
Retrieval Augmented Reinforcement Learning

Anirudh Goyal 1 Abram L. Friesen * 2 Theophane Weber * 2 Andrea Banino * 2 Nan Rosemary Ke * 2

Adria Puigdomenech Badia 2 Arthur Guez 2 Mehdi Mirza 2 Peter C. Humphreys 2 Ksenia Konyushkova 2

Laurent Sifre 2 Michal Valko 2 Simon Osindero 2 Timothy Lillicrap 2 Nicolas Heess 2 Charles Blundell 2

Abstract
Most deep reinforcement learning (RL) algo-
rithms distill experience into parametric behavior
policies or value functions via gradient updates.
While effective, this approach has several disad-
vantages: (1) it is computationally expensive, (2)
it can take many updates to integrate experiences
into the parametric model, (3) experiences that are
not fully integrated do not appropriately influence
the agent’s behavior, and (4) behavior is limited
by the capacity of the model. In this paper we
explore an alternative paradigm in which we train
a network to map a dataset of past experiences to
optimal behavior. Specifically, we augment an RL
agent with a retrieval process (parameterized as a
neural network) that has direct access to a dataset
of experiences. This dataset can come from the
agent’s past experiences, expert demonstrations,
or any other relevant source. The retrieval pro-
cess is trained to retrieve information from the
dataset that may be useful in the current context,
to help the agent achieve its goal faster and more
efficiently. The proposed method facilitates learn-
ing agents that at test-time can condition their
behavior on the entire dataset and not only the cur-
rent state, or current trajectory. We integrate our
method into two different RL agents: an offline
DQN agent and an online R2D2 agent. In offline
multi-task problems, we show that the retrieval-
augmented DQN agent avoids task interference
and learns faster than the baseline DQN agent. On
Atari, we show that retrieval-augmented R2D2
learns significantly faster than the baseline R2D2
agent and achieves higher scores. We run exten-
sive ablations to measure the contributions of the
components of our proposed method.

*Equal contribution 1Mila, Université de Montréal
2DeepMind. Correspondence to: Anirudh Goyal <anirud-
hgoyal9119@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
A host is preparing a holiday meal for friends. They re-
member that the last time they went to the grocery store
during the holiday season, all of the fresh produce was sold
out. Thinking back to this past experience, they decide to
go early! The hypothetical host is employing case-based
reasoning (e.g., Kolodner, 1992; Leake, 1996). Here, an
agent recalls a situation similar to the current one and uses
information from the previous experience to solve the cur-
rent task. This may involve adapting old solutions to meet
new demands, or using previous experiences to make sense
of new situations.

In contrast, a dominant paradigm in modern reinforcement
learning (RL) is to learn general purpose behaviour rules
from the agent’s past experience. These rules are typically
represented in the weights of a parametric policy or value
function network model. Most deep RL algorithms integrate
information across trajectories by iteratively updating net-
work parameters using gradients that are computed along
individual trajectories (collected online or stored in an ex-
perience replay dataset, Lin, 1992). For example, many
off-policy algorithms reuse past experience by “replaying”
trajectory snippets in order to compute weight updates for a
value function represented by a deep network (Ernst et al.,
2005; Riedmiller, 2005; Mnih et al., 2015b; Heess et al.,
2015; Lillicrap et al., 2015).

This paradigm has clear advantages but at least two inter-
related limitations: First, after learning, an agent’s past
experiences no longer play a direct role in the agent’s be-
havior, even if they are relevant to the current situation.
This occurs because detailed information in the agent’s past
experience is lost due to practical constraints on network
capacity. Second, since the information provided by indi-
vidual trajectories first needs to be distilled into a general
purpose parametric rule, an agent may not be able to ex-
ploit the specific guidance that a handful of individual past
experiences could provide, nor rapidly incorporate novel
experience that becomes available—it may take many re-
plays through related traces in the past experiences for this
to occur (Weisz et al., 2021).

In this work, we develop an algorithm that overcomes these

ar
X

iv
:2

20
2.

08
41

7v
4

 [
cs

.L
G

]
 2

4
M

ay
 2

02
2

Retrieval Augmented Reinforcement Learning

Figure 1: Retrieval-augmented agent (R2A) architecture: (A) R2A augments the agent with a retrieval process. The retrieval process and the agent maintain separate
internal states, mt and st, respectively. The retrieval process retrieves information relevant to the agent’s current internal state st from the retrieval batch, which is a pre-
processed sample from the retrieval dataset B. The retrieved information ut is used by the agent process to inform its output (e.g., a policy or value function). (B) A batch
of raw trajectories is sampled from the retrieval dataset B and encoded (using the same encoder as the agent). Each encoded trajectory is then summarized via forward and a
backward summarization functions (section 2.2) and sent to the retrieval process. (C) The retrieval process is parameterized as a recurrent model and the internal statemt is
partitioned into slots. Each slot independently retrieves information from the retrieval batch, which is used to update the slot’s representation and sent to the agent process in
ut. Slots also interact with each other via self-attention. See section 2.3 for more details.

limitations by augmenting a standard reinforcement learning
agent with a retrieval process (parameterized via a neural
network). The purpose of the retrieval process is to help the
agent achieve its objective by providing relevant contextual
information. To this end, the retrieval process uses a learned
attention mechanism to dynamically access a large pool of
past trajectories stored in a dataset (e.g., a replay buffer),
with the aim of integrating information across these. The
proposed algorithm (R2A), shown in Figure 1, enables an
agent to retrieve information from a dataset of trajectories.
The high-level idea is to have two different processes. First,
the retrieval process makes a “query” for relevant contex-
tual information in the dataset. Second, the agent process
performs inference and learning based on the information
provided by the retrieval process. These two processes have
different internal states but interact to shape the represen-
tations and predictions of each other: the agent process
provides the relevant context, and the retrieval process uses
the context and its own internal state to generate a query
and retrieve relevant information, which is in turn used by
the agent process to shape the representation of its policy
and value function (see Fig. 1A). Our proposed retrieval-
augmented RL paradigm could take several forms. Here,
we focus on one particular instantiation applied to multi-
ple different RL agents and environments to validate our
hypothesis that learning a retrieval process can help an RL
agent achieve its objective.

Summary of experimental results. We first show that
the performance and sample efficiency of R2D2 (Kaptur-
owski et al., 2018), a state-of-the-art off-policy RL algo-
rithm, on Atari games can be improved by retrieval aug-
mentation. In this setting, we run a series of ablations to

demonstrate the benefits of our design decisions and to
show how our approach compares with related work. In
online Atari, the agent retrieves from its own experiences
on the same game; however, retrieval can also query exter-
nal data from other agents or other tasks. We thus evalu-
ated on three separate multi-task offline RL environments
(gridroboman, BabyAI (Chevalier-Boisvert et al., 2018),
CausalWorld (Ahmed et al., 2020)(a continuous control
benchmark), where the retrieved data is first from a different
agent in the same task and then from different agents and
includes data from other tasks. In all cases, the retrieval-
augmented agent learns faster and achieves higher reward.

2. Retrieval-Augmented Agents
We now present our method for augmenting an RL agent
with a retrieval process, thereby reducing the agent’s depen-
dence on its model capacity, and enabling fast and flexible
use of past experiences. A retrieval-augmented agent (R2A)
consists of two main components: (1) the retrieval process,
which takes in the current state of the agent, combines this
with its own internal state, and retrieves relevant information
from an external dataset of experiences; and (2) a standard
reward-maximizing RL agent, which uses the retrieved in-
formation to improve its value or policy estimates. See
Figure 1 for an overview. The retrieval process is trained
to retrieve information that the agent can use to improve
its performance, without explicit knowledge of the agent’s
policy. Importantly, the retrieval process has its own internal
state, which enables it to integrate and combine information
across retrievals. In the following, we focus on value-based
methods, such as DQN (Mnih et al., 2015a) and R2D2 (Kap-
turowski et al., 2018), but our approach is equally applicable

Retrieval Augmented Reinforcement Learning

to policy-based methods.

2.1. Retrieval-augmented agent

Formally, the agent receives an input xt at each timestep
t. Each input is processed by a neural encoder (e.g., a
resnet if the input is an image) to obtain an abstract internal
state for the agent st = f enc

θ (xt). For clarity, we focus
here on the case of a single vector input, however, each
input could also include the history of past observations,
actions, and rewards, as is the case when f enc

θ is a recur-
rent network. These embeddings are used by the agent
and retrieval processes. The retrieval process operates on
a dataset B = {((xt, at, rt), . . . , (xt+l, at+l, rt+l))} of l-
step trajectories, for l ≥ 1. This dataset could come from
other agents or experts, as in offline RL or imitation learning,
or consist of the growing set of the agent’s own experiences.
Then, a retrieval-augmented agent (R2A) consists of the
retrieval process and the agent process, parameterized by
θ = {θenc, θretr, θagent},

Retrieval process f retr
θ,B :mt−1, st 7→mt,ut

Agent process f agent
θ : st,ut 7→ Qθ(st,ut, a)

Retrieval Process. The retrieval process is parameterized
as a neural network and has an internal state mt. The
retrieval process takes in the current abstract state of the
agent process st and its own previous internal state mt−1
and uses these to retrieve relevant information from the
dataset B, which it then summarizes in a vector ut, and also
updates its internal statemt.

Agent Process. The state of the agent st and the information
from the retrieval process ut are then passed to the action-
value function, itself used to select external actions.

The above defines a parameterization for a retrieval-
augmented agent. For retrieval to be effective, the retrieval
process needs to: (1) be able to efficiently query a large
dataset of trajectories, (2) learn and employ a similarity
function to find relevant trajectories, and (3) encode and
summarize the trajectories in a manner that allows efficient
discovery of relevant past and future information.

Below, we explain how we achieve these desiderata. At
a high-level, to reduce computational complexity given a
experience dataset of hundreds of thousands of trajecto-
ries, R2A operates on samples from the dataset. R2A then
encodes and summarizes the sampled trajectories using aux-
iliary losses and bi-directional sequence models to enable
efficient retrieval of temporal information. Finally, R2A
uses attention to select semantically relevant trajectories.

2.2. Retrieval batch sampling and pre-processing.

Sampling a retrieval batch from the retrieval dataset. To
reduce computational complexity, R2A uniformly samples
a large batch of past experiences from the retrieval dataset

and then retrieves from the sampled batch. We denote the
sampled batch as the “retrieval batch” and the number of
trajectories in the retrieval batch as nretrieval.

