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ABSTRACT  
Purpose: The credibility of Artificial Intelligence (AI) models for medical imaging continues to 
be a challenge, affected by the diversity of models, the data used to train the models, and 
applicability of their combination to produce reproducible results for new data.  
Approach: In this work we aimed to explore if the emerging Virtual Imaging Trials (VIT) 
methodologies can provide an objective resource to approach this challenge. The study was 
conducted for the case example of COVID-19 diagnosis using clinical and virtual computed 
tomography (CT) and chest radiography (CXR) processed with convolutional neural networks. 
Multiple AI models were developed and tested using 3D ResNet-like and 2D EfficientNetv2 
architectures across diverse datasets.  
Results: The performance differences were evaluated in terms of the area under the curve 
(AUC) and the DeLong method for AUC confidence intervals. The models trained on the most 
diverse datasets showed the highest external testing performance, with AUC values ranging 
from 0.73-0.76 for CT and 0.70-0.73 for CXR. Internal testing yielded higher AUC values (0.77 
-0.85 for CT and 0.77-1.0 for CXR), highlighting a substantial drop in performance during 
external validation, which underscores the importance of diverse and comprehensive training 
and testing data. Most notably, VIT approach provided objective assessment of the utility of 
diverse models and datasets while further providing insight into the influence of dataset 
characteristics, patient factors, and imaging physics on AI efficacy.  
Conclusions: The VIT approach can be used to enhance model transparency and reliability, 
offering nuanced insights into the factors driving AI performance and bridging the gap between 
experimental and clinical settings.  
KEYWORDS 
Virtual Imaging trials, In Silico, Computed tomography, Chest Radiography, Machine Learning, 
Deep Learning, AI, Image Processing, Generalizability, Explainability, Pneumonia, COVID-19 
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I. INTRODUCTION 
Radiology artificial intelligence (AI) models often struggle to generalize, resulting in limited 
clinical applicability [1]. This is primarily due to the existential limits on the diversity of data 
upon which a model can be trained. Obviously, models trained on small datasets, such as 
from a single center, do not represent the general population. But even large, multi-center 
datasets can still be plagued by inconsistency across scanner vendors, acquisition protocols, 
reconstruction algorithms, pre/post-processing, or patient inclusion criteria. Consequently, AI 
developers continuously strive for massive amounts of data, hoping that the large magnitude 
can overcome the generalizability problem.  

Failure of medical imaging AI models to generalize is a pervasive problem. The crisis of 
reproducibility was starkly evident during the COVID-19 pandemic when chest radiography 
(CXR) and computed tomography (CT) were initially employed for detecting and managing 
lung infections [2, 3]. In the rush to develop AI aides for radiologists, however, many studies 
reported unrealistic, near-perfect performances that dropped almost to chance upon external 
testing [4-10]. The availability of numerous large public datasets of medical images, including 
those from the Medical Imaging and Data Resource Center (MIDRC), has led to a plethora of 
AI models for the diagnosis of COVID-19. Yet a review of 62 studies asserted that none of 
these models were fit for clinical use due to methodological flaws and underlying biases [19]. 
While the focus on COVID-19 is waning and imaging is no longer used for the primary 
diagnosis of the disease, with some exception [11], the rare combination of so much data 
accompanied by widespread problems in reproducibility offers our field a rare opportunity to 
understand how best we can appropriate AI methods, for both clinical practice as well as 
future health crises. 

A promising solution to this ongoing reproducibility crisis in AI lies in the use of the 
Virtual Imaging Trial (VIT) approach. Simulating the three key components of an imaging trial, 
patients, scanners, and readers [27], VITs offer control over input variables to generate virtual 
images representing a diverse range of patient characteristics and imaging techniques. 
Diseases can be simulated with pixel-level ground truth in terms of their location, size, and 
characteristic features. Simulations can also encompass different scanner technologies or 
acquisition protocols. Given the precise controls used to generate this data, VITs can elucidate 
which factors drive model performance. This approach facilitates not only truly independent 
external validation but also rigorous and unbiased testing across diverse scenarios. The VIT 
approach has been applied to a wide range of diseases and modalities, including lesion 
detection in mammography and breast tomosynthesis [28-30], nodule detection, and COPD 
quantification in chest CT. Previous work involved VITs for validating deep-learning models for 
COVID-19 detection using clinical and virtual datasets [33, 34]. Arun et al. [35] highlighted the 
limitations of Grad-CAM due to repeatability and reproducibility issues. 

