
Large scale quantum chemistry with tensor processing units

Ryan Pederson,1, 2, 3, ∗ John Kozlowski,4, 2, 3 Ruyi Song,5, 2, 3 Jackson Beall,6, 3 Martin Ganahl,6, 3 Markus

Hauru,7, 3 Adam G.M. Lewis,6, 3 Yi Yao,8 Shrestha Basu Mallick,2, 3 Volker Blum,5, 8 and Guifre Vidal2, 3, 9

1Department of Physics and Astronomy, University of California, Irvine, CA 92617, USA
2X, the Moonshot Factory, Mountain View, CA 94043, USA

3Sandbox@Alphabet, Mountain View, CA 94043, USA
4Department of Chemistry, University of California, Irvine, CA 92617, USA

5Department of Chemistry, Duke University, Durham, NC 27708, USA
6SandboxAQ, Palo Alto, CA, USA

7The Alan Turing Institute, 96 Euston Road, London, England, NW1 2DB, UK
8Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA

9Google Quantum AI, Mountain View, CA 94043, USA

We demonstrate the use of Google’s cloud-based Tensor Processing Units (TPUs) to accelerate
and scale up conventional (cubic-scaling) density functional theory (DFT) calculations. Utilizing
512 TPU cores, we accomplish the largest such DFT computation to date, with 247848 orbitals,
corresponding to a cluster of 10327 water molecules with 103270 electrons, all treated explicitly.
Our work thus paves the way towards accessible and systematic use of conventional DFT, free of
any system-specific constraints, at unprecedented scales.

INTRODUCTION

Computational methods for quantum chemistry and
quantum physics have proven to be invaluable tools in
modern scientific research and technological innovation.
The application space of such methods is vast, ranging
from the prediction of novel high-temperature supercon-
ductors [1] to the acceleration of drug discovery [2]; from
the study of catalytic processes for e.g. CO2 sequestra-
tion [3] and plastic recycling [4] to the design of nano-
materials [5], solar cells [6], and batteries [7].

In the landscape of quantum-based computational
methods, density functional theory (DFT) especially
stands out due to its ability to produce accurate results
for a wide range of systems at a relatively low compu-
tational cost [8]. Accordingly, an impressive amount of
computational research utilizes DFT calculations each
year. For instance, the US National Energy Research
Scientific Computing Center (NERSC) reported that
nearly 30% of their supercomputer resources in 2018
were spent on DFT calculations alone [9]. Widespread
research and development effort is continuously devoted
towards optimizing the performance and accuracy of
DFT calculations, giving rise to a plethora of open-
source and commercial DFT software packages [10]. Sev-
eral packages can leverage specialized hardware, such as
general-purpose graphics processing units (GPUs), for
most of the workload [11–17]. However, in conventional
DFT implementations, i.e., without specific sparsity as-
sumptions for the density matrix or Hamiltonian ma-
trix, the computational cost scales as the third power
of the number N of orbitals used to describe the sys-
tem (referred to O(N3) DFT throughout this work), and
this cubic scaling often makes simulating large systems,
such as protein-ligand complexes or metal-organic frame-

∗ pedersor@uci.edu

36 67 132 248 500
Number of orbitals, N, in thousands

10
1

10
2

10
3

10
4

10
5

TP
U

 w
al

l t
im

e
pe

r D
FT

 it
er

at
io

n
(s

)

v3-8
v3-32
v3-128
v3-512
v3-2048 (extr.)
O(N)

FIG. 1. TPU v3 wall time for O(N3) density matrix pu-
rification, Eqs. (5)-(7), as a function of the number N
of orbitals, for clusters of water molecules, both in single
(squares) and double (triangles) precision. A full TPU v3
pod with 2048 cores and 32 TB of memory is expected to
handle N ∼ 500 000 orbitals in our current implementation
(extrapolated results necessitated by temporary resource un-
availability).

works [18], prohibitively expensive.
Google’s Tensor Processing Units (TPUs) are

application-specific integrated circuits originally de-
signed to accelerate large-scale machine learning work-
loads [19–23]. By leveraging the JAX library [21–23],
it is nevertheless possible to repurpose TPUs for other
computational tasks [24–35]. In this work, we demon-
strate the use of TPUs as quantum chemistry supercom-
puters by accelerating the O(N3) computational bottle-

ar
X

iv
:2

20
2.