Encoding and forward-backward summarization of the
retrieval dataset and corresponding auxiliary losses.
Since the agent’s internal state extracts information from
observations which relate to the task at hand, we choose to
re-encode the raw experiences in the ”retrieval batch” using
the agent encoder module (i.e., f enc

θ). However, this repre-
sentation is a function only of past observations (i.e., it’s a
causal representation) and may not be fully compatible with
the needs of the retrieval operation. For that reason, we pro-
pose to further encode the retrieved batch of information by
a learned summarization function, applied on the output of
the encoder module, which captures information about the
past and the future within a particular trajectory by using a
bi-directional model (e.g., parameterized as a bi-directional
RNN or a transformer).

Forward Summarizer f fwd
θ : (s1, . . . , st) 7→ ht

Backward Summarizer f bwd
θ : (sl, . . . , st) 7→ bt

For each trajectory in the retrieval batch, we represent each
time-step within a trajectory by a set of two vectors hi,t
and bi,t (Figure 5 in the appendix) where hi,t summarizes
the past (i.e., from t′ = 0 to t′ = t time-steps of the ith tra-
jectory) while bi,t summarizes the future (i.e., from t′ = t
to t′ = l time-steps) within the ith trajectory. In addition,
taking inspiration from (Jaderberg et al., 2016; Ke et al.,
2019; Devlin et al., 2018; Mazoure et al., 2020), we use
auxiliary losses to improve modeling of long term depen-
dencies when training the parameters of our forward and
backward summarizers. The goal of these losses is to force
the representation (hi,t, bi,t)i,t≥0 to capture meaningful
information for the unknown downstream task. For our ex-
periments, we use supervised losses where we have access
to actions or rewards in the retrieval batch. For ablations we
also experiment with self-supervised losses. For supervised
auxiliary losses, we use policy, value, and reward predic-
tion (Silver et al., 2017; Schrittwieser et al., 2019), and for
self-supervised losses, we use a BERT-style masking loss
(Devlin et al., 2018).

2.3. Retrieving contextual information.

In this section, we explain how the retrieval process, when
provided with relevant contextual information represented
by the agent’s current state st, interacts with the summarized
information in the retrieval batch to select information ut
to provide to the agent in return.

Retrieval process state parameterization. We parame-
terize the process that retrieves information from past ex-
perience as a structured parametric model with multiple
separate memory slots (or sub-units). The state of the

Retrieval Augmented Reinforcement Learning

Algorithm 1 One timestep of a retrieval-augmented agent (R2A).

Input: Current input xt, previous retrieval process state mt−1 = {mt−1,k| k ∈ {1, . . . , nf}}, dataset of l-step trajectories
B = {((xit,hit, bit, ait, rit), . . . , (xit+l,hit+l, bit+l, ait+l, rit+l))} for l ≥ 1 and 1 ≤ i ≤ ntraj, where h and b are the outputs of the
forward & backward summarizers. We first encode the current input at time-step t using the encoder st = f enc

θ (xt).

Step 1: Compute the query. For all 1 ≤ k ≤ nf , compute
m̂k
t−1 = GRUθ

(
st,m

k
t−1

)
qkt = fquery(m̂

k
t−1)

Step 2: Identify the most relevant trajectories. For all 1 ≤ k ≤ nf , 1 ≤ j ≤ l and 1 ≤ i ≤ ntraj,
κi,j = (hijW

e
ret)

T

`ki,j =
(
qkt κi,j√

de

)
αki,j = softmax

(
`ki,j
)
.

Given scores α, the top-ktraj trajectories (resp. top-kstates states) are selected and denoted by T kt (resp. Skt).

Step 3: Retrieve information from the most relevant trajectories and states.
αki,j = softmax

(
`ki,j
)
, i ∈ T kt , j ∈ Skt .

gkt =
∑
i,j α

k
i,jvi,j where vi,j = bi,jW v

ret

Step 4: Regularize the retrieved information by using information bottleneck.
zkt ∼ p(z|gkt)

Step 5: Update the states of the slots.
Slotwise update using retrieved information:
m̃k
t ← m̂k

t−1 + z
k
t ∀k ∈ {1, . . . , nf}

Joint slot update through self-attention:
ckt = m̂k

t−1W
q
SA ∀k{1, . . . , nf}

βk,k′ = softmaxk′

(
ckt κ

k′
t√
de

)
where κk

′
t = (m̃k′

t W
e
SA)

T ∀ k, k′ ∈ {1, . . . , nf}

mk
t ← m̃k

t +
∑
k′ βk,k′vk′ where vk′ = m̃k

tW
v
SA ∀k ∈ {1, . . . , nf}

Step 6: Update the agent state using the retrieved information.
dt = stW

q
ag

κk = (zktW
e
ag)

T ∀k ∈ {1, . . . , nf}
γk = softmaxk

(
dtκ

k
√
de

)
ut ←

∑
k γkvk where vk = zktW

v
ag ∀k ∈ {1, . . . , nf}.

s̃t ← st + ut

retrieval process is a set of nf memory slots denoted by
mt = {mk

t | k ∈ {1, . . . , nf}} (indexed by the agent time-
step t). Slots are initialized randomly at the beginning of
the episode. Each slot independently queries and retrieves
relevant information from the pool of data. The slots then
update their values independently based on the retrieved
information, followed by an integration step during which
information is shared between slots. Algorithm 1 specifies
the six steps of R2A, which we explain in detail below.

Step 1: Query computation. Each slot independently com-
putes its prestate using a GRU on the contextual informa-
tion from the agent: m̂k

t−1 = GRUθ
(
st,m

k
t−1
)
∀k ∈

{1, . . . , nf}. Then, each slot independently computes a re-
trieval query which will be matched against information in
the retrieval batch: qkt = fquery(m̂

k
t−1)| k ∈ {1, . . . , nf}1

1fquery is parameterized as a neural network.

where qkt is the query generated by the kth slot at timestep t.

Step 2: Identification of most relevant trajectories and
states for each slot (Figure 4A). The retrieval mechanism
process uses an attention mechanism to match a query pro-
duced by the retrieval state associated with each slot mk

t

to keys computed on each time step of each trajectory
of the retrieval batch. Formally, for each time step and
each trajectory in the buffer, we compute a key κi,j by
using a linear projection with matrix W e

ret on the forward
summaries h: κi,j = (hijW

e
ret)

T. Each query qkt is then
matched with the set of all keys κi,j , forming attention log-

its2 `ki,j =
(
qkt κi,j√

de

)
and corresponding attention weights

αki,j = softmax
(
`ki,j
)

for i ≤ ntraj, 0 ≤ j ≤ T .

2We drop time indexing from attention-related quantities to
simplify notation.

Retrieval Augmented Reinforcement Learning

Intuitively, αki,j captures the extent to which the jth timestep
of the ith trajectory in the buffer will be relevant to mem-
ory mk

t through the query qkt . It follows that
∑
j α

k
i,j is

a measure of how relevant the ith trajectory is as a whole
for qkt . Following previous work (Ke et al., 2018; Goyal
et al., 2019b), matching only on the most relevant trajecto-
ries will increase the robustness of the retrieval mechanism.
We therefore select, for each query, the set T kt of ktraj tra-
jectories with highest aggregated score

∑
j α

k
i,j . Note that

typically the queries corresponding to different slots will
select different top-ktraj trajectories from the retrieval batch.
Following the selection of relevant trajectories, we renor-
malize the weights α, and use another top-k mechanism,
this time to choose the set of most relevant states Skt (i.e.
which maximizes

∑
i∈T kt

αi,j).

Step 3: Information retrieval from the most relevant
trajectories and states (Figure 4B). The next step of the
retrieval mechanism consists in computing the renormalized
weights α on the subsets T kt and Skt (αki,j = softmax

(
`ki,j
)
,

i ∈ T kt , j ∈ Skt) and using those weights to compute the
final retrieved information. The value retrieved from the
buffer for query qkt is computed as the α-weighted average
of a linear function of the backward state summaries: gkt =∑
i,j α

k
i,jvi,j where vi,j = bi,jW v

ret.

Step 4: Regularization of the retrieved information via
an information bottleneck. We regularize the retrieved
information gkt via the use of an information bottleneck
(Tishby et al., 2000; Alemi et al., 2016). Intuitively, each
query pays a price to exploit information from the retrieval
batch. Formally, we parametrize two Gaussian distributions
p(Z|gkt) (which has access to the retrieved information) and
r(Z|mt−1) (which only has access to the memory units).
We define zkt as a single sample from p(Z|gkt) via the repa-
rameterization trick to ensure differentiability (Kingma &
Welling, 2013; Rezende et al., 2014), and ensure that zkt
does not contain too much information by adding an addi-
tional loss DKL(p||r) to the overall agent loss. We provide
more details in the appendix.

Step 5: Slot update. The representation of each slot is first
additively updated as a function of the retrieved information
m̃k
t ← m̂k

t−1 + zkt . The final update mk
t consists of an

update in which all slots interact through self-attention (as
normally done in transformers; see Algorithm 1 for details).

Step 6: Updating the agent state using retrieved infor-
mation. The primary goal of the retrieval process is to
extract information which may be useful for the agent pro-
cess. Here, we use the retrieved information to change the
state of the agent st. In the previous step, the retrieved in-
formation is used to change the state of the slots. For this
step, we use a similar attention mechanism. Here, the query
is a function of the state of the agent process dt = stW

q
ag,

which are matched with the keys κk = (zktW
e
ag)

T ∀k ∈
{1, . . . , nf}, as a result of retrieving information, form-

ing attention weights γk = softmax
(
dtκ

k
√
de

)
. The values

generated as a result of retrieved information by differ-
ent slots and the attention weights are then used to up-
date the state of the learning agent : ut ←

∑
k γkvk

where vk = zktW
v
ag ∀k ∈ {1, . . . , nf}. ut is the re-

sult of the attention over the retrieved information which
is then used to change the representation of the agent pro-
cess : s̃t ← st + ut. We also shape the representation of
the action-value function Q(st, z

k
t , at) by conditioning the

value function on the retrieved information zkt (again via a
similar attention mechanism).

3. Experimental Results
To evaluate R2A, we analyze its performance in three dif-
ferent settings. First, to test whether an agent equipped
with retrieval augmentation can achieve better performance
(i.e., higher rewards) and scale with more, we test the pro-
posed method on the Atari arcade learning environment
(ALE) (Bellemare et al., 2013), a single-task off-policy set-
ting where the retrieval process extracts relevant information
from the agent’s current replay buffer. We then run a series
of ablations of R2A to better understand the roles and ef-
fects of its components. Second, to test whether an agent
equipped with retrieval augmentation can compensate for
lack in capacity when training a single agent on multiple
tasks, we evaluate on a multi-task, offline environment that
we created, called gridroboman. In this environment, a
single network is trained on data from all tasks and then,
at evaluation time, the retrieval process queries a retrieval
dataset containing only data from the task being evaluated.
Third, to test if the retrieval augmentation can also benefit
when data from the other tasks is present in the retrieval
dataset, we evaluate R2A in a multi-task offline version of
the BabyAI environment (Chevalier-Boisvert et al., 2018),
and a continuous control manipulation benchmark (Ahmed
et al., 2020). Again, a single network is trained on all tasks
but now the retrieval process queries a retrieval dataset con-
taining data from all tasks.