This study aimed to ascertain how the VIT methodology can add objectivity, 
explainability, and overall generalizability to the AI process. The study was done in the context 
of COVID-19 diagnosis, given its associated diversity of models and data. Building upon our 
prior validated, open-source deep-learning models for case-level COVID-19 detection with CT 
and CXR images [33, 34], the study modeled virtual patients replicating a diverse range of 
anatomies and manifestations of COVID-19 pneumonia [31, 32]. The virtual patients were 
imaged using simulated scanners, replicating the physical and technical characteristics of 
actual medical imaging devices. The AI model “readers,” representing radiologists, read the 
images, allowing us to evaluate the diagnostic performance of AI models under consistent 
conditions. Comparing with results from multiple clinical datasets and multiple AI models, we 
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aimed to unpack the interplay of dataset-model matching and mismatching on the results, to 
evaluate the influence of patient- and physics-based factors on the generalizability of the 
results, and to assess the utility of VIT as an independent validation to provide a controlled 
environment for evaluating AI models. 
II. METHODS 
Institutional Review Board approval was obtained for this exempt study. The study, detailed 
below, deployed anonymized clinical image datasets as well as simulated virtual data. The 
clinical datasets were multiple [12, 14-16, 18, 23, 36-39], varying in size, diversity, 
demographics, and class definitions. The virtual data were from a population of 4D-XCAT 
models with varying COVID-19 size and distribution, imaged using virtual CT and CXR 
scanners (DukeSim, CVIT, Duke University) [31].   

Multiple convolutional neural network (CNN) models (detailed below) with residual 
connections were developed to process CT and CXR images efficiently. These lightweight 
CNNs, designed to reduce computational complexity while maintaining high accuracy, were 
used to classify cases as positive or negative for COVID-19. The CNN models were trained 
using single and various combinations of clinical datasets. In parallel experiments, CT or CXR 
clinical data were analyzed for internal and external performance shift.  

The virtual data were reserved as a separate external validation. By varying the virtual 
imaging trial parameters, they were also used to assess how performance may be affected by 
factors pertaining to the patients (i.e., infection size) or imaging physics (i.e., effective dose 
and modalities). An illustration of the overall workflow of the analysis is presented in Figure 1. 

 
II.A. Clinical Dataset 

 

FIGURE 1. Study design overview. 12,844 CT scans and 25,219 CXR images for COVID-19 diagnosis 
were drawn from 13 clinical datasets comprising single or multiple centers (Supplement Fig. 1-2). Multiple 
deep-learning-based models were developed using these clinical datasets. All models underwent internal 
testing (held-out from the same training dataset) and external testing (all other datasets). Further external 
testing was performed using virtually simulated CT and CXR images to analyze effect of patient and 
imaging physics factors. 
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Define abbreviations and The clinical CT data included a total of 12,844 volumes of 7,452 
patients from 10 datasets: RICORD [18], MosMed [15] BIMCV-COVID-19 +/- (BIMCV-V2) [14], 
COVID-CT-MD [12], CT Images in COVID-19 [13], PleThora [39], COVID19-CT-dataset [36], 
Stony Brook University COVID-19 Positive Cases (COVID-19-NY-SBU) [16], A Large-Scale 
CT and PET/CT Dataset for Lung Cancer Diagnosis (Lung-PET-CT-Dx) [37], and Lung Image 
Database Consortium / Image Database Resource Initiative (LIDC-IDRI) [40]. These datasets 
had different prevalences of COVID-19 positive and negative images (Figure 2a) and 
demographics. Summary statistics of the CT datasets are detailed in Table 1.  
   Furthermore, all ten clinical CT datasets above were combined to create the U-10 CT 
dataset, which provides a more diverse dataset for factors such as patient population and 
demographics, disease appearances, CT systems, and imaging protocols. Figure 4 shows the 
inclusion and exclusion criteria followed in the curation of the clinical CT data. 
   CXR analysis included 25,219 clinical CXR images collected from three datasets: Fricks 
et al. [23], BIMCV [14], and COVIDx-CXR-2 [38]. These datasets also had different 
prevalences of COVID-19 positive and negative images (Figure 2b) and demographics. All 
three clinical CXR datasets were also combined to form the U-3 CXR dataset, with one 
important caveat. In one of the datasets, COVIDx-CXR-2, positive images were from different 
sources, but the negative class was much larger and mainly from one source, namely the 
RSNA Pneumonia Detection Challenge [41] (Figure 2b). To ensure a balanced training and 
validation process for the unified U-3 dataset, the negative cases were randomly subsampled 
to achieve an equal distribution between the two classes, which also provided a more 
balanced contribution from this particular dataset. Summary statistics of the CXR datasets are 
detailed in Table 2. 
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TABLE 1. Clinical CT patient datasets utilized in model development and testing. The combination of all ten 
constitutes the U-10 CT dataset. Demographic values are reported as the percentage of patient sex and mean 
of patient age. 

