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Abstract

Misalignment between model predictions and
intended usage can be detrimental for the de-
ployment of computer vision models. The issue
is exacerbated when the task involves complex
structured outputs, as it becomes harder to de-
sign procedures which address this misalignment.
In natural language processing, this is often ad-
dressed using reinforcement learning techniques
that align models with a task reward. We adopt
this approach and show its surprising effective-
ness across multiple computer vision tasks, such
as object detection, panoptic segmentation, col-
orization and image captioning. We believe this
approach has the potential to be widely useful
for better aligning models with a diverse range of
computer vision tasks.

1. Introduction
The main criteria for success when dealing with complex
outputs in computer vision is not how well the model op-
timizes the training objective, but rather how well the pre-
dictions are aligned with the task risk, i.e. the model’s
performance on the intended usage. In order to improve
this alignment, as a community we iterate on model ar-
chitectures, data, optimization, sampling procedures, post-
processing, etc. As an example, in the context of object
detection, researchers use non-maximum suppression post-
processing (Ren et al., 2015; Lin et al., 2017), set-based
global loss (Carion et al., 2020) or even alter the input
data (Chen et al., 2022) to obtain models with improved
behavior at test time. Although these approaches deliver
significant gains, they are often highly specialized to the
task and method at hand, while only indirectly optimizing
for the task risk.

*Shared first authorship and leadership. 1Google Research,
Brain Team Zürich 2Work done during internship at Google Re-
search, while being a PhD student at the University of Oxford. Cor-
respondence to: André Susano Pinto <andresp@google.com>,
Alexander Kolesnikov <akolesnikov@google.com>.
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(a) Optimize mAP: 39 → 54, results in a much high recall and
learns box prediction confidences.
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(b) Optimize PQ: 43.1→ 46.1, removes many incoherent predic-
tions, especially for small-scale objects.
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(c) Optimize “colorfulness” score: 0.41→ 1.79, improves color
diversity and saturation.

Figure 1. By tuning a strong, pretrained model with a reward that
relates to the task, we can significantly improve the model’s align-
ment with the intended usage.

This problem is not new. It has been extensively studied by
the natural language processing (NLP) and reinforcement
learning (RL) fields, where it is notoriously hard to formu-
late an optimization objective for tasks with less tangible
goals, such as translation (Kreutzer et al., 2018) or summa-
rization (Stiennon et al., 2020). A popular approach when
dealing with this type of problem is to learn to imitate ex-
ample outputs, followed by reinforcement-learning to align
the model with a reward function. Using this approach, the
NLP field is now producing exciting results with systems
that use large pretrained language models and rewards de-
fined by human feedback to tackle tasks that were otherwise
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Tuning computer vision models with task rewards

hard to specify (Ouyang et al., 2022). Additionally, the
same approach is widely adopted for the image captioning
task (Rennie et al., 2017), where CIDEr (Vedantam et al.,
2015) is used as a reward. Despite that, to the best of our
knowledge, reward optimization has not been previously
explored for (non-textual) computer vision tasks.

In this work, we demonstrate that tuning a pretrained model
with a reward function using REINFORCE (Williams, 1992)
works out-of-the-box for a wide range of computer vision
tasks. We illustrate some of our key results in Figure 1,
highlighting both quantitative and qualitative improvements
brought by reward optimization for object detection, panop-
tic segmentation, and image colorization. The simplicity and
effectiveness of our approach on a diverse set of computer
vision tasks demonstrates its versatility and adaptability.
Although in this work we mostly use rewards in the form
of evaluation metrics, we believe these initial results show
promising paths to optimizing computer vision models with
more complex and harder to specify rewards, e.g. human
feedback or holistic system performance.

2. Related work
Optimizing computer vision metrics. There is a vast
amount of literature in computer vision that sets the
goal of optimizing complex non-decomposable or non-
differentiable metrics. In this section we highlight some
prominent work. Henderson & Ferrari (2017) propose a
specialized approach to compute a pseudo-gradient in order
to optimize the average precision (AP) metric for object
detection. Song et al. (2016) propose a general framework
for computing approximate gradients of metrics. In the field
of semantic image segmentation, CRF loss (Lafferty et al.,
2001) is often used to ensure segmentation mask consistency.
However, the gradient of the CRF-based loss is generally in-
tractable to compute, so many approximations (Krähenbühl
& Koltun, 2011) or constrained CRF variants (Nowozin
et al., 2011; Kolesnikov et al., 2014) were proposed in the
literature. In contrast, we propose a generic way to optimize
arbitrary rewards that are aligned or coincide with the task
risk, for models that are capable of sampling predictions.