In our experiments, the retrieval process selects the top
ktraj = 10 most relevant trajectories (step 2, section 2.3),
and then retrieves relevant information from the selected
trajectories (step 3, section 2.3) using the top kstates = 10
most relevant states. To summarize the experiences in the re-
trieval batch we use a forward and backward GRU with 512
hidden units. To train the representation of these, we use
auxiliary losses in the form of action, reward, and value pre-
diction (section 2.2). Appendix A.3 provides further details
of the setup, training losses, and computational complexity.

Retrieval Augmented Reinforcement Learning

a Per-game relative performance of retrieval-augmented R2D2. b Relative performance of
ablated RA-R2D2.

Figure 2: (a) Relative percentage improvement
in mean human normalized score of retrieval-
augmented R2D2 vs vanilla R2D2 on different Atari
games, measured by human normalized score. We re-
port the average score from 3 seeds per method and
per game. (b) Relative percentage improvement of
ablated RA-R2D2 versus baseline R2D2 for 5 abla-
tions on 10 Atari games. Black lines show standard
deviations from 3 seeds.

3.1. Atari: Single-task off-policy RL

In this experiment, our goal is to evaluate whether retrieval
augmentation improves the performance and sample effi-
ciency of a strong, recurrent baseline agent on a challenging,
visually-complex environment—the Atari 2600 videogame
suite (Bellemare et al., 2013). We use recurrent replay dis-
tributed DQN (R2D2, Kapturowski et al. (2018)) as the
baseline agent and compare retrieval-augmented R2D2 (RA-
R2D2) to vanilla R2D2. The retrieval dataset is the agent’s
current replay buffer. The agent process is parameterized
as a GRU (Hochreiter & Schmidhuber, 1997), and the re-
trieval process is parameterized as the slot-based recurrent
architecture described in Section 2, using 8 slots. Retrieval
batches consist of 256 trajectories from the retrieval dataset.

Overall, we observe an increase of 11.32 ± 1.2% in the
mean human normalized score relative to the R2D2 base-
line over 2 billion environment steps, demonstrating that
retrieval augmentation is quite beneficial in Atari and that
the agent’s own replay buffer is a useful source for retrieval.
Raw scores and training curves are presented in Appendix
A.4. Figure 2a shows the relative improvement of RA-R2D2
versus the R2D2 baseline. Empirically, retrieval augmenta-
tion helps the most in the case of Frostbite, which requires
temporally extended planning strategies (Lake et al., 2017).
For more discussion, refer to Appendix A.3.5.

3.1.1. ABLATIONS AND ANALYSIS

To understand the benefit of different components of re-
trieval augmentation, we ablate RA-R2D2 on the 10 Atari
games it performs best relative to R2D2. The ablations
are as follows, and Figure 2b shows the performance of
RA-R2D2 and each ablation relative to the R2D2 baseline.

(A-1) Importance of a separate retrieval process. In
R2A, the retrieval process and the agent process are pa-
rameterized separately, i.e., they have their own internal
states. Here we examine what happens when the agent’s
state is used to query the retrieval batch instead of using the
retrieval statemt. To implement this we modify Step 1 of
Algorithm 1 to make the query a direct function of the state

of the agent, qt = fquery(st). The resulting query is used in
the same way as above. The resulting ablated model is akin
to the episodic control baseline of Pritzel et al. (2017).
Conclusion: It is crucial to parameterize the agent process
and retrieval process separately, as using the agent state
does no better than the baseline. This also shows the ben-
efit of our retrieval formulation as compared to episodic
control. Further, Pritzel et al. (2017) observed that direct
access to the replay buffer improves performance given low
data, but the advantage disappears with more data. Here
our experiments show that the agent equipped with retrieval
augmentation achieves better results even in the large data
regime (2B time-steps).

(A-2) Importance of retrieving information. We exam-
ine what happens when the retrieval process does not have
access to the retrieval dataset and hence no information is
retrieved, keeping all else the same. This ablation thus vali-
dates that R2A benefits from retrieval, not from an increase
in computation and parameters. Specifically, the retrieval
process updates the state of the slots using a transformer
(i.e., in Step 1 we replace GRU with a transformer), and the
updated state of the transformer is used by the agent process
to shape the representation of its value function.
Conclusion: R2A retrieves information that is useful to the
agent and its performance gains are not simply due to an
increase in model capacity and computation.

(A-3) Shorter retrieved trajectories. We decrease the
length of the trajectories that are summarized during re-
trieval pre-processing, thus reducing the amount of past and
future information the retrieval process can retrieve. By de-
fault, the trajectories in the retrieval dataset are of length 80.
To perform this ablation, we decrease the length of the effec-
tive context to only include information from 5 timesteps.
Conclusion: Decreasing the length of the context in the
retrieval dataset results in worse performance, thus show-
ing the importance of incorporating contextual information
using forward and backward summarization.

(A-4, A-5) Importance of auxiliary losses to summarize
retrieval batch. Here we study the use of self-supervised

Retrieval Augmented Reinforcement Learning

BERT style masking losses in addition to using action, re-
ward and value prediction. We use these auxiliary losses
on top of the representation learned by the forward and the
backward dynamics model. To implement these losses, we
randomly mask 15% of the hidden states in a trajectory,
and then, using the representation of hidden states at other
time-steps, we predict the representation of masked hidden
states. In A-5, we study using only self-supervised BERT
style masking losses for summarizing the trajectories.
Conclusion: Ablation A-4 demonstrates that the perfor-
mance of R2A can further be improved by incorporating
BERT style auxiliary losses but that only using BERT style
auxiliary losses results in worse performance (but still better
than baseline R2D2).

For completeness, Figure 7 in the appendix repeats the abla-
tions on the 5 games that RA-R2D2 performs worst (relative
to R2D2). An additional ablation shows that the perfor-
mance of the R2A can be greatly improved by optimizing
hyperparameters for each game separately (A-6), which we
did not do for our experiments.

3.2. Gridroboman: Multi-task offline RL with a
task-specific retrieval dataset

Beyond querying the agent’s own experiences, retrieval can
provide helpful information from other sources of experi-
ences, including experts or other agents, such as in offline
RL where the agent must learn from a fixed dataset of expe-
riences generated by other agents without interacting with
the environment during training. A major challenge in of-
fline RL is distributional shift—the mismatch between the
distribution of states in the training data and those visited
by the agent when acting— which makes it difficult to learn
an accurate value function for states and actions rarely seen
during training. We hypothesize that the retrieval process
can improve performance in the offline setting by retrieving
trajectories (including states, actions, and rewards) relevant
to the agent’s current state, particularly for states and actions
that are rare in the offline dataset. We test this hypothesis
on a multi-task offline RL setup where a single agent is
trained on multiple tasks simultaneously but at evaluation
time the retrieval dataset contains only trajectories from the
evaluated task.

For this experiment, we created a minimalistic grid-world-
based robotic manipulation environment (gridroboman)
with 30 tasks related to the three objects (red, green, and
blue) on the board. Gridroboman is built on the pycolab
game engine (Stepleton et al.). The environment is inspired
by the challenges of robotic manipulation, and includes
tasks such as “go to object X” and “put object X on object
Y”. Details of the environment, its tasks, and an example
figure are presented in the appendix (section A.4). Here,
we incorporate retrieval augmentation into a vanilla DQN
agent as agent-state-recurrence is not needed for this task.

Figure 3 shows the results of training retrieval-augmented
DQN (RA-DQN, orange) and DQN (blue) on increasing
numbers of tasks. With fewer tasks, RA-DQN and DQN
perform identically; however, when the number of training
tasks increases the retrieval-augmented agent is able to learn
much more effectively than the baseline agent. Training on
more tasks requires either additional model capacity or the
ability to extract information from fewer relevant samples
for each task. By directly querying task-relevant experi-
ences in the offline dataset, retrieval augmentation improves
sample efficiency. Note that while the retrieval process does
afford extra model capacity to the agent directly, ablation
A-2 in section 3.1.1 shows that the retrieved information is
what is crucial to performance, not the increased capacity.

3.3. BabyAI: Multi-task offline RL with a multi-task
retrieval dataset

Here we evaluate the benefit of retrieval augmentation when
data from other tasks is present in the retrieval dataset. Multi-
task retrieval data can be either harmful if the retrieved
information misguides the agent or beneficial if information
from the other tasks is relevant to the current task. Due to
the use of attention in the retrieval process, we hypothesize
that R2A will be able to retrieve relevant information (and
ignore irrelevant information) from other tasks.

To test our hypothesis, we use the BabyAI environ-
ment (Chevalier-Boisvert et al., 2018), a partially observable
multi-room grid world in which harder tasks are composed
of simpler tasks and are formulated using subsets of a syn-
thetic language. At the start of each episode, the agent is
placed in a random room and must navigate to a randomly
located goal. Due to the partial observability, we use a re-
current DQN (RDQN) agent as the baseline and compare its
performance to a retrieval-augmented RDQN (RA-RDQN)
agent. More details are provided in Appendix A.5.

As is common in this environment, we measure the success
rate of each agent, defined as the ratio of tasks the agent was
able to accomplish given a fixed number of steps for each
task. Table 1 shows the performance of RA-RDQN with a
multi-task replay, RA-RDQN with a replay specific to the
current task, and the baseline for varying amounts of offline
training data (50K trajectories per task versus 200K trajec-
tories per task). As expected from the previous experiment,
retrieval augmentation improves performance over the base-
line when using a single-task replay. Performance further
improves when using a multi-task replay. We believe that
this is due to the compositional nature of tasks in BabyAI,
where information about a subtask can be more informative
than information about the overall task.

Analysis of retrieved information. To understand this ef-
fect better, we analyzed the properties of the retrieved in-
formation in the multi-task setting in BabyAI. Out of the

Retrieval Augmented Reinforcement Learning

a Training and testing on 10 tasks. b Training and testing on 20 tasks. c Training and testing on 30 tasks.