No Dataset Source Demographics Category Train* Validation* Test* 

1. RICORD [18] 
(1b,1b) 

Turkey, 
USA, 

Canada, 
Brazil 

44% women 

Age 54 ±17 

COVID+ 66 (90) 22 (32) 22 (33) 

COVID- 70 (72) 23 (23) 24 (25) 

Total 136 (162) 45 (55) 46 (58) 

2. MosMed [15] Russia 56% women 
Age 47 

COVID+ 512 (512) 170 (170) 174(174) 

COVID- 152 (152) 50 (50) 52 (52) 

Total 664 (664) 220 (220) 226 (226) 
3. BIMCV-V2 

[14] 
Spain 42% women.  

Age 64 ±16 

COVID+ 455 (1421) 152(484) 152(470) 

COVID- 728 (2077) 239(706) 268(823) 

Total 1183 (3498) 391 (1190) 420 (129) 
4. COVID-CT-

MD [12] 
Iran 40% women. 

Age 51 ±16 

COVID+ 101(101) 33 (33) 35 (35) 

COVID- 81 (81) 27 (27) 28 (28) 

Total 182 (182) 60 (60) 63 (63) 
5. An et al. [13] Multi-

center 
N/A COVID+ 379 (391) 126 (129) 127 (130) 

6. PleThora[39] USA 31% women.  

Age 68 ± 10 

COVID- 241 (241) 80 (80) 81 (81) 

7. COVID19-CT 
[36] 

Iran 39.1% women 
Age: 47 ± 16 

COVID+ 604 (604) 201 (201) 202 (202) 

8. COVID-19-
NY-SBU[16] 

USA 43% women.  

(Age: ranges 
between 

18-90 years) 

COVID+ 251 (739) 84 (278) 84 (282) 

9. Lungs-CT-Dx 
[37] 

China 46% women, 

Age 61 ± 10  

COVID- 207 (479) 69 (154) 70 (164) 

10. LIDC-IDRI 
[40] 

USA N/A  COVID- 606 (611) 202 (204) 202 (203) 

 Total / U-10 
CT  

   4453 (7571) 1478 
(2571) 

1521 (2702) 

Note-* Number of patients (number of scans), COVID+= COVID-19 positive, COVID-= COVID-19 negative, 
COVID-19-NY-SBU = Stony Brook University COVID-19 Positive Cases, Lungs-CT-Dx= A Large-Scale CT and 
PET/CT Dataset for Lung Cancer Diagnosis. 
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II.B. Virtual Dataset  

TABLE 2. Clinical CXR Patient Cohorts utilized in model development and testing. Demographic values are 
reported as the percentage of patient sex and mean of patient age. 

 
No Dataset Source Demographics Category Train Validation Test 
1. Fricks et al.[23] Iran, Italy, 

USA 
N/A COVID+ 544 136 171 

COVID- 174 44 55 
Total 718 180 226 

2. BIMCV-V2 [14] Spain 46% Women 
Age 63 ± 17 

COVID+ 2694 674 843 
COVID- 2265 566 708 
Total 4959 1240 1551 

3. COVIDx-CXR-2 
[38] 

Multi-center N/A COVID+ 1727 431 200 
COVID- 11034 2759 200 
Total 12761 3190 400 

 Total   N/A  18438  4610  2177 
4 U-3 CXR 

dataset 
 N/A COVID+ 4965 1241 1214 

COVID- 4965 1241 963 
Total 9930 2482 2177 

        

 
(a) 
 

  
(b) 

FIGURE 2. Histograms showing distribution of COVID-19 positive (+) and negative (-) cases among 
different datasets (clinical and simulated) (a) CTs and (b) CXRs. In the latter, COVID-CXR-2 is further 
decomposed into its subsets. Log scale is used to show the large variation in numbers of exams. Note 
that the prevalence varies greatly, and some datasets contain only one class. 
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The XCAT computational phantoms used in this study were based on the method described in 
detail by Abadi et al. [31]. An overview of the method is illustrated in Figure 3. Creating 
computational phantoms for COVID-19 is a process that unfolds in four distinct stages: 
constructing the body framework, detailing the morphological characteristics of lung 
abnormalities, replicating the texture and composition of affected lung tissues, and performing 
simulated scans to generate the virtual images. 
Body Framework Construction: The process began with the development of the normal 
anatomy using the 4D extended cardiac-torso (XCAT) model from Duke University [42, 43]. 
The XCAT model provided a comprehensive foundation with detailed anatomy, dynamic organ 
motions, and textured tissues, built from real patient data spanning a range of patient 
characteristics such as sex, body size, and lung volume. Fifty separate phantoms were used 
for this study.  
 