One of the most closely related works is Huang et al. (2021),
which proposes an online algorithm that approximates the
task reward value with a neural network. This differentiable
reward approximation is then used to tune a model. In con-
trast, we suggest to directly optimize the reward function by
relying on the well-known log-derivative trick and the ability
of the underlying model to sample multiple predictions.

Optimizing text generation. Ranzato et al. (2015) demon-
strate improved results on captioning, translation and sum-
marization tasks by training text models with a mixture of
MLE and REINFORCE (Williams, 1992) to optimize the

non-differentiable rewards (BLEU and ROUGE). Shen et al.
(2015) also optimizes translation for evaluation metrics but
by aproximating the posterior distribution with samples.
Rennie et al. (2017) show that using independent model
samples as baseline and optimizing CIDEr is simple yet
highly effective for image captioning. Keneshloo et al.
(2019) provide a survey of text tasks and uses of RL in
seq2seq models. Recently, more advanced RL techniques
incorporating human feedback have been used by Ouyang
et al. (2022); Glaese et al. (2022) to align large language
models with human intent.

Generalization of sampled outputs: Several works such
as Ranzato et al. (2015) and Bengio et al. (2015) discuss
exposure bias, i.e. the distribution discrepancy of previous
tokens between training and generation, as a cause for low
sample quality. They explore approaches that include sam-
pling from the model during training. Schmidt (2019) argues
that generalization, and not exposure bias, is the underlying
issue to address. Stahlberg & Byrne (2019) point out that
even when using large beams and exact inference, trans-
lation models can fail by considering empty and smaller
sentences as more likely. Nucleus sampling (Holtzman
et al., 2020) was designed to alleviate sampling degener-
ation. Leblond et al. (2021) explore different sampling
procedures in translation aided by consistency scores (e.g.
multilingual BERT). Ramesh et al. (2021) train a model to
generate images from text and use a pretrained contrastive
model to filter out images inconsistent with the text. Chen
et al. (2022) train a generative model for object detection,
however good performance of the model is contingent on
example augmentation and modified sampling procedures.

Reinforcement learning in vision. Many previously pro-
posed vision models also leverage reinforcement learning
algorithms for vision tasks. They generally focus on learn-
ing a system that sequentially attends to various parts of
the image and does iterative refinement of the outputs. A
prominent example is (Mathe et al., 2016), which learns a se-
quence of image “glimpses” that extract visual features from
the specific regions and iterative box predictions. See (Le
et al., 2021) for the wide overviews of these type of ap-
proaches for object detection and other vision tasks. We
largely differ from these approaches, as we do not change
the underlying model architecture and instead tune a base
vision model to optimize the task-specific reward.

3. Tuning models with rewards
Without loss of generality, we formulate a computer vision
task as learning a function that maps an input x (in our case
an image) to an output represented as a sequence of values
y = [y1, y1, . . . , yn] (e.g. sequence of text tokens, sequence
of bounding boxes, per-pixel outputs). We assume availabil-
ity of a dataset of N training examples D = {(xi, yi)}Ni=1



Tuning computer vision models with task rewards

Model
MLE objective

-log p(y | x, θ)p( · | x, θ)

∇θ 

Groundtruth label

Figure 2. Step 1: Maximum-likelihood training. In a first step,
the model is trained to maximize the likelihood of the ground-truth
annotations. This is the most common way to train a model and
corresponds to learning to imitate the collected data.

Algorithm 1 MLE optimization step

function batch loss(θ, x, y):
# n is the size of a mini-batch.
return 1

n

∑n
i=1

(
logP (yi|xi; θ)

)
end function

function step mle(θ, x, y, α):
Gmle :=∇θ batch loss(θ, x, y)
return θ + αGmle

end function

sampled from the distribution D. When describing algo-
rithms we use bold x or y to describe a mini-batch of items.
Our goal is to learn a conditional distribution P (y|x, θ) pa-
rameterized by θ that maximizes a reward functionR, which
coincides or closely aligns with the task risk. Formally, we
want to solve the following optimization problem

max
θ

E
x∼D

[
E

y∼P (·|x,θ)
R(x, y)

]
(1)

Our proposed framework for solving the above problem is
very simple, consisting of two steps: (1) model pretrain-
ing with maximum-likelihood estimation (2) model tuning
for the task risk by maximizing a related reward with the
REINFORCE algorithm. We first describe these steps algo-
rithmically and later discuss the intuition and motivation
behind the proposed approach.