Figure 3: Gridroboman: Multi-task offline RL with a task-specific retrieval dataset. Average episode return vs. learner steps for the multi-task gridroboman environment
when training and evaluating on 10, 20, and 30 tasks. With fewer tasks (a), the baseline DQN agent (blue) and the retrieval-augmented DQN agent (orange) perform identically;
however, when the number of tasks increases (b, c), the retrieval-augmented agent learns much more effectively than the baseline DQN agent. Results are the average of 3
seeds for each method. Curves for individual tasks are shown in the appendix (Figure 9).

Table 1: BabyAI: Multi-task offline RL with a multi-task retrieval dataset. Mean suc-
cess rate of retrieval-augmented recurrent DQN (RA-RDQN) versus a recurrent DQN (RDQN)
baseline on the 40 BabyAI levels, as a function of the amount of training data. RA-RDQN is
run twice, once with only the current task being evaluated in the retrieval dataset and once with
all tasks in it. Results are the average of 3 random seeds with standard errors.

Method Success Rate (50K) Success Rate (200K)

RDQN 32% ± 4% 45% ± 6%
RA-RDQN (single-task retrieval buffer) 48% ± 4% 64% ± 5%
RA-RDQN (multi-task retrieval buffer, without IB) 47% ± 3% 59% ± 6%
RA-RDQN (multi-task retrieval buffer) 55% ± 5% 74% ± 3%

Table 2: CausalWorld: Multi-task offline RL with a multi-task retrieval
dataset. Mean success rate of retrieval-augmented behaviour cloning on
continuous control task (RA-RDQN) as compared to vanilla behaviour
cloning baseline on the 5 tasks. Results are the average of 3 random seeds
with standard errors. For more detail, we refer the reader to Appendix A.6.

Method Success Rate (50K)

BC (behavior cloning) 61% ± 10%
RA-BC (single-task retrieval buffer) 71% ± 7%
RA-BC (multi-task retrieval buffer) 82% ± 5%

40 BabyAI tasks, 15 are compositional—i.e., solving them
requires composing information from 2 or more other tasks
(e.g., going to the door, fetching a key, etc.). We looked at
how often the agent retrieves information from other tasks
when solving each task. For the compositional tasks, the
agent retrieves information from other tasks 54% of the time,
whereas this number is only 21% for the non-compositional
tasks. This suggests that the retrieval-augmented agent is
retrieving information from other tasks when the current
task is compositional and using this information retrieved
from relevant sub-tasks to improve its performance.

Information bottleneck ablation. We ran an ablation to
validate the use of the information bottleneck (RA-RDQN
(multi-task retrieval buffer, without IB)). Table 1 shows the
agent performs worse without the information bottleneck
(but better than baseline). Such an information bottleneck
has been shown to improve generalization (Teh et al., 2017;
Goyal et al., 2019a; Galashov et al., 2019).

3.4. CausalWorld: Multi-task offline continuous
control

We also evaluate the performance of the R2A on a suite
of 5 continuous control object manipulation tasks from the
CausalWorld benchmark (Ahmed et al., 2020). We use the
same setup for retrieval pre-processing as in BabyAI but
use behaviour cloning (BC) as the underlying algorithm,
which has been shown to be a strong baseline for offline
RL (Gulcehre et al., 2020b). More details are provided
in Appendix A.6. We compare the performance of BC to
retrieval augmented BC (RA-BC). Table 2 shows the perfor-

mance of the RA-BC with both a multi-task retrieval buffer
and a single-task retrieval buffer. Retrieval augmentation
improves the performance of BC in both cases.

4. Related Work
Episodic control. The idea of allowing deep RL agents
to adapt based on past experiences using a non-parametric
memory is not new (Blundell et al., 2016; Pritzel et al.,
2017; Hansen et al., 2018; Eysenbach et al., 2019; van Has-
selt et al., 2019; Fortunato et al., 2019; Zhu et al., 2020).
The basic idea is that the agent is equipped with an episodic
memory system, which is used to recall past experiences to
inform decisions. There are two important differences be-
tween R2A and these methods. (1) In these methods, a local
action-value function is constructed by using information
about the nearest neighbors in the replay buffer, and then
the agent makes a decision about which action to execute
based on both the local value function as well as the global
value function. However, in the proposed work, we employ
a parameterized network (the retrieval process), which has
access to the information in the replay buffer, and the agent
process uses the retrieved information to shape the predic-
tions of its value function in a fully differentiable way (using
attention). (2) In these episodic control methods, there is
only one process (the agent), which has direct access to
the replay buffer. However, in R2A, the agent has indirect
access to the replay buffer via the retrieval process.

Retrieval in language models. Retrieval-based methods
have recently been developed for question answering, con-
trollable generation, and machine translation (Guu et al.,
2020; Lee et al., 2019; Lewis et al., 2020; Sun et al., 2021;

Retrieval Augmented Reinforcement Learning

Borgeaud et al., 2021). The general scheme in such methods
is to combine a parametric model (like a BERT-style masked
language model or a pre-trained seq2seq model) with a non-
parametric retrieval system. These methods share some
similarities with our proposed model, since they all involve
a retrieval component, but focus on different domains.

Additional related work is discussed in Appendix A.1.

5. Conclusion.
In this work, we developed R2A, an algorithm that aug-
ments an RL agent with a retrieval process. The retrieval
process and the agent have separate states and shape the
representation and predictions of each other via attention.
The goal of the retrieval process is to retrieve useful in-
formation from a dataset of experiences to help the agent
achieve its objective more efficiently and effectively. We
show that R2A improves sample efficiency over R2D2, a
strong off-policy agent, and compensates for insufficient ca-
pacity when training in multi-task offline RL environments.
Multiple ablations show the importance of the different com-
ponents of R2A, including retrieving information from past
experiences and parameterizing the agent and retrieval pro-
cess separately instead of giving the agent process direct
access to the replay buffer.

Limitations and Future Work. It would be useful to inves-
tigate and extend the proposed idea in these different ways:
(a) First, investigate training of the retrieval process and
the agent process using different objectives as compared to
training them in an end-to-end fashion, (b) Second, scaling
R2A to more complex multi-agent problems like in Star-
craft (Vinyals et al., 2019), where the retrieval process may
be shared between different agents. In R2A, we only query
a subset of the retrieval dataset, which limits the generality
of the method. (c) Third, even more intriguing would be the
possibility of learning an abstract model with abstract inter-
nal actions, and rewards, rather than learning a model which
queries for information from the retrieval dataset, and hence
avoiding the need for Monte Carlo tree search common in
the state of the art planning methods (Schrittwieser et al.,
2020). (d) Fourth, we don’t evaluate the R2A in a few-shot
learning setting, where we first pre-train an encoding func-
tion of the trajectories in the reply dataset and during test
time the agent is exposed to a new task, and needs to use the
helper process to adapt faster. We aim to formulate these
problems and seek answers in the future work.

6. Acknowledgements
The authors would also like to thank David Silver, Daan
Wiestra, Oriol Vinyals, Ivo Danihelka, Hado Van Has-
selt, Matthew Botvinick, Thore Graepal, Martin Riedmiller,
Pablo Sprechman, Alexander Lerchner, Jane Wang, Rui
Zhu, Doina Precup, Andrew Jaegle, Joao Carreira, Fabio

Viola, Raphael Koster, Laurent Sifre, Nando de frietas,
Sherjil Ozair, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Dan Horgan, Peter Battaglia, Jessica Hamrick,
Tom Stepleton, Max Jaderberg and Andre Barreto for use-
ful discussions. We would like to thank Bilal Piot, Pablo
Sprechmann, Olivier Tieleman for feedback, which helped
in improving the clarity of the work. AG would especially
like to thank David Silver for many engaging and insight-
ful brainstorming sessions which this work benefited from
greatly–the analogy of the retrieval agent as the helper pro-
cess came about in one such discussion. Lastly, AG would
like to thank people at Ferlucci coffee shop in Montreal for
their great coffee and interactions, as interactions with them
were one of the very few real-life human interactions he had
during the course of a remote, virtual internship.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R.,

Heess, N., and Riedmiller, M. Maximum a posteriori
policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Ahmed, O., Träuble, F., Goyal, A., Neitz, A., Bengio, Y.,
Schölkopf, B., Wüthrich, M., and Bauer, S. Causalworld:
A robotic manipulation benchmark for causal structure
and transfer learning. arXiv preprint arXiv:2010.04296,
2020.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.
Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410, 2016.

Allen, J. F. and Koomen, J. A. Planning using a temporal
world model. In Proceedings of the Eighth international
joint conference on Artificial intelligence-Volume 2, pp.
741–747, 1983.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Un-
terthiner, T., Brandstetter, J., and Hochreiter, S. RUD-
DER: Return decomposition for delayed rewards. arXiv
preprint arXiv:1806.07857, 2018.

Banino, A., Badia, A. P., Walker, J. C., Scholtes, T., Mitro-
vic, J., and Blundell, C. Coberl: Contrastive bert for
reinforcement learning. In ICML 2021 Workshop on Un-
supervised Reinforcement Learning, 2021.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. Interaction networks for learning
about objects, relations and physics. arXiv preprint
arXiv:1612.00222, 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,

Retrieval Augmented Reinforcement Learning

A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman,
A., Leibo, J. Z., Rae, J., Wierstra, D., and Hass-
abis, D. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., Driessche, G. v. d., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language mod-
els by retrieving from trillions of tokens. arXiv preprint
arXiv:2112.04426, 2021.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan,
D., and Sutskever, I. Generative pretraining from pixels.
In International Conference on Machine Learning, pp.
1691–1703. PMLR, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. Big self-supervised models are strong semi-
supervised learners. arXiv preprint arXiv:2006.10029,
2020b.

Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems,
L., Saharia, C., Nguyen, T. H., and Bengio, Y. Babyai: A
platform to study the sample efficiency of grounded lan-
guage learning. In International Conference on Learning
Representations, 2018.

Cover, T. M. Elements of information theory. John Wiley &
Sons, 1999.

Czarnecki, W. M., Pascanu, R., Osindero, S., Jayakumar, S.,
Swirszcz, G., and Jaderberg, M. Distilling policy distilla-
tion. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1331–1340. PMLR, 2019.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search on
the replay buffer: Bridging planning and reinforcement
learning. arXiv preprint arXiv:1906.05253, 2019.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1704.03012, 2017.

Fortunato, M., Tan, M., Faulkner, R., Hansen, S., Badia,
A. P., Buttimore, G., Deck, C., Leibo, J. Z., and Blundell,
C. Generalization of reinforcement learners with working
and episodic memory. arXiv preprint arXiv:1910.13406,
2019.

Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. Meta learning shared hierarchies. arXiv preprint
arXiv:1710.09767, 2017.

