 50, 80] with
input- and output-embedding layers for full-fledged softmax-only-models.

Architecture Hybrid-mesa, No Constr. We use 2-layer, 4-head, key-size min (20, embedding-dim.), dim-5-input-tokens,
architecture with embedding dimensions in [5, 10, 15, 20, 30, 50, 80] with inputs-
and output embedding layers. First a softmax-self-attention layer, then a single Mesa-layer.

Weight initialization 𝑊 ∼ N(0, 𝜎2) with 𝜎2 = 0.05 for all models. We always fixed the bias parameters to zero.
Learning rate (& scheduler) We used linear warm-up starting from 0 to 4𝑒−4 in 1000 steps,

Cosine annealing to 1𝑒 − 5 for the next 30000 steps.
Mesa regularization 𝜆 We initialize the learnable regularization parameter 𝜆 for every mesa-head to 1.

Analysing copying behaviour in full-fledged Transformers: We examine Transformers trained on partially
observable linear sequence models to understand if they learn a token-binding process in early layers to
construct aggregate internal token representations, which are necessary for the proposed mesa-optimization
algorithms in subsequent layers. As in the fully-observable setting, we use both a token-probing and a gradient
sensitivity experiment to understand if the transformed tokens after the first Transformer layer contain the
previous tokens in the sequence, as necessary for our hypothesis for partially observable models. For the token
probing (cf. 21), we report the performance of linear decoders trained to predict previous tokens from output.
There, we linearly regress a batch of sequences at a single time-step against a range of previous time-steps
and report the obtained MSE loss for models of varying embedding dimension. We find that as the embedding
dimension grows, the probing of previous tokens becomes more clear and stable. Hence we infer that, as
expected by our hypothesis, Transformers learn a process that data-independently binds previous and current
tokens at each time steps to construct the proposed representations internally. We support this evidence by
further analyses where we compute the sensitivity norm ∥∇𝑠𝑡′ 𝑓

(1)
𝑡 (𝑠1:𝑡, 𝜃)∥ of the output of the first layer for all

time steps 𝑡′ ≤ 𝑡 (cf. 22).
Analysing optimization algorithms in full-fledged Transformers trained on partially observable linear dynamical

systems: We proceed by analysing later layers using the same method as in the fully observable setting (cf.

38

Uncovering mesa-optimization algorithms in Transformers

43 44 45 46 47 48 49 50
Token t ′

0.0

0.2

0.5

0.8

1.0

1.2

To
ke

n
pr

ob
e

M
SE

A

43 44 45 46 47 48 49 50
Token t ′

0.0

0.2

0.5

0.8

1.0

1.2

To
ke

n
pr

ob
e

M
SE

B

5 10 15 20 30 50 80 5 10 15 20 30 50 80
Model-

Dim.:
Model-

Dim.:

Figure 21 | Token probing for Transformers trained on partially observable data. If we vary the embedding-dimension of
the Transformers, we find that larger Transformers use the provided space to copy over relevant tokens.

0 1500 3000
Train steps

0.0

0.2

0.4

0.6

0.8

s t
′f(1

)
50

A

0 1500 3000
Train steps

0.0

0.1

0.1

0.2

0.2

0.3

s t
′f(1

)
50

B

0 : 44 46 48 50 0 : 44 46 48 50
Token

st ′:
Token

st ′:

Figure 22 | Gradient sensitivity analysis of activations after the first layer in full-softmax (A) and hybrid-mesa (B)
Transformer models over the course of training. The first softmax layer groups together the current and multiple previous
tokens as predicted by our hypothesis. This can be seen in the high sensitivity to the current and previous tokens of the
outputs of the first layer of the Transformer models.

24). We compare the performance across fresh test sequences of the full-fledged model architectures and a
hard-coded implementation of our proposed mesa-optimization that consists of six steps of preconditioning
an internal optimization problem which is then solved in the last layer by an update step of gradient descent.
Previously, we learn the parameters for the Chebyshev-iteration method for inverting matrices (as necessary
for the proposed optimization procedure) by optimizing directly for solving fully observable linear sequence
models generated by the same teacher as used in this setting. Furthermore, we find strong evidence for
mesa-optimization in various activation-probing experiments. We linearly regress activations separately per
time-step against targets and preconditioned inputs as predicted by our Proposition 2 for partially observable
linear sequence models, (𝑍𝑡−1𝑍⊤𝑡−1 + 1/𝜆𝐼)

−1𝑧𝑡 (here 𝑧𝑡 refers to an aggregation of previous 𝑘 = 5 tokens in one
constructed token) and find gradually increasing performance over layers in both experiments.