Maximum-likelihood pretraining. We first use the max-
imum likelihood principle to estimate parameters θ and
capture the distribution of training data. This can be done
with the gradient descent algorithm by maximizing the log-
likelihood

∑N
i=1 logP (y

i|xi, θ) of the training data. Algo-
rithm 1 and Figure 2 describe the MLE optimization step,
which is the most common way of training a model. We re-
fer to the model resulting from this step as the MLE model.

Reward maximization with REINFORCE. In order to fur-
ther tune the MLE model to the task risk, we maximize a
related reward function. We leverage the REINFORCE algo-

Model
REINFORCE objective

- r(x, y) log p(y | x, θ)

∇θ 

Samples from model + reward

p( · | x, θ)

Sample from
p( · | x, θ)

Figure 3. Step 2: Reward tuning. In a second step, the model
is further trained to maximize a reward function. This is done
using REINFORCE by adjusting the likelihood of model outputs
according to their reward.

Algorithm 2 Reward optimization step

function batch loss(θ, x, y, r):
return 1

n

∑n
i=1

(
r logP (yi|xi; θ)

)
end function

function step reward(θ, x, α):
ysample := batch sample(θ, x)
ybaseline := batch sample(θ, x)
r :=R(x, ysample) -R(x, ybaseline)
Gr :=∇θ batch loss(θ, x, ysample, r)
return θ + αGr

end function

rithm (also known as the “log-derivative trick”) to estimate
the gradient of the expected reward for a given input x:

∇θ E
y∼P

[R(x, y)] = E
y∼P

[R(x, y)∇θ logP (y|x; θ)] .

Note that the unbiased estimate of the right-hand side of
this equation can be computed as an average of per-example
gradients and does not require the reward function to be
differentiable. In order to reduce the variance of this gra-
dient estimate, it is common to subtract a baseline value b
(independent of the considered example) from the reward
function. In practice, we draw two sample outputs for one
training input, use one to estimate the gradient and the other
to compute the baseline reward b. We provide pseudocode
in Algorithm 2 and illustrate the procedure in Figure 3.

Discussion. The two optimization steps outlined above
have complementary strengths and weaknesses. In practice,
neither of them in isolation is sufficient to optimize for a
task, but when chained together they work very well.

The first step, model training via the conditional maximum-
likelihood estimation, is one the most studied and well-
understood approaches in machine learning. There are now
very powerful and efficient probabilistic models, e.g. the
Transformer encoder-decoder model (Vaswani et al., 2017),
that can be trained with MLE and can capture very complex
data distributions. However, these type of models have a
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crucial shortcoming. While they can excel at capturing the
distribution of training and test data, they are agnostic of
the actual task risk and may not perform sufficiently well in
their intended usage.

Thus, we leverage the REINFORCE algorithm to further tune
the MLE model to optimize an arbitrary reward function
related to the task risk. Crucially, it is sufficient to provide
only the numerical value of the reward, without any require-
ments for the reward functions, such as being differentiable,
or being able to run it on a computer (e.g. one can use user
feedback as reward). Note that using REINFORCE from
scratch in the computer vision tasks we explore is most
likely unfeasible due to the large output space and reward
sparsity. However, by using a pretrained MLE model, we
have a good initial sampling strategy and only need a rel-
atively small number of optimization steps to make quick
progress in optimizing the reward function.

4. Practical applications
In this section we show several applications of the described
approach to optimize models for vision tasks. In most cases
we use an encoder-decoder architecture with a ViT (Doso-
vitskiy et al., 2021) encoder to process images and an auto-
regressive Transformer decoder to model output distribu-
tions. We first pretrain the model using maximum-likelihood
estimation then tune it with a task reward. For both steps
we use a variant of Adafactor (Shazeer & Stern, 2018) intro-
duced by Zhai et al. (2022) as optimizer and sample greedily
at inference time to report results.