01
25

5v
3

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
3

D
ec

 2
02

2

mailto:pedersor@uci.edu

2

Number of Number of Number of TPU TPU wall time (s) Relative energy

orbitals atoms electrons configuration FP32 FP64 per molecule (mHa)

35 544 4 443 14 810 v3-8 65 1 012 0.934

65 668 8 211 27 370 v3-32 102 2 150 0.531

131 544 16 443 54 810 v3-128 209 4 465 0.291

247 848 30 981 103 270 v3-512 350 5 434 0

TABLE I. Tabulated results in Fig. 1, including also number of atoms and electrons. Wall times for the matrix purifica-
tion step are shown both for single (FP32) and double (FP64) precision. Energies are relative to the largest calculation,
E[(H2O)Nmol]/Nmol − E[(H2O)10327]/10327, where Nmol is the total number of water molecules. In this sequence, we used a
number of TPU cores that grows roughly as N2. As a result, walltimes are seen to roughly scale linearly in N , instead of the
expected O(N3) scaling.

neck of DFT approaches which use an auxiliary single-
particle kinetic energy approximation, such as Kohn-
Sham (KS) [36, 37] and generalized KS (gKS) [38] DFT,
where gKS admits hybrid DFT functionals. This en-
ables the systematic study of quantum chemistry prob-
lems at unprecedented scales. As a concrete demonstra-
tion, we performed end-to-end O(N3) DFT calculations
on large clusters of water molecules, reaching a total of
N = 247 848 DFT orbitals, corresponding to 10 327 wa-
ter molecules with 103 270 electrons, see Fig. 1 and Ta-
ble I. To our knowledge, this is the largest O(N3) DFT
calculation to date, with the previously largest compu-
tation consisting of a single O(N3) DFT iteration with
N ≈ 230 000 orbitals on Fujitsu’s K computer [39].

Some variants of DFT, most notably linear-scaling
DFT [40–43], avoid the O(N3) bottleneck altogether and
can thus reach an even larger number of orbitals. How-
ever, these variants rely on additional approximations
and conditions, such as truncating density matrix ele-
ments [44], or on special properties of only a subset of
density functionals (such as semilocal density functional
approximations). In turn, this results in restricted appli-
cability, with e.g. linear-scaling DFT being suitable for
insulating systems but not for metals or systems with a
small energy gap [40]. In practice, conventional O(N3)
DFT is a more preferable choice since it alleviates techni-
cal complexity and problem space restrictions associated
with current lower-scaling methods, greatly extending
the domain of problems to which DFT can be applied
reliably and with relative ease.

There are many aspects that go into an O(N3) DFT
calculation. Throughout we focus on atom-centered ba-
sis sets with all electrons treated explicitly, that is we do
not consider e.g. plane waves or pseudopotentials. At
a high level, one can identify two main computational
steps: (a) building the DFT Hamiltonian matrix (with
cost O(N) to O(N2)) and (b) computing the ground
state density matrix (O(N3)), see Fig. 2.

(a) DFT Hamiltonian build : Given a choice of N
atom-centered basis functions χi(r), one needs to com-
pute the DFT Hamiltonian matrix H and the overlap
matrix S, with coefficients given by

Hij = 〈χi|H |χj〉 , Sij = 〈χi|χj〉 , (1)

where H represents the DFT Hamiltonian in the contin-

CPUs TPUs

DFT Hamiltonian build

cost: O(N) - O(N2)

calculate density matrix

cost: O(N3)

fast Intercore InterConnect (ICI)

FIG. 2. The two main steps of our implementation of
an O(N3) DFT computation, the Hamiltonian build and
computing the ground state density matrix, which we run
on CPUs and TPUs, respectively. The DFT code FHI-
aims [46, 47] is used to set up the Hamiltonian and the ELSI
library [48, 49] is used to facilitate the integration of the
TPU-based solver to FHI-aims.

