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Abstract

In this paper, we present a stochastic gradient algorithm for minimizing a smooth objective function that is

an expectation over noisy cost samples, and only the latter are observed for any given parameter. Our algorithm

employs a gradient estimation scheme with random perturbations, which are formed using the truncated Cauchy

distribution from the δ sphere. We analyze the bias and variance of the proposed gradient estimator. Our algo-

rithm is found to be particularly useful in the case when the objective function is non-convex, and the parameter

dimension is high. From an asymptotic convergence analysis, we establish that our algorithm converges almost

surely to the set of stationary points of the objective function and obtain the asymptotic convergence rate. We

also show that our algorithm avoids unstable equilibria, implying convergence to local minima. Further, we per-

form a non-asymptotic convergence analysis of our algorithm. In particular, we establish here a non-asymptotic

bound for finding an ǫ-stationary point of the non-convex objective function. Finally, we demonstrate numerically

through simulations that the performance of our algorithm outperforms GSF, SPSA and RDSA by a significant

margin over a few non-convex settings and further validate its performance over convex (noisy) objectives.

1 Introduction

In this paper, we consider the following stochastic optimization (SO) problem:

Find f∗ := inf
x∈Rd

{

f(x) =

∫

Ξ

F (x, ξ)dP (ξ)

}

, (1)

where f : Rd → R is a smooth function that could be highly nonlinear with multiple local minima, ξ is the noise

random variable (r.v.) with support Ξ, and F (x, ξ) is a noisy observation of the function value f(x). We do not

assume precise gradient information is available. Instead, gradients need to be estimated using the aforementioned

noisy observations at certain parameter values.

Stochastic approximation (SA) is an important technique for solving SO problems. Robbins and Monro (1951)

first proposed the SA approach for the problem of root finding and Kiefer and Wolfowitz (1952) presented the

first application of SA for solving SO problems. Many popular incremental-update procedures for root finding

involving noisy function observations are SA algorithms. These algorithms are employed for back-propagation in

neural networks (Gawthrop and Sbarbaro, 1990), for solving least squares objectives (Yao et al., 2009), and finding

optimal policies in reinforcement learning problems (Bertsekas, 2019). As a result, advancements in general SA

methodology have an impact on a wide range of applications.

We consider in this paper a stochastic gradient (SG) algorithm based on gradient estimates obtained from

noisy function observations. SG algorithms that update without direct (though possibly noisy) observations of

the function gradient are referred to as zeroth order SO algorithms. The first such algorithm was presented in

Kiefer and Wolfowitz (1952), and requires 2d function observations per iteration since it perturbs each parameter

component separately.

Such an approach does not scale well in terms of the computational complexity as the parameter dimension d
is increased.
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The random directions stochastic approximation (RDSA) method has been presented in Kushner and Clark

(1978b) and also explored in Chin (1997). The idea here is to randomly perturb all parameter components simulta-

neously using random vectors that are uniformly distributed over the surface of the unit sphere. In Prashanth et al.

(2017), independent, symmetric, uniformly distributed perturbations have been explored and both gradient and

Newton RDSA algorithms have been proposed and analyzed for their asymptotic convergence properties and rates.

The smoothed functional (SF) algorithm based on independent Gaussian random perturbations has been in-

dependently studied in Katkovnik and Kulchitsky (1972); Kreimer and Rubinstein (1972); Nesterov and Spokoiny

(2017); Bhatnagar et al. (2013). We shall refer to this algorithm as GSF. The idea underlying GSF is to approximate

the convolution of the objective-function gradient with a multi-variate Gaussian PDF with the convolution of the

objective function with a scaled Gaussian. Thus, this procedure works with only one simulation regardless of the

parameter dimension. A two-simulation finite-difference version of the same with lower bias has been studied in

Styblinski and Tang (1990) and Chin (1997). In Bhatnagar (2007), Newton-based algorithms with biased gradient

and Hessian estimates obtained from Gaussian perturbations have been analyzed for their asymptotic convergence.

The simultaneous perturbation stochastic approximation (SPSA) algorithm, see Spall (1992), has also gathered

attention due to the low computational effort required in this scheme as well as the ease of implementation. This al-

gorithm randomly perturbs all parameter components simultaneously by using perturbation random variates whose

properties are commonly satisfied by independent, symmetric, zero-mean, Bernoulli r.v.

Our contributions. We now summarize our contributions below.

(a) SG with Cauchy perturbations: For solving the SO problem (1), we propose an SG algorithm, which performs

gradient estimation using SF estimates based on d-dimensional truncated Cauchy perturbations inside a sphear of

radius δ.

(b) Asymptotic convergence: We prove that our algorithm converges asymptotically to the set of local minima of

the objective function f . Note here that one can ordinarily prove convergence of an SG algorithm to the set of

equilibria of the associated gradient ODE. These points however also include local maxima and saddle points (in

addition to local minima) of the given objective function. We however prove by verifying a result from Pemantle

(1990) that the convergence of our algorithm is only to local minima. In fact, the other fixed points (that are not

local minima) are unstable equilibria of the ODE and which we show are avoided by the algorithm in the limit. A

result of this nature has not been claimed for GSF, to the best of our knowledge.

(c) Asymptotic convergence rate: Our algorithm provides better asymptotic mean-squared error (AMSE) as com-

pared to SPSA and GSF, which are two very popular schemes for gradient estimation in the zeroth-order SO

context that we consider. AMSE is a standard metric for comparing the (asymptotic) convergence rate of different

algorthms, cf. Chin (1997); Prashanth et al. (2017), and a better AMSE is beneficial in simulation optimization

applications, where each function measurement is assumed to be computationally intensive.

(d) Non-asymptotic bound: We also provide non-asymptotic bounds in the spirit of Ghadimi and Lan (2013), i.e.,

to an ǫ-solution (see Definition 2 below) of the SO problem mentioned above. In the latter work, the authors

consider a GSF scheme for gradient estimation, and provide an O
(

1
ǫ2

)

bound on the number of iterations to find

an ǫ-solution under the assumption that the function F accounting for the noisy observations is smooth. We pro-

vide a matching bound for our proposed algorithm. Further, unlike Ghadimi and Lan (2013), we also provide

non-asymptotic bounds in the case when F is not assumed to be smooth.

(e) Simulation experiments: Numerical results using a quadratic function, Rastrigin’s function and Rosenbrock’s

function establish that our algorithm outperforms GSF, SPSA and RDSA algorithm.

Comparison to related works. In Chin (1997); Spall (1992); Bhatnagar and Borkar (2003); Prashanth et al.

(2017), the authors employ random perturbations based gradient estimates within an SG framework, and mainly

show asymptotic convergence to a stationary point for their algorithms. Our algorithm, on the other hand, is shown

to converge asymptotically to local minima, and more importantly, at a better rate as our algorithm possesses a

better AMSE in comparison to the aforementioned algorithms.

SO algorithms with non-convex objectives invariably suffer from the problem of converging to stationary points

that are not necessarily local minima. Ge et al. (2015) suggests adding an additional noise term in the gradient

estimate when entering in the neighborhood of a stationary point that would ensure escape from saddle points with
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high probability while working with an unbiased SG estimate. In this work, however, we show that the inherent

noise in the biased stochastic gradient estimate helps one escape unstable equilibria such as saddle points and local

maxima without injecting additional noise. Another approach tried out is to use a second-order method Zhu (2021);

Balasubramanian and Ghadimi (2018) to escape from unstable equilibria, but second-order methods in general are

more computationally expensive.

We now briefly review some prior work on non-asymptotic analyses in the setting of a biased gradient oracle,

which encapsulates the properties of a gradient estimator based on SF. In Baes (2009); Devolder et al. (2014), algo-

rithms with a deterministic gradient oracle are presented. In Hu et al. (2016), the authors analyze the rates achiev-

able with inputs from a biased stochastic gradient oracle, under a convexity assumption. In Bhavsar and Prashanth

(2022), the authors analyze SG algorithms for solving a non-convex SO problem with inputs from a biased noisy

gradient oracle. The rate that they derive for a smooth objective matches the bound for our algorithm with a bal-

anced estimator. Further, unlike Bhavsar and Prashanth (2022), we derive an improved non-asymptotic bound

under a smoothness assumption for the noisy observation F . This rate is O(1/
√
N), where N is the num-

ber of iterations of our algorithm, and it matches the bound obtained for GSF in Ghadimi and Lan (2013). In

Balasubramanian and Ghadimi (2018), the authors derive a non-asymptotic bound of O(1/
√
N) for a zeroth-order

variant of the stochastic conditional gradient algorithm using Gaussian perturbations. We derive a matching bound

for our algorithm, which is more efficient than the one in Balasubramanian and Ghadimi (2018) since their algo-

rithm requires solving an optimization problem in each iteration.

The rest of the paper is organized as follows: The framework for the optimization problem and some prelimi-

naries on GSF and TCSF are presented in Section 2. Section 3 provides the main asymptotic and non-asymptotic

guarantees for TCSF while the convergence analysis is discussed in Section 4. Section 5 presents simulation

experiments that compare the performance of TCSF with several algorithm.

2 SF gradient estimation with truncated Cauchy perturbations

We now present the idea behind a SF scheme for estimating the objective function gradient proposed in Katkovnik and Kulchitsky

(1972).

For a function f : Rd → R, define the smoothed function gδ : R
d → R as

gδ(x) = Ehδ(u)[f(x+ u)] = Ehδ(x−u)[f(u)], x ∈ R
d, (2)

where hδ(x) is called the smoothing kernel or perturbation density function. The parameter δ controls the degree

of smoothness of gδ(x).
The SF scheme is useful especially if f(x) is not well behaved, for instance, if it has several stationary points in a

narrow region. In such a case, one may work with gδ(x) as it would exhibit a smoother behavior, and in general, it

would be easier to compute it’s derivative as opposed to f(x). We have listed down the conditions from Rubinstein

(1981) which suggests that a density function needs to satisfy all of them to become a smoothed function in the SF

scheme.

Rubinstein’s Conditions for SF schemes

(a) hδ : R
d → R such that hδ(u) =

1
δd
h(uδ ) is piecewise differentiable with respect to u,

(b) hδ(u) is a probability density function such that gδ(x) = Ehδ(u)[f(x+ u)] ,

(c) limδ→0 hδ(u) = ∆(u), where ∆(u) is the Dirac-Delta function,

(d) limδ→0 gδ(·) = f(·).
Definition 1. [Truncated Cauchy Distribution] A r.v. is said to follow the truncated (to the δ-sphere) Cauchy

distribution with mean vector zero and covariance matrix Σ = δ2Id×d if its probability density function has the

following form (with c1 being the normalization constant):

hδ(u) =
Γ(d+1

2 )

π
d+1
2 c1δd

1

(1 + ‖u‖2

δ2 )
d+1
2

for ‖u‖2 ≤ δ2. (3)
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In the following remark we have shown how the truncated Cauchy distribution, defined above, satisfies the

aforementioned conditions.

Remark 1. We now show that the truncated Cauchy distribution that we employ satisfies the Rubinstein’s condi-

tions (a)-(d) stated above. Hence, it is a valid candidate to be used as a smoothing density functional in the SF

algorithm.

