arXiv:2301.09858v1 [cs.CV] 24 Jan 2023

Arxiv version

POWERQUANT: AUTOMORPHISM SEARCH FOR NON-
UNIFORM QUANTIZATION

Edouard Yvinec'? , Arnaud Dapogny? , Matthieu Cord' , Kevin Bailly'-?
Sorbonne Université!, CNRS, ISIR, £-75005, 4 Place Jussieu 75005 Paris, France
Datakalab?, 114 boulevard Malesherbes, 75017 Paris, France
ey@datakalab.com

ABSTRACT

Deep neural networks (DNNs) are nowadays ubiquitous in many domains such as
computer vision. However, due to their high latency, the deployment of DNNs
hinges on the development of compression techniques such as quantization which
consists in lowering the number of bits used to encode the weights and acti-
vations. Growing concerns for privacy and security have motivated the devel-
opment of data-free techniques, at the expanse of accuracy. In this paper, we
identity the uniformity of the quantization operator as a limitation of existing ap-
proaches, and propose a data-free non-uniform method. More specifically, we
argue that to be readily usable without dedicated hardware and implementation,
non-uniform quantization shall not change the nature of the mathematical oper-
ations performed by the DNN. This leads to search among the continuous auto-
morphisms of (R* , x), which boils down to the power functions defined by their
exponent. To find this parameter, we propose to optimize the reconstruction error
of each layer: in particular, we show that this procedure is locally convex and
admits a unique solution. At inference time, we show that our approach, dubbed
PowerQuant, only require simple modifications in the quantized DNN activation
functions. As such, with only negligible overhead, it significantly outperforms
existing methods in a variety of configurations.

1 INTRODUCTION

Deep neural networks (DNNs) tremendously improved algorithmic solutions for a wide range of
tasks. In particular, in computer vision, these achievements come at a consequent price, as DNNs
deployment bares a great energetic price. Consequently, the generalization of their usage hinges
on the development of compression strategies. Quantization is one of the most promising such
technique, that consists in reducing the number of bits needed to encode the DNN weights and/or
activations, thus limiting the cost of data processing on a computing device.

Existing DNN quantization techniques, for computer vision tasks, are numerous and can be distin-
guished by their constraints. One such constraint is data usage, as introduced in Nagel et al.|(2019),
and is based upon the importance of data privacy and security concerns. Data-free approaches such
as [Banner et al.[(2019); |Cai et al.| (2020); |(Choukroun et al.| (2019); [Fang et al.| (2020); |Garg et al.
(2021)); Zhao et al.| (2019); Nagel et al.[(2019), exploit heuristics and weight properties in order to
perform the most efficient weight quantization without having access to the training data. As com-
pared to data-driven methods, the aforementioned techniques are more convenient to use but usually
come with higher accuracy loss at equivalent compression rates. Data-driven methods performance
offer an upper bound on what can be expected from data-free approaches and in this work, we aim
at further narrowing the gap between these methods.

To achieve this goal, we propose to leverage a second aspect of quantization: uniformity. For sim-
plicity reasons, most quantization techniques such as [Nagel et al.| (2019); |Zhao et al.| (2019); |Cong
et al.| (2022) perform uniform quantization, i.e. they consist in mapping floating point values to
an evenly spread, discrete space. However, non-uniform quantization can theoretically provide a
closer fit to the network weight distributions, thus better preserving the network accuracy. Previous
work on non-uniform quantization either focused on the search of binary codes (Banner et al., 2019;

Arxiv version

80 ocs
DFQ

§ 70 SQuant
3 SPIQ
<
- [l PowerQuant
g 60
@
z
(]
(=2}
®©
E 50

40

W8/A8 W6/A6 W4/A4

Figure 1: Comparison of the proposed method to other data-free quantization schemes on DenseNet 121 pre-
trained on ImageNet. The proposed method (right bin in blue) drastically improves upon the existing data-free
methods especially in the challenging W4/A4 quantization.

Hubara et al., 2016; Jeon et al.| [2020; |Wu et al., [2016} Zhang et al.l [2018)) or leverage logarithmic
distribution (Miyashita et al., 2016} |[Zhou et al.l 2017). However, these approaches map floating
point multiplications operations to other operations that are hard to leverage on current hardware
(e.g. bit-shift) as opposed to uniform quantization which maps floating point multiplications to in-
teger multiplications (Gholami et al.| 2021} [Zhou et al.l 2016). To circumvent this limitation and
reach a tighter fit between the quantized and original weight distributions, in this work, we propose
to search for the best possible quantization operator that preserves the nature of the mathematical
operations. We show that this search boils down to the space defined by the continuous automor-
phisms of (R*, x), which is limited to power functions defined by their exponent. We optimize the
value of this parameter by minimizing the error introduced by quantization. This allows us to reach
superior accuracy, as illustrated in Fig[I} To sum it up, our contributions are:

* We search for the best quantization operator that do not change the nature of the mathemat-
ical operations performed by the DNN, i.e. the automorphisms of (R* , x). We show that
this search can be narrowed down to finding the best exponent for power functions.

* We find the optimal exponent parameter to more closely fit the original weight distribution
compared with existing (e.g. uniform and logarithmic) baselines. To do so, we propose to
optimize the quantization reconstruction error. We show that this problem is locally convex
and admits a unique solution.

* In practice, we show that the proposed approach, dubbed PowerQuant, only requires simple
modifications in the quantized DNN activation functions. Furthermore, we demonstrate
through extensive experimentation that our method achieves outstanding results on various
and challenging benchmarks with only negligible computational overhead.

2 RELATED WORK

2.1 QUANTIZATION

In this section, we provide a background on the current state of DNNs quantization. Notice that
while certain approaches are geared towards memory footprint reduction (e.g. without quantizing
inputs and activations) (Chen et al.,[2015; |Gong et al., 2014} Han et al.l 2016} [Zhou et al.| [2017), in
what follows, we essentially focus on methods that aim at reducing the inference time. In particular,
motivated by the growing concerns for privacy and security, data-free quantization methods (Banner
et al.,|2019; |Cai et al., 2020} |(Choukroun et al.,[2019; [Fang et al.,|2020; |Garg et al.| | 2021}; [Zhao et al.,
2019; [Nagel et al., 2019; |Cong et al., [2022) are emerging and have significantly improved over the
recent years.

The first breakthrough in data-free quantization (Nagel et al., 2019) was based on two mathematical
ingenuities. First, they exploited the mathematical properties of piece-wise affine activation func-

Arxiv version

tions (such as e.g. ReLU based DNN5) in order to balance the per-channel weight distributions by
iteratively applying scaling factors to consecutive layers. Second, they proposed a bias correction
scheme that consists in updating the bias terms of the layers with the difference between the ex-
pected quantized prediction and the original predictions. They achieved near full-precision accuracy
in int8 quantization. Since this seminal work, two main categories of data-free quantization methods
have emerged. First, data-generation based methods, such as |Cai et al.| (2020); |Garg et al.| (2021)),
that used samples generated by Generative Adversarial Networks (GANs) (Goodfellow et al.,[2014)
as samples to fine-tune the quantized model through knowledge distillation (Hinton et al., |2014)).
Nevertheless, these methods are time-consuming and require significantly more computational re-
sources. Other methods, such as Banner et al.|(2019); [Choukroun et al.[(2019); [Fang et al.| (2020);
Zhao et al. (2019); |[Nagel et al.| (2019); |Cong et al.| (2022), focus on improving the quantization
operator but usually achieve lower accuracy. One limitation of these approaches is that they are
essentially restricted to uniform quantization, while considering non-uniform mappings between the
floating point and low-bit representation might be key to superior performance.

2.2 NON-UNIFORM QUANTIZATION

Indeed, in uniform settings, continuous variables are mapped to an equally-spaced grid in the orig-
inal, floating point space. Such mapping introduces an error: however, applying such uniform
mapping to an a priori non-uniform weight distribution is likely to be suboptimal in the general
case. To circumvent this limitation, non-uniform quantization has been introduced (Banner et al.,
2019; [Hubara et al., 2016; Jeon et al., 2020; |Wu et al., 2016; |[Zhang et al.l [2018}; Miyashita et al.,
2016; Zhou et al., 2017) and (Zhang et al.| [2021a} |Li et al., |2019). We distinguish two categories
of non-uniform quantization approaches. First, methods that introduce a code-base and require very
sophisticated implementations for actual inference benefits such as Banner et al.| (2019); [Hubara
et al.|(2016)); Jeon et al.|(2020); Wu et al.| (2016)); Zhang et al.|(2018). Second, methods that simply
modify the quantization operator such as Miyashita et al.| (2016); Zhou et al.[|(2017). In particular,
(Zhang et al., 2021a) propose a log-quantization technique. Similarly, Li ef al. (Li et al., 2019)
use log quantization with basis 2. In both cases, in practice, such logarithmic quantization scheme
changes the nature of the mathematical operations involved, with multiplications being replaced
by bit shifts. Nevertheless, one limitation of this approach is that because the very nature of the
mathematical operations is intrinsically altered, in practice, it is hard to leverage without dedicated
hardware and implementation. Instead of transforming floating point multiplications in integer mul-
tiplications, they change floating point multiplications into bit-shifts or even look up tables (LUTs).
Some of these operations are very specific to some hardware (e.g. LUTs are thought for FPGAs) and
may not be well supported on most hardware. Conversely, in this work, we propose a non-uniform
quantization scheme that preserves the nature of the mathematical operations by mapping floating
point multiplications to standard integer multiplications. As a result, our approach boils down to
simple modifications of the computations in the quantized DNN, hence allowing higher accuracies
than uniform quantization methods while leading to straightforward, ready-to-use inference speed
gains. Below we describe the methodology behind the proposed approach.