Galashov, A., Jayakumar, S. M., Hasenclever, L., Tirumala,
D., Schwarz, J., Desjardins, G., Czarnecki, W. M., Teh,
Y. W., Pascanu, R., and Heess, N. Information asymmetry
in KL-regularized RL. arXiv preprint arXiv:1905.01240,
2019.

Goyal, A., Brakel, P., Fedus, W., Singhal, S., Lillicrap, T.,
Levine, S., Larochelle, H., and Bengio, Y. Recall traces:
Backtracking models for efficient reinforcement learning.
arXiv preprint arXiv:1804.00379, 2018.

Goyal, A., Islam, R., Strouse, D., Ahmed, Z., Botvinick,
M., Larochelle, H., Bengio, Y., and Levine, S. Infobot:
Transfer and exploration via the information bottleneck.
arXiv preprint arXiv:1901.10902, 2019a.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine,
S., Bengio, Y., and Schölkopf, B. Recurrent independent
mechanisms. arXiv preprint arXiv:1909.10893, 2019b.

Goyal, A., Sodhani, S., Binas, J., Peng, X. B., Levine, S.,
and Bengio, Y. Reinforcement learning with competitive
ensembles of information-constrained primitives. arXiv
preprint arXiv:1906.10667, 2019c.

Goyal, A., Bengio, Y., Botvinick, M., and Levine, S.
The variational bandwidth bottleneck: Stochastic eval-
uation on an information budget. arXiv preprint
arXiv:2004.11935, 2020a.

Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine,
S., Blundell, C., Bengio, Y., and Mozer, M. Object
files and schemata: Factorizing declarative and proce-
dural knowledge in dynamical systems. arXiv preprint
arXiv:2006.16225, 2020b.

Retrieval Augmented Reinforcement Learning

Gulcehre, C., Wang, Z., Novikov, A., Paine, T., Gómez,
S., Zolna, K., Agarwal, R., Merel, J. S., Mankowitz,
D. J., Paduraru, C., et al. Rl unplugged: A collection of
benchmarks for offline reinforcement learning. Advances
in Neural Information Processing Systems, 33, 2020a.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Col-
menarejo, S. G., Zolna, K., Agarwal, R., Merel, J.,
Mankowitz, D., Paduraru, C., et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning.
arXiv preprint arXiv:2006.13888, 2020b.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-
W. REALM: Retrieval-augmented language model pre-
training. arXiv preprint arXiv:2002.08909, 2020.

Hansen, S., Sprechmann, P., Pritzel, A., Barreto, A.,
and Blundell, C. Fast deep reinforcement learning us-
ing online adjustments from the past. arXiv preprint
arXiv:1810.08163, 2018.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. Learning an embedding space for
transferable robot skills. In International Conference on
Learning Representations, 2018.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y.,
and Erez, T. Learning continuous control policies by
stochastic value gradients, 2015.

Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller,
M., and Silver, D. Learning and transfer of modulated
locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T.,
Leibo, J. Z., Silver, D., and Kavukcuoglu, K. Reinforce-
ment learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and
Dabney, W. Recurrent experience replay in distributed
reinforcement learning. In International conference on
learning representations, 2018.

Ke, N. R., Goyal, A., Bilaniuk, O., Binas, J., Mozer, M. C.,
Pal, C., and Bengio, Y. Sparse attentive backtracking:
Temporal credit assignment through reminding. In Ad-
vances in Neural Information Processing Systems, pp.
7640–7651, 2018.

Ke, N. R., Singh, A., Touati, A., Goyal, A., Bengio, Y.,
Parikh, D., and Batra, D. Learning dynamics model in
reinforcement learning by incorporating the long term
future. arXiv preprint arXiv:1903.01599, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. arXiv preprint arXiv:1312.6114, 2013.

Kolodner, J. L. An introduction to case-based reasoning.
Artificial intelligence review, 6(1):3–34, 1992.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and brain sciences, 40, 2017.

Leake, D. B. Case-based reasoning: experiences, lessons,
and future directions. 1996.

Lee, K., Chang, M.-W., and Toutanova, K. Latent retrieval
for weakly supervised open domain question answering.
arXiv preprint arXiv:1906.00300, 2019.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. arXiv preprint arXiv:2005.11401,
2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3-4):293–321, 1992.

Liu, S., Lever, G., Wang, Z., Merel, J., Eslami, S., Hennes,
D., Czarnecki, W. M., Tassa, Y., Omidshafiei, S., Ab-
dolmaleki, A., et al. From motor control to team
play in simulated humanoid football. arXiv preprint
arXiv:2105.12196, 2021.

Liu, Z., Li, X., Kang, B., and Darrell, T. Regularization
matters in policy optimization. 2019.

Logan, G. D., Cox, G. E., Annis, J., and Lindsey, D. R.
The episodic flanker effect: Memory retrieval as attention
turned inward. Psychological Review, 128(3):397, 2021.

Mazoure, B., Combes, R. T. d., Doan, T., Bachman, P., and
Hjelm, R. D. Deep reinforcement and infomax learning.
arXiv preprint arXiv:2006.07217, 2020.

Merel, J., Botvinick, M., and Wayne, G. Hierarchical motor
control in mammals and machines. Nature communica-
tions, 10(1):1–12, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, February 2015a.

Retrieval Augmented Reinforcement Learning

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015b.

Nair, A., Dalal, M., Gupta, A., and Levine, S. AWAC:
Accelerating online reinforcement learning with offline
datasets. 2020.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L.,
Racanière, S., Reichert, D., Weber, T., Wierstra, D., and
Battaglia, P. Learning model-based planning from scratch.
arXiv preprint arXiv:1707.06170, 2017.

Pertsch, K., Lee, Y., and Lim, J. J. Accelerating reinforce-
ment learning with learned skill priors. arXiv preprint
arXiv:2010.11944, 2020.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals,
O., Hassabis, D., Wierstra, D., and Blundell, C. Neural
episodic control. In International Conference on Machine
Learning, pp. 2827–2836. PMLR, 2017.

Racanière, S., Weber, T., Reichert, D. P., Buesing, L., Guez,
A., Rezende, D., Badia, A. P., Vinyals, O., Heess, N.,
Li, Y., et al. Imagination-augmented agents for deep
reinforcement learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, pp. 5694–5705, 2017.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278–1286. PMLR, 2014.

Riedmiller, M. Neural fitted Q iteration–first experiences
with a data efficient neural reinforcement learning method.
In European conference on machine learning, pp. 317–
328. Springer, 2005.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265, 2019.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Siegel, N. Y., Springenberg, J. T., Berkenkamp, F., Abdol-
maleki, A., Neunert, M., Lampe, T., Hafner, R., Heess,
N., and Riedmiller, M. Keep doing what worked: Behav-
ioral modelling priors for offline reinforcement learning.
arXiv preprint arXiv:2002.08396, 2020.

Silver, D. Reinforcement learning and simulation-based
search in computer go. 2009.

Silver, D., Sutton, R. S., and Müller, M. Sample-based learn-
ing and search with permanent and transient memories.
In Proceedings of the 25th international conference on
Machine learning, pp. 968–975, 2008.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Hasselt, H., Hessel, M., Schaul, T., Guez, A.,
Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz,
N., Barreto, A., et al. The predictron: End-to-end learning
and planning. In International Conference on Machine
Learning, pp. 3191–3199. PMLR, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Springenberg, J. T., Heess, N., Mankowitz, D., Merel,
J., Byravan, A., Abdolmaleki, A., Kay, J., Degrave,
J., Schrittwieser, J., Tassa, Y., et al. Local search for
policy iteration in continuous control. arXiv preprint
arXiv:2010.05545, 2020.

Stepleton, T., Delalleau, O., Ostrovski, G., and Wenke,
S. URL https://github.com/deepmind/
pycolab.

Strouse, D., Kleiman-Weiner, M., Tenenbaum, J., Botvinick,
M., and Schwab, D. Learning to share and hide inten-
tions using information regularization. arXiv preprint
arXiv:1808.02093, 2018.

Sun, Y., Wang, S., Feng, S., Ding, S., Pang, C., Shang,
J., Liu, J., Chen, X., Zhao, Y., Lu, Y., et al. Ernie
3.0: Large-scale knowledge enhanced pre-training for
language understanding and generation. arXiv preprint
arXiv:2107.02137, 2021.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–
163, 1991.

https://github.com/deepmind/pycolab
https://github.com/deepmind/pycolab

Retrieval Augmented Reinforcement Learning

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Robust
multitask reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 4496–4506, 2017.

Tishby, N., Pereira, F. C., and Bialek, W. The informa-
tion bottleneck method. arXiv preprint physics/0004057,
2000.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

van Hasselt, H. P., Hessel, M., and Aslanides, J. When to use
parametric models in reinforcement learning? Advances
in Neural Information Processing Systems, 32:14322–
14333, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O.,
Piot, B., Heess, N., Rothörl, T., Lampe, T., and Riedmiller,
M. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817, 2017.

Veerapaneni, R., Co-Reyes, J. D., Chang, M., Janner, M.,
Finn, C., Wu, J., Tenenbaum, J., and Levine, S. Entity
abstraction in visual model-based reinforcement learning.
In Conference on Robot Learning, pp. 1439–1456. PMLR,
2020.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. Feudal net-
works for hierarchical reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3540–3549.
PMLR, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft II
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Watters, N., Matthey, L., Bosnjak, M., Burgess, C. P.,
and Lerchner, A. Cobra: Data-efficient model-based
rl through unsupervised object discovery and curiosity-
driven exploration. arXiv preprint arXiv:1905.09275,
2019.

Wayne, G., Hung, C.-C., Amos, D., Mirza, M., Ahuja,
A., Grabska-Barwinska, A., Rae, J., Mirowski, P.,
Leibo, J. Z., Santoro, A., et al. Unsupervised predic-
tive memory in a goal-directed agent. arXiv preprint
arXiv:1803.10760, 2018.

Weisz, G., Amortila, P., and Szepesvári, C. Exponen-
tial lower bounds for planning in mdps with linearly-
realizable optimal action-value functions. In Algorithmic
Learning Theory, pp. 1237–1264. PMLR, 2021.

Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y.,
Babuschkin, I., Tuyls, K., Reichert, D., Lillicrap, T.,
Lockhart, E., et al. Deep reinforcement learning with
relational inductive biases. In International Conference
on Learning Representations, 2018.

Zhu, G., Lin, Z., Yang, G., and Zhang, C. Episodic rein-
forcement learning with associative memory. 2020.

Retrieval Augmented Reinforcement Learning

A. Appendix

Contents

A.1. Extended Relevant Work.