Note that hδ in our case is a truncated Cauchy distribution as defined in (3) which is a probability density function.

It is easy to see that hδ(u) =
1

δd
h(

u

δ
) where

h(
u

δ
) =

Γ(d+1
2 )

π
d+1
2 c1

1

(1 + ‖u‖2

δ2 )
d+1
2

.

Hence h(u) denotes truncated Cauchy distribution with δ = 1. However from (2) using this hδ(u) one can

write gδ as expectation of f under hδ(u) i.e., gδ(x) = Ehδ(u)[f(x + u)]. We know that Dirac-Delta function

(∆(u)) is a measure whose value is ∞ at origin and 0 otherwise with

∫ ∞

−∞
∆(u)du = 1. For truncated Cauchy

distribution, limδ→0 hδ(u) = ∞ which is a Delta function and limδ→0 gδ(·) = f(·) as
∫

‖u‖2≤1
∆(u)du = 1.

Thus, Rubinstein’s conditions are satisfied in the case of the truncated Cauchy distribution.

A truncated Cauchy distribution has been considered in Chapter 6 of Bhatnagar et al. (2013). However, the

truncation there is not to the δ-sphere, and more importantly, unlike them, we derive asymptotic as well as non-

asymptotic rate results with the truncated Cauchy distribution specified above.

One can intuitively interpret the effect of δ on smoothing as follows: For smaller values of δ, gδ(x) is close

to f . However, as δ increases, gδ(x) becomes smoother with fewer sharp variations. As explained in Rubinstein

(1981), the SF approach provides a helpful way for approximating the gradient of any function f . In particular,

we have shown in the following proposition that for truncated Cauchy smoothing, the derivative of gδ(x) can be

calculated by taking the derivative of hδ(x− u). This can be obtained via a simple application of the Leibnitz rule

and piece-wise differentiation property of hδ(u).

Proposition 1. Let gδ(x) be the smoothed function defined in (1) under truncated Cauchy distribution. Then

gradient of gδ is

∇gδ(x) =
1

δ
Eh(u)

[

f(x+ δu)
(d+ 1)u

(1 + ‖u‖2)

]

. (4)

Proof. (2) can be rewritten by considering u = δv as follows:

gδ(x) =
Γ(d+1

2 )

π
d+1
2 c1

∫

‖v‖2≤1

f(x+ δv)

(1 + ‖v‖2) d+1
2

dv.

Let’s rewrite the above equality by a change of variable y = x+ δv as follows:

gδ(x) =
Γ(d+1

2 )

δdπ
d+1
2 c1

∫

‖ y−x
δ ‖2≤1

f(y)

(1 +
∥

∥

y−x
δ

∥

∥

2
)

d+1
2

dy.

We apply the classic rule of differentiation over x in the above equation, and simplify as follows:

∇gδ(x) =
1

δ

∫

‖u‖2≤1

f(x+ δu)

(

(d+ 1)u

(1 + ‖u‖2
)

h(u)du =
1

δ
Eu

[

f(x+ δu)(d+ 1)u

(1 + ‖u‖2)

]

,

where Eu denotes expectation w.r.t. h(u).
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Algorithm 1 Truncated Cauchy Smoothed Functional (TCSF) Algorithm

Input: Initial point x1 ∈ R
d, non-negative step-sizes {γk}k≥1, and smoothing parameter δk > 0.

for k = 1, 2, . . . do

Generate uk from (3), compute G(xk, ξ
+
k , ξk, uk, δk) using (8), and update

xk+1 = xk − γkG(xk, ξ
+
k , ξk, uk, δk). (7)

end for

In (4), h(u) indicates that hδ is computed at δ = 1. Notice that the one-simulation smooth function un-

der GSF scheme is specified in Rubinstein (1981) by Eh(u)[f(x + δu)] and its derivative can be approximated by
1

δ
Eh(u)[f(x+ δu)u]where u has the multivariate Gaussian distribution, a form also studied in Bhatnagar and Borkar

(2003) for the case when the objective function is a long-run average cost. A finite-difference form of ∇gδ(x)

would be
1

δ
Eh(u)[(f(x+ δu)− f(x))u].

We now define the δ-difference smoothed function fδ(x) : R
d → R for f(x) (an approximation to smoothed

function) as below:

fδ(x) = Ehδ(u)(f(x+ u)− f(x)) = Ehδ(x−u)[f(u)− f(x− u)], (5)

where hδ(u) is smoothing kernel. The finite-difference gradient form ∇gδ(x) for GSF , see Rubinstein (1981),

is the same as ∇fδ(x) due to the fact that Eh(u)(u) = 0 under Gaussian smoothing kernel. As mentioned pre-

viously, we only have access to noisy observations of the objective function. Thus, to solve the problem (1)

using the SF algorithm one can consider the gradient of fδ(x) to be (with ξ having the same distribution as ξ+)

∇fδ(x) =
1

δ
Eu,ξ[(F (x + δu, ξ+)− F (x, ξ))u].

It can similarly be shown as (4) that for f ∈ C1,1
L (satisfying (A8)) and with the truncated Cauchy smooth

kernel, the gradient of fδ can be expressed as follows:

∇fδ(x) =
1

δ
Eh(u)

[

(f(x+ δu)− f(x))
(d+ 1)u

(1 + ‖u‖2)

]

. (6)

In this work, we propose the δ-difference Cauchy smoothed functional scheme. Now note that,

Eh(u)

[

u
1+‖u‖2

]

6= 0 and so we propose a two-simulation finite-difference gradient estimate instead of a one-

simulation estimate as it can be seen to have a lower bias.

For the case of noisy function observations, see (1), the SF gradient with truncated Cauchy would simply

be ∇fδ(x) =
1

δ
Eu,ξ+,ξ

[

(F (x + δu, ξ+)− F (x, ξ))
(d+ 1)u

(1 + ‖u‖2)

]

and a one-sample gradient estimate would have

the form ∇f(x) ≈
(

F (x+ δu, ξ+)− F (x, ξ)

δ

)

(d+ 1)u

(1 + ‖u‖2) , for δ > 0 small. When this estimate is used in a

stochastic approximation (SA) scheme, averaging would happen naturally. Thus, under Cauchy perturbation, one

can consider the estimate of ∇f(xk) for a given parameter value xk (that in turn would be updated as per an SA

scheme as mentioned above) to be as follows:

G(xk, ξ
+
k , ξk, uk, δk)

△
=

(

F (xk + δkuk, ξ
+
k )− F (xk, ξk)

δk

)

(d+ 1)uk

1 + ‖uk‖2
. (8)

In the above estimates, {ξk} and {ξ+k } constitute the measurement noise r.vs in the two simulations and are as-

sumed to be i.i.d., having a common distribution, and further independent of one another. Algorithm 1 contains

the details of the update procedure.
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Motivation for truncation in Cauchy perturbations: To get a bias bound for G in (8), one needs the expecta-

tion of
f(x+δkuk)−f(xk)

δk

(d+1)uk

1+‖uk‖2 +
η+
k −ηk

δk

(d+1)uk

1+‖uk‖2 , which can be obtained after a Taylor series expansion. However,

this expectation only exists if the mean and covariance matrix of the perturbation distribution exist (see proof of

Lemma 1 in Section 4.1). Thus we incorporate truncation in the random perturbation.

3 Convergence Results

3.1 Asymptotic convergence

Let Fk = σ(xm,m ≤ k;um, ξ+m, ξm,m < k), k ≥ 1, denote a sequence of increasing sigma fields. Let η+k =
F (xk+δkuk, ξ

+
k )−f(xk+δkuk), ηk = F (xk, ξk)−f(xk), respectively, where {δk} is a sequence of smoothing

parameters that diminishes to zero as k → ∞. It is easy to see that E[η+k − ηk|Fk] = 0.

We now make the following assumptions as in Bhatnagar et al. (2013).

(A1). The step-size γk and the smoothing parameter δk are positive for all k. Further, γk, δk → 0 as k → ∞ and
∑

k γk = ∞,
∑

k

(

γk

δk

)2

< ∞.

(A2). The function f is three-times continuously differentiable with ‖∇2f(x)‖≤ B and |∇3
i,j,kf(x)| ≤ B1 for

i, j, k = 1, . . . , N where B,B1 ≥ 0

(A3). There exist β1, β2 > 0 such that ∀k ≥ 0, E|ηk|2 ≤ β1,E|η+k |2 ≤ β1, E|f(xk ± δkuk)
2| ≤ β2 and

E|f(xk)
2| ≤ β2.

(A4). supk‖xk‖ < ∞ almost surely.

The above assumptions are commonly used in the convergence analysis of an SA algorithm. In particular, (A1)

is a standard SA requirement on the step-sizes. (A2) ensures that the associated ODE is well-posed and helps in

establishing the asymptotic unbiasedness of the estimated gradient. The conditions in (A3) ensure that the effect

of noise can be ignored in asymptotic analysis of (7). (A4) is a stability assumption that ensures convergence of (7)

and is common to the analysis of simultaneous perturbation based SG algorithm cf. Spall (1992); Bhatnagar et al.

(2013). If stability is hard to ensure, a common practice is to project the iterate sequence onto a compact and

convex set, and such a scheme would fall under the realm of projected stochastic approximation.

The following lemma characterizes the relationship between the estimator G and the true gradient of the objec-

tive f .

Lemma 1. Under (A1)-(A4), we have almost surely

E[G(xk, ξ
+
k , ξk, uk, δk)|Fk] = c2∇f(xk) + δkwk, (9)

where c2 = E

[

(d+1)(u1
k)

2

1+‖uk‖2

]

, with u1
k denoting the first element of the random vector uk, and

wk = E

[(

uT
k ∇2f(x̄+

k
)uk

2

)

(d+1)uk

1+‖uk‖2

∣

∣

∣
Fk

]

.

Proof. See Section 4.1.1.

Lemma 1 does not bound the bias in the gradient estimator directly. This is because of the constant factor c2
multiplying the gradient term on the RHS of (9). However, the result in (9) is useful in establishing asymptotic

convergence of Algorithm 1 as it tracks the following ODE

˙x(t) = −c2∇f(x(t)). (10)

In fact for c2 > 1, we will obtain faster convergence, see (19) in Section 4.1 for a detailed argument.
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Theorem 1. (Strong Convergence): Assume (A1)-(A4) hold. The sequence xk, k ≥ 1 governed by (7) satisfies

xk → H
△
= {x∗|∇f(x∗) = 0} a.s. as k → ∞.

Proof. See Section 4.1.2.

The following variant of (A3) is required to prove the asymptotic normality of xk.

(A5). Assume (A3) holds. In addition, there exists σ′ > 0 such that E(η+k − ηk)
2 → σ′2 a.s. as k → ∞.