3 METHODOLOGY

Let F be a trained feed forward neural network with L layers, each comprising a weight tensor
W. Let @ be a quantization operator such that the quantized weights QQ(W;) are represented on b
bits. The most popular such operator is the uniform one. We argue that, despite its simplicity, the
choice of such a uniform operator is responsible for a significant part of the quantization error. In
fact, the weights WW; most often follow a bell-shaped distribution for which uniform quantization is
ill-suited: intuitively, in such a case, we would want to quantize more precisely the small weights on
the peak of the distribution. For this reason, the most popular non-uniform quantization scheme is
logarithmic quantization, outputting superior performance. Practically speaking, however, it consists
in replacing the quantized multiplications by bit-shift operations. As a result, these methods have
limited adaptability as the increment speed is hardware dependent.

To adress this problem, we look for the non-uniform quantization operators that preserve the nature
of matrix multiplications. Formally, taking aside the rounding operation in quantization, we want to

Arxiv version

11 N

square root distribution uniform distribution square distribution
a=0.5 a=1 a=2

Figure 2: Influence of the power parameter a on the quantized distribution for weights distributed following a
Gaussian prior. In such a case, the reconstruction error is typically minimized for a < 1.

define the space Q of functions () such that
VQ€Q,3Q7 € Q stVr,y Q HQr)xQy) =x xy (1)

where * is the intern composition law of the quantized space and x is the standard multiplication,
and @), Q! are the quantization and de-quantization operators, respectively. In the case of uniform
quantization and our work * will be the multiplication while in other non-uniform works it often
corresponds to other operations that are harder to leverage, e.g. bit-shift. Recall that, for now, we
omit the rounding operator. The proposed PowerQuant method consists in the search for the best
suited operator @ for a given trained neural network and input statistics.

3.1 AUTOMORPHISMS OF (R}, x)

Let @ be a transformation from R to R. In this case, *, the intern composition law in quantized
space in (I), simply denote the scalar multiplication operator x and (I)) becomes Q(z) x Q(y) =
Q(x x y) Va,y € Ri. In order to define a de-quantization operation, we need Q! to be defined
i.e. Q) is bijective. Thus, by definition, @ is a group automorphism of (R’ , x). Thus, quantization
operators that preserve the nature of multiplications are restricted to automorphisms of (R, x).
The following lemma further restricts the search to power functions.

Lemma 1. The set of continuous automorphisms of (R?_, x) is defined by the set of power functions
Q={Q:z— 2%a € R}

A proof of this result can be found in Appendix [A] For the sake of clarity, we will now include the
rounding operation in the quantization operators.

sign(W) x |W[* W|aJ ‘a € R} ®)

max |W|e

Q= {Qa W L(le —1)

where W is a tensor and all the operations are performed element-wise. As functions of W, the
quantization operators defined in equation [2] are (signed) power functions. Fig [2 illustrates the
effect of the power parameter a on quantization (vertical bars). Uniform quantization and ¢ = 1
are equivalent and correspond to a quantization invariant to the weight distribution. For a < 1,
the quantization is more fine-grained on weight values with low absolute value and coarser on high
absolute values. Conversely, for a > 1, the quantization becomes more fine-grained on high absolute
values. We now define the search protocol in the proposed search space Q.

3.2 AUTOMORPHISM SEARCH AS A MINIMIZATION PROBLEM

We propose to use the error introduced by quantization on the weights as a proxy on the distance
between the quantized and the original model.

Reconstruction Error Minimization: The operator (), is not a bijection. Thus, quantization
introduces a reconstruction error summed over all the layers of the network, and defined as follows:

L
e(Fa) =Y [[Wi = Q. (Qa(M))]], 3)
=1

Arxiv version

where || - ||, denotes the L? vector norm (in practice p = 2, see appendix [B) and the de-quantization
operator ;! is defined as:

QL (W) = sign(W) x

a

1
a

max ||
b1 1

In practice, the problem of finding the best exponent a* = argmin, e(F, a) in (3) is a locally convex
optimization problem (Appendix|C.I)) which has a unique minimum (see Appendix[C.2). We find the
optimal value for a using the Nelder-Mead method (Nelder & Mead, |1965) which solves problems
for which derivatives may not be known or, in our case, are almost-surely zero (due to the rounding
operation). In practice, more recent solvers are not required in order to reach the optimal solution
(see Appendix D). Lastly, we discuss the limitations of the proposed metric in Appendix [H]

W x 4)

3.3 FUSED DE-QUANTIZATION AND ACTIVATION FUNCTION

Based on equation [2] the quantization process of the weights necessitates the storage and multipli-
cation of W along with a signs tensor, which is memory and computationally intensive. For the
weights, however, this can be computed once during the quantization process, inducing no overhead
during inference. As for activations, we do not have to store the sign of ReLU activations as they
are always positive. In this case, the power function has to be computed at inference time (see al-
gorithm . However, it can be efficiently computed Kim et al.| (2021), using Newton’s method to
approximate continuous functions in integer-only arithmetic. This method is very efficient in prac-
tice as it converges in 2 steps for low bit representations (four steps for int32). Thus, PowerQuant
leads to significant accuracy gains with limited computational overhead. Conversely, for non-ReLU
feed forward networks such as EfficientNets (SiLU) or Image Transformers (GeLU), activations are
signed. This can be tackled using asymmetric quantization which consists in the use of a zero-point.
In general, asymmetric quantization allows one to have a better coverage of the quantized values
support. In our case, we use asymmetric quantization to work with positive values only. Formally,
for both SiLU and GeLU, the activations are analytically bounded below by Csj y = 0.27846 and
CoeLu = 0.169971 respectively. Consequently, assuming a layer with SiLLU activation with input x
and weights W, we have:

Q. (Qa(z + Csiv)Qa(W)) ~ ((z + CSiLU)aWa)% =W + CsiLuW)

The bias term Cs;,yW induces a very slight computation overhead which is standard in asymmetric
quantization. We provide a detailed empirical evaluation of this cost in Appendix |G| Using the
adequate value for the bias corrector, we can generalize equation [5to any activation function o. The
quantization process and inference with the quantized DNN are summarized in Algorithm T|and [2]
The proposed representation is fully compatible with integer multiplication as defined in|Jacob et al.
(2018), thus it is fully compatible with integer only inference (see appendix [F] for more details).

Algorithm 1 Weight Quantization Algorithm

Require: trained neural network F' with L layers to quantize, number of bits b

a < solver(min{error(F, a)}) > in practice we use the Nelder—-Mead method
fori e {1,...,L} do
Wiign — sign(W7) > save the sign of the scalar values in W
Wi = Weign % |[Wi|* > power transformation
S 4 T I\‘iV{I B> get quantization scale
Q: Wi | %] and Q71 W s Wiy X W x s|e > qdefine Q and Q!
end for

4 EXPERIMENTS

In this section, we empirically validate our method. First, we discuss the optimization of the expo-
nent parameter a of PowerQuant using the reconstruction error, showing its interest as a proxy for the
quantized model accuracy from an experimental standpoint. We show that the proposed approach
preserves this reconstruction error significantly better, allowing a closer fit to the original weight dis-
tribution through non-uniform quantization. Second, we show through a variety of benchmarks that

Arxiv version

Algorithm 2 Simulated Inference Algorithm

Require: trained neural network F' quantized with L layers, input X and exponent a*
forl e {1,...,L} do

X X > X is assumed positive (see equation (3))
X9 | Xsx] > where sx is a scale in the input range
O+ F(X9) > O contains the quantized output of the layer
1
X (:X(SOM)/) ‘ > where o is the activation function and sy the weight scale
end for
return X

the proposed approach significantly outperforms state-of-the-art data-free methods, thanks to more
efficient power function quantization with optimized exponent. Third, we show that the proposed
approach comes at a negligible cost in term of inference speed.