Model-based RL. Their are different ways to integrate knowledge across past experiences. One of the most common
way is by learning a model of the world, and using the predictions from the model to improve the policy and the value
function (Sutton, 1991; Silver et al., 2008; Silver, 2009; Allen & Koomen, 1983; Silver et al., 2016; Pascanu et al., 2017;
Racanière et al., 2017; Silver et al., 2018; Springenberg et al., 2020; Schrittwieser et al., 2020). To integrate information
across different episodes (potentially separated by many time-steps), a model may needed be unrolled for many time-steps
leading to compounding errors. In R2A, the agent has direct access to the information in the retrieval dataset, and querying
across multiple trajectories (in parallel) in the retrieval dataset potentially separated by hundreds of time-steps.

Structural Inductive Biases. Deep learning have proposed structural inductive biases such as Transformers (Vaswani et al.,
2017; Dehghani et al., 2018; Radford et al., 2019; Chen et al., 2020a;b; Dosovitskiy et al., 2020) or slot based recurrent
architectures (Battaglia et al., 2016; Zambaldi et al., 2018; Battaglia et al., 2018; Goyal et al., 2019b; Watters et al., 2019;
Goyal et al., 2020b; Veerapaneni et al., 2020) where the induced structure has improved generalization, model-size scaling,
and longrange dependencies.

Reinforcement Learning with Offline Datasets. Recent work in RL has tried exploiting large datasets collected across
many tasks to improve the sample efficiency of RL algorithms (Vecerik et al., 2017; Pertsch et al., 2020; Nair et al., 2020;
Siegel et al., 2020). An advantage of such large datasets is that they can be collected cheaply, and can then be reused
for learning many downstream tasks. A general scheme for exploiting information about such task-agnostic datasets is
either using them to directly improve the value function, or by extracting a set of skills or options and learning new tasks
by recombining them. In our work, we try to use information in the replay buffer by querying and searching for the
relevant information across multiple trajectories which otherwise would take many replays through coincidentally relevant
information for this to occur.

Separation of concerns. In Hierarchical RL (HRL) (Heess et al., 2016; Frans et al., 2017; Vezhnevets et al., 2017; Florensa
et al., 2017; Hausman et al., 2018; Goyal et al., 2019c), there’s separation of concerns among different policies, each policy
focuses on a different aspect of the task, e.g., giving task relevant information to the high level policy only such that low
level policy learns behaviours that are task agnostic. In these methods, the high level policy shapes the behaviour of low
level policy by either influencing representations or by influencing rewards.

It is possible to view our work through an analogous lens: wherein the “retrieval process” is the higher level policy (and
has access to the all the information in the replay buffer) and is influencing the representation of the agent process that is
interacting with the environment. However, there are also notable differences in our work—for instance, the agent process
also directly shapes the representation of the retrieval process, which is generally not the case in HRL (e.g., in Vezhnevets
et al. (2017) the manager directly influences the worker, but the worker does not directly influence the manager).

Efficient Credit assignment. Learning long term dependencies requires assigning credit to time-steps far back in the past.
Common methods for assigning credit in dynamics model like backpropagation through time requires information to be
propagated backwards through every single step in the past. This could become computationally expensive when used with
very long sequences. Methods which try to get around this problem only back-propagate information through a selected
time-steps in the past, realized by a learned mechanism that associates current state with relevant past states (Ke et al., 2018;
Wayne et al., 2018; Arjona-Medina et al., 2018; Goyal et al., 2018; Fortunato et al., 2019). Most of these works consider
assigning credit to states within the same trajectory, whereas the proposed model R2A, searches for the relevant information
in the replay buffer which includes information from other trajectories also.

Memory retrieval as attention turned inward. The proposed work also validates the conjecture put forward in (Logan
et al., 2021): Perceiving and remembering pose the same computational problems: desired information must be extracted
from complex multidimensional structures. The conjecture is that the extraction process is selective attention. Turned
outward, it retrieves information from perception. Turned inward, it retrieves information from memory.

Retrieval Augmented Reinforcement Learning

A.2. Information Theoretic Formulation

Let’s denote the agent’s policy πθ(A | S,G), where S is the agent’s state, A the agent’s action, G the information from the
retrieval process conditioned on the current state of the agent i.e., G = fretrieval(S), and θ the parameters of the neural
network representing the policy. We want to train agents that in addition to maximizing reward, minimize the policy
dependence on the information from the retrieval process, quantified by the conditional mutual information I(A;G | S).

This approach of minimizing the dependence of the policy on the information from the retrieval process can be interpreted
as encouraging agents to learn useful behaviours and to follow those behaviours closely, except where diverting from doing
so (as a result of using information from the retrieval process) leads to higher reward (Strouse et al., 2018; Teh et al.,
2017; Goyal et al., 2019a; Galashov et al., 2019; Czarnecki et al., 2019). To see this, note that the conditional mutual
information can also be written as I(A;G | S) = Eπθ [DKL[πθ(A | S,G) | π0(A | S)]] where Eπθ denotes an expectation
over trajectories, π0(A | S) =

∑
g p(g)πθ(A | S, g). is a “default” policy with the information from the retrieval process

marginalized out. We maximize the following objective:

J(θ) ≡ Eπθ [r]− βI(A;G | S)
= Eπθ [r − βDKL [πθ(A | S,G) | π0(A | S)]] ,

(1)

where β > 0 is a tradeoff parameter, Eπθ denotes an expectation over trajectories (for ex. generated by the agent’s policy)
and DKL refers to the Kuhlback-Leibler divergence.

(Goyal et al., 2019a; Galashov et al., 2019) proposes to optimize the Eq. 1 by maximizing the lower bound J̃(θ) 3:

J(θ) ≥ J̃(θ) ≡ Eπθ [r − βDKL [penc(Z | S,G) | q(Z | S)]] . (2)

We parameterize the policy πθ(A | S,G) using an encoder penc(Z | S,G), a decoder pdec(A | S,Z) and the q(Z | S) is the
learned prior such that πθ(A | S,G) =

∑
z penc(z | S,G) pdec(A | S, z).4 The encoder output Z is meant to represent the

information from the retrieval process that the agent believes is important to access in the present state S in order to perform
well.

Due to the data processing inequality (DPI) (Cover, 1999) I(Z;G | S) ≥ I(A;G | S), and hence to obtain an upper bound
on I(Z;G|S), we must first obtain an upper bound on I(Z;G|S = s), and then average over p(s). We get the following
result:

I(Z;G|S) ≤
∑
s

p(s)
∑
g

p(g|s)DKL(p(Z|s, g)‖r(Z)) (3)

Such an information bottleneck has shown to improve generalization (Teh et al., 2017; Goyal et al., 2019a;c; Galashov et al.,
2019; Merel et al., 2019; Liu et al., 2019; Goyal et al., 2020a; Liu et al., 2021).

A.3. Atari: Implementation details and raw scores for R2D2 and RA-R2D2.

Table 4 shows the raw scores achieved by RA-R2D2 and the R2D2 baseline. For R2D2 baseline and for the parameterization
of the agent process, we follow the exact same training setup as in (Banino et al., 2021). Figure ??, ??, ??, shows the
learning curve for both the proposed model and the R2D2 baseline for different games.

Training Losses:

• The parameters of the state encoder are trained by the RL loss and the auxiliary losses used to train the forward/backward
summarizer. The state encoder encodes information about the past actions, past rewards and the current observation
into an abstract state.

• The parameters of the retrieval process are trained by the RL loss and the information bottleneck regularizer.

• The parameters of the agent process are trained only by the RL loss.

3We ask the reader to refer to Information Theoretic Formulation section in the appendix.
4For experiments, we estimate the the marginals and conditionals using a single sample throughout.

Retrieval Augmented Reinforcement Learning

Hyperparameters:

• At each learner step, the agent samples a large batch of 512 trajectories from the replay buffer. A fixed fraction of the
batch (64 trajectories) is used for learning the Q-function and the remaining trajectories forms the retrieval batch.

• We sample a different retrieval dataset for each gradient update. The re-encoding of the trajectories is performed for
each gradient update during training.

• The retrieval process selects the top-ktraj = 10 most relevant trajectories (in step 2, section 2.3), and then retrieves
relevant information from the selected trajectories (step 3, section 2.3) using the top-kstates = 10 most relevant states
(see 4).

• To summarize the experiences in the retrieval batch we use a forward and backward GRU with 512 hidden units.

• We use 8 slots for Atari-R2D2 experiments.

• We use auxiliary losses in the form of action or policy prediction (section 2.2). We follow the same setup as proposed
in (Schrittwieser et al., 2020).

• The value of the β coefficient for the information bottleneck regularizer is fixed to 0.1.

• The rest of the hyperparameters for R2D2 are taken from (Kapturowski et al., 2018) and are detailed in table 3

Hyperparameter Value

Optimizer Adam
Learning rate 0.0001
Q’s λ 0.8
Adam epsilon 10−7

Adam beta1 0.9
Adam beta2 0.999
Adam clip norm 40

Q-value transform h(x) = sign(x)(
√
|x|+ 1− 1) + εx

Discount factor 0.997
Trace length (Atari) 80
Replay period (Atari) 40
Replay capacity 100000 sequences
Replay priority exponent 0.9
Importance sampling exponent 0.6
Minimum sequences to start replay 5000
Target Q-network update period 400
Evaluation ε 0.01
Target ε 0.01

Table 3: Hyperparameters used in the Atari R2D2 experiments.

Retrieval Augmented Reinforcement Learning

Implementation details:

• We use GRU style gating and layernorm whenever we are changing the state of the agent process or the state of the
slots in a residual way (Step 5, 6 in Algorithm 1).

• If the input to a neural network fnn consists of two tensors x, y, we never concatenate the inputs to the neural network.
We make use of attention. We assume one of the inputs is the primary input (lets say x), and other input is privileged
input (as a result of doing some expensive computation, let’s say y). First, we compute fnn(x), and then using the
output of this computation, we cross-attend over y using multi-head attention.

• When computing the forward summary of the trajectories in the retrieval batch h = ht+st, we also add the information
about the current encoded state i.e., st. Here we also use GRU style gating.

Visual Encoder Visual observations are encoded using a ResNet-47 encoder. The 47 layers are divided in 4 groups which
have the following characteristics:

• An initial stride-2 convolution with filter size 3x3 (1 · 4 layers).

• Number of residual bottleneck blocks (in order): (2, 4, 6, 2). Each block has 3 convolutional layers with ReLU
activations, with filter sizes 1x1, 3x3, and 1x1 respectively ((2 + 4 + 6 + 2) · 3 layers).

• Number of channels for the last convolution in each block: (64, 128, 256, 512).