Theorem 2. (Asymptotic Normality): Assume (A1)–(A5) hold. Also, assume that the set H in Theorem 1 is a

singleton H = {x∗}. Let γk = γ0/k
α and δk = δ0/k

φ, where γ0, δ0 > 0, α ∈ (0, 1] and φ ≥ α/6. Furthermore,

let υ = α − 2φ > 0 and Q be the orthogonal matrix with Q∇2f(x∗)QT = γ−1
0 diag(λ1, λ2, . . . , λd), with

λ1, . . . , λd being the eigen-values of ∇2f(x∗). Then, kυ/2(xk − x∗)
dist→ N (µ,QMQT ) as k → ∞ a.s., where

N (·, ·) denotes a multi-variate Gaussian distribution with mean µ defined by

µ =

{

0 if 3φ− α/2 > 0,

c̄(γ0δ
2
0(γ0∇2f(x∗)− 1

2υ
+
I)−1T ) if 3φ− α/2 = 0.

In the above, I is identity matrix,c̄ = E[‖u‖4] , υ+ = υ if α = 1 and 0 if α < 1, T is a d-dimensional

vector whose i-th element given by − 1
6 [∇3

iiif(x
∗) + 3

∑

j=1,j 6=i ∇3
jjif(x

∗)] and the matrix is defined as M =
γ2
0σ

′2

4δ20
diag((2λ1 − υ+)−1, . . . , (2λd − υ+)−1).

Proof. See Section 4.1.3.

Remark 2. For the case of general H (not necessarily singleton as in the statement of Theorem 2, the result will

continue to hold for the particular x∗ in whose neighborhood the parameter lies after a sufficiently large number

of iterations.

From Theorem 2 we can say that kυ/2(xk − x∗) is asymptotically Gaussian for TCSF algorithm. In addition,

the maximum possible value of υ = 2/3 can be obtained by fixing α = 1 and φ = 1/6 in υ = α − 2φ. Fixing

υ = 2/3, we obtain the best possible asymptotic convergence rate of k−1/3. We define the asymptotic mean

square error (AMSE), cf. Spall (1992), by AMSE(γ0, δ0) = µTµ + trace(QMQT ), where γ0, δ0 are constant

step-size and smoothing constant respectively. It can be shown under the condition given in Gerencser (1999) that

AMSE(γ0, δ0) coincides with kυE‖xk − x∗‖2.

We now compare the AMSE of our algorithm with two other well-known random perturbation gradient estima-

tion schemes, namely GSF and SPSA

To make the comparison fair, we follow the approach of Chin (1997) and set γk and δk uniformly. In particular,

we use step-size γk = γ0/k, where γ0 ≥ υ/2λ0, with λ0 denoting the minimum eigenvalue of ∇2f(x∗). Further,

we set δk = δ0
k1/6 . It can then be shown that

AMSE(γ0, δ0) =
(

c̄δ20γ0‖ΦT ‖
)2

+
1

δ20
trace(ΦP ), (11)

where T is as defined in Theorem 2, Φ = (γ0∇2f(x∗)− 1
2υ

+
I)−1 and P = σ′2

4 I.

Remark 3 (Comparing with GSF). For uk following N (0, I), we have E(ui
k)

4 = 3. Hence, the ratio of AMSE of

GSF with that of TCSF algorithm is given by

AMSEGSF (γ0, δ0)

AMSETCSF (γ0, δ0)
=

(

3δ20γ0‖ΦT ‖
)2

+ 1
δ20
trace(ΦP )

(

c̄δ20γ0‖ΦT ‖
)2

+ 1
δ20
trace(ΦP )

.

where Φ, P T are specified in (11). Recall that c̄ = E[‖u‖4], and u is restricted to the unit sphere, implying c̄ ≤ 1.

Thus, the AMSE of TCSF is clearly better than that of GSF.

7



Remark 4 (Comparing with SPSA). Comparing the AMSE of TCSF with SPSA, we obtain

AMSESPSA(γ0, δ0)

AMSETCSF (γ0, δ0)
=

(

δ20γ0‖ΦT ‖
)2

+ 1
δ20
trace(ΦP )

(

c̄δ20γ0‖ΦT ‖
)2

+ 1
δ20
trace(ΦP )

≥ 1.

The last inequality follows from the fact that c̄ ≤ 1. Thus, the AMSE of TCSF is at least as good as that of SPSA,

and would be better if c̄ < 1. For the case of d = 1, c̄ < 1, as shown in Staneski (1990). On the other hand, it is

difficult to obtain a closed-form expression for c̄ when d > 1.

From the analysis above, it is apparent that, from an asymptotic convergence rate viewpoint, our algorithm

outperforms GSF and SPSA, which are two popular gradient estimation schemes.

So far, we have provided theoretical guarantees that establish convergence to a stationary point of the objective

function f . However, this result is not sufficient in a non-convex optimization setting since local maxima and saddle

points are also stationary points in addition to local minima. The aim here is to converge to a local minimum, or

avoid traps such as saddle points/local maxima. A usual trick to achieve this objective is to add extraneous noise,

so that the algorithm does not converge to an unstable equilibrium. We now establish that our algorithm naturally

avoids traps owing to the noise in the gradient estimator. For this result, we require the following additional

assumption.

(A6). Assume the condition in (A5) holds and c9 is such that E|η+k − ηk| ≥ c9.

The assumption above ensures that the noise is rich in all directions. Note that, one can rewrite the update rule

(7) as

xk+1 = xk − γkG(xk, uk, δk)− ǫk, (12)

with G(xk, uk, δk) =
f(xk + δkuk)− f(xk)

δk

(d+ 1)uk

1 + ‖uk‖2
and ǫk = γk

η+k − ηk
δk

(d+ 1)uk

1 + ‖uk‖2
.

Here E[ǫk|Fk] = 0. Note that (12) is equivalent to (23) in Section 4.1 by considering−ǫk = µk and −G = Y . One

can ensure avoidance of traps if the increment of ǫk in any direction is of order 1/nγ , i.e., E
[

(ǫk · θ)+|Fk

]

≥ c7/k
γ

(Theorem 7) for every unit vector θ. We establish that our algorithm satisfies E
[

(ǫk · θ)+|Fk

]

≥ c9c10/2 with

c9 = O(1/kγ) (see (Section 4.1.4) for details).

Proposition 2. Under (A1)-(A6), xk generated by Algorithm 1, converges to a local minimum a.s.

Proof. See Section 4.1.4.

Remark 5. From Proposition 2 we can justify that (7) avoids saddle points and local maxima. To the best of

our knowledge, a similar result is not available for the GSF algorithm. The latter algorithm has been shown to

converge to a stationary point in Bhatnagar et al. (2013), and a non-asymptotic convergence rate for the same is

available in Ghadimi and Lan (2013). In Ge et al. (2015), Jin et al. (2017), the authors suggest adding extraneous

noise to avoid traps for a SG algorithm. In contrast, we show that a noisy gradient estimation scheme would

naturally avoid traps, obviating the need for extraneous noise addition.

3.2 Non-asymptotic convergence

The non-asymptotic analysis below establishes convergence to an approximate stationary point as with Ghadimi and Lan

(2013); Bhavsar and Prashanth (2022).

Definition 2. For a non-convex function f , x̄ is said to be an ǫ-stationary point to the problem (1) if it satisfies

E

[

‖∇f(x̄)‖2
]

≤ ǫ.

For non-asymptotic analysis we make the following assumption.

(A7). Let σ2 > 0 such that Eξ[‖∇F (x, ξ)−∇f(x)‖2] ≤ σ2, for all x ∈ R
d.
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(A8). The function f : Rd → R is differentiable and the gradient of f is Lipschitz continuous, i.e., ‖∇f(x)−∇f(y)‖ ≤
L ‖x− y‖, ∀x, y ∈ R

d, where L > 0 is the Lipschitz constant.

We now present a non-asymptotic bound for a randomized variant of TCSF algorithm in the spirit of Ghadimi and Lan

(2013).

Theorem 3. Assume (A3), (A7) and (A8). Suppose Algorithm 1 has the following as the step-sizes and smoothing

parameters:

γk
△
= min

{

c2
L
,

1

N2/3

}

, δk
△
= δ =

1

N1/6
, k = 1, . . . , N,

where c2 is as specified in Lemma 1. Let xR be picked uniformly at random from {x1, . . . , xN}. Then

E

[

‖∇f(xR)‖2
]

≤ 2D
( L

c2N
+

1

N1/3

)

+
2Bc′2
c2N1/6

+
L

2c2

(

2Bc′2
N5/6

+
dc′22
N

+
C′′

N1/3

)

,

where C′′ = E

[

‖uk‖2(d+1)2

(1+‖uk‖2)2

]

[

2(β1 + β2)
]

, c′2 = (d+ 1)B and B is as specified in (A2).

Proof. See Section 4.2.1.

From Theorem 3, we can conclude that the non-asymptotic bound is O(N−1/6), that is weaker than the asymp-

totic convergence rate of O(N−1/3) obtained in the previous section. This gap can however be fixed by using a

balanced estimator, i.e.

G̃(xk, ξ
+
k , ξk, uk, δk)

△
=

(

F (xk + δkuk, ξ
+
k )− F (xk − δkuk, ξ

−
k )

2δk

)

(d+ 1)uk

1 + ‖uk‖2
. (13)

In this case, we obtain the following bound (see Lemma 7 in Section 4.3 for details):

E[G̃(xk, ξ
+
k , ξk, uk, δk)|Fk] = c2∇f(xk) +O(δ2k)1d.

Notice that the bound is O(δ2k) instead of O(δk) in the one-sided estimator (8), since the second-order terms cancel

in the balanced estimator. With a O(δ2k) bias bound, we obtain in the following theorem a non-asymptotic bound

of O(N−1/3) using the balanced estimator. From this bound it is observed that O(1/ǫ3) number of iterations of

the TCSF algorithm guarantee convergence to an ǫ-stationary point of (1).

Theorem 4. Assume (A3), (A7) and (A8). Suppose Algorithm 1 is running with step-sizes γk and G̃(xk, ξ
+
k , ξk, uk, δk)

instead of G(xk, ξ
+
k , ξk, uk, δk). The smoothing parameter δk = δ, ∀k, and step-sizes γk is chosen as defined in

Theorem 3. Let xR denote a point picked uniformly at random from {x1, . . . , xN}. Then under probability distri-

bution (26)

E

[

‖∇f(xR)‖2
]

≤
(2DL

c2N
+

2D

N1/3

)

+
2Bc′′2
c2N1/3

+
L

2c2

(

2Bc′′2
N

+
dc′′22
N4/3

+
C′′

N1/3

)

,

where C′′ is as defined in (21), c′′2 is defined Lemma 7 and B is the same as in (A2).

Proof. See Section 4.3.1

For the non-asymptotic bounds presented above, we assumed that the objective function is smooth. Instead,

if we make the stronger assumption that the noisy observation F is smooth, then we can obtain a better non-

asymptotic bound. We make this claim precise in the following.

(A9). The function F is Lipschitz continuous in the first argument, uniformly w.r.t the second, i.e., for any given ξ,

‖∇F (x, ξ)−∇F (y, ξ)‖ ≤ L ‖x− y‖, ∀x, y ∈ R
d almost surely.
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Assumptions (A7) and (A9) imply (A8), since

‖∇f(x)−∇f(y)‖ ≤ Eξ ‖∇F (x, ξ)−∇F (y, ξ)‖ ≤ L ‖x− y‖ , ∀x, y ∈ R
d.