 
Detailing Lung Abnormalities: The second stage involved the meticulous detailing of lung 
abnormalities typical of COVID-19, such as ground-glass opacities (GGO) and consolidations. 
This was achieved by examining CT scans from clinically confirmed COVID-19 patients 
(N=20), where the abnormalities were manually segmented and modeled in a series of 
surfaces mimicking the morphology [31]. These modeled features were then integrated into 
the XCAT phantoms, ensuring a match in body dimensions, sex, and age, to represent the 
disease's manifestations within the computational models accurately.  
Replicating Lung Tissue Composition: The last phase involved fine-tuning the phantom's 
lung textures and materials to mirror the properties of the lung tissues affected by COVID-19 
within the phantoms. This involved adjusting the lung parenchyma's texture in the 
computational model to reflect the changes observed in actual CT images, such as the 
addition of fluids in the case of GGO or the uniform texture seen in consolidations. These 
adjustments ensured that the simulated lung tissues closely mimicked the radiological features 
of COVID-19, allowing for realistic simulation outcomes.  
Simulating the Imaging Process: Virtual CT and CXR datasets were generated by scanning 
the virtual patient models with or without the disease using an X-ray image acquisition 
simulator (DukeSim, CVIT, Duke University) [31, 32]. DukeSim is designed to replicate the 
physical processes in x-ray imaging with CT and CXR, including modeling of x-ray tube 
spectra, scanner geometry, and detector configuration. DukeSim combines ray tracing for 
rapid image generation and Monte Carlo techniques for accurate modeling of scatter, 
attenuation, and detector noise. The virtual framework allowed the scanning of the same 
virtual patient with both modalities without other confounding factors. Virtual scans were 

 
 
FIGURE 3. An overview COVID-19 computation phantoms development and simulated CT and CXR 
images. 
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repeated at different effective doses (0.01, 0.1, 0.3, 1.6, 5.6, and 11.2 mSv). The dose settings 
were selected to represent a wide range of clinical applicability, as well as a direct comparison 
of CT and CXR images at the same hypothetical dose and motion state. For the CXR 
acquisitions, two commercial post-processing algorithms (denoted as algorithms A and B to 
maintain confidentiality) were applied to examine the effects of vendor heterogeneity.  Table 3 
shows the characteristics of the generated CT and CXR images.  
 
TABLE 3. Virtual (CVIT-COVID) dataset attributes, including imaging protocols and disease distributions. 

 
Effective dose (mSv) 

Number of virtual exams 
COVID-19 Negative 

                                                   CVIT-COVID-CT 
0.3 50 40 
1.6 50 40 

5.6 50 40 

11.2 50 40 

Total (CT) 200 160 

                                                     CVIT-COVID-CXR 
0.01 50 40 

0.10 50 40 

0.3 50 40 

Total (CXR) 150 120 

 
II.C. Pre-Processing 
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Standard preprocessing was performed on both CT and CXR images. Each CT volume was 
resampled to voxel dimensions of 2 mm × 2 mm × 5 mm (w, h, d). Intensities were clipped 
between -1000 to 500 HU, then standardized to a mean of 0 and standard deviation of 1. To 
reduce computational cost and the influence of background organs, three-dimensional (3D) 
patches of size 160×160×96 (w, h, d) were centered about the lungs. The patch size was 
based on average lung size plus a margin to allow for patient variability. CXR images were 
resized and randomly cropped to a size of 300x384 pixels, then standardized to 0.5 mean and 
0.5 standard deviation to maintain consistency with the pre-trained dataset. 

II.D. Model Development and Training  
As noted above, previous studies have shown that complex deep learning models can 
reproduce non-generalizable near-perfect performance due to fundamental overtraining [33, 
34]. To minimize this effect, we intentionally selected lightweight ResNet-like models [44, 45] 
and trained four separate CT-based models using the RICORD, MosMed, BIMCV, and U-10 
CT datasets. The ResNet architecture has also shown consistent performance across various 
medical imaging tasks [33, 44, 45]. Similarly, for CXR, we trained four different EfficientNetv2 
[46] models using the data from Fricks et al., BIMCV, COVIDx-CXR-2, and U-3 CXR datasets, 
respectively. Each dataset was randomly divided by the patient into subsets of training (60%), 
validation (20%), and testing (20%). No cross-validation was performed; instead, we utilized a 
train-validation-test split. As we aimed to assess the utility of virtual data for clinically trained 
algorithms, no training was applied to the virtual data. Instead, the model trained on clinical 
data was applied to the entire dataset for testing. 