It is also important to keep in mind that although in this
section we treat existing validation metrics as the task risk,
in a real scenario those might differ significantly. In such
cases, one might require further validation of the model
or iterations on the reward design to guarantee improved
performance on the intended usage. Overall our goal is
to show that reward optimization is a suitable and general
approach to improve computer vision model performance.

4.1. Panoptic segmentation

Panoptic segmentation (Kirillov et al., 2019) task can be
seen as an aggregation of both instance and semantic seg-
mentation and requires a model to produce a coherent scene
segmentation, by assigning a label and instance id to pixels.
The metric commonly used in related literature is Panoptic
Quality (PQ). PQ is designed to capture the completeness
and detail of predictions and measures. It is computed as
a within-class average of mean IoU of matched instances
(TP), while penalizing for extra predicted instances (FP) and
missed ground truth instances (FN):

PQ = mean
k∈K

∑
(p,g)∈TPk

IoU(p, g)

|TPk|+ 1
2 |FPk|+

1
2 |FNk|

Table 1. Panoptic segmentation results on COCO panoptic valida-
tion set after reward optimization.

MODEL PQ (%)

UVIM512×512→ Ours 43.1→ 46.1
UVIM1280×1280 45.8

MLE pretraining. We use UViM panoptic
model (Kolesnikov et al., 2022) as our MLE pre-
training baseline. UViM adopts a ViT-L/16 encoder for
512×512 resolution and a 24 layers auto-regressive decoder.
The decoder output is a 256 discrete sequence of 4 k
possible tokens which can then be decoded by UViM stage I
models into a 512×512 panoptic output. The model was
trained using MLE on COCO panoptic dataset.

Tuning for PQ. The PQ computation is not decomposable
as a sum of per-example rewards. We opt to use a reward
which is the sum of matched IoUs and a negative weight
w = 0.3 to unmatched predicted instances in an example:

reward(y, k) =
[∑

(p,g)∈TPk
IoU(p, g)

]
− w|FPk|

We use REINFORCE rule to tune the MLE model for this
reward, with a batch size of 128 for 30k steps with constant
learning rate 10−6 after a warmup of 4 k steps. We observe
that out tuning procedure significantly improves the MLE
model (see table 1). Our visual inspection suggests that
the tuned model is better at avoiding incoherent predictions,
especially for the small-scale objects, see 1 as an example.

Note that the task here is quite challenging as we are op-
timizing a model to sample a discrete sequence with little
feedback from a complex reward function. The reward (a
scalar) of a model output (a 256-length discrete sequence)
is computed by using a neural network to decode the se-
quence into a 512×512 per-pixel panoptic output which is
then compared against the ground truth to approximates a
PQ-value per example.

4.2. Object detection

In the object detection task the goal is to predict a tight
bounding box for objects (e.g. chair or pen) present in an
input image. The task is notoriously hard due to the com-
plex nature of the output. Many different approaches, with
unique pros and cons, have been proposed in the past. One
group of techniques (Ren et al., 2015; Lin et al., 2017) pre-
dicts a large redundant collection of boxes and then applies
specialized post-processing (non-maximal suppression) at
test time. Another approach, proposed by Carion et al.
(2020), relies on the set-based global loss during training.
Finally, Pix2seq (Chen et al., 2022) propose to use a genera-
tive model to directly model likelihood of the training data
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encoded as a sequence of discrete values (discretized box
coordinates and semantic class labels).

A shared shortcoming of all these approaches is that they
do not offer an explicit way to obtain a model aligned with
the task risk and, instead, rely on design choices that im-
plicitly modulate object detection model properties. For
example, Faster-RCNN models use a two stage box predic-
tion approach to better balance positive and negative boxes.
Similarly, RetinaNet uses the focal loss to achieve the same
effect. On the other hand, Pix2seq alters the training data
by jittering the ground-truth boxes and adding “fake” boxes
to trick the prediction model into outputting more object
bounding boxes.

Instead, in our experiments, we use detection-specific re-
wards to optimize a vanilla detection data likelihood model
(similar to Pix2seq’s base model). Importantly, this bypasses
the need of adopting specialized heuristics to optimize for
the standard metrics. We represent a set of bounding boxes
as a discrete sequence by discretizing the coordinates in
1000 buckets, plus one token for the class label and one to-
ken for the per-box prediction confidence. We use the stan-
dard ViT-B/16 as image encoder and 6-layer auto-regressive
Transformer decoder (with the same configuration as the
ViT-B model). Following our approach we pretrain a MLE
model and then tune it with rewards for recall and mAP.