F.4. Training Transformers on fully observable nonlinear dynamical systems
For the experiments with fully observable nonlinear dynamical systems, we also directly analyze full-fledged
Transformers trained on non-constructed observation-tokens. In detail, we use either a 7-layer full-softmax
architecture or 1+1 softmax-mesa hybrid-models. In all models, we have input- and output-embedding layers,
and the first layer always incorporates the logic for the positional encodings, while the other Transformer layers
are either 6 softmax self-attention layers, or 1 mesa layer (1+1-layer architecture). The positional encodings
are concatenated to the outputs of the key- and query projections before the computation of the attention.
Furthermore, we use MLPs with hidden dimension 300 (factor 5× if compared with embedding-dimension for
the models, which we set to 50-dimensional) and a specialized version of normalization, sum normalization, as
introduced by [33], where we divide the query and key projections by their respective sums of components.
Further training details can be found in 3.
Analysing copying behaviour in full-fledged Transformers: As in the fully- and partially observable linear

39

Uncovering mesa-optimization algorithms in Transformers

Table 3 | Hyperparameters for all settings and model variants when training on fully observable nonlinear dynamics.

Hyperparameter Value/Description
Context size We use context size 𝑇 = 50
Optimizer Adam [98] with 𝜖 = 1𝑒−8, 𝛽1 = 0.9, 𝛽2 = 0.999
Weight decay 0.05 across models
Batchsize Batchsize 256
Gradient clipping 1.0 across models
Activation clipping No activation clipping
Positional encodings We concatenate positional encodings of dimension 60 to queries and keys before

computing the self-attention in the first layer for all models
Dropout We do not use Dropout for any model.
Architecture Full-softmax, No Constr. We use a 7-layer, 4-head, key-size 20, dim-10-input-tokens architecture

with varying embedding dimensions 60 with input- and output-embedding-
layers for full-fledged softmax-only-models. The models comprise of MLPs
with hidden dimension 300 and layer-normalization of query- and key-projections at each layer.

Architecture Hybrid-mesa, No Constr. We use 2-layer, 4-head, key-size 20, dim-10-input-tokens architecture
with varying embedding dimensions 60 with input- and output-embedding-
layers. First a softmax-self-attention layer, then a single Mesa-layer. The models comprise of MLPs
with hidden dimension 300 and layer-normalization of query- and key-projections at each layer.

Weight initialization 𝑊 ∼ N(0, 𝜎2) with 𝜎2 = 0.05 for all models. We always fixed the bias parameters to zero.
Learning rate (& scheduler) We used linear warm-up starting from 0 to 4𝑒−4 for hybrid-mesa and 1𝑒−3 for full-softmax

models in 1000 steps, Cosine annealing to 1𝑒 − 5 for the next 50000 steps.
We only train for 40000 steps.

Mesa regularization 𝜆 We initialize the learnable regularization parameter 𝜆 for every mesa-head to 1.

setting, we use both a token-probing and a gradient sensitivity experiment to test if trained Transformers
learn a token binding mechanism in early layers. For the token probing, we report the performance of linear
decoders trained to predict previous tokens from output. There, we linearly regress a the transformed token
after the first layer for a batch of sequences at a single time-step against nonlinear transformed tokens from a
range of previous time-steps and report the obtained MSE loss. Therefore, we employ the teacher used during
training, MLP∗ Here, we also show further analyses where we compute the sensitivity norm ∥∇𝑠𝑡′ 𝑓

(1)
𝑡 (𝑠1:𝑡, 𝜃)∥

of the output of the first layer for all time steps 𝑡′ ≤ 𝑡. We report the results in Figure 23.

0 1500 3000
Train steps

0.0

0.1

0.2

0.3

|
s t

′f(1
)

50
|

A

0 1500 3000
Train steps

0.0

0.2

0.4

0.6

0.8

|
s t

′f(1
)

50
|

B

0 : 44 46 48 50 0 : 44 46 48 50
Token

st ′:
Token

st ′:

Figure 23 | Gradient sensitivity analysis of activations after the first layer in full-softmax and hybrid-mesa Transformer
models trained on fully-observable nonlinear dynamical systems over the course of training. The first softmax layer groups
together the current and multiple previous tokens as predicted by our hypothesis. This can be seen in the high sensitivity to
the current and previous tokens of the outputs of the first layer of the Transformer models.