CT models used a simple 3D CNN inspired by ResNet [47], the architecture is shown in 
Figure 5. After initial convolution, features were learned across two resolution scales, then 

Figure 4. Flowchart of inclusion and exclusion criteria for the chest CT scans. n= number of CT 
volumes. A total of 16,949 CT scans of 11,166 patients were used for model development and testing. 
There were ten clinical datasets: RICORD [18], MosMed [15], BIMCV-COVID-19 +/- (BIMCV-V2),[14] 
COVID-CT-MD [12], CT Images in COVID-19 [13], PleThora [39], COVID19-CT-dataset,[36] Stony 
Brook University COVID-19 Positive Cases (COVID-19-NY-SBU) [16], A Large-Scale CT and PET/CT 
Dataset for Lung Cancer Diagnosis (Lungs-CT-Dx) [37], and Lung Image Database Consortium / Image 
Database Resource Initiative (LIDC-IDRI) [40], These ten clinical datasets were united into the U-10 CT 
Dataset. Additionally, simulated data were from the Center for Virtual Imaging Trials CT Dataset, Duke-
CVIT-CT [31]. 
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halved by max-pooling (pooling size 2×2×2) while doubling the number of filters. The last R-
block features underwent batch normalization, rectified linear unit (ReLu), global max-pooling, 
dropout (dropout rate 0.5), and finally, a dense classification layer with sigmoid activation for 
binary case-level COVID-19 detection. Additionally, we applied L2 regularization with a 
coefficient of 0.001 to prevent overfitting. The stochastic gradient descent (SGD) optimizer 
was used to optimize the weights with decay learning rate, and weighted binary cross-entropy 
was used as the loss function. Weights were initialized to a uniform distribution. To retain the 
natural prevalence, no class balancing was performed during training.  

The hyperparameters for the CT models were set as follows: initial learning rate of 1e-6, 
maximum learning rate of 1e-4, learning rate decay of 1e-2, batch size of 24, and 300 training 
epochs. CXR models were based on Efficientnetv2 with the original architecture [46], SGD 
was selected as the optimizer with the learning rate scheduler, [48] initial learning rate of 0.01, 
and cross-entropy loss. All models were developed using Python TensorFlow v2.6 and 
PyTorch deep learning frameworks.  

Using a parallel computing cluster with eight 48 GB GPUs, we achieved an average of 
36 virtual CT scans per hour and generated each CXR scan in under one minute. Model 
training utilized lightweight architectures, requiring ~8–16 GB VRAM to balance efficiency and 
performance.  

All model weights, initial hyperparameters, and code are made publicly accessible [49]. 

 
 
II.E. Evaluation and Statistical Analysis  
We conducted a series of evaluations to assess the model performance on clinical and virtual 
datasets. For each clinical dataset, we followed the procedure of the prior studies of 
performing binary classification of the presence or absence of COVID-19 for the patient as a 
whole. For the virtual dataset, the controlled simulation process allowed us to evaluate further 
the influence of input variables related to the patient as well as the image acquisition.  

We first evaluated the effect of the patient-related factor of infection size to understand 
the impact of infection severity on model performance. The virtual COVID-19 pneumonia 
cases were divided into two groups: "higher" infection (above the median value of 2.6% of total 
lung volume) and "lower" infection (below this median value). This approach helps in 
assessing how well the AI models perform across a spectrum of disease severity and 
identifying any performance biases or limitations. Additionally, we conducted evaluations 

 
Figure 5. 3D CNN architecture for CT classification of COVID-19. The classification module is a 3D Resnet-
like model with 2 R-Blocks in each resolution. The number of filters is denoted as 𝒇𝒇. The final output is a 
tensor of the probability of being COVID-19 positive or negative. 
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based on the physics of image acquisition, specifically the imaging modality of CXR vs. CT, as 
well as a wide range of effective radiation doses.  

To support our findings and assess the significance of the results, all performances 
were evaluated using the receiver operating characteristic area under the curve (AUC) with 
95% confidence interval (CI) calculated by the DeLong method as implemented by pROC 
1.16.2 in R 3.6.1 with 2000 bootstrapping samples [50]. 
 