MLE pretraining. Following the standard practice, we
pretrain the model on the Objects365 dataset (Shao et al.,
2019) and further finetune on the COCO (Lin et al., 2014)
dataset. The model is pretrained on the Objects365 dataset
for 400 k steps using 256 batch size, with a learning rate of
0.001 and 0.00005 weight decay. We linearly warm up the
learning rate for the initial 20 k steps, and then decay it to
zero using a cosine schedule. We then finetune the model on
COCO, using a smaller learning rate 10−4 without weight
decay, for 10 k steps. Cosine learning rate schedule with
1 k warmup steps is adopted. We used 640×640 resolu-
tion for Objects365 pretraining and 1280×1280 resolution
for COCO finetuning. The resulting MLE model achieves
54.1% average recall@100 and 40.2 mAP score on COCO.

Tuning for recall. Average recall @ N is a popular metric
for evaluating object detection models and is expected to
correlate with usage in retrieval applications. This metric
computes the percentage of object instances in the ground
truth that are matched (at a certain IoU threshold) to one of
the predicted boxes. At most N predictions per image are
allowed. Recall for each IoU threshold and semantic class
and is computed independently and then averaged. Our per-
image recall reward is implemented as the count of matched
ground-truth boxes minus the number of “duplicate boxes”
(the boxes that have been matched to an already matched
ground-truth box) with 0.3 multiplier.

Table 2. Object detection results on COCO before and after reward
optimization.

MODEL MAP (%) AR@100 (%)

Ours (REWARDMAP) 39.2→ 54.3 54.4→ 67.2
Ours (REWARDRECALL ) N/A 54.4→ 68.4
CHEN ET AL. (2022) 47.1 N/A

We tune our MLE model to optimize the recall reward for
100 k steps with the constant learning rate of 10−6. Table 2
demonstrates that the resulting model successfully optimizes
the average metric, pushing its value from 54.4% to 68.4%.

Tuning for mean average precision Mean average preci-
sion (mAP) is a metric based on the area under the precision-
recall curve of predicted instances of each class that get
matched with a given IoU threshold. Besides generating
a set of predicted boxes, models must also annotate each
prediction with a confidence score to rank the items in the
curves. These differences encode a different task risk than
recall. For example, under this definition a model will be
penalized for multiple bounding boxes around one object.

One difficulty is that this metric does not decompose into a
sum of per-example rewards. We overcome this by noting
that mAP metric is well correlated with recall assuming a
prediction model does well at ranking the resulting boxes.
In order to learn box confidences, we use a supervised loss
to learn the expected IoU scores of sampled outputs plus the
recall reward defined in the previous section. We addition-
ally improve the reward by computing its value at various
IoU ranges (and averaging them) and by weighting each
class based on their frequency observed in the training set.

In Table 2 we confirm that by optimizing the proposed
reward we drastically improve the mAP score of the original
MLE model from 39.2% to 54.3%. In Pix2seq (Chen et al.,
2022), the same size ViT-B model with a slightly larger
1333×1333 resolution and many heuristics achieves 47.1%.
The best object detection result reported in Pix2seq is 50.0%,
when using a larger ViT-L backbone. Our strong ViT-B
result clearly demonstrates the promise of the proposed task
reward tuning.

4.3. Colorization

Colorization task is described as adding color to grayscale
images. Standard image colorization models are learned by
optimizing the likelihood of large datasets of images, i.e.
using MLE. Such model generate plausible image coloring,
however often produce faded colors. In reality, the user of
a colorization model may want to produce a vivid image.
Using our approach we demonstrate that MLE colorization
models can be tuned to produce colorful images that are
more visually appealing.
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Figure 4. Random examples demonstrating how UViM colorization model (Kolesnikov et al., 2022) predictions change after tuning with a
“colorfulness” reward. See text in 4.3 for the details on the reward function.

MLE pretraining. Similar to the panoptic task, we use
UViM colorization as the MLE model. It is a ViT-L/16
encoder for 512×512 resolution images and a 24 layers
auto-regressive decoder. The decoder output is a 256 dis-
crete sequence which can then be decoded by UViM stage I
models into a 512×512 image. The model was trained using
MLE on ImageNet.