Analysing optimization algorithms in full-fledged Transformers trained on fully observable nonlinear dynamical
systems: We proceed by analysing later layers using the same method as in the linear settings (cf. 25). We
compare the performance across fresh test sequences of the full-fledged model architectures and a hard-coded
implementation of our proposed mesa-optimization that consists of six steps of preconditioning an internal
optimization problem which is then solved in the last layer by an update step of gradient descent. Previously,
we learn the parameters for the Chebyshev-iteration method for inverting matrices (as necessary for the
proposed optimization procedure) by optimizing directly for solving fully observable nonlinear sequence
models generated by the same teacher as used during training. Furthermore, we find strong evidence for

40

Uncovering mesa-optimization algorithms in Transformers

mesa-optimization in various activation-probing experiments. We linearly regress activations separately per
time-step against targets and preconditioned inputs as predicted by our Proposition 2 for partially observable
linear sequence models, (𝐹𝑡−1𝐹⊤𝑡−1 + 1/𝜆𝐼)

−1 𝑓𝑡 (here 𝑓𝑡 refers nonlinear transformed tokens MLP∗ (𝑠𝑡) using the
nonlinear teacher) and find gradually increasing performance over layers in both experiments.

1 20 40
Sequence length t

10 1

100

Ta
rg

et
 p

ro
be

 M
SE

A

1 20 40
Sequence length t

10 3

10 2

10 1

Pr
ec

on
di

tio
ni

ng
 p

ro
be

 M
SE

B

1 20 40
Sequence length t

0

1

2

3

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

C
Transformer
Proposition-2

Inp.1 2 3 4 5 6 7 Inp.1 2 3 4 5 6 7
Layer

d:
Layer

d:

Figure 24 | Evidence for mesa-optimization in standard (softmax) Transformers trained on partially observable linear
dynamical systems. (A) Linear probes decode next-token target 𝑠𝑡+1 from internal Transformer activations, with decoding
performance improving with depth (intensity color-coded) and context length, consistent with gradual optimization of an
internal next-token prediction model. (B) Likewise for preconditioned input (𝑍𝑡−1𝑍⊤𝑡−1 + 1/𝜆𝐼)

−1𝑧𝑡 probing, where 𝑧𝑡 are
constructed tokens, comprising of the past 5 observations, consistent with our findings in token probings for Transformers
trained on partially observable dynamics and the mesa-optimizer of Proposition 2. (C) Next-token prediction error of
a 7-layer Transformer (blue line) decreases with context length in a very similar way as 7 steps of Proposition 2 on
constructed tokens as predicted by our hypothesis for partially observable linear dynamical systems (dashed yellow line),
with hyperparameters of the latter set for best performance, not to match Transformer behavior.

1 20 40
Sequence length t

10 2

10 1

Ta
rg

et
 p

ro
be

 M
SE

A

1 20 40
Sequence length t

10 3

10 2

10 1

Pr
ec

on
di

tio
ni

ng
 p

ro
be

 M
SE

B

1 20 40
Sequence length t

0.0

0.1

0.2

0.3

0.4

0.5

Ne
xt

-to
ke

n
pr

ed
ict

io
n

M
SE

C
Transformer
Proposition-2

Inp.1 2 3 4 5 6 7 Inp.1 2 3 4 5 6 7
Layer

d:
Layer

d:

Figure 25 | Evidence for mesa-optimization in standard (softmax) Transformers trained on fully observable nonlinear
dynamical systems. (A) Linear probes decode next-token target 𝑠𝑡+1 from internal Transformer activations, with decoding
performance improving with depth (intensity color-coded) and context length, consistent with gradual optimization of
an internal next-token prediction model. (B) Likewise for preconditioned input (𝐹𝑡−1𝐹⊤𝑡−1 + 1/𝜆𝐼)

−1 𝑓𝑡 probing, where 𝑓𝑡
are the nonlinearily transformed observations 𝑓𝑡 = MLP∗ (𝑠𝑡) using the teacher-MLP, consistent with the mesa-optimizer
of Proposition 2. (C) Next-token prediction error of a 7-layer Transformer (blue line) decreases with context length in
almost exactly the same way as 7 steps of Proposition 2 (dashed yellow line), with hyperparameters of the latter set for best
performance, not to match Transformer behavior.