III. RESULTS 
III.A. Evaluation of Models’ Performance on Clinical Data  
As depicted in Figure 6, clinical CT and CXR models exhibited a consistent drop in 
performance from internal to external testing, and those differences often exceeded the 
confidence intervals. While some loss of performance is expected in external testing, these 
remarkably consistent differences indicate systemic differences across these datasets. The CT 
models showed an internal validation AUC range of 0.69 to 0.85, whereas external testing 
consistently dropped to between 0.54 and 0.76. Similarly, for CXR models, internal 
performance ranged from an AUC of 0.77 to 1, while external testing AUC again dropped to a 
range of 0.51 to 0.73. Models trained on the most diverse datasets (U-3 CXR and U-10 CT) 
consistently yielded a testing performance that was the highest or second highest. Notably, 
despite its size, the COVIDx-CXR-2 dataset for CXR was very biased, resulting in perfect 
internal validation and near-perfect external testing even for the U-3 model that was trained on 
all three datasets. 
III.B. Evaluation of Models’ Performance on Virtual Data  
As shown in Figure 6, all CT models achieved intermediate AUC values on the virtual data, 
consistent with their performance on the combined clinical training data. In other words, virtual 
data outperformed some of the actual clinical data, suggesting that virtual data are adequately 
realistic and often less biased. Among the CT models, training with the most diverse U-10 CT 
dataset yielded the highest testing performance on the virtual CT images, outperforming all 
three of the clinical datasets. This is remarkable since those three clinical datasets contributed 
to the U-10 CT training dataset, whereas the virtual data were completely independent. A 
similar pattern was observed with the CXR models, further supporting the robustness of the 
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virtual datasets. 

 
III.C. Evaluation per Patient and Disease 
Assessing the effect of infection size on the performance of models, Figure 7 shows all models 
performed better on both CT and CXR images with higher infection compared to images with 
lower infection. These results demonstrate the utility of VIT towards explainability. 

 
(a) 

 
(b) 
Figure 6. Confusion matrix of case-level COVID-19 detection performance of (a) CT and (b) CXR models. 
Training dataset is shown in rows and testing dataset in columns; diagonal represents internal validation, 
while off-diagonal entries are external testing. Additional external testing on simulated images is shown on 
the right. Performance is reported as receiver operating characteristic area under the curve with 95% 
confidence interval. All models generally performed worse on external testing with both clinical and simulated 
data. However, models trained with the union datasets (U-10 CT and U-3 CXR) consistently yielded the 
highest external testing performance. Internal validation AUC values ranged from 0.69 to 0.85 for CT models 
and 0.77 to 1.0 for CXR models, with external testing dropping to 0.54–0.76 and 0.51–0.73, respectively. 
Furthermore, simulation testing consistently provided intermediate results that may be more indicative of true 
performance. 
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III.D. Evaluations per Image Acquisition  
For the same virtual patients, we assessed the performance of models over a wide, 
overlapping range of effective doses for the virtual CT and CXR acquisitions. As shown in 
Figure 8, the 3D CT models consistently outperformed the 2D CXR models, but the confidence 
intervals for the AUCs overlapped. Within each modality, although the effective dose (mSv) 
varied by 30-fold to represent the widest possible range of clinical use, there was no 
statistically significant change in performance [43, 51]. 
 

 
(a) 

 
(b) 

Figure 7. Both (a) CT and (b) CXR models each trained on four datasets (represented on the x-
axis), consistently demonstrated superior performance in "higher infection" cases, where the 
pneumonia volume exceeded the median, compared to "lower infection" cases that fell below the 
median. For CXR, results were almost identical for the two post-processing algorithms, so only 
algorithm A is shown. Error bars represent the 95% confidence interval. 
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IV. DISCUSSION 
There has been considerable research to develop AI models to improve radiology diagnosis. 
However, the practical application of these models in clinical practice has been hindered by 
two related challenges. First, models often underperform when applied to a new dataset with 
different attributes. Those attributes include, but are not limited to, patient demographics, 
disease characteristics, scanner makes and models, and acquisition protocols. Second, most 
models function as “black boxes” that lack interpretability, making it difficult to determine which 
factors may contribute to an outcome or poor performance. These issues became particularly 
evident during the urgent scientific response to COVID-19, when many early studies reported 
high performances that did not generalize [21, 24, 26, 33, 34, 52]. Although biases in AI 
models for healthcare may be unavoidable, a comprehensive understanding of such factors, 
supported by effective external testing, can raise confidence that such models are trustworthy 
[19, 21, 53]. This study addresses the problem of biases in medical imaging AI models by 
leveraging clinical and virtual data for independent testing, thus enabling the evaluation of both 
generalizability and interpretability. While the study used COVID-19 diagnosis as its target 
task, given its rich resources of models and data, the lessons learned can apply to other AI-
targeted tasks. By predicting the reliability of AI models in diverse clinical settings, this 
research facilitates the effective integration of AI into clinical practice. 