uum and each matrix coefficient requires computing one
or several integrals. Over the past few decades much
effort has been devoted to optimizing the build of the
N × N matrix H. Naively, the computational time
here scales as O(N4), however, in many implementations
the scaling is effectively reduced to O(N2) due to two-
electron integral screening methods. The scaling can be
further reduced to almost O(N) if other strategies, such
as fast multipole methods [45] or fast fourier transform
based methods [43], such as the Ewald method for pe-
riodic systems, are employed. In this work we do not
attempt to accelerate the Hamiltonian or overlap matrix
build times with TPUs. Instead, we simply use a well-
established all-electron DFT package, the Fritz Haber
Institute ab initio molecular simulations package (FHI-
aims) [11, 46, 47], which we run using CPUs.

(b) Density matrix purification: The pair of matrices
H and S define a generalized eigenvalue problem, the

3

so-called KS equations,

H |φα〉 = eαS |φα〉 , (2)

with |φα〉 and eα the KS orbitals and energies. Our goal
is to compute the ground state density matrix

D ≡
N∑
α=1

θ(µ− eα) |φα〉 〈φα| , (3)

where θ(x) is the step function and µ is the chemical

potential, chosen such that
∑N
α=1 θ(µ − eα) = Ne, for

Ne the number of electrons in the system. The density
matrix D can be obtained by solving the KS equations
(2) using standard linear algebra libraries, such as LA-
PACK [50] or Intel MKL [51]. An alternative route,
which we follow in this work, is to use a density matrix
purification scheme [52, 53]. First, by computing the
inverse square root of S,

S 7→ S−
1
2 (4)

we can write the Hamiltonian in an orthonormal basis,

H 7→ H̃ ≡ S− 1
2HS−

1
2 . (5)

and re-express (2) as a standard eigenvalue problem

H̃ |φ̃α〉 = eα |φ̃α〉, where |φ̃α〉 ≡ S1/2 |φα〉. Next we com-

pute the density matrix D̃,

H̃ → D̃ ≡ θ(µI − H̃) =

Ne∑
α=1

θ(µ− eα) |φ̃α〉 〈φ̃α| , (6)

and finally re-express it in the original basis,

D̃ 7→ D ≡ S− 1
2 D̃S−

1
2 . (7)

The transformation in Eq. (6) is obtained using a stan-
dard density matrix purification scheme that is suitable
for TPUs, namely the hole-particle canonical purification
scheme [52], which we elaborate on later in the paper.

If no further modifications are made (e.g., density ma-
trix truncations in linear-scaling DFT), then the cost of
computing D, whether by solving Eq. (2) or performing
the four matrix transformations in Eqs. (4)-(7), scales
as O(N3). This constitutes what is known as the cubic
wall of DFT.

The density matrix D is used to derive several impor-
tant quantities. The real-space electron density n(r) is
given by

n(r) =

N∑
i,j

χi(r)Dijχj(r) , (8)

which can be computed on a real-space grid [46]. The
sum of occupied KS eigenvalues, given by Tr(HD) =

Tr(H̃ D̃), is also used to compute the total ground-state
energy. Additionally, the energy weighted density ma-
trix Q,

Q = DHD , (9)

is also useful to compute atomic forces analytically [46].

RESULTS

DFT with TPUs

The main result of our work is the successful use of
TPUs to perform the four matrix transformations (4)-
(7), thereby tackling the O(N3) computational bottle-
neck of DFT. We employed TPUs of the third genera-
tion, denoted v3. A single TPU v3 core contains two
matrix multiply units (MXUs) to formidably acceler-
ate matrix-matrix multiplication (matmul), resulting in
about 10 teraFLOPS (floating point operations per sec-
ond) of measured single-core matmul performance in sin-
gle precision. Importantly for our purposes, matmuls
are also available in double precision using a software-
emulated 57-bit floating point format. In this approach,
utilized algorithms require many more single precision
floating point operations when operating in our emu-
lated double precision than in single precision, and as a
result matmuls in double precision take ∼ 11× longer
than in single precision.