Tuning for “colorfulness”. We design a custom reward
that promotes “colorfulness”. In particular, the reward is a
product of two terms that are derived from the input image
converted to the Lab colorspace. In this colorspace, the
L channel encodes “lightness”, while the a and b channels
encode color. The first term of our reward discourages gray
colors. It is defined as the fraction of image pixels that have
sufficiently “vivid color”, where vivid color is defined as
a2+b2 > 10. The second term of our reward promotes color
diversity. It is defined as the image-level entropy of the hue
value, with hue being computed by arctan( ba ). Note that to
compute the entropy we discretize hue into 7 discrete values,
distributing the bins uniformly within the range where hue
values are defined.

We tune the MLE model with this reward for 1 k steps using
a constant learning rate of 3 ·10−7. As a result of this tuning
step, the first reward term grows from 0.46 to 0.97, indicat-
ing that the vast majority of predicted colors have become
more vivid. The second reward term, hue entropy, grows
from 1.03 to 1.84, indicating much greater diversity of pre-
dicted colors. We present qualitative results in Figure 4
which clearly demonstrate that the new model consistently
produces more colorful images.

4.4. Image captioning

Image captioning refers to the task of generating textual
descriptions for given images. CIDEr (Vedantam et al.,
2015) is a popular automated metric that measure caption
quality based on consensus with a set of human-written
reference captions for the image. Specifically, it measures
the n-gram similarity against multiple references captions
and takes into account the statistics of the whole dataset such
that words that appear more frequently across all captions

are given less weight, as they can be considered to be less
informative. As mentioned before, the use of REINFORCE
to optimize a CIDEr reward is an established technique in
image captioning (Rennie et al., 2017). We include it in this
work for completeness.

MLE pretraining. We pretrain an encoder-decoder Trans-
former model on COCO captions. We initialize the ViT
encoder from the ImageNet21k models provided by Steiner
et al. (2021). For the decoder, we randomly initialize a
6-layer auto-regressive decoder. Additionally, we use the
BERT (Devlin et al., 2018) 30 k vocabulary to represent
text as a discrete sequence of 128 tokens. We pretrain with
batch size 256 for 5 k steps using 1 k steps linear warmup
followed by cosine schedule with learning rate 3 · 10−4 and
10x smaller for the encoder parameters. We experiment
with two settings: ViT-B/16 and ViT-L/16 both using the
same hyper-parameters.

Tuning for CIDEr. As previous works we use CIDEr di-
rectly as reward using the training set to compute the statis-
tics for the n-gram weights. In this case, we use 7 other
samples to estimate the reward baseline. We optimize with
batch size 256 for 10 k steps with 1 k linear warmup and
constant learning rate 10−5 with 10x smaller learning rate
for the encoder parameters. For reference we include two
recent works Wang et al. (2022); Hu et al. (2022) which also
utilize CIDEr optimization and recent architectures.

The results in Table 3 show that applying the presented
approach results in improvements to the MLE model con-
sistent to observations in prior literature, demonstrating the
effectiveness of tuning for a specific task risk.

Table 3. Results on COCO caption on Karpathy & Fei-Fei (2015)
test split before and after reward optimization.

MODEL CIDER

Ours (VIT-B) 120.0→ 134.5
Ours (VIT-L) 121.7→ 138.7

WANG ET AL. (2022) N/A → 138.2
HU ET AL. (2022) 128.7→ 143.7
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5. Analysis
5.1. Reward distribution

Here, we analyse rewards of the models in the image cap-
tioning example. We compare direct samples from the MLE
model (before) to the reward tuned model (after).

We sample 10000 predictions from each model and plot their
rewards using the mean of per-example quantile functions
in Figure 5a. The area under the curve of this plot gives
the expected reward and it shows the clear improvement
of the model: over 50% of the tuned model samples have
an expected reward higher than 125, however for the MLE
model only less than 5% achieves the same standard. Note
also, that in the top 1%-tile, the MLE model is capable of
generating very high rewards: this indicates that the MLE
model is capable of generating high-quality predictions,
however, as we cannot select the best samples at test time,
we cannot benefit from them.

To demonstrate this, we additionally illustrate, for each
example in the dataset, the reward of (1) the prediction
with the highest reward out of N samples in Figure 5b and
(2) the highest likelihood sample out of N predictions in
Figure 5c. We aggregate the cross-dataset average of these
two statistics and plot them against the number of samples
taken for each example N.