4.1 DATASETS AND IMPLEMENTATION DETAILS

We validate the proposed PowerQuant method on ImageNet classification (Deng et al., 2009)
(= 1.2M images train/50k test). In our experiments we used pre-trained MobileNets (Sandler
et al} [2018), ResNets (He et al.l 2016), EfficientNets (Tan & Le} [2019) and DenseNets (Huang
et al.,|2017). We used Tensorflow implementations of the baseline models from official repositories,
achieving standard baseline accuracies. The quantization process was done using Numpy library.
Activations are quantized as unsigned integers and weights are quantized using a symmetric repre-
sentation. We fold batch-normalization layers as in[Yvinec et al.| (2022a)).

We performed ablation study using the uniform quantization operator over weight values from Kr-
ishnamoorthi| (2018) and logarithmic quantization from Miyashita et al.| (2016)). For our compari-
son with state-of-the-art approaches in data-free quantization, we implemented the more complex
quantization operator from SQuant (Cong et al., 2022)). To compare with strong baselines, we also
implement bias correction (Nagel et al.||2019) (which measures the expected difference between the
outputs of the original and quantized models and updates the biases terms to compensate for this
difference) as well as input weight quantization (Nagel et al., 2019).

4.2 EXPONENT PARAMETER FITTING

Fig [3]illustrates the evolution of both the accuracy of the whole DNN and the reconstruction error
summed over all the layers of the network, as functions of the exponent parameter a. Our target is
the highest accuracy with respect to the value of a: however, in a data-free context, we only have
access to the reconstruction error. Nevertheless, as shown on Fig[3] these metrics are strongly anti-
correlated. Furthermore, while the reconstruction curve is not convex it behaves well for simplex
based optimization method such as the Nelder-Mead method. This is due to two properties: locally
convex (Appendix [C.T) and has a unique minimum (Appendix [C.2).

Empirically, optimal values a* for the exponent parameter are centered on 0.55, which approxi-
mately corresponds to the first distribution in Fig[2] Still, as shown on Table [I| we observe some
variations on the best value for a which motivates the optimization of a for each network and bit-
width. Furthermore, our results provide a novel insight on the difference between pruning and
quantization. In the pruning literature (Han et al.| 2015; [Frankle & Carbin, |2018; Molchanov et al.,
2019), the baseline method consists in setting the smallest scalar weight values to zero and keeping
unchanged the highest non-zero values, assuming that small weights contribute less to the network
prediction. In a similar vein, logarithmic or power quantization with ¢ > 1 roughly quantizes
(almost zeroing it out) small scalar values to better preserve the precision on larger values. In prac-
tice, in our case, lower reconstruction errors, and better accuracies, are achieved by setting a < 1:
this suggests that the assumption behind pruning can’t be straightforwardly applied to quantization,
where in fact we argue that finely quantizing smaller weights is paramount to preserve the patterns
learned at each layer, and the representation power of the whole network.

Arxiv version

ResNet-50 W4/A4 DenseNet-121 W4/A4
80 1,50E-2 80 2,50E-2
2,00E-2
60 5 60 5
10082 5 5
% s > 15082 ¢
© 40 = ® 40 =
5] 5 5]
3 = 3 1,00E2 2
2 " 5,00E-3 g 2 I g
2 500E-3 §
o o
0 0,00E+0 0 0,00E+0
PN T P> P LD OL NP, o PN O DT P> RO P00 NP,
oF TN VY o7 (¥ 07 (& oV NG oF 7Y OV QY o7 ¥ o7 (B o¥ (N NN
Exponenta Exponent a

Figure 3: Accuracy/reconstruction error relationship for ResNet and DenseNet quantized in W4/A4.

Table 1: Comparison between logarithmic, uniform and the proposed quantization scheme on ResNet 50 trained
for ImageNet classification task. We report for different quantization configuration (weights noted W and
activations noted A) both the top1 accuracy and the reconstruction error (equation EI)

[Architecture | Method [W-bit [A-bit [a* [Accuracy [Reconstruction Error |

Baseline 32 32 - 76.15 -
uniform 8 8 1 76.15 1.1 x10°%
logarithmic | 8 8 - 76.12 2.0 x10~*
ResNet 50 | PowerQuant | 8 8 |055| 76.15 1.0 x10~*
uniform 4 4 1 54.68 3.5 x1073
logarithmic 4 4 - 57.07 2.1 x1073
PowerQuant | 4 4 1055 70.29 1.9 x103

Another approach that puts more emphasis on the nuances between low valued weights is logarith-
mic based non-uniform quantization. In Table[T|and Appendix [E] we compare the proposed power
method to both uniform and logarithmic approaches. By definition, the proposed power method nec-
essarily outperforms the uniform method in every scenario as uniform quantization is included in
the search space. For instance, in int4, the proposed method improves the accuracy by 13.22 points
on ResNet 50. This improvement can also be attributed to a better input quantization of each layer,
especially on ResNet 50 where the gap in the reconstruction error (over the weights) is smaller.

4.3 COMPARISON WITH DATA-FREE QUANTIZATION METHODS

In table 2] we report the performance of several data-free quantization approaches on ResNet 50.
Although no real training data is involved in these methods, some approaches such as ZeroQ (Cai
et al.,[2020), DSG (Zhang et al., 2021b)) or GDFQ (Xu et al., 2020) rely on data generation (DG) in
order to calibrate parameters of the method or to apply fine-tuning to preserve the accuracy through
quantization. As shown in table |2} in the W8/AS8 setup, the proposed PowerQuant method outper-
forms other data-free solutions, fully preserving the accuracy of the floating point model. The gap is
even wider on the more challenging low bit quantization W4/A4 setup, where the PowerQuant im-
proves the accuracy by 1.93 points over SQuant (Cong et al.,|2022) and by 14.88 points over GDFQ.
This shows the effectiveness of the method on ResNet 50. We provide more results on DenseNet
(Huang et al.l 2017), MobileNet (Sandler et al., 2018)), Efficient Net (Tan & Le} |2019) in Appendix
These results demonstrate the versatility of the method on both large and very compact convnets.
In summary, the proposed PowerQuant vastly outperforms other data-free quantization schemes.

Last but not least, when compared to recent QAT methods such as OCTAV [Sakr et al.,| (2022),
PowerQuant achieves competitive results on both ResNets and MobileNets using either both static
or dynamic quantization. This is remarkable since PowerQuant does not involve any fine-tuning
of the network. We provide more details on this benchamrk in Appendix [} In what follows, we
evaluate PowerQuant on recent transformer architectures for both image and language applications.

Arxiv version

Table 2: Comparison between state-of-the-art post training quantization techniques on ResNet 50 on ImageNet.
We distinguish methods relying on data (synthetic or real) or not. In addition to being fully data-free, our
approach significantly outperforms existing methods.

| Architecture | Method | Data [W-bit [A-bit [Accuracy [gap |
Baseline - 32 32 76.15 -

DFQ|Nagel et al.| (2019) No 8 8 75.45 -0.70

ZeroQ|Cai et al.[(2020) | Synthetic 8 8 75.89 -0.26

DSG|Zhang et al.| (2021b) | Synthetic 8 8 75.87 -0.28

GDFQ|Xu et al.[(2020) | Synthetic 8 8 75.71 -0.44

SQuant|Cong et al.| (2022) No 8 8 76.04 -0.11

ResNet 50 PowerQuant No 8 8 76.15 0.00
DFQ|Nagel et al.[{(2019) No 4 4 0.10 -76.05

ZeroQ|Cai et al.|(2020) | Synthetic 4 4 7.75 -68.40

DSG|Zhang et al.|(2021b)) | Synthetic 4 4 23.10 |-53.05

GDFQ Xu et al.|(2020) | Synthetic 4 4 55.65 |-20.50

SQuant|Cong et al.| (2022) No 4 4 68.60 -7.55

PowerQuant No 4 4 70.53 -5.62

Table 3: Comparison of data-free quantization methods on ViT and DeiT trained on ImageNet.