• Number of channels for the non-last convolutions in each block: (16, 32, 64, 128).

• Group norm is applied after each group, with a group size of 8.

After this observation encoding step, a final layer with ReLU activations of sizes 512 is applied.

Computational Complexity. Here we discuss the computational complexity of the R2A.

The following computations are happening at each step within a trajectory:

• A particular slot selects the relevant trajectories and relevant states at each time-step.

• We use an attention mechanism to select the set of relevant trajectories and relevant states. This process scales with the
number of trajectories in the retrieval batch.

• The set of relevant trajectories and relevant states changes across different time-steps within a trajectories. This process
is repeated for all the slots independently, but can be efficiently performed on GPUs/TPUs.

We made following optimizations to reduce the computational complexity of the R2A.

• For Atari and Gridroboman experiments instead of using a learned attention mechanism to rank the trajectories (in step
2, section 2.3), we can also just use those trajectories which are of high return (Abdolmaleki et al., 2018) since we
already know that the data in the retrieval dataset is specific to the task on which we are training the agent.

• Once we have selected relevant trajectories, we can further reduce the computational cost of selecting most relevant
states (in the selected trajectories) by only considering those states which are semantically similar to the agent’s current
state.

Improvements tried that seem to improve the performance but were not evaluated exhaustively:

• Instead of performing only single step of retrieval at each step, we can also query the replay buffer multiple times
within a time-step at the cost of increased computational complexity.

• We can allow different slots to retrieve information at different time scales.

We note that all of the hyperparameters for the retrieval process, except for the number of trajectories in the retrieval batch,
remain the same across all experiments (Atari, gridroboman, and BabyAI).

Retrieval Augmented Reinforcement Learning

A.3.1. RETRIEVAL PROCESS: RETRIEVING INFORMATION FROM THE RETRIEVAL BUFFER.

Here we discuss the different steps involved in retrieving information from the retrieval buffer:

Query computation. Each slot independently computes its prestate using the contextual information from the agent using a
GRU. Then, each slot independently computes a retrieval query which will be matched against information in the retrieval
buffer.

Figure 4: Retrieval of most relevant trajectories and states. A) The retrieval process selects the top-ktraj most relevant trajectories as specified in step 2, section 2.3. In the
figure scalars represent attention weights. B) Then the retrieval process retrieves relevant information from the selected trajectories by selecting the most relevant states from
the top-k trajectories as detailed in step 3, section 2.3

Identification of most relevant trajectories and states for each slot. The retrieval mechanism process uses an attention
mechanism to match a query produced by the the retrieval state associated with each slot to keys computed on each time step
of each trajectory of the retrieval batch. This process assigns a single scalar to each state within a trajectory. These scores
are used to assign a scalar to each trajectory and then normalized across trajectories. These normalized scores are then used
by the retrieval process to select the top-ktraj most relevant trajectories (see Figure. 4). The process is then again repeated
to select most relevant states with the selected trajectories. Here, a single scalar is assigned to each state with in selected
trajectories and then normalized across all the states. These scores are then used to select most relevant states within the
most relevant trajectories.

Figure 5: Each trajectory in the retrieval batch is summarized via a forward and a backward running parameteric structured model (Transformers or slot based recurrent
network). Each state in the trajectory is represented by a (ht, bt) tuple where ht represents the summary of the past and bt represents the summary of the future with that
trajectory.

Information retrieval from the most relevant states. In the previous step, we selected most relevant states within the
most relevant trajectories. Now we integrate information across the selected states. We again use the attention mechanism.
Here the query by the slots is matched against the keys (which are the function of the forward running dynamics model), to
retrieve information about the future (and values are the function of the backward running dynamics model). See figure. 5
for more details.

Retrieval Augmented Reinforcement Learning

Environment R2D2 RA-R2D2

Alien 52268 ± 4125 81626 ± 5123
Amidar 10976 ± 2341 24693 ± 1982
Assault 45521 ± 4751 43497 ± 6653
Asterix 997910 ± 51241 997585 ± 89251

Asteroids 262560 ± 94168 254194 ± 72141
Atlantis 1424723 ± 67589 1516463 ± 98140

BankHeist 3923 ± 512 19397 ± 5931
BattleZone 590913 ± 128715 466783 ± 89724
BeamRider 89038 ± 79241 ±

Bowling 250.37 ± 253.5 ±
Boxing 99 ± 0 99 ± 0

Breakout 848 ± 121 869 ± 51
Centipede 315329 ± 151612 497746 ± 12515

ChopperCommand 998842 ± 11451 999936 ± 3422
CrazyClimber 184132 ± 12912 226469 ± 9251

Defender 538752 ± 18241 554158 ± 21415
DemonAttack 143552 ± 0 143519 ± 0
DoubleDunk 24 ± 0 24 ± 0

Enduro 2332 ± 32 2359 ± 19
FishingDerby 71.357 ± 2.51 73.13 ± 3.12

Freeway 34 ± 0 33.19 ± 0
Frostbite 168225 ± 51891 511159 ± 124512
Gopher 123138 ± 4121 123841 ± 8914
Gravitar 13142 ± 1214 13198 ± 1102

Hero 43257 ± 4121 35431 ± 2412
IceHockey 72.74 ± 31 71.59 ± 12
Jamesbond 24873 ± 2141 25873 ± 2817
Kangaroo 14614 15232

Krull 158509 ± 21415 183921 ± 31415
KungFuMaster 208583 ± 2102 224385 ± 41512

MontezumaRevenge 1966.7 ± 987 1750 ± 1800
MsPacman 33530 ± 1214 44396 ± 4521

NameThisGame 30232 ± 3151 45140 ± 2412
Phoenix 695251 ± 32515 847914 ± 12415
Pitfall 0.0 ± 0 0.0 ± 0
Pong 21 ± 0 21 ± 0

PrivateEye 21602 ± 4124 18923 ± 2415
Qbert 242169 ± 51512 241525 ± 32513

Riverraid 32441 ± 5314 44554± 7325
RoadRunner 490872 ± 51512 513521 ± 65132

Robotank 128.44 ± 18 102 ± 29
Seaquest 998664 ± 1212 999899 ± 51
Skiing -29973 ± 1212 -29232 ± 2412
Solaris 3924 ± 3415 3853 ± 1241

SpaceInvaders 57198 ± 14125 62624 ± 4215
StarGunner 256129 ± 478231 ±
Surround 9.52 ± 0 10 ± 0

Tennis 7.16 ± 0 0 ± 0
TimePilot 168592 ± 21241 260609 ± 41212

Tutankham 390 ± 41 235 ± 89
UpNDown 544439 ± 5851 561389 ± 21516

Venture 2000 ± 0 2000 ± 0
VideoPinball 673679 ± 234151 962119 ± 24151
WizardOfWor 78431 ± 5159 73500 ± 6231
Yars Revenge 674692 ± 125116 513549 ± 89151

Zaxxon 53312 ± 15152 62631 ± 5161

Table 4: Scores obtained on different atari games. (average over 3 different seeds).

Retrieval Augmented Reinforcement Learning

Figure 6: Relative improvement of retrieval-augmented R2D2 vs vanilla R2D2 on different Atari games, measured by human normalized score. We report the average score
from 3 seeds per method and per game.

A.3.2. DETAILS ON ABLATIONS

Ablation A-1: In this ablation, the internal retrieval state, mt is removed. The query qt is computed from st directly as
qt = fquery(st) . The retrieval vector gt is computed as per steps 2-4 of the original algorithm. Step 5 does not occur, and in
step 6 the only update is st ← st + gt.

Ablation A-2: In this ablation, there is no retrieval batch. The retrieval process is parametrized as before with a nk-slot
memory. Step 1 is identical, but steps 2-4 do not occur. Memory slots are updated as per the joint update of step 5. Step 6 is
otherwise identical, except that keys and values are computed from the memory slotsmk

t instead of the retrieved values zkt .

Ablation A-3: In this ablation, the length of the trajectories used for summarization is reduced from 80 to 5. The trajectories
used for Q learning are unchanged.

Ablations A-4 and A-5: In our experiments, we use standard policy, reward and value prediction cross-entropy losses (Schrit-
twieser et al., 2020) to train the forward and backward summarizers. In A-4, we add a BERT loss; tokens are obtained by
compressing the agent states st with VQ-VAE. In A-5, we only use the BERT loss.

A.3.3. ADDITIONAL ATARI ABLATIONS

Here we perform ablations on RA-R2D2 using the 5 Atari games on which RA-R2D2 performs worst relative to baseline
R2D2. Figure. 7 shows the relative performance of different ablations compared to the R2D2 baseline. Ablations 1-5 are as
described in the main text (section 3.1.1). For these results, we also ran a sixth ablation.

Retrieval Augmented Reinforcement Learning

Figure 7: Relative performance of ablated RA-R2D2 versus baseline R2D2 for 6 ablations on 5 Atari games on which RA-R2D2 performs worse than baseline R2D2.

Role of ktraj and kstates (A-6). In our experiments, the retrieval process selects the top ktraj = 10 most relevant trajectories
(step 2, section 2.3) and then selects the top kstates = 10 most relevant states of these trajectories (step 3, section 2.3) from
which to retrieve relevant information. To better understand the role of these hyperparameters, we independently vary these
two hyper-parameters (top ktraj and top kstates) over the values {5, 10, 20}. Figure 7 shows that after independently varying
these two hyper-parameters the performance of the R2A can be improved as compared to the R2D2 baseline.

A.3.4. EPISODIC CONTROL BASELINE

Comparison to Episodic Control baselines. We have performed ablations where we compared to the scenario where we
just keep the simple episodic memory (refer to section. 3.1.1, ablation A-1). The result of ablations shows that for R2D2
accessing the dataset in a non-parametric way actually hurts the performance of the RL algorithm

A.3.5. RETRIEVAL AUGMENTED RL HELPING FROSTBITE

Empirically, we found that the proposed method helps the most in the case of Frostbite. In Frostbite, players control an
agent (Frostbite Bailey) tasked with constructing an igloo within a time limit. The igloo is built piece-by-piece as the agent
jumps on ice floes in water. The challenge is that the ice floes are in constant motion (moving either left or right), and ice
floes only contribute to the construction of the igloo if they are visited in an active state (white rather than blue). The agent
may also earn extra points by gathering fish while avoiding a number of fatal hazards (falling in the water, snow geese,
polar bears, etc.). Success in this game requires a temporally extended plan to ensure the agent can accomplish a sub-goal
(such as reaching an icefloe) and then safely proceed to the next sub-goal (see also Lake et al. (2017)). Ultimately, once all
of the pieces of the igloo are in place, the agent must proceed to the igloo to complete the level before time expires. Our
hypothesis for the better performance when using retrieval augmentation is that the retrieval process is able to efficiently
utilize information from states that are far from the current state (i.e., it can perform temporally extended credit assignment).
This hypothesis is further validated when we decrease the length of the traces in the dataset in our ablations. Decreasing the
length of the retrieved and summarized trajectories reduces the amount of past and future information the retrieval process
can retrieve. By default, the trajectories in the retrieval dataset are of length 80. To perform this ablation, we decrease the
length of the effective context to only include information from 5 time-steps. When we perform this ablation, we see a
significant decrease in performance on Frostbite.