Figure 5b shows that in a large pool of samples, above 100,
there exist better samples in the MLE model pool. However
to benefit from this fact, one would need an effective strategy
to select the best performing sample. Figure 5c shows what
happens when we use max likelihood (e.g. greedy, top-k,
nucleus sampling) to select the sample: with the increase of
the number of samples N , we do see a significant boost in
performance for the MLE model inline with greedy/nucleus
expectations, however ultimately the performance is much
worse than the reward-tuned model even at N = 10000.

5.2. Reward-Risk progression

In order to translate a task risk into a reward function, often
we need to decompose a metric computed for a set of exam-
ples into per-example reward. This could potentially result
in undesirable divergence in the progression of per-example
reward and the metric. To see if this is the case empirically,
we plot the progression of reward and goal metrics during
training in Figure 6 for object detection and panoptic seg-
mentation. We observe no significant divergence between
our reward and the metric.

Additionally, in Figure 6 (a), we observe that the mAP score
of object detection quickly goes up for the first 20k steps,
i.e. from 40.2% to 52.3%. With longer reward tuning, the
metric keeps going up and it achieves 52.7% at 40 k steps
and 53.2% at 60 k steps.
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Figure 5. Analysis of reward distribution before and after tuning
the model for the image captioning task. Measured as mean of
1024 validation examples. In quantile plot (a) the AUC shows
the difference between the methods while highlighting that after
reward optimization the chance of sampling low-performing sam-
ples is greatly reduced. Plot (b) the max reward out of N samples
shows that the MLE model includes high-quality outputs in a large
enough pool. Plot (c) it is not possible to identify the best outputs
using likelihood as observed by the low reward when using the
most likely out of N samples even when using 10000 samples.

6. Discussion and Limitations
Reward hacking. Our work shows the feasibility of tuning
a model with rewards beyond standard MLE. However, it
is important to note that there is no guarantee that a given
reward function will result in improvements in the intended
usage. The model may instead exploit weaknesses in the re-
ward definition, and it is crucial to take that in consideration
when validating the models. In saying that, we think that our
demonstrated RL-based approach opens up the possibilities
of different forms of rewards, unlocking the potential of us-
ing real-risk or human-feedback in training computer vision
models, which we believe will lead to great advancements
in the current field.

Reward design. In this work we mostly use simple rewards
based on existing evaluation metrics. There are however
many more options, including combinations of filter-based,
input-output checks, simulation checks, use of pretrained
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Figure 6. Plot of metrics and rewards measured on the validation
set during training for object detection (mAP) and panoptic seg-
mentation (PQ). Overall we observe a good correlation between
the reward being optimized and the task risk.

models to detect undesired outputs or to keep the model
closer to a initial distribution, entropy to encourage diversity
and exploration or use of real-world or human feedback.
Another thing to keep in mind is that the reward does not
needs to aim to be as exact as the task risk. Alternatives
functions may be easier to obtain, control or optimize, for
example if the reward provides more guidance than a sparse
risk value. We leave the exploration of this in computer
vision tasks to future work.

Advanced RL techniques. The presented approach with
warm-up and constant learning rate setup suffices across the
explored applications. As such, we saw no need to add reg-
ularisation to remain close to the original policy, encourage
exploration or attempt to reduce the number of reward calls
or model updates. We believe the efficacy is in part due
to the MLE-pretrained initialization, allowing the model to
avoid potential issues with the simple technique. Although
this may not hold in more complex setups, we encourage to
try the simple approach in other similar applications.

Data for imitation learning. Can MLE-training alone also
reach better alignment with the task goal? This question
was part of the motivation of this work. Although we expect
more data to help MLE models imitate the ground truth,
we found it hard to know what data to collect or how to
augment it to have a particular alignment effect with a task
risk. By tuning a model with a reward we obtain that effect

by optimizing a model to avoid undesired outputs. Since the
space of undesired outputs where the MLE model assigns
high likelihood is hard to predict, it is critical to observe
the model in action and focus on the examples the model
misassigns high-likelihood.