[model | method [W / Alaccuracy| [model | method [W 7 Alaccuracy]
baseline -/- | 78.05% baseline -- 1 72.21%
DFQ (ICCV 2019) | 8/8 [70.33% DFQ (ICCV 2019) | 8/8 [71.32%
SQuant (ICLR 2022)| 8/8 |68.85% SQuant (ICLR 2022)| 8/8 |71.11%
PSAQ (arxiv 2022) | 8/8 |37.36% PSAQ (arxiv 2022) | 8/8 |71.56%
ViT PowerQuant 8/8 |77.46% | DeiT T PowerQuant 8/8 [72.23%
DFQ (ICCV 2019) | 4/8 [66.63% DFQ (ICCV 2019) | 4/8 [67.71%
SQuant (ICLR 2022)| 4/8 |64.62% SQuant (ICLR 2022)| 4/8 | 67.58%
PSAQ (arxiv 2022) | 4/8 |25.34% PSAQ (arxiv 2022) | 4/8 |65.57%
PowerQuant 4/8 |75.24% PowerQuant 4/8 169.77 %
(a) Evaluation for ViT Base (b) Evaluation for DeiT Tiny
[model | method [W / Alaccuracy| [model | method [W / Alaccuracy|
baseline -/- 179.85% baseline -/- | 81.85%
DFQ (ICCV 2019) | 8/8 |78.76% DFQ (ICCV 2019) | 8/8 |80.72%
SQuant (ICLR 2022)| 8/8 | 78.94% SQuant (ICLR 2022)| 8/8 | 80.60%
PSAQ (arxiv 2022) | 8/8 | 76.92% PSAQ (arxiv 2022) | 8/8 | 79.10%
DeiT S PowerQuant 8/8 179.33% | |DeiT B PowerQuant 8/8 81.26%
DFQ (ICCV 2019) | 4/8 [76.75% DFQ (ICCV 2019) | 4/8 [79.41%
SQuant (ICLR 2022)| 4/8 | 76.61% SQuant (ICLR 2022)| 4/8 |79.21%
PSAQ (arxiv 2022) | 4/8 |73.23% PSAQ (arxiv 2022) | 4/8 |77.05%
PowerQuant 4/8 |78.16% PowerQuant 4/8 | 80.67%
(c) Evaluation for DeiT Small (d) Evaluation for DeiT Base

4.4 EVALUATION ON TRANSFORMER ARCHITECTURES

In Table[3] we quantized the weight tensors of a ViT [Dosovitskiy et al.| (2021) with 85M parameters
and baseline accuracy ~ 78 as well as DeiT T,S and B [Touvron et al.|(2021) with baseline accuracies
72.2,79.9 and 81.8 and = 5M, ~ 22M, ~ 87M parameters respectively. Similarly to ConvNets, the
image transformer is better quantized using PowerQuant rather than standard uniform quantization
schemes such as DFQ. Furthermore, more complex and recent data-free quantization schemes such
as SQuant, tend to under-perform on the novel Transformer architectures as compared to ConvNets.
This is not the case for PowerQuant which maintains its very high performance even in low bit
representations. This is best illustrated on ViT where PowerQuant W4/A8 out performs both DFQ
and SQuant even when they are allowed 8 bits for the weights (W8/A8) by a whopping 4.91 points.
The proposed PowerQuant even outperforms methods dedicated to transformer quantization such as
PSAQ Li et al.| (2022) on every image transformer tested.

Arxiv version

Table 4: Complementary Benchmarks on the GLUE task quantized in W4/A8. We consider the BERT trans-
former architecture. We provide the original performance (from the article) of BERT on GLUE as well as our
reproduced results (baseline).

task original baseline uniform log SQuant | PowerQuant
CoLA 49.23 47.90 45.60 45.67 46.88 47.11
SST-2 91.97 92.32 91.81 91.53 91.09 92.23

MRPC | 89.47/85.29 | 89.32/85.41 || 88.24/84.49 | 86.54/82.69 | 88.78/85.24 | 89.26/85.34
STS-B | 83.95/83.70 | 84.01/83.87 || 83.89/83.85 | 84.01/83.81 | 83.80/83.65 | 84.01/83.87
QQP | 88.40/84.31 | 90.77/84.65 || 89.56/83.65 | 90.30/84.04 | 90.34/84.32 | 90.61/84.45
MNLI | 80.61/81.08 | 80.54/80.71 || 78.96/79.13 | 78.96/79.71 | 78.35/79.56 | 79.02/80.28

QNLI 87.46 91.47 89.36 89.52 90.08 90.23
RTE 61.73 61.82 60.96 60.46 60.21 61.45
WNLI 45.07 43.76 39.06 42.19 42.56 42.72

Table 5: ACE cost of the overhead computations introduced by PowerQuant.

| Architecture | overhead cost [accuracy in W6/A6 |

ResNet 50 0.63% 75.07
DenseNet 121 0.97% 72.71
MobileNet V2 0.57% 52.20

EfficientNet BO 0.80% 58.24

We further compare the proposed power quantization, in W4/AS8, on natural language processing
(NLP) tasks and report results in TableE} We evaluate a BERT model (Devlin et al.,[2018) on GLUE
(Wang et al.| 2018)) and report both the original (reference) and our reproduced (baseline) results. We
compare the three quantization processes: uniform, logarithmic and PowerQuant. Similarly to com-
puter vision tasks, the power quantization outperforms the other methods in every instances which
further confirms its ability to generalize well to transformers and NLP tasks. In what follows, we
show experimentally that our approach induces very negligible overhead at inference time, making
this accuracy enhancement virtually free from a computational standpoint.

4.5 INFERENCE COST AND PROCESSING TIME

The ACE metrics was recently introduced in [Zhang et al.| (2022) to provide a hardware-agnostic
measurement of the overhead computation cost in quantized neural networks. In Table[5] we evaluate
the cost in the inference graph due to the change in the activation function. We observe very similar
results to Table[I'7] The proposed changes are negligible in terms of computational cost on all tested
networks. Furthermore, DenseNet has the highest cost due to its very dense connectivity. On the
other hand, using this metric it seems that the overhead cost due to the zero-point technique from
section [3.3] for EfficientNet has no significant impact as compared to MobileNet and ResNet. In
addition, we provide a more detailed discussion on the inference and processing cost of PowerQuant
on specific hardware using dedicated tools in Appendix

5 CONCLUSION

In this paper, we pinpointed the uniformity of the quantization as a limitation of existing data-
free methods. To address this limitation, we proposed a novel data-free method for non-uniform
quantization of trained neural networks for computer vision tasks, with an emphasis on not chang-
ing the nature of the mathematical operations involved (e.g. matrix multiplication). This led us to
search among the continuous automorphisms of (R’ , x), which are restricted to the power functions
x — . We proposed an optimization of this exponent parameter based upon the reconstruction er-
ror between the original floating point weights and the quantized ones. We show that this procedure
is locally convex and admits a unique solution. At inference time, the proposed approach, dubbed
PowerQuant, involves only very simple modifications in the quantized DNN activation functions.
We empirically demonstrate that PowerQuant allows a closer fit to the original weight distributions
compared with uniform or logarithmic baselines, and significantly outperforms existing methods in

Arxiv version

a variety of benchmarks with only negligible computational overhead at inference time. In addi-
tion, we also discussed and addressed some of the limitations in terms of optimization (per-layer or
global) and generalization (non-ReL.U networks).

Future work involves the search of a better proxy error as compared with the proposed weight re-
construction error as well as the extension of the search space to other internal composition law of
R, that are suited for efficient calculus and inference.

ACKNOWLEDGMENTS

This work has been supported by the french National Association for Research and Technology
(ANRT), the company Datakalab (CIFRE convention C20/1396) and by the French National Agency
(ANR) (FaclL, project ANR-17-CE33-0002). This work was granted access to the HPC resources
of IDRIS under the allocation 2022-AD011013384 made by GENCI.

REFERENCES

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. NeurIPS, pp. 7950-7958, 2019.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving
low-bit quantization through learnable offsets and better initialization. CVPR Workshops, pp.
696-697, 2020.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Zeroq: A novel zero shot quantization framework. CVPR, pp. 13169-13178, 2020.

Wenlin Chen, James Wilson, et al. Compressing neural networks with the hashing trick. ICML, pp.
2285-2294, 2015.

Vladimir Chikin and Vladimir Kryzhanovskiy. Channel balancing for accurate quantization of wino-
grad convolutions. In CVPR, pp. 12507-12516, 2022.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural net-
works for efficient inference. ICCV Workshops, pp. 3009-3018, 2019.

Guo Cong, Qiu Yuxian, Leng Jingwen, Gao Xiaotian, Zhang Chen, Liu Yunxin, Yang Fan, Zhu
Yuhao, and Guo Minyi. Squant: On-the-fly data-free quantization via diagonal hessian approxi-
mation. ICLR, 2022.

Andrew R Conn, Katya Scheinberg, and Ph L Toint. On the convergence of derivative-free methods
for unconstrained optimization. Approximation theory and optimization: tributes to MJD Powell,
pp- 83-108, 1997.

J. Deng, W. Dong, et al. ImageNet: A Large-Scale Hierarchical Image Database. CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and Joseph H
Hassoun. Post-training piecewise linear quantization for deep neural networks. ECCV, pp. 69—
86, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. ICLR, 2018.