We consider now the following variant of the gradient estimator in (8):

G(xk, ξk, uk, δk)
△
=

(

F (xk + δkuk, ξk)− F (xk, ξk)

δk

)

(d+ 1)uk

1 + ‖uk‖2
. (14)

Notice that both function observations in this case use the same noise factor ξk. Such a setting is possible

when noise is added using common random numbers, for instance, in computer simulations. In this setting,

G(xk, ξk, uk, δk) defined in (14) satisfies

Eξ,h(u) [G(xk, ξk, uk, δ)] = Eh(u) [Eξ [G(xk, ξk, uk, δ)]] = ∇fδ(xk).

We now provide a non-asymptotic bound of the order O(N−1/2) for Algorithm 1 under the additional assump-

tions listed above.

Theorem 5. Assume (A7), (A9). Suppose Algorithm 1 runs with step-sizes γk and the smoothing parameter

δk = δ, ∀k, chosen as follows:

γk = min

{

1

2Lc13
,

1

c13σ
√
N

}

, δ =
1

L
√
dNc13

,

where c13 = 4c11c12
d+1 , with c11 defined in Theorem 2 and c12 is the Frobenius norm of the generalized inverse of the

matrix Eu

(

(d+1)uuT

1+‖u‖2

)

. Let xR denote a point picked uniformly at random from {x1, . . . , xN}. Then

E
[

‖∇f(xR)‖2
]

≤ c14
N

+
2σL√
N

, where c14 = 2L+ c13σ + 8LBc
3/2
13 +

σBc
3/2
13 B

L
+

2c13d+ 1

L
.

Proof. See Section 4.2.2.

Remark 6. In Theorem 5, we notice that the convergence rate is O(1/
√
N) or equivalently O(1/ǫ2) number of

iterations are needed to find an ǫ-stationary point of (1). This rate is better than the one obtained in Theorem 3

and this is a consequence of (A9) which ensures F is smooth. In Ghadimi and Lan (2013), for GSF, the number of

iterations to find an ǫ-stationary point is bounded by O(1/ǫ2), and our bound matches their result. The advantage

with our algorithm is that it outperforms the GSF algorithm empirically. In the next section, we provide some

examples to validate this claim.

We will provide in the following theorem a non-asymptotic bound of order O(N−1/2) for Algorithm 1 with

balanced estimator by assuming sample performance is smooth.

Theorem 6. Assume (A2), (A7) and (A9). Suppose Algorithm 1 is running with G̃(xk, ξ
+
k , ξk, uk, δk) instead of

G(xk, ξ
+
k , ξk, uk, δk). Let the smoothing parameter δk = δ, ∀k and step-sizes γk is chosen as follows:

γk = min

{

c2
2c211L

,
1

N1/2

}

, δ =
1

N1/2
. (15)

Here c2 is same as in Lemma 1. Let xR denote a point picked uniformly at random from {x1, . . . , xN}. Then under

probability distribution PR(k) =
1
N

E

[

‖∇f(xR)‖2
]

≤
(2DL

Nc22
+

2D

N1/2

)

+
2Bc′′2
c2N

+
L

2c2N1/2

(

4c11σ
2 +

2d2c′′22
N2

)

,

where c′′2 is defined Lemma 7 and B is the same as in (A2).

Proof. See Section 4.3.2
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4 Convergence proofs

4.1 Asymptotic convergence proofs

4.1.1 Proof of Lemma 1

In the lemma below, we state and prove a bound on the moments of a truncated Cauchy r.v.

Lemma 2. Let u be a truncated Cauchy r.v., then for any positive integer r, we have

Eu[‖u‖2r] ≤
c11

(r + d)
, (16)

where c11 =
2Γ( d+1

2 )√
πΓ(d/2)c1

.

Proof.

Eu[‖u‖2r] =
Γ(d+1

2 )

π
d+1
2 c1

∫

‖u‖2≤1

‖u‖2r 1

(1 + ‖u‖2) d+1
2

du

=
Γ(d+1

2 )

π
d+1
2 c1

∫ 1

0

∫

‖u‖2=R

Rr 1

(1 +R)
d+1
2

dudR

=
Γ(d+1

2 )

π
d+1
2 c1

∫ 1

0

Rr 1

(1 +R)
d+1
2

2πd/2

Γ(d/2)
Rd−1dR

= c11

∫ 1

0

Rr+d−1

(1 +R)
d+1
2

dR

≤ c11

∫ 1

0

Rr+d−1dR

=
c11

(r + d)
.

Proof of Lemma 1

Proof. Using Taylor series expansions, we obtain

f(xk + δkuk) = f(xk) + δku
T
k∇f(xk) +

δ2k
2
uT
k∇2f(x̄+

k )uk, (17)

where x̄+
k is on the line segment between xk and xk + δkuk. Using (17), we have

G(xk, ξ
+
k , ξk, uk, δk)

=
f(x+ δkuk)− f(xk)

δk

(d+ 1)uk

1 + ‖uk‖2
+

(η+k − ηk)

δk

(d+ 1)uk

1 + ‖uk‖2
,

=
(d+ 1)uku

T
k∇f(xk)

1 + ‖uk‖2
+

(

uT
k∇2f(x̄+

k )uk

2

)

(d+ 1)uk

1 + ‖uk‖2
δk +

(η+k − ηk)

δk

(d+ 1)uk

1 + ‖uk‖2
,

Let ui
k denote the i-th element of the random vector uk. Then, the off-diagonal elements of Eu

[

(d+ 1)uku
T
k

1 + ‖uk‖2
]

satisfy Eu

[

(d+ 1)ui
ku

j
k

1 + ‖uk‖2
]

= 0, since
1

1 + ‖uk‖2
∈ (0, 1] is upper bounded by a fixed quantity, and for i 6= j,

Eu[u
i
ku

j
k] = 0. Hence

Eu

[

(d+ 1)uku
T
k

1 + ‖uk‖2
]

= c2I, (18)
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where c2 is as defined in the lemma statement.

Notice that Eu

[

(η+k − ηk)
uk

1+‖uk‖2

∣

∣

∣
Fk

]

= 0, since E[η+k − ηk | Fk] = 0, and uk is independent of Fk. Thus

we obtain

E[G(xk, ξ
+
k , ξk, uk, δk)|Fk] = c2∇f(xk) + δkwk.

4.1.2 Proof of Theorem 1

For the proof of Theorem 1, we require the notion of Lyapunov stability, which we define next.

Definition 3. A continuously differentiable function V : Rd → [0,∞) is said to be a Lyapunov function for an

ODE ẏ = f(y) with set of equilibrium points H if it satisfies the properties below.

1. lim‖x‖→+∞ V (x) = ∞.

2. The inner product of f(y) with V (y) can take the following values:

〈f(y),∇V (y)〉 =
{

0 if y ∈ H ,

< 0 otherwise.

Lemma 3. Consider the function in (1) such that f(·) ≥ c′ where c′ is a negative real number and H be the set of

equilibrium points of the ODE ẋ(t) = −∇f(x(t)), i.e., H = {x(t) : ∇f(x(t)) = 0} where f(x) is defined as in

(1). Then x(t) → H as t → ∞.

Proof. Let g(·) = f(·)− c′ ≥ 0. Further

dg(x(t))

dt
= 〈∇f(x(t)), ẋ(t)〉
= 〈∇f(x(t)),−∇f(x(t))〉
= −‖∇f(x(t))‖2.

Thus,
dg(x(t))

dt
< 0 for x(t) 6∈ H and is 0 otherwise. Thus, g serves as a Lyapunov function for the above

(gradient) ODE. The claim follows.

Proof of Theorem 1

Proof. From 7 and Lemma 1, we have

xk+1 = xk − γk(Eu[G(xk, ξ
+
k , ξk, uk, δk)|Fk] +Mk),

= xk − γk(c2∇f(xk) + c′2δk1d +Mk).
(19)

where Mk = G(xk, ξ
+
k , ξk, uk, δk) − Eu[G(xk, ξk, ξ

+
k , uk, δ)|Fk], k ≥ 0, is a martingale difference sequence.

Further, γk, k ≥ 1 satisfies (A1). The update rule (19) thus tracks the ODE (10). However the ODE (10) has the

same equilibria as the ODE

ẋ = −∇f(x).

In fact, if the constant c2 > 1, the ODE will have a faster speed of convergence to x∗. Note that c′2δk1d is equivalent

to the bias vector. Here each term of O(δk)1d goes to zero as k → ∞. From Kushner and Clark (1978a) we can

directly conclude the convergence of the above algorithm using the assumptions (a)-(d) below that are taken from

Kushner and Clark (1978a).
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(a) ∇f(x) is a Lipschitz continuous function.

(b) The bias sequence δk, k ≥ 1 is almost surely bounded and with δk → 0 almost surely as k → ∞.

(c) The step-sizes γk, k ≥ 1, satisfy γk → 0 as k → ∞ and
∑

k γk = ∞.

(d) The Martingale sequence Mk satisfies the following: ∀ζ > 0,

lim
k→∞

P

(

sup
m≥k

‖
m
∑

i=k

γiMi‖ ≥ ζ

)

= 0.

Assumptions (a), (b) and (c) above directly follow from (A1) and (A2). We now verify Assumption (d) above.

Recall the Doob’s martingale inequality, i.e.

P

(

sup
m≥0

‖Zm‖ ≥ ζ

)

≤ 1

ζ2
lim

m→∞
E‖Zm‖2.

By considering Zm =
∑m−1

i=0 γiMi, we obtain

P

(

sup
m≥k

‖
m
∑

i=k

γiMi‖ ≥ ζ

)

≤ 1

ζ2
lim

m→∞
E‖

m
∑

i=k

γiMi‖2

(a)
=

1

ζ2

∞
∑

i=k

γ2
kE‖Mi‖2, (20)

where the first inequality in (20) follows from the fact that E[MiMj] = E[MiE[Mj ]|Fj ] = 0. Now using the

identity E‖X −E[X |F ]‖2 ≤ E[‖X‖2] for a r.v. X one can rewrite E‖Mk‖2 ≤ E‖G(xk, ξ
+
k , ξk, uk, δk)‖2. Hence

E‖Mk‖2

≤ E‖G(xk, ξ
+
k , ξk, uk, δk)‖2

= E

[

‖uk‖2(d+ 1)2

(1 + ‖uk‖2)2
(

η+k − ηk
δk

)2
]

+ E

[

‖uk‖2(d+ 1)2

(1 + ‖uk‖2)2
(

f(xk + δkuk)− f(xk)

δk

)2
]

≤ C′′

δ2k
. (21)

Here C′′ = E

[

‖uk‖2(d+1)2

(1+‖uk‖2)2

]

[

2(β1 + β2)
]

< ∞. The last inequality follows from (A3). Moreover, from construc-

tion, the truncated Cauchy distribution has finite moments. Plugging the above inequality in (20),we obtain

lim
k→∞

P

(

sup
m≥k

‖
m
∑

i=k

γiMi‖ ≥ ζ

)

≤ C′′

ζ2
lim
k→∞

∞
∑

i=k

(
γ2
i

δ2i
) = 0.