We compiled a large cohort of clinical CT and CXR images from dataset resources 
representing over 22,000 patients. Despite the large amount of training data, however, model 
performance was still impaired due to class imbalance and confounding issues such as 

 

 
Figure 8. Simulated images were used to evaluate physics-based factors. Although models consistently 
performed better on CT over CXR, the differences were not significant at the shared dose of 0.3 mSv. 
Within each modality, performances were also not significantly different across a wide range of effective 
dose. Error bars correspond to 95% confidence interval. 
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radiographic markers, incorrect image orientation, and collimator edges [21, 26, 54]. Proper 
data curation is time-consuming and requires domain expertise in medical imaging, rendering 
this process prohibitively costly.[55] Therefore, external validation of AI models is essential to 
rule out biases [19, 21]. Towards that goal, this study explored the use of virtual data [27, 31], 
which proved to offer two crucial advantages. First, the virtual image data provided external 
validation that is not only truly independent but also controlled. Second, the VIT framework 
allowed the evaluation of the models under different patient- and physics-based factors. This 
provided an opportunity for interpretability with respect to clinical or technical dependencies. 
Our study demonstrates the utility of VIT simulations to conduct AI imaging studies in a 
trustworthy, reproducible, and practicable manner. 

One of our primary objectives was to analyze the impact of dataset variability on model 
generalization. To minimize overfitting, we intentionally used lightweight networks [44, 45]. 
Even so, all models still dropped in performance substantially from internal to external testing, 
consistent with other studies [21, 26, 33, 34]. This generalizability gap likely reflects inherent 
biases in the existing datasets with regard to institutional bias, patient demographics, disease 
appearances, and image quality [21, 24, 54]. To address such bias, we trained models on the 
combined U-10 CT and U-3 CXR datasets, which incorporated greater diversity. These models 
demonstrated improved external testing performance compared to the single-dataset models. 
The model trained on the diverse U-10 CT dataset demonstrated a very consistent AUC of 
approximately 0.73 across all three clinical datasets, suggesting that combining diverse data 
yields more credible and representative performance for this challenging clinical task. These 
general trends were also observed for the CXR datasets, but with considerable residual bias 
due to the disproportionate influence of the COVIDx-CXR-2 dataset, which is much larger than 
other datasets and leads to confounding bias as its positive and negative cases come from 
different institutions. This quandary shows that despite rigorous training and external testing, 
AI models can still be affected by fundamental data biases.  

The VIT process proved to deliver a more realistic portrayal of true clinical performance. 
When many models were tested on virtual images, their performance fell consistently within 
the middle of the range of external testing on clinical datasets, suggesting that the simulations 
presented data with an appearance that was realistic and relevant. This is highly encouraging 
considering the models were applied to the virtual data without even being trained on them, 
highlighting the potential generalizability of virtual datasets to evaluate AI-based diagnosis 
algorithms.  Unlike clinical datasets, the virtual images are further free of institutional bias or 
other confounding factors, because the VIT framework offers precisely reproducible controls in 
terms of patient sampling as well as physical image formation. This enabled us to compare 
identical virtual patients with and without the disease and also to conduct virtual imaging of 
each patient using both CT and CXR. The degree of experimental control provided by VITs is 
not physically possible in real clinical trials.  

By integrating virtual datasets with clinical datasets, we aimed to enhance the 
generalizability and reliability of AI systems in medical imaging, ensuring their applicability in 
diverse clinical scenarios. The concept of a virtual dataset is integral to our study, providing a 
robust alternative to conventional datasets. These datasets offer precise control over imaging 
parameters, including patient anatomy, disease characteristics, and imaging conditions, 
ensuring consistency and reproducibility. Unlike conventional datasets, which often suffer from 
variability in patient demographics and imaging protocols, virtual datasets enable a controlled 
and repeatable generation of imaging data. As shown in Table 4, virtual datasets possess 
advanced features such as comprehensive patient-level, slice-level, and pixel-level 
annotations, and the ability to image the same virtual patient with both CT and CXR at multiple 
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doses. These features facilitate rigorous evaluation and validation of AI models, allowing for 
systematic studies of the effects of various factors on model performance.  

 
TABLE 4. Attributes of CT and CXR datasets. Note that virtual data are the only ones 
that contain all attributes, including the advanced features where the same virtual 
patient can be imaged with both CT and CXR at multiple doses, with multiple CXR 
post-processing. X= available. 