Sahaj Garg, Anirudh Jain, Joe Lou, and Mitchell Nahmias. Confounding tradeoffs for neural net-
work quantization. arXiv preprint arXiv:2102.06366, 2021.

10

Arxiv version

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 27, 2014.

Zbigniew Hajduk. High accuracy fpga activation function implementation for neural networks.
Neurocomputing, 247:59-61, 2017.

Kun Han, Yuxuan Wang, DeLiang Wang, William S Woods, Ivo Merks, and Tao Zhang. Learning
spectral mapping for speech dereverberation and denoising. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 23(6):982-992, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR, 2016.

Kaiming He, Xiangyu Zhang, et al. Deep residual learning for image recognition. CVPR, pp.
770-778, 2016.

Horst Herrlich. Axiom of choice, volume 1876. Springer, 2006.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
NeurlPS, 2014.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. CVPR, pp. 4700-4708, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. NeurIPS, 29, 2016.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. CVPR, pp. 2704-2713, 2018.

Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and Dongsoo
Lee. Biggemm: matrix multiplication with lookup table for binary-coding-based quantized dnns.
SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-14, 2020.

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr. biq: Post-training non-uniform
quantization based on minimizing the reconstruction error. In CVPR, pp. 12329-12338, 2022.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-
only bert quantization. In International conference on machine learning, pp. 5506-5518. PMLR,
2021.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Maximilian Lam, Michael Mitzenmacher, Vijay Janapa Reddi, Gu-Yeon Wei, and David Brooks.
Tabula: Efficiently computing nonlinear activation functions for secure neural network inference.
arXiv preprint arXiv:2203.02833, 2022.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. arXiv preprint arXiv:1909.13144, 2019.

Zhikai Li, Liping Ma, Mengjuan Chen, Junrui Xiao, and Qingyi Gu. Patch similarity aware data-free
quantization for vision transformers. arXiv preprint arXiv:2203.02250, 2022.

Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks using
logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

11

Arxiv version

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. CVPR, pp. 11264-11272, 2019.

Markus Nagel, Mart van Baalen, et al. Data-free quantization through weight equalization and bias
correction. ICCV, pp. 1325-1334, 2019.

John A Nelder and Roger Mead. A simplex method for function minimization. The computer
Jjournal, 7(4):308-313, 1965.

Michael JD Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The computer journal, 7(2):155-162, 1964.

Charbel Sakr, Steve Dai, Rangha Venkatesan, Brian Zimmer, William Dally, and Brucek Khailany.
Optimal clipping and magnitude-aware differentiation for improved quantization-aware training.
In ICML, pp. 19123-19138. PMLR, 2022.

Mark Sandler, Andrew Howard, et al. Mobilenetv2: Inverted residuals and linear bottlenecks. CVPR,
pp- 4510-4520, 2018.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. ICML, pp. 6105-6114, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347-10357. PMLR, 2021.

Mart van Baalen, Brian Kahne, Eric Mahurin, Andrey Kuzmin, Andrii Skliar, Markus Nagel, and
Tijmen Blankevoort. Simulated quantization, real power savings. In CVPR, pp. 2757-2761, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 353-355, Brussels, Belgium, November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. CVPR, pp. 4820-4828, 2016.

Shoukai Xu, Haokun Li, Bohan Zhuang, Jing Liu, Jiezhang Cao, Chuangrun Liang, and Mingkui
Tan. Generative low-bitwidth data free quantization. ECCV, pp. 1-17, 2020.

Edouard Yvinec, Arnaud Dapogny, and Kevin Bailly. To fold or not to fold: a necessary and
sufficient condition on batch-normalization layers folding. IJCAI, 2022a.

Edouard Yvinec, Arnaud Dapogny, Matthieu Cord, and Kevin Bailly. Spiq: Data-free per-channel
static input quantization. arXiv preprint arXiv:2203.14642, 2022b.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lg-nets: Learned quantization
for highly accurate and compact deep neural networks. ECCV, pp. 365-382, 2018.

Sai Qian Zhang, Bradley McDanel, HT Kung, and Xin Dong. Training for multi-resolution inference
using reusable quantization terms. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 845-860, 2021a.

Xiangguo Zhang, Haotong Qin, Yifu Ding, Ruihao Gong, Qinghua Yan, Renshuai Tao, Yuhang Li,
Fengwei Yu, and Xianglong Liu. Diversifying sample generation for accurate data-free quantiza-
tion. CVPR, pp. 15658-15667, 2021b.

Yichi Zhang, Zhiru Zhang, and Lukasz Lew. Pokebnn: A binary pursuit of lightweight accuracy. In
CVPR, pp. 12475-12485, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. ICML, pp. 7543-7552, 2019.

12

https://aclanthology.org/W18-5446

Arxiv version

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights. ICLR, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

13

Arxiv version

A PROOF OF LEMMA

In this section, we provide a simple proof for lemma [T as well as a discussion on the continuity
hypothesis.

Proof. We have that Vo € Ry, Q(x) x Q(0) = Q(0) and Va € R4, Q(x) x Q(1) = Q(z) which
induces that @ is either the constant 1 or Q(0) = 0 and Q(1) = 1. Because @ is an automorphism
we can eliminate the first option. Now, we will demonstrate that () is necessarily a power function.
Let n be an integer, then

Q(z") = Q(z) x Q(z"71) = Q(2)* x Q(z") = --- = Q()". (6)

Similarly, for fractions, we get Q(z7) x --- x Q(z7) = Q(z) < Q(2+) = Q(z)#. Assuming Q
is continuous, we deduce that for any rational a € R, we have

Q(z") = Q(z)" (7)

In order to verify that the solution is limited to power functions, we use a reductio ad absurdum.
Assume @ is not a power function. Therefore, there exists (z,y) € R? and a € R such that
Q(z) # 2* and Q(y) = y®. By definition of the logarithm, there exists b such that 2° = y. We get
the following contradiction, from (7),

Q(x"") = Qy*) = y° ®
Q") = Q") = Q(z%)" # (2 = y*)

Consequently, the suited functions @ are limited to power functions i.e. @ = {Q : z — x%a €
R}.

We would also like to put the emphasis on the fact that there are other Automorphisms of (R, x).
However, the construction of such automorphisms require the axiom of choice Herrlichl (2006).
Such automorphisms are not applicable in our case which is why the key constraint is being an
automorphism rather than the continuous property.

B NORM SELECTION

In the minimization objective, we need to select a norm to apply. In this section, we provide the-
oretical arguments in favor of the [? vector norm. Let F be a feed forward neural network with L
layers to quantize, each defined by a set of weights W; = (w;); ; € R™*™ and bias b; € R™. We

note (/\l(i))i the eigenvalues associated with W;. We want to study the distance d(F, F,) between
the predictive function F' and its quantized version F, defined as

d(F, Fa) = max || F(z) — Fa(2)]» ©)

where D is the domain of F'. We prove that minimizing the reconstruction error with respect to a is
equivalent to minimizing d(F, F,) with respect to a. Assume L = 1 for the sake of simplicity and
we drop the notation /. With the proposed PowerQuant method, we minimize the vector norm

IW = Qe (QuW)IE = > max fwij — Q7 (Qalwis)I” (10)

1<=n

For p = 2, the euclidean norm is equal to the spectral norm, thus minimizing ||W —Q;(Qa.(W))||2
is equivalent to minimizing d(F, F,,) for L = 1. However, we know that minimizing for another
value of p may result in a different optimal solution and therefore not necessarily minimize d(F, Fy,).

In the context of data-free quantization, we want to avoid uncontrollable changes on F', which is
why we recommend the use of p = 2.

14

Arxiv version

C MATHEMATICAL PROPERTIES

C.1 LocAL CONVEXITY

We prove that the minimization problem defined in equation [3]is locally convex around the solution

a*. Formally we prove that
v [z - Q' (Qu(@))], (n

is locally convex around a* defined as arg min,, ||z — Q' (Qa(z)) ||p.

Lemma 2. The minimization problem defined as
argmin{Hx—le(Qa(x))Hp} (12)
a

is locally convex around any solution a*.