The last inequality follows by the assumption
∑

k(
γ2
k

δ2k
) < ∞. So, by the convergence of the martingale sequence

and Lemma 3, we can conclude that xk → H almost surely as k → ∞.

4.1.3 Proof of Theorem 2

Proof. This proof follows from Proposition 1 of Chin (1997) after noting the following facts:

E

[

(ui
k)

4

(1 + ‖u‖2)

]

≤ E[‖u‖4],

E

[

uuT

(1 + ‖u‖2)

]

� I, (22)
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4.1.4 Proof of Proposition 2

For establishing the avoidance of traps result in Proposition 2, we require a result from Pemantle (1990), which we

state below.

Theorem 7. Let Y be a function in ∆ ⊆ R
d such that Y : ∆ → T∆ where T∆ is the tangent space of ∆ at each

point. Consider a sequence of random variables {xn : n ≥ 0} that are updated as in (23) with a given x0.

xk+1 = xk + akY (xk) + µk. (23)

Let p be any critical point, i.e., Y (p) = 0, and let N be a neighborhood of p. Assume that there are constants

γ ∈ (1/2, 1] and c5, c6, c7, c8 ≥ 0 for which the following conditions are satisfied whenever xn ∈ N and n is

sufficiently large:

(i) p is a linearly unstable critical point of Y ;

(ii) c5
kγ ≤ ak ≤ c6

kγ ;

(iii) E [(µk · θ)+|Fk] ≥ c7/k
γ for every unit vector θ ∈ T∆;

(iv) ‖µk‖ ≤ c8/k
γ .

In the above, (µk · θ)+ △
= max{µk · θ, 0} is the positive part of µk · θ. Assume Y is smooth enough (at least C2)

to apply the stable manifold theorem. Then P(xk → p) = 0.

Remark 7. Note that, the limit of xk exists if Y (x) = 0. Here the iteration rule (23) can be considered as

a discrete version of the differential equation ˙x(t) = Y (x(t)) with initial condition x0 = v(0). We need to

classify the points where Y (v) = 0. Consider a linear approximation T near a critical point p of Y (·) such that

Y (p+ x) = T (x) +O(|x|2). p is said to be attracting point if real part of the eigenvalue of T is negative and in

such a case xt will converge to p if there are no other attracting points for the ODE. On the other hand, p is said

to be linearly unstable if some eigenvalue has positive real part and xn exists in the neighbourhood of p for any

choice of v(0) which is not on a stable manifold of smaller dimension. However, if all the eigenvalues of T have a

positive real part, then p is said to be a repelling node and the sequence xk, k ≥ 0 will never converge. Theorem 7

gives conditions under which P(xk → p) = 0 when p is a repelling point as well as a linearly unstable critical

point.

Proof of Proposition 2

Proof. Let’s rewrite the update rule (7) as

xk+1 = xk − γkG(xk, uk, δk)− ǫk, (24)

where G(xk, uk, δk) =
f(xk + δkuk)− f(xk)

δk

(d+ 1)uk

1 + ‖uk‖2
and ǫk = γk

η+k − ηk
δk

(d+ 1)uk

1 + ‖uk‖2
.

Here E[ǫk|Fk] = 0. Note that (24) is equivalent to (23) by considering −ǫk = µk and −G = Y .

We will show that the conditions stated in Theorem 7 will hold for our case. Let γ ∈ (12 , 1]. Choose the

step-size γk ∈ [ c8kγ ,
c9
kγ ] such that both (ii) and (A1) are satisfied, and in (A3), we have considered E|η+k |2 and

E|η+k |2 are bounded which in turn implies that |η+k − ηk| is bounded and noting the fact uk is the truncated Cauchy

distribution (over the unit sphere), one can trivially show that ‖ǫk‖ is bounded, which implies (iv).

We now show (iii) for our case below. Note that ǫk = (η+k − ηk)ukmk, where mk = (d+1)γk

1+‖uk‖2 . Consider the

unit vector with the ith entry as 1, i.e., θ = (0, 0, ...1, ..0)T . This implies ǫk · θ = (η+k − ηk)u
i
kmk. Here, ui

k

denotes the ith entry of the vector u at the kth iteration.

E[(ǫk · θ)+] = E[((η+k − ηk) · ui
kmk)

+]
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(b)
= E[

(η+k − ηk) · ui
kmk + |(η+k − ηk) · ui

kmk|
2

]

(c)
= E[

|(η+k − ηk) · ui
kmk|

2
]

= E[
|η+k − ηk| · |ui

kmk|
2

]

(d)

≥ c9c10
2

.

In the above, we used (i) the fact that max(x, y) = x+y+|x−y|
2 to infer the equality in (b); (ii) E[(η+k −ηk)·ui

kmk] =

0 since E[η+k − ηk | Fk] = 0 and uk is independent of Fk, to infer the equality in (c); and (iii) (A6) in conjunction

with Eu|ui
kmk| ≥ c10 for some positive constant c10 is used to infer (c). Thus, condition (iii) of Theorem 7 holds.

The main claim now follows by an application of Theorem 7.

4.2 Non-asymptotic convergence proofs

4.2.1 Proof of Theorem 3

Proof. We use the the proof technique from Bhavsar and Prashanth (2022)(in particular, proposition-1 there) in

order to proof the main claim here. However unlike Bhavsar and Prashanth (2022) we have a gradient estimate

that comes from truncated Cauchy distribution.

Lets define αk ≡ (ξk, ξ
+
k , uk, δ), k ≥ 1 and α[N ] := (α1, α2, ...αN ) U̇sing Taylor series expansion over f(xk) for

any k = 1, 2, ..., N the following is obtained

f(xk+1) ≤ f(xk)− γk〈∇f(xk), G(xk , α)〉+
L

2
γ2
k ‖G(xk, αk)‖2 ,

= f(xk)− c2γk ‖∇f(xk)‖2 − γk〈∇f(xk),Γk〉+
L

2
γ2
k ‖G(xk, αk)‖2 .

Here Γk ≡ G(xk, ξk, uk, δ) − c2∇f(x) ≡ G(xk, αk) − c2∇f(xk). Adding upto N -terms both side of these

inequalities and considering f∗ ≤ f(xN+1) and γk = γ for all k, we obtain

N
∑

k=1

c2γ ‖∇f(xk)‖2 ≤ f(x1)− f∗ −
N
∑

k=1

γ〈∇f(xk), γ〉+
L

2

N
∑

k=1

γ2 ‖G(xk, αk)‖2 . (25)

Now by Lemma 1 we have

Eα[k]
[Γk] = Eα[k]

[Γk|αk−1] = Eα[k]
[Γk|xk] = Eα[k][G− c2∇f |xk]

(e)

≤ τ1d×1,

notice τ = c′2δ where c′2 = (d+ 1)B is a constant that arise from the Taylor series as defined. In the above vector

inequality (e) is element-wise. From (21) we have

Eα[k]
[‖G‖2] ≤ ‖Eα[k]

[G]‖2 + C′′

δ2
.

Hence by taking the expectation w.r.t α[N ] on both side of (25) the following is obtained

N
∑

k=1

c2γEα[N ]
‖∇f(xk)‖2 ≤ D +BNc′2δγ +

L

2

N
∑

k=1

γ2
[

Eα[N ]
‖∇f(xk)‖2+2c′2δB + dc′22 δ

2 +
C′′

δ2

]

.

15



The above inequality uses the fact −‖V ‖1 ≤∑d
k=1 vk for a d−dimensional vector V followed by ‖∇f(xk)‖1 ≤

‖∇f(xk)‖ ≤ B from (A7). Note that D = f(x1)− f∗. By rearranging the terms we have

[

c2γ − Lγ2

2

] N
∑

k=1

Eα[N ]
‖∇f(xk)‖2 ≤ D + BNc′2δγ +

LN

2

(

2c′2δB + dc′22 δ
2 +

C′′

δ2

)

γ2.

Due to the choice of γk = γ = min
{

c2
L , 1

N2/3

}

, it is obvious that N
[

c2γ − Lγ2

2

]

≥ 0. Thus by dividing both

sides of the above inequality by N
[

c2γ − Lγ2

2

]

and noting the fact

PR(k) = Prob(R = k) =

[

c2γ − Lγ2

2

]

N
[

c2γ − Lγ2

2

] =
1

N
, (26)

the following is obtained

Eα[N ]
‖∇f(xR)‖2 ≤ 1

N
[

c2γ − Lγ2

2

]

[

D +BNc′2δγ +
LN

2

(

2c′2δB + dc′22 δ
2 +

C′′

δ2

)

γ2

]

.

By considering, γ = c2
L , the following is obtained

Nc2γ

[

1− L

2c2
γ

]

≥ Nc2γ

2
.

From the above inequality, we can write

E

[

‖∇f(xR)‖2
]

≤ 2D

Nc2γ
+

2Bc′2δ

c2
+

L

c2

(

2c′2δB + dc′22 δ
2 +

C′′

δ2

)

γ

≤ 2D

Nc2
max

{

L

c2
, N2/3

}

+
2Bc′2δ

c2
+

L

c2N2/3

(

2c′2δB + dc′22 δ
2 +

C′′

δ2

)

(g)

≤
(2DL

Nc22
+

2D

N1/3

)

+
2Bc′2
c2N1/6

+
L

c2N2/3

(

2Bc′2
N1/6

+
dc′22
N1/3

+
C′′

N−1/3

)

=
(2DL

c2N
+

2D

N1/3

)

+
2Bc′2
c2N1/6

+
L

c2

(

2Bc′2
N5/6

+
dc′22
N

+
C′′

N1/3

)

.

Note that (g) uses the condition of δ = 1
N1/6 . Hence proved.

4.2.2 Proof of Theorem 5

The proof is accumulated from a sequence of lemmas..We follow the technique from Ghadimi and Lan (2013), and

our proof of the lemmas involves significant deviations owing to the fact that biased gradient information under

truncated Cauchy distribution are available instead of unbiased gradient information (under Gaussian distribution).

Lemma 4. let f be the function satisfying (A7) and (A8) and δ be the smoothing parameter defined in Algorithm 1.

Then

‖fδ(x)‖ ≤ c11
d+ 1

[

Lδ2

2
+ 2δB

]

.
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Proof.

fδ(x) = Eu(f(x+ δu)− f(x))

= Eu[f(x+ δu)− f(x)− δ〈∇f(x), u〉] + δEu[〈∇f(x), u〉]

|fδ(x)|
(d)

≤ Lδ2

2
Eu[‖u‖2] + δ‖∇f(x)‖Eu[‖u‖]

(d)

≤ δ2c11L

2(d+ 1)
+

2δBc11
2d+ 1

≤ c11
d+ 1

[

Lδ2

2
+ 2δB

]

.

where (d) follows from smoothness of f and Cauchy-Schwarz inequality and (e) follows from Lemma 2.