Training cost. There are two main costs to consider: model
sampling cost and the number of queries to the reward func-
tion. Sampling auto-regressive models is notoriously more
expensive than computing the likelihood of a given sequence.
This is due to difficulties utilizing hardware efficiently and
not due to an increase in the number of flops. Note however
that this cost is still proportional to inference usage. Addi-
tionally, the presented method only requires a model where
the likelihoods of samples can be optimized with gradi-
ents. It does not depend on the model being auto-regressive,
though that can be an important piece to modelling complex
distributions. For more complex applications the number of
queries to the reward function can be a bigger concern. In
such cases it is worth to explore off-policy RL techniques
and approximate a target reward with a value network.

7. Conclusion
Our work shows that reward optimization is a viable op-
tion to optimize a variety of computer vision tasks. Using
the simple approach of pretraining to imitate ground truth
followed by reward optimization, we were able to: (a) im-
prove models for object detection and panoptic segmenta-
tion trained without other task-specific components to the
level comparable to ones obtained through clever manipula-
tion of data, architectures and losses; (b) qualitatively affect
the results of colorization models to align with a goal of
creating vivid and colorful images; (c) show that the simple
approach is competitive with recent works in captioning.

We believe these results demonstrate the possibilities to
have more precise control on how models align the non-
trivial task risk. We look forward to more challenging use
cases such as tuning scene understanding outputs for robot
grasping, where one can optimize the perception models for
the probability of a successful grasp.
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A. Overview of models and hyper-parameters

Table 4. Panoptic segmentation settings.

Model
ENCODER: VIT-L/16
DECODER: 24 LAYERS
SEQ LENGTH: 256 TOKENS
RESOLUTION: 512×512

MLE pretraining
MODEL KOLESNIKOV ET AL. (2022)

Tune for PQ
BATCH SIZE: 128
SCHEDULE: CONSTANT
LEARNING-RATE: 1 · 10−6

TOTAL STEPS: 30 000
WARMUP STEPS: 4 000

Table 5. Object detection settings.

Model
ENCODER: VIT-B/16
DECODER: 6 LAYERS
SEQ LENGTH: 600 TOKENS
RESOLUTION: 1280×1280

MLE - Objects365 pretraining
RESOLUTION: 640×640
BATCH SIZE: 256
LEARNING-RATE: 1 · 10−3

WEIGHT-DECAY: 5 · 10−5

SCHEDULE: COSINE
TOTAL STEPS: 400 000
WARMUP STEPS: 20 000

MLE - COCO finetune
RESOLUTION: 1280×1280
BATCH SIZE: 256
LEARNING-RATE: 1 · 10−4

WEIGHT-DECAY: 0.0
SCHEDULE: COSINE
TOTAL STEPS: 10 000
WARMUP STEPS: 1 000

Tune for recall
BATCH SIZE: 256
LEARNING-RATE: 1 · 10−6

SCHEDULE: CONSTANT
TOTAL STEPS: 100 000
WARMUP STEPS: 1 000

Tune for mAP
BATCH SIZE: 256
LEARNING-RATE: 1 · 10−6

SCHEDULE: CONSTANT
TOTAL STEPS: 100 000
WARMUP STEPS: 1 000

Table 6. Colorization settings.

Model
ENCODER: VIT-L/16
DECODER: 24 LAYERS
SEQ LENGTH: 256 TOKENS
RESOLUTION: 512×512

MLE pretraining
MODEL KOLESNIKOV ET AL. (2022)

Tune for “colorfulness”
BATCH SIZE: 512
SCHEDULE: CONSTANT
LEARNING-RATE: 3 · 10−7

TOTAL STEPS: 1 000
WARMUP STEPS: 0

Table 7. Image captioning settings.

Model
ENCODER: VIT-B/16 / VIT-L/16
DECODER: 6 LAYERS
SEQ LENGTH: 128 TOKENS
RESOLUTION: 512×512

MLE pretraining
ENCODER CKPT: IMAGENET21K FROM

STEINER ET AL. (2021)
BATCH SIZE: 256
DECODER LR: 3 · 10−4

ENCODER LR: 3 · 10−5

WEIGHT-DECAY: 5 · 10−6

SCHEDULE: COSINE
TOTAL STEPS: 5 000
WARMUP STEPS: 1 000

Tune for CIDEr
BATCH SIZE: 256
BASELINE: 7 SAMPLES
DECODER LR: 1 · 10−5

ENCODER LR: 1 · 10−6

SCHEDULE: CONSTANT
TOTAL STEPS: 10 000
WARMUP STEPS: 1 000