A.3.6. AUXILIARY LOSSES IMPLEMENTATION.

Action, Value, and Reward Prediction. For training the representation used to summarize the trajectories in the retrieval
batch, we use action, value and reward prediction as used in MuZero (Schrittwieser et al., 2020). We use the same loss

Retrieval Augmented Reinforcement Learning

coefficient’s and same architecture as proposed in MuZero (Schrittwieser et al., 2020).

BERT style losses. For self-supervised losses, we use a self-supervised vision representation similar to BERT developed in
the natural language processing area. We use a masked sequence modeling task to train Transformers. Specifically, each
trajectory has two views in our training, i.e, representation of each time-step, and visual tokens (i.e., discrete tokens). We
first "tokenize" the representation of different time-steps into visual tokens. Then we randomly mask some visual tokens and
fed them into the backbone Transformer. The objective is to recover the original visual tokens based on the corrupted tokens.

Retrieval Augmented Reinforcement Learning

A.4. Gridroboman environment

Figure 8: Gridroboman environment illustration. On the board there are three colored objects and the robot is represented by a black block. The robot can move itself and
move the objects. The tasks are motivated by the robotic manipulation.

In order to test our method in a multi-task setting we designed a minimalistic grid world robotic manipulation (gridroboman)
environment with a single embodiment and multiple tasks. It is implemented based on the pycolab (Stepleton et al.) game
engine that provides tools for designing customizable grid world games. The environment and its tasks are inspired by the
challenges in robotic manipulation. An illustration of a state in the environment is shown in Figure 3.

Environment semantics, observations and actions There are three colored objects on the 7× 7 board: red, green and
blue. The black block represents the robot. It can move in 4 directions and the action is skipped if it attempts to move into a
wall (gray). Additionally, if the robot is located at the same position as any colored object, it can apply lift action that would
enforce the object to move together with the robot. Then, put action allows to position the object either on the board or on the
top of another single object. Additionally, there is an option of skipping an action. The initial state of the environment that
includes positions of the objects and the robot is sampled randomly at the beginning of each episode. The agent observation
is an 11-dimensional vector: it includes x and y coordinates of three objects and the robot as well as status of each of three
objects. The status of an object is a numerical value: 0 if the object is positioned on the board, −1 if it is under another
object and +1 if it is either held by the robot or located on the top of another object. Each episode lasts for 50 timesteps.

Tasks There are 30 possible tasks: lift red, green, or blue object (3), touch red, green, or blue object (3), move red, green,
or blue to center (3) or to corner (3), touch one object with another (6), move two objects close to (3) or far from (3) each
other, stack one object on the top of another (6). The nature of these tasks is such that it is impossible to identify the task by
the initial state.

Rewards The reward is binary in each time step: it is zero when the task is not solved and one otherwise. In order to
receive positive reward the following condition should be met:

• lift X: the robot should lift and not put back an object of color X;

• touch X: the robot should be located at the immediately adjacent cell to the object of X color and not hold any objects;

• move X to center: the object or color X should be located in the 3× 3 block at the center of the board;

• move X to corner: the object of X color should be located in any of the 2× 2 corners of the board;

• touch X with Y: the robot should be located at the immediately adjacent position to the object of X color and hold the
object of color Y;

• move X close to Y: the distance between the objects of colors X and Y should be no more than 1 in both x and y
direction;

Retrieval Augmented Reinforcement Learning

• move X far from Y: the sum of distances between objects of colors X and Y in x and y coordinated should be greater
than 9;

• stack X on Y: the objects of colors X and Y should be located at the same position one on the top of another.

A.4.1. GRIDROBOMAN EXPERIMENT SETUP

The gridroboman offline RL dataset was generated by training a single DQN agent online on each task separately and
recording the 100K generated episodes. The Q(s, a) network was a 3-layer MLP with 256 units in each hidden layer for
Q-function. For the experiments with 10, 20, and 30 tasks, we use the first 10, 20, and 30 tasks, as listed here.
10 tasks: touch red, touch green, touch blue, lift red, lift green, lift blue, red touch green, green touch red, and green touch
blue.
20 tasks: The above 10 tasks, blue touch red, blue touch green, red to corner, green to corner, blue to corner, red to center,
green to center, blue to center, red close to blue, and red close to green.
30 tasks: The above 20 tasks, blue close to green, red far from blue, red far from green, blue far from green, red on blue,
red on green, green on red, green on blue, blue on red, and blue on green.

A.4.2. GRIDROBOMAN HYPERPARAMETERS

The DQN agent used the same network as used to create the data: a 3-layer MLP with 256 hidden units per layer. The first 2
layers define f enc

θ and the final layer predicts Q. The RA-DQN agent used the same base network plus a separate retrieval
network.

Below we detail hyperparameters specific to gridroboman. Hyperparameters not specified in this section are the same as
used in Atari.

• At each learner step, the agent samples a batch of 256 states from the replay buffer to train the DQN agent and further
samples a batch of 64 trajectories from the retrieval dataset to form the retrieval batch.

• The retrieval process selects the top-ktraj = 10 trajectories with the highest return, and then retrieves relevant information
from the selected trajectories (step 3, section 2.3) using the top-kstates = 10 most relevant states.

• To summarize the experiences in the retrieval batch we use a forward and backward GRU with 256 hidden units.

• We use 4 slots to parameterize the retrieval process.

• We use auxiliary losses in the form of value, reward, and policy prediction (section 2.2). We follow the same setup as
proposed in (Schrittwieser et al., 2020) and weight these auxiliary losses with a coefficient of 0.1.

• The value of the β coefficient for the information bottleneck regularizer is fixed to 0.3.

• The hyperparameters and setup for offline DQN are taken from Gulcehre et al. (2020a). They are detailed in table 5.
As in the above, we used double DQN (Van Hasselt et al., 2016).

Hyperparameter Value

Optimizer Adam
Learning rate 3e-4
Discount factor 0.99
Importance sampling exponent 0.2
Minimum sequences to start replay 5000
TD loss function Huber(1.0)
Target Q-network update period 2500
Evaluation ε 6.5e-4

Table 5: Hyperparameters used in the gridroboman DQN experiments.

Retrieval Augmented Reinforcement Learning

A.4.3. GRIDROBOMAN EVALUATION CURVES WHEN TRAINING ON ALL 30 TASKS

Figure 9 we show the average episode reward obtained by the evaluation agent on each individual task when training on all
30 tasks. Curves are shown for the DQN and RA-DQN agents.

A.5. BabyAI environment.

Observations, actions. We use the same setup for the observations and actions as in (Chevalier-Boisvert et al., 2018).

Tasks. We use all the 40 available tasks in the BabyAI environment. 5.

Hyper-parameters and RL algorithm. We follow the same setup as in the Gridroboman experiments. Since BabyAI is a
partially observable environment, we summarize the history of the agent using a recurrent encoder.

Hyperparameter Value

Optimizer Adam
Learning rate 3e-4
Discount factor 0.99
Importance sampling exponent 0.2
TD loss function Huber(1.0)
Target Q-network update period 1000
GRU hidden state 512

Table 6: Hyper-parameters used in the BabyAI Recurrent DQN experiments.

Retrieval Process. We use the same hyper-parameters for the retrieval process as used in the grid-roboman enviornment.
For the case of multi-task retrieval buffer, we use 32 trajectories corresponding to each task to form the retrieval batch.

Analysis about retrieved information in the multi-task setting. We did some analysis to study the properties about the
retrieved information in the multi-task setting in BabyAI. BabyAI setup contains about 40 tasks. Out of these 40 tasks,
around 15 tasks are compositional i.e., requires to compose information from 2 or more sub-tasks, and rest of the tasks
requires the agent to execute a particular behaviour (ex. going to the door, fetching a key etc). We study as to how often
the agent retrieves information from other tasks. Ideally, for the compositional tasks, the hope would be the agent access
information about the other tasks more often as compared to the tasks which require only a particular behaviour. So,
during test time, we study the percentage of times agent access information from the same task as compared to accessing
information from the different tasks. For compositional tasks, the agent access information from other tasks about 54% of
times, while the percentage for single tasks is about 21%. That said, we were not able to find any pattern as to find why the
agent is retrieving more information from other tasks for some particular tasks as well as any structure about the states from
which information is being retrieved.

A.6. CausalWorld environment.

Observations, actions. We use the same setup for the visual observations and actions as in (Ahmed et al., 2020).

Tasks. We use 5 (out of 8 available tasks) in the CausalWorld environment (Ahmed et al., 2020) namely: Pushing, Picking,
Pick and Place, Stacking2, Stacked Blocks.

Hyper-parameters and BC algorithm. For the retrieval augmentation, we follow the same setup as in the BabyAI and
GridRoboman experiments. Due to its simplicity and strength as a baseline (Gulcehre et al., 2020b), we use behavior cloning
as the underlying algorithm .

5https://github.com/mila-iqia/babyai/blob/master/docs/bonus_levels.md. https://github.
com/mila-iqia/babyai/blob/master/docs/iclr19_levels.md

https://github.com/mila-iqia/babyai/blob/master/docs/bonus_levels.md
https://github.com/mila-iqia/babyai/blob/master/docs/iclr19_levels.md
https://github.com/mila-iqia/babyai/blob/master/docs/iclr19_levels.md

Retrieval Augmented Reinforcement Learning

a touch red b touch blue c touch green d lift red e lift blue

f lift green g red touch blue h red touch green i green touch red j green touch blue

k blue touch red l blue touch green m red to corner n green to corner o blue to corner

p red to center q green to center r blue to center s red close to blue t red close to green

u blue close to green v red far from blue w red far from green x blue far from green y stack red on blue

z stack red on green aa stack green on red ab stack green on blue ac stack blue on red ad stack blue on green

Figure 9: Multi-task offline RL with a task-specific retrieval dataset. Evaluation performance for RA-DQN (orange) and baseline DQN (blue) when training on all 30
gridroboman tasks with a single agent. Curves show the performance of each agent (averaged over 3 seeds) when running that agent online in the environment on the specified
task.