Proposition 3. The solution of a linear system of equations Ax = y, where A is a non-invertible matrix, is Py
where P is the generalized inverse of the matrix A that satisfies APA = A and PAP = P .

Lemma 5. Under (A7) and (A8), we have

(a)

‖∇f(x)‖2 ≤ 2c12‖∇fδ(x)‖2 +
c11c12δ

2L2(d+ 1)

2
.

(b)

‖∇fδ(x)‖2 ≤ 2c11
d+ 1

[

(d+ 1)2δ2L2

4
+ ‖∇f(x)‖2

]

.

Proof. Notice that

Eu

[

(d+ 1)u

1 + ‖u‖2 〈∇f(x), u〉
]

= A∇f(x) (27)

where A = Eu

(

(d+1)uuT

1+‖u‖2

)

is a matrix. Let P be the generalized inverse of A which satisfies the condition in

Proposition 3. Now

∇f(x)
(e)
= P · E

[

(d+ 1)u

1 + ‖u‖2 〈∇f(x), u〉
]

,

=
P

δ
E

[

(d+ 1)u

1 + ‖u‖2 {f(x+ δu)− f(x)}
]

− P

δ
E

[

(d+ 1)u

1 + ‖u‖2 {f(x+ δu)− f(x)− δ〈∇f(x), u〉}
]

,

(e) is a simple application of Proposition 3. Let ‖·‖F denotes the Frobenius norm of the matrix. Then ‖Px‖2 ≤
c12‖x‖2 where c12 = ‖P‖F

‖∇f(x)‖2
(f)

≤ 2‖P‖2F‖∇fδ(x)‖2 +
2‖P‖2F
δ2

E

[

(d+ 1)2‖u‖6L2δ4

4(1 + ‖u‖2)2
]

,

= 2c12‖∇fδ(x)‖2 +
c12δ

2L2(d+ 1)2

2
E

[ ‖u‖6
(1 + ‖u‖2)2

]

,

≤ 2c12‖∇fδ(x)‖2 +
c12δ

2L2(d+ 1)2

2
E
[

‖u‖6
]

,

≤ 2c12‖∇fδ(x)‖2 +
c12δ

2L2(d+ 1)2

2
E
[

‖u‖6
]

17



≤ 2c12‖∇fδ(x)‖2 +
c11c12δ

2L2(d+ 1)2

2(d+ 3)
,

≤ 2c12‖∇fδ(x)‖2 + c11c12δ
2L2(d+ 1),

where (f) uses the Cauchy-Schwarz inequality followed by Lemma 2.

We now prove the second claim.

[f(x+ δu)− f(x)]
2
= [f(x+ δu)− f(x)− δ〈∇f(x), u〉+ δ〈∇f(x), u〉]2,

≤ 2

(

δ2

2
L ‖u‖2

)2

+ 2δ2〈∇f(x), u〉2,

≤ 2

(

δ2

2
L ‖u‖2

)2

+ 2δ2‖∇f(x)‖2 ‖u‖2 .

Now, by taking the norm in the both side of the inequality and employing Lemma 2 the following is obtained

‖∇fδ(x)‖2 ≤ 1

δ2
Eu

[

(f(x+ δu)− f(x))2
(d+ 1)2 ‖u‖2
(1 + ‖u‖2)2

]

,

≤ ((d+ 1)δL)2

2
Eu

[

‖u‖6
(1 + ‖u‖2)2

]

+ 2‖∇f(x)‖2(d+ 1)2Eu

[

‖u‖4
(1 + ‖u‖2)2

]

,

≤ ((d+ 1)δL)2

2
Eu ‖u‖6 + 2‖∇f(x)‖2(d+ 1)2Eu ‖u‖4 ,

≤ ((d+ 1)δL)2c11
2(d+ 3)

+
2‖∇f(x)‖2c11

d+ 2
,

≤ 2c11
d+ 1

[

(d+ 1)2δ2L2

4
+ ‖∇f(x)‖2

]

.

In the following lemma we state and prove a general result that holds true for any choice of non-increasing step-

size sequence, smoothing parameter. Subsequently, we specialize the result for the choice of parameters suggested

in Theorem 5, to prove the same.

Lemma 6. Suppose, xk generated by Algorithm 1 and {γk} be the desired step-sizes for the iteration. Let and the

probability mass function PR(·) are chosen such that γk ≤ 1
2Lc13

and

PR(k) := Prob(R = k) =

[

γk − Lc13γ
2
k

]

∑N
k=1 [γk − Lc13γ2

k]
, (28)

where c13 = 4c11c12
d+1 . and c11,c12 are defined in (16) ,(27) respectively. Then under (A7),(A9) and for any N ≥ 1

E

[

‖∇f(xR)‖2
]

≤ 1
∑N

k=1 [γk − Lc13γ2
k]

[

Lδ2c13
2

+ 2c13δB + L2δ2d2c13
∑

k

γk (29)

+ Lc13

(

dδ2L2

4
+ σ2

)

∑

γ2
k

]

. (30)

Proof. Let αk ≡ (ξk, uk), k ≥ 1 and α[N ] := (α1, α2, ...αN ). Denote Γk ≡ Gδ(xk, ξk, uk) − ∇fδ(x) ≡
Gδ(xk, αk)−∇fδ(x). Now, by Taylor series expansion fδ(xk+1) we have for any k = 1, 2, ..., N ,

18



fδ(xk+1) ≤ fδ(xk)− γk〈∇fδ(xk), Gδ(xk, α)〉+
L

2
γ2
k ‖Gδ(xk, αk)‖2

= fδ(xk)− γk ‖∇fδ(xk)‖2 − γk〈∇fδ(xk),Γk〉+
L

2
γ2
k ‖Gδ(xk, αk)‖2 .

Adding upto N -terms both side of these inequalities and applying f∗
δ ≤ fδ(xN+1), we obtain

N
∑

k=1

γk ‖∇fδ(xk)‖2 ≤ fδ(x1)− f∗
δ −

N
∑

k=1

γk〈∇fδ(xk),Γk〉+
L

2

N
∑

k=1

γ2
k ‖Gδ(xk, αk)‖2 . (31)

From the unbiased property of Gδ(xk, uk, ξk) the following holds

E[〈∇fδ(xk),Γk〉|α[k−1]] = 0.

Now by (A9) and Lemma 5(b)

E[‖Gδ(xk, αk)‖2 |α[k−1]] ≤
2c11
d+ 1

[

E‖∇F (xk, ξk)‖2|α[k−1]] +
(d+ 1)2δ2L2

4

]

≤ 2c11
d+ 1

[

2E[‖∇f(xk)‖2 |α[k−1] + σ2] +
(d+ 1)2δ2L2

4

]

.

(32)

Note that,the second inequality implies from variance bound of (A7). Taking expectations with respect to α[N ]

on both sides of (31), we have

N
∑

k=1

γkEα[N ]
‖∇fδ(xk)‖2

≤ fδ(x1)− f∗
δ +

L

2

N
∑

k=1

γ2
k

[

2c11
d+ 1

[

2E[‖∇f(xk)‖2 |α[k−1] + σ2] +
(d+ 1)2δ2L2

4

]

]

.

Applying Lemma 5(a) in the r.h.s and rearranging the term we obtain

N
∑

k=1

γk

[

1

2c12
Eα[N ]

‖∇f(xk)‖2 −
c11(d+ 1)L2δ2

2

]

≤ fδ(x1)− f∗
δ +

LNc11
d+ 1

(

(d+ 1)δ2L2

4
+ 2σ2

) N
∑

k=1

γ2
k +

2Lc11
d+ 1

N
∑

k=1

γ2
kE[‖∇f(xk)‖2].

From Lemma 4 and using the fact fδ(x1)− f∗
δ ≤ |fδ(x1)− f∗

δ | ≤ |fδ(x1)|+ |f∗
δ | one can have

N
∑

k=1

[

γk
2c12

− 2Lc11γ
2
k

d+ 1

]

Eα[N ]
‖∇f(xk)‖2

≤ c11Lδ
2

d+ 1
+

4c11δB

d+ 1
+

NL2δ2(d+ 1)c11
2

N
∑

k=1

γk +
LNc11
d+ 1

(

(d+ 1)δ2L2

4
+ 2σ2

) N
∑

k=1

γ2
k.

Thus by rearranging the above inequality we obtain

N
∑

k=1

[

γk −
4c11c12Lγ

2
k

d+ 1

]

Eα[N ]
‖∇f(xk)‖2
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≤ 2c11c12Lδ
2

d+ 1
+

8c11c12δB

d+ 1
+ L2δ2(d+ 1)c11c12

N
∑

k=1

γk +
2Lc11c12
d+ 1

(

(d+ 1)δ2L2

4
+ 2σ2

) N
∑

k=1

γ2
k.

Let c13 = 4c11c12
d+1

N
∑

k=1

[

γk − Lc13γ
2
k

]

Eα[N ]
‖∇f(xk)‖2 (33)

≤ Lδ2c13
2

+ 2c13δB +
L2δ2(d+ 1)2c13

4

N
∑

k=1

γk +
Lc13
2

(

(d+ 1)δ2L2

4
+ σ2

) N
∑

k=1

γ2
k. (34)

Dividing both sides of the above inequality by
∑N

k=1

[

γk − Lc13γ
2
k

]

and notice that

E

[

‖∇f(xR)‖2
]

= ER,α[N ]

[

‖∇f(xR)‖2
]

=

∑N
k=1

[

γk − Lc13γ
2
k

]

Eα[N ]
‖∇f(xk)‖2

∑N
k=1 [γk − Lc13γ2

k]
, (35)

we obtain (29) by replacing d+ 1 with 2d in (33).

We now specialize the result obtained from Lemma 6 to get the tight bound for Algorithm 1 as describe in

Theorem 5.

Proof of Theorem 5

Proof. Recall the step-size γk = γ, smoothing parameter δk = δ, ∀k ≥ 1, where

γk = γ = min

{

1

2Lc13
,

1

c13σ
√
N

}

, δ =
1

L
√
dNc13

. (36)

From the above condition of γ by considering γ ≤ 1
2Lc13

we have

Nγ [1− Lc13γ] ≥
Nγ

2
. (37)

Henceforth, from the above inequality and by Lemma 6, we obtain

E

[

‖∇f(xR)‖2
]

(h)

≤ Lδ2c13
Nγ

+
4δBc13
Nγ

+ 2L2δ2d2c13 + 2Lc13

(

dδ2L2

4
+ σ2

)

γ,

≤
(

Lδ2c13
N

+
4δBc13

N

)

max{2Lc13, σc13
√
N}+ 2L2δ2d2c13 +

dδ2L2

4
+

2σL√
N

,

≤
(

Lδ2c13
N

+
4δBc13

N

)

(2Lc13 + σc13
√
N) + L2δ2d(2c13d+ 1) +

4σL√
N

,

(k)
=

c213
N

(Lδ2 + 4δB)(2L+ σ
√
N) + L2δ2d(2c13d+ 1) +

2σL√
N

,

≤ c13
LN

(
1

Nd
+

4B
√
c13√

Nd
)(2L+ σ

√
N) +

(2c13d+ 1)

Nc13
+

2σL√
N

,

=
c13
LN

(
2L

Nd
+

σ

d
√
N

+
8LB

√
c13√

dN
+

σB
√
c13√
d

) +
(2c13d+ 1)

Nc13
+

2σL√
N

,

20



≤ c13
LN

(2L+ σ + 8LB
√
c13 + σB

√
c13) +

(2c13d+ 1)

Nc13
+

2σL√
N

,

=
c14
N

+
4σL√
N

.