 
 

Datasets 
 

Class Type Label Level Advanced 
features COVID-19 

positive 
COVID-19 
negative 

Patient-
level 

Slice-
level 

Pixel- 

level 

CT datasets 

RICORD[18] X X X    
MosMed[15] X X X    
BIMCV-Iteration 
2[14] 

X X X    

COVID-CT-
MD[12] 

X X X X   

An et al. 
dataset[13] 

X  X    

COVID19-CT-
dataset[36] 

X  X    

COVID-19-NY-
SBU[16] 

X  X    

Lungs-CT-Dx[37]  X X    
LIDC-IDRI[40]  X X    
Duke-CVIT-CT X X X X X X 

CXR datasets 

Fricks et al. 
dataset[23]  

X X X N/A   

BIMCV-2[14] X X X N/A   
COVIDx-CXR-
2[38] 

X X X N/A   

Duke-CVIT-CXR X X X N/A X X 

       
 

Our VIT analysis further provided intriguing insights into the effects of patient- and 
physics-based factors driving AI performance. Regardless of the training datasets for both the 
CT and CXR models, there was a noticeable increase in performance when the COVID-19 
infection size was larger than the median value. For both imaging modalities, performances 
stayed consistent even across a 30-fold range in effective dose (which well exceeds the range 
in clinical practice), suggesting that dose may not be as relevant for the AI detection of diffuse 
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diseases such as pneumonia. In stark contrast to the model evaluation on clinical data, our 
analysis confirmed that CT outperformed CXR, which was consistent with expectations since 
3D CT scans provide superior spatial information over 2D CXR images.  

This study had several limitations. Although the virtual CT and CXR images realistically 
reproduced both anatomical and physical processes, they were generated from a pool of fifty 
virtual patients with variable anatomy and severity of the disease. Virtual datasets offer control 
and reproducibility but must be complemented with real-world validation to ensure ethical and 
clinically applicable AI models. Consequently, simulation testing showed consistent trends but 
with large confidence intervals. The minimal impact of imaging dose observed in our study 
might be influenced by down-sampling during the preprocessing. Additionally, the study did not 
account for potential variability in scanner-specific imaging characteristics, which could affect 
model performance in real-world settings. Future work will increase the number of 
computational phantoms to represent even larger and more diverse patient populations and 
explore the inclusion of additional imaging parameters to improve realism. In terms of the 
network architectures, each modality was analyzed using a single lightweight design, 
foregoing extension experiments with other networks. Expanding the model evaluation to 
include more complex architectures could provide insights into generalizability across different 
network types. Models were developed only to conduct case-level detection, which is the only 
annotation available in almost all datasets. Furthermore, the label of COVID-19 as negative or 
positive was defined independently per each dataset, and those standards varied widely, 
including radiologist assessment or different diagnostic tests [2]. Some datasets included both 
COVID-19 pneumonia and other types of pneumonia, which may not be readily differentiated 
by imaging alone. Finally, future work should aim to address these limitations by incorporating 
more detailed multi-class annotations and evaluating model performance under different 
disease classification scenarios. 
 
V. CONCLUSIONS 
AI-based diagnosis models hold the potential to revolutionize healthcare. However, factors 
contributing to model bias remain underexplored, especially in the medical imaging domain. 
An essential prerequisite to clinical deployment is a robust external evaluation. The VIT 
framework plays a crucial role in addressing the ongoing reproducibility crisis in AI models by 
providing the necessary image data that is objective and controlled. By enabling consistent 
evaluation across diverse scenarios, VIT not only helps to identify bias but also facilitates 
improvements in model robustness and generalizability. As emerging AI techniques continue 
to evolve [56-58], the need for rigorous evaluation frameworks like VIT becomes even more 
critical to ensure their reliability and clinical relevance. By studying patient- or physics-based 
factors influencing model performance, the VIT methodology offers potential for interpretability 
and opportunities for model refinement. Through these contributions, virtual imaging trials can 
enhance clinical trials, making them faster, more rigorous, and more reproducible.  
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APPENDIX A – DATA AVAILABILITY 
The clinical data utilized in this study are open-source and can be referenced via the citation in 
Table 1 and Table 2. The authors are committed to promoting transparency and open science. 
Reasonable requests for access to an anonymized version of the private datasets (Duke-
CVIT-CT and Duke-CVIT-CXR) can be made by contacting the corresponding author. Upon 
publication, all model weights, initial hyperparameters, and code will be publicly accessible at 
https://gitlab.oit.duke.edu/cvit-public/cvit_revicovid19 
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