G. Language modeling
We present here first preliminary results on the performance of models which replace (some) softmax self-
attention layer with the mesa-layer. Our hypothesis is that the mesa-layer will improve the in-context learning
and working memory capabilities of a Transformer, in particular of the linear kind. We further hypothesize that
this in turn translates to language modeling improvements, based on the high correlation between in-context
learning and actual autoregressive loss reported by Kaplan et al. [50]. We therefore quantify performance
along two axes: the next-token prediction loss, the actual objective of base-optimization; and the ability to learn
in-context, measured as the difference in loss calculated over two timepoints within a sequence, as defined by
Kaplan et al. [50] and Olsson et al. [5].

41

Uncovering mesa-optimization algorithms in Transformers

Figure 26 | Single-layer Transformers with key-shifts, the Pile. We observe improved (A) perplexity and (B) in-context
learning scores when comparing one linear to one mesa layer with different DPFP sizes 𝜈 ∈ {0, 1, 2, 3}, corresponding
inversely to color fade. Mesa layers consistently outperform linear layers, catching up with softmax.

Figure 27 | Language modeling experiments on the Pile. We observe improved perplexity and in-context learning scores
across all our language modeling experiments when switching from standard linear self-attention to the mesa-layer. As
hypothesized, we confirm that in all models various copying heads can be found in the first softmax layer, see Figure 28 for
visualizations of the attention heads. (A&B) 2-layer Transformers without MLPs and first layers softmax self-attention and
second layer either softmax, mesa or linear. (C&D) 4-layer Transformers with MLPs and first layers softmax self-attention
and rest of the layers either all softmax, mesa or linear.

We train Transformers with various architectural configurations on the Pile [99], a large compilation of
various English text datasets including parts of Wikipedia, arXiv, and code. We always model the first layer using
softmax self-attention in all experiments. This decision is based on insights from our previous experiments,
where base-optimization consistently attributed a mesa-objective creation role to this layer. We then compare
pure softmax-only Transformers to two types of hybrid models, where the subsequent layers are either linear
or mesa. We vary the depth of our models, from 2-layer attention-only to deeper 4-attention-layer models
endowed with tokenwise MLPs which are present by default in standard Transformers. By transforming the data
nonlinearly, MLP layers allow solving nonlinear regression problems by mesa-gradient descent. Following this
reasoning, we further adopt in our hybrid-linear and hybrid-mesa Transformers the deterministic parameter-free
projection (DPFP, size denoted by 𝜈) due to Schlag et al. [33], a non-learned and simple to compute nonlinear
transformation of keys and queries. We found that this significantly improved the performance of non-softmax
attention layers. Finally, to represent discrete input symbols as real-valued vectors, we learn a vocabulary of
real-valued vectors using the standard GPT-2 tokenizer. We note that all models have an (almost) identical
number of parameters.
In line with our synthetic experiments, we observe stable learning across all model types of copying layers,

indicated by the constant attention to tokens in direct or close proximity, as shown in Figure 28. We therefore
reproduce the findings of Olsson et al. [5], extending them to models that include other forms of attention.
This phenomenon is predicted by the mesa-optimization theory presented here, where copy layers serve the
purpose of constructing internal mesa-objective functions. We note that, in contrast to our previous synthetic
linear prediction tasks, the Pile is no longer Markovian of order 1. This is reflected in the more complicated
attention maps, indicating more involved copying behavior. Additionally, we run an ablation where we compare
to a single-layer control model whose first softmax layer is removed and replaced by a hardcoded one-step
key-shift operator. Interestingly, such an operator can be found in previous work [5, 45]. Again, we verify
the findings of [5] and observe strong in-context learning scores, within a single layer, with the mesa-layer
performing on-par with softmax, see Figure 26. As in [33], DPFP features substantially improve performance;
we fix 𝜈 = 3 for the linear as well as the mesa layer for all other language modeling experiments.

42

Uncovering mesa-optimization algorithms in Transformers

Table 4 | Hyperparameters for language modelling experiments across all Transformer variants i.e. pure softmax, linear-
hybrid and mesa-hybrid with/out MLPs.