Proof. We recall that % = 2%log(z). The function ||z — Q;' (Qa(x))|| is differentiable. We
assume x € R, then we can simplify the sign functions (assume x positive without loss of generality)
and note y = max

a

00 @ulw) _ 9@ - D3| ¥

a

Oa - Oa ’ (13
This simplifies to
005" (Qu()) 8(LB§)@J>G
Q. (Qa(z _
9% =y 90) (14)

with B = 2°~! — 1. By using the standard differentiation rules, we know that the rounding operator
has a zero derivative a.e.. Consequently we get,

a 1 a
00 @), (12()] 2() |
a =— 1 . 15
9 avy B og B (15)
Now we can compute the second derivative of Q! (Q,(z)),
1 a
2ar @) _ o (PG L (1P C)]
2 Xa \walW/) _ L 7/ 1 1 L 77 1. 16
a2 ay B og B (16)
From this expression, we derive the second derlvatlve using the property (fog)' = f"ogxg?+
2
f' o g x ¢" and the derivatives | - | = a7 ? and | - \ 5 = 1p plzl; G , then for any z; € x

0o — Q" (Qu(@))| _ 1—plwi — Qa (Qalwi)|? (562 (Qa(%)))2

aa2 N p2 (x’b - Qa (Qa(l‘z)) aa (17)
(i — QM (Q@) — Q1 (Qa(w:)| 7> °Q5 ! (Qu(@))
+ P Oa?

_ 2
We now note the first term in the previous addition 77 = 152 2= P CHER] g (aQ“ (Qa(@))) and

p? (-'L'z (Q (%:))? da

the second term as a product of Tp = &= Q' (Qu())‘II _1(Q“(’)lpi times Ts = M
We know that 77 > 0 and 75 > 0, consequently, and T5 is contmuous in a. At a* the terms
Q (Qa(@) 419 (aQa (Qa<z)))

Oa? da :

9% |zi— Q7 (Qa (s
0a?

with |z; — Q1 (Qu(w;)) | are negligible in comparison with 2

Consequently, there exists an open set around a* where T} > |T5|T5, and
This concludes the proof. O

15

Arxiv version

Table 6: Minimization of the reconstruction error on a MobileNet V2 for W6/A6 quantization with different
solvers.

| Solver | a* [reconstruction error [accuracy |
Nelder-Mead 0.750 1.12 64.248
Powell (Powell, |1964) 0.744 1.10 64.104
COBYLA (Conn et al.,|1997) | 0.752 1.11 64.364

C.2 UNIQUENESS OF THE SOLUTION

In this section we provide the elements of proof on the uniqueness of the solution of the minimization
of the quantization reconstruction error.

Lemma 3. The minimization problem over x € RY defined as
argmain{Hx—le (Qa(x))Hp} (18)

has almost surely a unique global minimum a*.

Proof. We assume that = can not be exactly quantized, i.e. min, {Hx - Q;t (Qa(x))Hp} > 0

which is true almost everywhere. We use a reductio ad absurdum and assume that there ex-
ist two optimal solutions a; and as to the optimization problem. We expand the expression

[ERo (Qa(x))Hp and get

1
» B by sign(@) x Jof° | max|al|*

||x -Q, (Qa(x))Hp = ||z — ‘ {(2 -1 max ol | P11 sign(z)|| . (19)

We note the rounding term R, and get
1 B max |x|® ‘o
Hm -Q, (Qa(x))Hp = ||z — ’Ra2b1 — sign(x) (20)
P
Jt
Assume R,, = R,, = R, the minimization problem argmin, ||z — ‘Rr;ffl‘fll “sign(x)|| is
P

convex and has a unique solution, thus a; = as. Now assume R,, # R,,.

Let’s denote D(R) the domain of power values a over which we have [(21’*1 -1 %J = R.
If there is a value @ outside of D(R,,) U D(R,,) such that R’ has each of its coordinate strictly
between the coordinates of R,, and R,,, then, without loss of generality, assume that at least half
of the coordinates of I7,, are further away from the corresponding coordinates of = than one quan-

tization step. This implies that there exists a value a’ in D(R’) such that ||z — Q' (Qu () Hp <

||x — Q1 (Qa, (2)) ||p. which goes against our hypothesis. Thus, there are up to N possible values

for R that minimize the problem which happens iff x satisfies at least one coordinate can be either
ceiled or floored by the rounding. The set defined by this condition has a zero measure. O

D SOLVER FOR MINIMIZATION

In the main article we state that we can use Nelder-Mead (Nelder & Mead, |1965) solver to find the
optimal a*. We tested several other solvers and report the results in Table [6] The empirical results
show that basically any popular solver can be used, and that the Nelder-Mead solver is sufficient for
the minimization problem.

E COMPARISON BETWEEN LOG, NAIVE AND POWER QUANTIZATION
COMPLEMENTARY RESULTS

To complement the results provided in the main paper on ResNet 50, we list in Table [7jmore quan-
tization setups on ResNet 50 as well as DenseNet 121. To put it in a nutshell, The proposed power

16

Arxiv version

Table 7: Comparison between logarithmic, uniform and the proposed quantization scheme on ResNet 50 and
DenseNet 121 trained for ImageNet classification task. We report for different quantization configuration
(weights noted W and activations noted A) both the top1 accuracy and the reconstruction error (equation E])

| Architecture [Method | W-bit [A-bit | a* [Accuracy | Reconstruction Error |

Baseline 32 32 - 76.15 -
uniform 8 8 1 76.15 1.1 x10~%
logarithmic 8 8 - 76.12 2.0 x1074
PowerQuant | 8 8 1055 76.15 1.0 x10~*
ResNet 50 uniform 6 6 1 75.07 8.0 x 10_4
logarithmic | 6 6 - 75.37 4.6 x1074
power (ours) | 6 6 |050| 75.95 4.3 x10~*
uniform 4 4 1 54.68 3.5 x1073
logarithmic 4 4 - 57.07 2.1 x1073
PowerQuant | 4 4 10.55] 7029 1.9 x10—3
Baseline 32 32 - 75.00 -
uniform 8 8 1 75.00 2.8 x107%
logarithmic 8 8 - 74.91 2.5 x1074
PowerQuant | 8 8 10.60| 75.00 2.2 x1074
DenseNet 121 uniform 6 6 1 74.47 1.1 x 10_d
logarithmic | 6 6 - 72.71 1.0 x1073
power (ours) | 6 6 050 74.84 0.7 x1073
uniform 4 4 1 54.83 47 x10~3
logarithmic 4 4 - 5.28 4.8 x1073
PowerQuant | 4 4 10.55| 68.04 3.1 %103

quantization systematically achieves significantly higher accuracy and lower reconstruction error
than the logarithmic and uniform quantization schemes. On a side note, the poor performance of the
logarithmic approach on DenseNet 121 can be attributed to the skewness of the weight distributions.
Formally, ResNet 50 and DenseNet 121 weight values show similar average standard deviations
across layers (0.0246 and 0.0264 respectively) as well as similar kurtosis (6.905 and 6.870 respec-
tively). However their skewness are significantly different: 0.238 for ResNet 50 and more than
twice as much for DenseNet 121, with 0.489. The logarithmic quantization, that focuses on very
small value is very sensible to asymmetry which explains the poor performance on DenseNet 121.
In contrast, the proposed method offers a robust performance in all situations.

F HOW TO PERFORM MATRIX MULTIPLICATION WITH POWERQUANT

The proposed PowerQuant method preserves the multiplication operations, i.e. a multiplication in
the floating point space remains a multiplication in the quantized space (integers). This allows one
to leverage current implementations of uniform quantization available on most hardware |(Gholami
et al.| (2021)); [Zhou et al.| (2016). However, while PowerQuant preserves multiplications it doesn’t
preserve additions which are significantly less costly than multiplications. Consequently, in order to
infer under the PowerQuant transformation, instead of accumulating the quantized products, as done
in standard quantization [Jacob et al.| (2018), one need to accumulate the powers of said products.
Formally, let’s consider two quantized weights w1, w2 and their respective quantized inputs x1, To.
The standard accumulation would be performed as follows wix1 +wsx2. In the case of PowerQuant,
this would be done as (wyx1)# + (wax2) = . Previous studies on quantization have demonstrated that
such power functions can be computed with very high fidelity at almost no latency cost Kim et al.
(2021)).

G OVERHEAD COST OF ZERO-POINTS IN ACTIVATION QUANTIZATION

The overhead cost introduced in equation [5 is well known in general in quantization as it arises
from asymmetric quantization. Nonetheless, we share here (as well as in the article) some empirical
values.

17

Arxiv version

Table 8: Overhead induced by asymmetric quantization

[Architecture | parameters overhead [run-time overhead (CPU intel-m3) |

ResNet50 0.25% 4.35%
EfficientNet 0.20% 3.38%
ViT bl6 0.73% 5.14%

Table 9: Comparison between the per-layer and global method of power parameter a fitting on a ResNet 5a
trained for ImageNet classification task.