Where c14 = 2L + c13σ + 8LBc
3/2
13 +

σBc
3/2
13 B
L + 2c13d+1

L . Notice that, (h) uses the condition of γk in (36) and

(k) follows from the condition of δ = 1
L
√
dNc13

. Thus by rearranging the terms as noting the fact that 1/Nd ≤ 1

we get the convergence rate O(1/
√
N).

4.3 Non-asymptotic analysis for the balanced estimator

Till now we have covered the analysis with imbalance gradient estimator. However, with this estimator we will get

high bias which is O(δk). We will now introduce a balanced gradient estimator and later we will show how it will

help to achieve low bias as compared to the previous one.

Recall the finite difference gradient estimate is defined as

∇fδ(x) =
1

δ
Eh(u)

[

(f(x+ δu)− f(x))
(d+ 1)u

(1 + ‖u‖2)

]

. (38)

Note that by change of variable we can rewrite (38) as

∇fδ(x) =
1

δ
Eh(u)

[

(f(x) − f(x− δu))
(d+ 1)u

(1 + ‖u‖2)

]

. (39)

Now by summing up (38) and (39) one can get the balanced estimator as

∇fδ(x) =
1

2δ
Eh(u)

[

(f(x+ δu)− f(x− δu))
(d+ 1)u

(1 + ‖u‖2)

]

. (40)

Thus for the case of noisy function measurements the balanced estimator is

G̃(xk, ξ
+
k , ξ−k , uk, δk)

△
=

(

F (xk + δkuk, ξ
+
k )− F (xk − δkuk, ξ

−
k )

2δk

)

(d+ 1)uk

1 + ‖uk‖2
. (41)

4.3.1 Proof of Theorem 4

Lemma 7. Under (A1)-(A4), and G̃ defined in (13) we have almost surely

E[G̃(xk, ξk, ξ
+
k , uk, δk)|Fk] = c2∇f(xk) + c′′2δ

2
k1d, (42)

where c2 = Eh(u)

[

(d+1)(ui
k)

2

1+‖uk‖2

]

, c′′2 = B1d
4

3 and 1d is the d-dimensional vector of all ones.

Proof. Using Taylor series expansion for truncated Cauchy perturbations we obtain: f(xk+δkuk)−f(xk−δkuk)

= 2δku
T
k∇f(xk) +

δ3k
6 (∇3f(x̄k

+) +∇3f(x̄k
−))(uk ⊗ uk ⊗ uk).

Here ⊗ denotes the Kronecker product and x̄+(respectively, x̄−) are on the line segment between x and x + δu
(respectively, x− δu). So

E[G̃(xk, ξk, ξ
+
k , uk, δk)|Fk] = E

[F (x+ δkuk, ǫ
+
k )− F (x− δkuk, ǫ

−
k )

2δk

(d+ 1)uk

1 + ‖uk‖2
|Fk

]

= E

[f(x+ δkuk)− f(x− δkuk)

2δk

(d+ 1)uk

1 + ‖uk‖2
|Fk

]

+ E

[η+k − η−k
2δk

(d+ 1)uk

1 + ‖uk‖2
|Fk

]

,

= E

[ (d+ 1)uku
T
k∇f(xk)

1 + ‖uk‖2
|Fk

]

+ E

[ δ2k(d+ 1)uk

12(1 + ‖uk‖2)
(∇3f(x̄k

+) +∇3f(x̄k
−))(uk ⊗ uk ⊗ uk)|Fk

]

,
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≤ c2∇f(xk) + E

[δ2k(d+ 1)uk

12
(∇3f(x̄k

+) +∇3f(x̄k
−))(uk ⊗ uk ⊗ uk)|Fk

]

.

Now the jth coordinate of the second term in RHS of the above inequality is bounded as follows:

E

[δ2ku
j
k(d+ 1)

12
(∇3f(x̄k

+) +∇3f(x̄k
−))(uk ⊗ uk ⊗ uk)|Fk

]

≤ B1δ
2
k(d+ 1)

6

d
∑

l1=1

d
∑

l2=1

d
∑

l3=1

E(uj
ku

l1
k u

l2
k u

l3
k ) ≤

B1d
4δ2k
3

.

The first inequality follows from (A2) and in the last one we use the fact |ul
k| ≤ 1.

Proof of Theorem 4

Proof. Notice by Lemma 7,

Eα[k]
[Γ′

k] = Eα[k]
[Γ′

k|αk−1] = Eα[k]
[Γ′

k|xk] = Eα[k][G̃− c2∇f |xk]
(e)

≤ τ1d×1,

with Γ′
k ≡ G̃(xk, ξk, ξ

+
k , uk, δ)−c2∇f(x) ≡ G̃(xk, αk)−c2∇f(xk) and τ = c′′2δ

2 and αk ≡ (ξk, ξ
+
k , uk, δ), k ≥

1. In the above vector inequality (e) implies that xi ≥ yi for X,Y ∈ R
d. Also, by (21) we have

Eα[k]
[‖G̃‖2] ≤ ‖Eα[k]

[G̃]‖2 + C′′

δ2
.

The rest proof is similar as Theorem 3.

4.3.2 Proof of Theorem 6

Lemma 8. Let ∇fδ(x) is the balanced estimator defined in (40) then under (A2) we have

‖∇fδ(x)‖2 ≤ 2‖∇f(x)‖2c211 + 2d2δ4c′′22 (43)

Proof. From the definition of balanced estimator we have

∇fδ(xk) = Eu

[(

f(xk + δkuk)− f(xk − δkuk)

2δk

)

(d+ 1)uk

1 + ‖uk‖2
]

.

By Taylor series expansion we obtain

∇fδ(xk) = Eu

[(

2δuT
k∇f(xk) +

δ3

6 (∇3f(x̄k
+) +∇3f(x̄k

−))(uk ⊗ uk ⊗ uk)

2δ

)

(d+ 1)uk

1 + ‖uk‖2
]

= Eu

[ (d+ 1)uku
T
k∇f(xk)

1 + ‖uk‖2
]

+ Eu

[ δ2(d+ 1)uk

12(1 + ‖uk‖2)
(∇3f(x̄k

+) +∇3f(x̄k
−))(uk ⊗ uk ⊗ uk)

]

,

≤ Eu

[ (d+ 1)uku
T
k∇f(xk)

1 + ‖uk‖2
]

+ c′′2δ
2
1d

The second term in the above inequality is obtain via same logic used in Lemma 7. Hence by taking norm of the

both side and applying Jensen inequality we get

‖∇fδ(x)‖ ≤ ‖∇f(x)‖E
[‖u‖2(d+ 1)

1 + ‖u‖2
]

+ dc′′2δ
2,

< ‖∇f(x)‖E
[

‖u‖2(d+ 1)

]

+ dc′′2δ
2,

≤ ‖∇f(x)‖c11 + dc′′2δ
2,

‖∇fδ(x)‖2 ≤ 2‖∇f(x)‖2c211 + 2d2δ4c′′22 .
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Proof of Theorem 6

Proof. Define αk ≡ (ξk, ξ
+
k , uk), k ≥ 1 and α[N ] := (α1, α2, ...αN ) as before in Section 4.2.2 Using Taylor

series expansion over f(xk) we obtain for any k = 1, 2, ..., N ,

f(xk+1) ≤ f(xk)− γk〈∇f(xk), G̃(xk, α)〉+
L

2
γ2
k

∥

∥

∥
G̃(xk, αk)

∥

∥

∥

2

= f(xk)− c2γk ‖∇f(xk)‖2 − γk〈∇f(xk),Γ
′
k〉+

L

2
γ2
k

∥

∥

∥
G̃(xk, αk)

∥

∥

∥

2

.

Here Γ′
k ≡ G̃(xk, ξk, ξ

+
k , uk, δ) − c2∇f(x) ≡ G̃(xk, αk) − c2∇f(xk). Adding upto N -terms both side of these

inequalities and applying f∗ ≤ f(xN+1), we obtain

N
∑

k=1

c2γk ‖∇f(xk)‖2 ≤ f(x1)− f∗ −
N
∑

k=1

γk〈∇f(xk),Γ
′
k〉+

L

2

N
∑

k=1

γ2
k

∥

∥

∥
G̃(xk, αk)

∥

∥

∥

2

.

Notice by Lemma 7

Eα[k]
[Γ′

k] = Eα[k]
[Γ′

k|αk−1] = Eα[k]
[Γ′

k|xk] = Eα[k][G̃− c2∇f |xk]
(e)

≤ τ1d×1,

where Γ′
k ≡ G̃(xk, ξk, uk) − c2∇f(x) ≡ G̃(xk, αk) − c2∇f(xk) and τ = c′′2δ

2. In the above vector inequality

(e) implies that xi ≥ yi for X,Y ∈ R
d.

Now by (A9) and Lemma 8

E[‖G(xk, αk)‖2 |α[k−1]] ≤
[

2c211E[‖∇F (xk, ξk)‖2|α[k−1]] + 2d2δ4c′′22
]

≤
[

4c211E[‖∇f(xk)‖2 |α[k−1] + σ2] + 2d2δ4c′′22

]

.
(44)

Thus we have

N
∑

k=1

c2γkEα[N ]
‖∇f(xk)‖2 ≤ D +Bτ

N
∑

k=1

γk +
L

2

N
∑

k=1

γ2
k

[

4c211E[‖∇f(xk)‖2 |α[k−1] + σ2] + 2d2δ4c′′22

]

.

The above inequality uses the fact −‖V ‖1 ≤
∑d

k=1 vk for a d−dimensional vectorV followed by ‖∇f(xk)‖1 ≤
‖∇f(xk)‖ ≤ B in (A7). Note that D = f(x1)− f∗. By rearranging the terms we have

N
∑

k=1

[

c2γk − 2Lc211γ
2
k

]

Eα[N ]
‖∇f(xk)‖2 ≤ D +Bτ

N
∑

k=1

γk + L
(

4c11σ
2 + 2d2δ4c′′22

)

N
∑

k=1

γ2
k.

By the same argument as in (35) and under the probability distribution

PR(k) = Prob(R = k) =

[

c2γk − 2Lc211γ
2
k

]

∑N
k=1 [c2γk − 2Lc211γ

2
k]
, (45)

the following is obtained

Eα[N ]
‖∇f(xR)‖2 ≤ 1

∑N
k=1 [c2γk − Lc211γ

2
k]

[

D +Bτ

N
∑

k=1

γk + L
(

4c11σ
2 + 2d2δ4c′′22

)

N
∑

k=1

γ2
k.

]

.