Hyperparameter Value
Dataset The pile [99]
Tokenizer GPT-2 tokenizer - we append a special "EOS" token between every sequence
Context size 1024
Vocabulary size 50257
Vocabulary dim 756
Optimizer Adam [98] with 𝜖 = 1𝑒−8, 𝛽1 = 0.9, 𝛽2 = 0.95
Weight decay 0.1
Batchsize 256
Gradient clipping Global norm of 1.
Positional encodings We add standard positional encodings.
Dropout We use embedding dropout of 0.1 right after adding positional encodings.
Architecture details 12 heads, key size 64, token size 756, no input- but output-embedding
Weight init 𝑊 ∼ N(0, 𝜎2) with 𝜎 = 0.02 and bias parameter to zero. We scale all

weight matrices before a skip connection with 1
2
√
𝑁
with 𝑁 the number of layers.

Learning rate scheduler Linear warm-up starting from 1𝑒−6 to 3𝑒−4 in the first 8000 training steps,
cosine annealing to 2𝑒 − 4 for the next 300 billion tokens

MLP size Widening factor 4 i.e. hidden dimension 4 ∗ 756 with ReLU
non-linearities [100]

Mesa regularization 𝜆 We initialize the learnable regularization parameter 𝜆 for every mesa-head to 1.

We find that the hybrid-mesa Transformers dominate their hybrid-linear counterparts in terms of performance,
across all configurations, essentially matching (for 2-layer models) or coming closer (for 4-layer models with
MLPs) to pure-softmax Transformers, cf. Figure 27. We leave for future work studying the mesa-layer equipped
with forgetting factors, see Appendix C.1, which could further improve upon our results here. This is reflected
both in terms of perplexity and in-context learning scores. Strictly speaking, these results are not sufficient
to make claims on whether mesa-optimization is occurring within standard Transformers. However, the
high performance achieved by the hybrid-mesa models, which operate on mesa-optimization principles by
design, suggests that mesa-optimization might be happening within conventional Transformers. More reverse-
engineering work is needed to add weight to this conjecture.
We provide now additional details about the language modeling experiments. We use standard values

found in the literature and the same hyperparameters, which we did not tune, across all experiments. We, if
not stated otherwise, use the standard GPT-2 transformer architecture with LayerNorm [28], MLPs between
self-attention layer and skip-connection after every layer which we train on a standard (autoregressively)
masked cross-entropy loss. We do not use an input embedding layer but an output projection before computing
the logits. To train enable stable training of the linear as well as the mesa-layer, we apply the proposed key and
query normalization of schlag and simply devide them by their L2 norm. Intriguingly, this stabilizes training
drastically also for the mesa-layer after which we did not observe any more instabilities. Note that this is very
similar to using additional LayerNorm [28] on the keys and queries. Except from this normalization, all models
are constructed and trained identically. See 4 for an overview of all design decisions and hyperparameters.
Also, we refer to the appendix of [33] on how to compute the DPFP kernels to non-linearly alter the key and
query features,we use 𝜈 = 3 if not stated otherwise.

H. Software
The results reported in this paper were produced with open-source software. We used the Python programming
language together with the Google JAX [97] framework, and the NumPy [101], Matplotlib [102], Flax [103]
and Optax [104] packages.

43

Uncovering mesa-optimization algorithms in Transformers

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 28 | Softmax attention maps of the 2-layer softmax-only Transformer trained on the Pile. We average the
attention maps of the first softmax-attention layer over a batch of size 256 and observe stable off diagonals with different
offsets and widths indicating clean copying behavior based on positional encodings in multiple heads.

44

	Visualization of weights and attention maps of trained multi-layer Transformers
	Additional details on the mesa-layer
	Computing the inverse term within mesat
	Computing etmesa

	Mesa-layer differentiation
	Mesa-layer backward pass computation via Sherman-Morrison
	Alternative derivation through the implicit function theorem
	Parallel backward pass through Neumann series approximation

	Probabilistic latent-state inference in Transformers
	The MLE of st+1 is a linear map of the MLE of ht+1
	The MLE of ht+1 is a linear map of ztk
	Capacity constraints on the representation

	Additional experiments with different sequence generator distributions
	Contracting linear dynamics
	Fixed-teacher linear dynamics

	Experimental details
	Training Transformers on fully observable linear dynamical systems
	Single-layer linear self-attention Transformer
	Multi-layer linear self-attention Transformer
	Full-fledged Transformers
	Testing autoregressively trained Transformers on few-shot in-context-learning

	Linearizing softmax-Transformers
	Training Transformers on partially observable linear dynamical systems
	Training Transformers on fully observable nonlinear dynamical systems

	Language modeling
	Software