[Architecture | Method | W-bit | A-bit | Accuracy [Reconstruction Error |
Baseline | 32 32 76.15

per-layer | 8 8 76.14 0.8 x10~ 2

ResNet 50 | global 8 8 76.15 1.0 x10~4
per-layer | 4 4 64,19 1.7 x1073

global 4 4 70.29 1.9 x1073

These are empirical results from our own implementation. We include ResNet50 as it can also
be quantized using asymmetric quantization although in our research, we only applied asymmetric
quantization to SilU and GeLU based architectures. We included these results in the appendix of
the revised article. It is worth noting that according to LSQ+ Bhalgat et al.[(2020), asymmetric
quantization can be achieved at virtually not run-time cost.

H LIMITATIONS OF THE RECONSTRUCTION ERROR METRIC

In the proposed PowerQuant method, we fit the parameter a based on the reconstruction error over
all the weights, i.e. over all layers in the whole network. Then, we perform per-channel quantization
layer by layer independently. However, if the final objective is to minimize the reconstruction error
from equation (3)), a more efficient approach would consist in fitting the parameter a separately for
each layer. We note a; such that for every layer [we have

af = argmin {[|Wi - Q" (Qu(M))]], } @1

Then the network (F (a1)*) quantized with a per—layer fit of the power parameter will satisfy

ZHWZ o (Qa,(W1)) <Z||Wz a (Qa(W))], (22)

if and only if their exists at least one [such that ¢, ;é a. Consequently, if the reconstruction error
was a perfect estimate of the resulting accuracy, the per-layer strategy would offer an even higher
accuracy than the proposed PowerQuant method. Unfortunately, the empirical evidence, in table
[9 shows that the proposed PowerQuant method achieves better results in every benchmark. This
observation demonstrates the limits of the measure of the reconstruction error. We explain this phe-
nomenon by the importance of inputs and activations quantization. This can be seen as some form
of overfitting the parameters a; on the weights which leads to poor performance on the activation
quantization and prediction. In the general sens, this highlights the limitations of the reconstruction
error as a proxy for maximizing the accuracy. Previous results can be interpreted in a similar way.
For instance, in SQuant |(Cong et al.| (2022) the author claim that it is better to minimize the abso-
lute sum of errors rather than the sum of absolute errors and achieve good performance in data-free
quantization.

I IMPROVEMENT WITH RESPECT TO QAT

In the introduction, we argued that data-driven quantization schemes performance define an upper-
bound on data-free performance. Our goal was to narrow the resulting gap between these methods.
In Table[I0] we report the evolution in the gap between data-free and data-driven quantization tech-
niques. These empirical results validate the significant improvement of the proposed method at
narrowing the gap between data-free and data-driven quantization methods by 26.66% to 29.74%.

18

Arxiv version

Table 10: Performance Gap as compared to Data-driven techniques on ResNet 50 quantization in W4/A4. The
relative gap improvement to the state-of-the-art SQuant [6], is measured as 292 with gs = M and

*—PowerQuant

g
gp =

where * is the performance of a data-driven method

| data-driven method

| SQuant [PowerQuant [relative gap |

Table 11: Performance gap between data-free PowerQuant and short-retraining OCTAV |Sakr et al.| (2022).

OCTAV [Sakr et al.[(2022)) (ICML) 8,72% 6,15% +29,47%

SQvan Baalen et al.[(2022) (CVPR) 8,64% 6,07 % +29,74%
WinogradQ (Chikin & Kryzhanovskiy|(2022) (CVPR) | 9,55% 7,00 % +26,66%
Mr BiQJeon et al.[(2022) (CVPR) 8,74% 6,17 % +29,38%

| method | architecture [quantization | accuracy |
PowerQuant | ResNet 50 W4/A4 70.53
OCTAV ResNet 50 W4/A4 75.84
PowerQuant | MobileNet V2 W4/A4 45.84
OCTAV | MobileNet V2 W4/A4 0.66

Table 12: Performance gap between PowerQuant and OCTAV |Sakr et al.| (2022) (using an additional short

retraining), both using dynamic range estimation.

| method | architecture [quantization | accuracy |
PowerQuant | ResNet 50 W4/A4 76.02
OCTAV ResNet 50 W4/A4 76.46
PowerQuant | MobileNet V2 W4/A4 71.65
OCTAV MobileNet V2 W4/A4 71.23

In order to complete our comparison to QAT methods, we considered the short-re-training (30
epochs) regime from OCTAV in Table [TT] We can draw two observations from this comparison.
First, on ResNet 50, OCTAV achieves remarkable results by reach near full-precision accuracy. Still
the proposed method does not fall too far back with only 5.31 points lower accuracy while being
data-free. Second, on very small models such as MobileNet V2, using a strong quantization oper-
ator rather than a short re-training leads to a huge accuracy improvement as PowerQuant achieves
45.18 points higher accuracy. This is also the finding of the author in OCTAYV, as they conclude
that models such as MobileNet tend to be very challenging to quantize using static quantization and
short re-training.

In Table[I2] we draw a comparison between the proposed PowerQuant and the QAT method OCTAV
Sakr et al.|(2022)), both using dynamic quantization (i.e. estimating the ranges of the activations on-
the-fly depending on the input). As expected, the use of dynamic ranges has a considerable influence
on the performance of both quantization methods. As can be observed the QAT method OCTAV
achieved very impressive results and even outperforming the full-precision model on ResNet 50.
Nevertheless, it is on MobileNet that the influence of dynamic ranges is the most impressive. For
OCTAY, we observe a boost of almost 71 points going from almost random predictions to near exact
full-precision accuracy. It is to be noted that PowerQuant does not fall shy in front of these perfor-
mances, as using static quantization we still manage to preserve some of the predictive capability of
the model. Furthermore, using dynamic quantization, Powerquant achieves similar accuracies than
OCTAYV while not involving any fine-tuning, contrary to OCTAV.

All in all, we can conclude that the proposed data-free method manages to hold close results to a
state-of-the-art QAT method in some context. An interesting future work could be the extension
of PowerQuant as a QAT method and possibly learning the power parameter a that we use in our
quantization operator.

J COMPARISON TO STATE-OF-THE-ART DATA-FREE QUANTIZATION ON
OTHER CONVNETS

In addition to our evaluation on ResNet, we propose some complementary results on DenseNet in
Table|13|as well as the challenging and compact architectures MobileNet and EfficientNet in Table

19

Arxiv version

Table 13: Comparison between state-of-the-art post-training quantization techniques on DenseNet 121 on Im-
ageNet. We distinguish methods relying on data (synthetic or real) or not. In addition to being fully data-free.
our approach significantly outperforms existing methods.

| Architecture | Method | Data | W-bit | A-bit [Accuracy [gap |
Baseline - 32 32 75.00 -
DFQ Nagel et al.[{(2019) No 8 8 74.75 -0.25
SQuant|Cong et al.[(2022) No 8 8 74.70 -0.30
OMSE |Choukroun et al.[(2019) | Real 8 8 74.97 -0.03
SPIQ|Yvinec et al.| (2022b) No 8 8 75.00 -0.00
DenseNet 121 PowerQuant No 8 8 75.00 -0.00
DFQ|Nagel et al.[(2019) No 4 4 0.10 -74.90
SQuant |Cong et al.[(2022) No 4 4 47.14 | -27.86
SPIQ|Yvinec et al.| (2022b) No 4 4 51.83 |-23.17
OMSE |Choukroun et al.[(2019) | Real | 4 4 57.07 |-17.93
PowerQuant No 4 4 69.37 -5.63
Table 14: Complementary Benchmarks on ImageNet
[Architecture | Method | Data | W-bit | A-bit [Accuracy [gap |
Baseline - 32 32 71.80 -
DFQ (ICCV 2019) | No 8 8 70.92 -0.88
SQuant (ICLR 2022) | No 8 8 71.68 -0.12
SPIQ (WACV 2023) | No 8 8 71.79 -0.01
MobileNet V2 PowerQuant No 8 8 71.81 +0.01
DFQ (ICCV 2019) | No 4 4 27.1 -44.770
SQuant (ICLR 2022) | No 4 4 28.21 | -43.59
SPIQ (WACV 2023) | No 4 4 31.28 |-40.52
PowerQuant No 4 4 45.84 25.96
Baseline - 32 32 77.10 -
DFQ (ICCV 2019) | No 8 8 76.89 -0.21
SQuant (ICLR 2022) | No 8 8 76.93 -0.17
SPIQ (WACV 2023) | No 8 8 77.02 -0.08
EfficientNet BO PowerQuant No 8 8 77.05 -0.05
DFQ (ICCV 2019) | No 6 6 43.08 |-34.02
SQuant (ICLR 2022) | No 6 6 54.51 |-32.59
SPIQ (WACV 2023) | No 6 6 74.67 -2.43
PowerQuant No 6 6 75.13 -1.97

[[4] as well as weights only for Bert in Table [I6] In table we report the performance of other
data-free quantization processes on DenseNet 121. The OMSE method (Choukroun et al., [2019)
is a post-training quantization method that leverages validation examples during quantization, thus
cannot be labelled as data-free. Yet, we include this work in our comparison as they show strong
performance in terms of accuracy at a very low usage of real data. As showcased in table[T3] the
proposed PowerQuant method almost preserves the floating point accuracy in W8/A8 quantization.
Additionally, on the challenging W4/A4 setup, our approach improves the accuracy by a remarkable
12.30 points over OMSE and 17.54 points over SQuant. This is due to the overall better efficiency
of non-uniform quantization, that allows a theoretically closer fit to the weight distributions of each
DNN layer. The results on MobileNet and EfficientNet from Table[I4]confirm our previous findings.
We observe a significant boost in performance from PowerQuant as compared to the other very
competitive data-free solutions.