Note that, the condition of γk, see (15), is given by

γk = min

{

c2
4c211L

,
1

N1/2

}

, k = 1, 2, ...N,
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Thus one can have
N
∑

k=1

[

c2γk − 2Lc211γ
2
k

]

= Nc2γ1

[

1− 2Lc211
c2

γ1

]

≥ Nc2γ1
2

.

From the above inequality, we can write

E

[

‖∇f(xR)‖2
]

≤ 2D

Nc2γ1
+

2Bτ

c2
+

L

c2

(

4c11σ
2 + 2d2δ4c′′22

)

γ1,

≤ 2D

Nc2
max

{

4c211L

c2
, N1/2

}

+
2Bτ

c2
+

L

c2N1/2

(

4c11σ
2 + 2d2δ4c′′22

)

,

(h)

≤
(2DL

Nc22
+

2D

N1/2

)

+
2Bc′′2
c2N

+
L

2c2N1/2

(

4c11σ
2 +

2d2c′′2
N2

)

.

Note that (h) uses the condition of δ = 1
N1/2 by putting τ = c′′2δ

2. Thus, we get a rate of convergence of

O(N−1/2).

5 Experiments

In this section, we compare the performance of GSF, SPSA with symmetric Bernoulli(±1) valued perturbations and

RDSA with uniform (−5, 5) perturbations, respectively, with the TCSF (Algorithm 1) and TCSF with balanced

estimator(13) (B-TCSF). We consider both non-convex and convex objective functions with additive noise. We

consider the following choices for the function F (x, ξ) with d = 4:

Table 1: The different models for the observations F (·, ·) considered in our experiments.

Name Functional form Optimal point x∗ Min-Value

Rastrigin 10d+
∑d

i=1(x
2
i − 10 cos(2πxi)) + ξx (0, . . . , 0)T 0

Rosenbrock
∑d−1

i=1 (100(xi+1 − x2
i )

2 + (1− xi)
2) + ξx, (1, . . . , 1)T 0

Quadratic 1
2x

TAx− bTx+ ξx (−135.1, . . . ,−5.6)T −17.528

The setting for the case of quadratic function considered in Table 1 is

F3(x, ξx) =
1

2
xTAx− bTx+ ξx,

with, x∗ = [−135.1150,−4.5224, 130.1168,−5.6879]T where

A =









2.3346 1.1384 2.5606 14507
1.1384 0.7860 1.2743 0.9531
2.5606 1.2743 2.8147 1.6487
1.4507 0.9531 1.6487 1.8123









and

b = [0.4218, 0.9157, 0.7922, 0.9595]T.

We consider three settings for the noise η. In the first setting, referred to as Type-1, we let ξx = [xT , 1]η, where

η is a multivariate Gaussian with zero mean, and covariance matrix σ2
Id+1 with σ = 5. In the second setting,

referred to as Type-2, we have ξx as a Gaussian random variable with mean 0 and variance ln‖x‖2. Finally, in the

last setting, referred to as Type-3, we have ξx as a Gaussian random variable with mean 0 and variance 1
1+ln‖x‖2

.

Note in particular that Rosenbrock is a badly-scaled function, while Rastrigin is a multi-modal function.
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For the truncated Cauchy perturbations in TCSF and B-TCSF, we generated samples from the multivariate

t-distribution with one degree of freedom and then projected the same to the unit sphere. In our experiments, we

set ǫ = 0.0001, i.e., we stop the algorithm when ‖G‖ ≤ ǫ. For our initial experiments, we used the stepsize

and smoothing parameter as follows: γk = 1
k0.6 and δk = 1

k0.09 . However, we used constant step-sizes 0.0001
and smoothing parameters 0.001, respectively, which work well on both algorithms. We run each algorithm 100

times with N = 1000, 3000, 10000, respectively, for the Rastrigin, quadratic and Rosenbrock functions, and the

averages of the optimal functional values are reported in Table 2 while the standard error estimates for the various

algorithms from the different simulation runs are given in Table 3. we considered the set [0, 10]4 for Rastrigin and

Rosenbrock functions, and [0, 150]4 for a quadratic objective function. We report the average number of iterations

needed to reach an ǫ-stationary point in Table 4

Table 2: Average functional values for five SG algorithms with diminishing step size and smoothing parameter

GSF TCSF B-TCSF SPSA RDSA

Rastrigin 0.00019 1.03e− 05 0.0 0.0092 0.0094
Rosenbrock 0.002 0.00066 0.00062 0.0010 0.0017

T
y

p
e

1

Quadratic −17.471 −17.513 −17.5286 −17.4719 −17.4731

Rastrigin 0.0097 0.0009 1.17e− 05 0.0096 0.01
Rosenbrock 0.003 0.0018 0.00091 8e− 05 0.0017

T
y

p
e

2

Quadratic −17.5286 −17.528 −17.5248 −17.52819 −17.474

Rastrigin 0.0002 1.11e− 5 0.0 0.0 0.009
Rosenbrock 0.017 0.00072 0.00026 0.0021 0.0017

T
y

p
e

3

Quadratic −17.5253 −17.5248 −17.5279 −17.492 −17.488

Table 3: Standard error for Table 2

RSGF TCSF B-TCSF SPSA RDSA

Rastrigin 3.44× 10−7 2.34× 10−8 0 9.41× 10−6 4.84× 10−6

Rosenbrock 4.96× 10−5 3.75× 10−7 1.24× 10−7 6.34× 10−6 1.51× 10−6

T
y

p
e

1

Quadratic 5.61× 10−6 1.58× 10−7 1.28× 10−7 64.25× 10−5 5.28× 10−6

Rastrigin 1.26× 10−5 1.62× 10−7 2.96× 10−7 4.29× 10−5 5.61× 10−6

Rosenbrock 1.59× 10−6 4.57× 10−7 4.29× 10−7 4.27× 10−6 1.59× 10−6

T
y

p
e

2

Quadratic 4.36× 10−7 1.54× 10−7 2.03× 10−6 6.29× 10−6 5.69× 10−6

Rastrigin 4.29× 10−6 1.80× 10−7 0 0 2.49× 10−5

Rosenbrock 2.41× 10−6 1.94× 10−5 1.62× 10−7 2.36× 10−5 6.16× 10−5

T
y

p
e

3

Quadratic 3.26× 10−6 2.63× 10−6 1.30× 10−7 6.11× 10−5 8.83× 10−5

There is a significant difference in optimal functional values obtained from TCSF, B-TCSF as compared to

the other algorithms. One can notice from the Table 2 that |f(x∗) − f(x̄sol)| > |f(x∗) − f(x̂sol)|, where x̄sol

indicates the final output from GSF, SPSA, RDSA and x̂sol denotes the final output from TCSF, B-TCSF. Only

in the case of Rosenbrock and Rastrigin with Type 2 and Type 3 error, SPSA works slightly better than TCSF

though not so when compared with B-TCSF. However in case of the quadratic function we have noticed that TCSF

beats other algorithms under Type-1 and Type-3 errors as well. Between TCSF and B-TCSF, B-TCSF is seen to

perform slightly better on the whole. This is to be expected since B-TCSF has a lower bias because of the direct

cancellation of even-order bias terms starting from the second order.
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Table 4: Average number of iterations to converge to the optimal point(constant step size)

RSGF TCSF B-TCSF SPSA RDSA

Rastrigin 837.6 331.5 149.6 1268.39 1281.39
Rosenbrock 5604.08 3995.2 3138.3 6968.41 8572.53

T
y

p
e

1

Quadratic 8727.82 3234.86 2994.15 5952.7 6000.3

Rastrigin 785.6 638.9 151.4 1269.32 1105.33
Rosenbrock 5924.5 4834.2 2231.2 1782.1 9419.4

T
y

p
e

2

Quadratic 3305.44 3050.96 2863.11 3154.49 5743.9

Rastrigin 896.8 398.6 128.7 137.6 1352.4
Rosenbrock 5450.51 3376.6 2735.2 7946.4 8847.3

T
y

p
e

3

Quadratic 3518.9 3319.68 2726.65 4154.49 6152.2

Table 5: Standard error for Table 4

RSGF TCSF B-TCSF SPSA RDSA

Rastrigin 4.79 0.325 0.1255 0.395 0.445
Rosenbrock 90.4 38.35 20.3 108.2 115.3

T
y

p
e

1

Quadratic 31.85 24.49 17.85 1.07 1.0407

Rastrigin 5.66 5.412 0.14 0.445 0.415
Rosenbrock 108.08 45.36 21.71 13.99 99.35

T
y

p
e

2

Quadratic 20.78 20.85‘ 15.18 0.895 1.13

Rastrigin 6.114 0.319 0.132 0.128 0.431
Rosenbrock 102.21 22.93 19.02 103.36 121.3

T
y

p
e

3

Quadratic 22.17 24.18 19.15 1.04 0.99

In Table 4 above we have described the number of iterations needed to reach an ǫ−stationary point while

Table 5 describes the SE for corresponding iteration . There is a significant difference in the number of iterations

required for converging to the optimal point in each of the cases. For example, GSF, RDSA and SPSA each take

more than 2000 iterations with respect to TCSF, B-TCSF. However SPSA performs well as compared to RDSA,

RSGF and in some experiments it beats TCSF (e.g., Rosenbrock with type-2 error).

Table 6: Average functional values for five SG algorithm with constant step size and smoothing parameter

RSGF TCSF B-TCSF SPSA RDSA

Rastrigin 1.722 0.091 0.008 0.987 2.024
Rosenbrock 1.954 0.013 0.0006 0.587 1.743

T
y

p
e

1

Quadratic −15.894 −17.685 −17.587 −17.096 −14.843

Rastrigin 1.985 0.065 0.008 0.848 2.542
Rosenbrock 1.926 0.0018 0.0089 0.683 2.193

T
y

p
e

2

Quadratic −14.448 −17.939 −17.373 −16.597 −13.2493

Rastrigin 1.875 0.01 0.00623 0.879 1.893
Rosenbrock 2.097 0.091 0.0034 0.698 2.314

T
y

p
e

3

Quadratic −14.869 −17.962 −17.459 −16.183 −13.743

We can observe from Table 6 that for constant step size and smoothing parameter f(x̄TCSF ),f(x̄B−TCSF )
provides almost optimal functional value as compared to other algorithms. However, B-TCSF is more efficient
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than TCSF in this context. Thus we can conclude that there is an improvement in empirical performance when

TCSF and B-TCSF are used over other SG algorithms.

6 Conclusions and future work

We proposed and analyzed a gradient estimation scheme, based on truncated Cauchy random perturbations, for

solving a non-convex smooth optimization problem. We showed that our algorithm avoids traps and converges

asymptotically to a local minimum. Our algorithm performs better than two popular gradient estimation schemes

in the literature, namely SPSA and GSF, in terms of the asymptotic convergence rate. We also provided non-

asymptotic rate for our algorithm that is the same as the asymptotic rate and better when common random noise

is used in the simulations. Our algorithm also performs better than GSF, SPSA, RDSA empirically. Exploring the

performance of the Newton method using Hessian estimation under the truncated Cauchy perturbations would be

an interesting direction for future work.
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