K OVERHEAD COST DISCUSSION

In this section, we provide more empirical results on the inference cost of the proposed method.
Table[I7]shows the inference time of DNNs quantized with our approach (which only implies modi-
fications of the activation function and a bias correction-see Section[3.3)). For DenseNet, ResNet and
MobileNet V2, the baseline activation function is the ReL.U, which is particularly fast to compute.

20

Arxiv version

Table 15: Complementary Benchmarks on Vision Transformers for ImageNet

| Architecture | Method | Data | W-bit | A-bit [Accuracy | gap |
Baseline - 32 32 78.524 -
DFQ (ICCV 2019) | No 8 8 77.612 [-0.912
SQuant (ICLR 2022) | No 8 8 77.638 | -0.886
CaiT xxs24 PowerQuant No 8 8 77.718 | -0.806
DFQ (ICCV 2019) | No 4 8 74.192 |-4.332
SQuant (ICLR 2022) | No 4 8 74.224 | -4.300
PowerQuant No 4 8 75.104 | -3.420
Baseline - 32 32 79.760 -
DFQ (ICCV 2019) | No 8 8 79.000 |-0.760
SQuant (ICLR 2022) | No 8 8 78.914 | -0.846
CaiT xxs36 PowerQuant No 8 8 79.150 | -0.610
DFQ (ICCV 2019) | No 4 8 76.906 |-2.854
SQuant (ICLR 2022) | No 4 8 76.896 | -2.864
PowerQuant No 4 8 77.702 | -2.058
Baseline - 32 32 83.368 -
DFQ (ICCV 2019) | No 8 8 82.802 | -0.566
SQuant (ICLR 2022) | No 8 8 82.784 |-0.584
CaiT s24 PowerQuant No 8 8 82.766 | -0.602
DFQ (ICCV 2019) | No 4 8 81.474 |-1.894
SQuant (ICLR 2022) | No 4 8 81.486 |-1.882
PowerQuant No 4 8 81.612 | -1.756

Table 16: Complementary Benchmarks on the GLUE task. We consider the BERT transformer architecture.
We provide the reference performance of BERT on GLUE as well as our reproduced results (baseline).

task | (reference) | baseline uniform log power
CoLA 49.23 47.90 46.24 46.98 47.77
SST-2 91.97 92.32 91.28 91.85 92.32
MRPC | 89.47/85.29 | 89.32/85.41 || 86.49/81.37 | 86.65/82.86 | 89.32/85.41
STS-B | 83.95/83.70 | 84.01/83.87 || 83.25/83.14 | 84.01/83.81 | 84.01/83.87

QQP | 88.40/84.31 | 90.77/84.65 || 90.23/84.61 | 90.76/84.65 | 90.77/84.65
MNLI | 80.61/81.08 | 80.54/80.71 || 79.72/79.13 | 79.22/79.71 | 80.54/80.71
QNLI 87.46 91.47 90.32 91.43 91.47

RTE 61.73 61.82 59.23 61.27 61.68
WNLI 45.07 43.76 40.85 42.80 42.85

Nevertheless, our results show that our approach leads to only increasing by 1% the whole inference
time on most networks. More precisely, in the case of ResNet 50, the change in activation function
induces a slowdown of 0.15%. The largest runtime increase is obtained on DenseNet with a 3.4% in-
crease. Lastly, note that our approach is also particularly fast and efficient on EfficientNet BO, which
uses SiLU activation, thanks to the bias correction technique introduced in Section@ Overall, the
proposed approach can be easily implemented and induces negligible overhead in inference on GPU.
To furthermore justify the practicality of the proposed quantization process, we recall that the only
practicality concern that may arise is on the activation function as the other operations are strictly
identical to standard uniform quantization. According to Kim et al.|(2021) efficient power functions
can be implemented for generic hardware as long as they support standard integer arithmetic, i.e.
as long as they support uniform quantization. When it comes to Field-Programmable Gate Array
(FPGA), activation functions are implemented using look-up tables (LUT) as detailed in [Hajduk
(2017). More precisely, they are pre-computed using Padé approximation which are quotients of
polynomial functions. Consequently the proposed approach would simply change the polynomial
values but not the inference time as it would still rely on the same number of LUTs.

In general, activation functions that are non-linear can be very effectively implemented in quantiza-
tion runtime Lam et al.| (2022). However these considerations are hardware agnostic. In order to
circumvent this limitation and address any concerns to our best, we conducted a small study using

21

Arxiv version

Table 17: Inference time, in seconds, over ImageNet using batches of size 16 of several networks on a 2070
RTX GPU. We also report the accuracy for W6/A6 quantization setup.

| Architecture | Method [inference time (gap) [accuracy |
ReSNetS0 | pover Function | 164 (+02) 7os
DenseNet 121 | p o teon 1671(6+24.8) sy
MobileNet V2. | b o ion 86 (8+50.7) e
EificientNet BO | po /Mo Bion | 127 (2.2 o6 38

Table 18: Inference cost each component of a convolutional layer and percentage of total in terms of number
of cycles on a wide range of simulated hardware using nntool from GreenWaves.

operation number of cycles | number of ops | % of total cycles | % of total ops
convolution 22950 442368 85.482% 99.310%
bias 2033 1024 7.573% 0.229%
relu 924 1024 3.442% 0.229%
power function 940 1024 3.502% 0.229%

Table 19: We report the processing time in seconds (on an Intel(R) Core(TM) i19-9900K CPU) required to
quantize a trained neural network such as ResNet, MobileNet, DenseNet or EfficientNet.

| Architecture [GDFQ [SQuant | Uniform [Power |

MobileNet V2 | 7.10° 134 <1 <1
ResNet 50 | 11.10% | 320 <1 1.3

the simulation tool nntool from GreenWaves, a risc-v chips manufacturer that enables to simulate
inference cost of quantized neural networks on their gap unit. We tested a single convolutional
layer with bias and relu activation plus our power quantization operation and reported the number of
cycles and operations. These results demonstrate that even without any optimization the proposed
method has a marginal computational cost on MCU inference which corroborates our previous em-
pirical results. We would like to put the emphasis on the fact that this cost could be further reduced
via optimizing the computation of the power function using existing methods such as [Kim et al.
(2021). Similarly, we measure the empirical time required to perform the proposed quantization
method on several neural networks and report the results in table These results show that the
proposed PowerQuant method offers outstanding trade-offs in terms of compression and accuracy
at virtually no cost over the processing and inference time as compared to other data-free quantiza-
tion methods. For instance, SQuant is a sophisticated method that requires heavy lifting in order to
efficiently process a neural network. On a CPU, it requires at least 100 times more time to reach a
lower accuracy than the proposed method as we will showcase in our comparison to state-of-the-art
quantization schemes.

22

	1 Introduction
	2 Related Work
	2.1 Quantization
	2.2 Non-Uniform Quantization

	3 Methodology
	3.1 Automorphisms of R
	3.2 Automorphism Search as a Minimization Problem
	3.3 Fused De-Quantization and Activation Function

	4 Experiments
	4.1 Datasets and Implementation Details
	4.2 Exponent parameter Fitting
	4.3 Comparison with Data-Free Quantization Methods
	4.4 Evaluation on Transformer Architectures
	4.5 Inference Cost and Processing Time

	5 Conclusion
	A Proof of Lemma 1
	B Norm Selection
	C Mathematical Properties
	C.1 Local Convexity
	C.2 Uniqueness of the Solution

	D Solver For Minimization
	E Comparison between Log, naive and Power quantization Complementary Results
	F How to perform Matrix Multiplication with PowerQuant
	G Overhead Cost of Zero-Points in Activation Quantization
	H Limitations of the Reconstruction Error Metric
	I Improvement with respect to QAT
	J Comparison to State-Of-The-Art Data-Free Quantization on other ConvNets
	K Overhead Cost Discussion