The smallest available TPU configuration consists of
8 TPU v3 cores with a total of 128 GB of dedicated
high bandwidth memory (HBM), controlled by a single
host with 48 CPU cores. The largest configuration is a
pod with 2048 TPU v3 cores and 32 TB of HBM, con-
trolled by 256 hosts. Given a choice of configuration,
the available TPU cores are directly connected to near-
est neighbors in a 2D torus network through fast inter-
core interconnects (ICIs), see Fig. 2. The ICIs are crit-
ical to maintaining high performance when distributing
matmuls and other dense linear algebra operations over
all available TPU cores. In this work we used the JAX
library [21–23] to write single program multiple data
(SPMD) code and executed it on configurations made of
p TPU cores, denoted v3-p, for p = 8, 32, 128 and 512.

The TPU hardware architecture is especially suited
for dense large-scale matmuls, which we perform in dis-
tributed form using the SUMMA algorithm [54], as re-
cently demonstrated in Ref. [33]. Here it was shown
that for sufficiently large matrices a v3-512 TPU can
perform dense matmuls at near-optimal efficiency: the
performance per TPU core (measured in single-precision
FLOPS) is maintained at roughly 93% of the single TPU
core maximum performance [33]. It is important to em-
phasize that TPUs are often ill-suited for other tasks,
and hence the algorithms utilized in this work and those
in Ref. [33] had to be picked carefully and may differ
from more conventional choices used in CPUs or GPUs.
The use of DM purification algorithms, rather than di-
rect diagonalization, is especially attractive for TPUs
since all steps can be evaluated from a series of matmuls.
Clearly, transformations (5) and (7) require large-scale
matmuls. Transformations (4) and (6) are implemented
by an iteration involving matrix polynomials of small de-
gree, where each polynomial requires a short sequence of
matrix additions and multiplications. Specifically, the
matrix inverse square root in (4) is implemented using a
standard Newton-Schulz iteration [55], whereas for the

4

density matrix purification in (6) we implemented the
hole-particle canonical purification scheme [52]. Further
algorithm details can be found in the Supporting Infor-
mation.

For benchmarking purposes, we have performed end-
to-end DFT computations on a sequence of increasingly
large water clusters with geometries obtained from stan-
dard molecular dynamics simulations (see Supporting In-
formation). We leverage the DFT code FHI-aims [46, 47]
to set up and drive calculations using CPUs, then use the
TPUs to tackle the O(N3) dense linear algebra bottle-
necks (4)-(7). We also utilize the ELectronic Structure
Infrastructure (ELSI) library [48, 49] to facilitate the in-
tegration of FHI-aims and the TPU solver. In particular,
the DFT Hamiltonian build time and associated compu-
tational scaling and parallelization are dictated exclu-
sively by the FHI-aims code, which uses numeric atom-
centered orbitals (NAOs) with an explicit finite spatial
extent, and a truncated multipole expansion to accom-
plish low prefactor and efficient scaling of the Hamilto-
nian matrix build. While the computational time re-
quired to build the DFT Hamiltonian may vary greatly
between different systems with the same total number
of orbitals N (due to possible differences in the result-
ing sparsity in the systems), the computational time re-
quired for the O(N3) DM purification step performed
on the TPU has much less variability since dense matrix
operations are assumed, which do not utilize any spar-
sity present (see Supporting Information for more dis-
cussion). Thus, we emphasize that the TPU wall times,
which are reported throughout only for water clusters,
are fairly robust with respect to different systems with
the same total number of orbitals.

Throughout this work we perform all-electron calcula-
tions using the PBE exchange-correlation functional and
utilize an NAO basis set such that each H2O molecule
contributes 10 electrons, represented by 24 orbitals (5 for
each hydrogen atom and 14 for the oxygen atom). First
we consider a single TPU board with 8 TPU v3 cores
controlled by a host with 48 CPU cores, and we run
FHI-aims on the host. Fig. 3 shows the wall time for a
single DFT iteration (including both Hamiltonian build
on CPUs and density matrix purification on TPUs) as
a function of the size of the water cluster, which ranges
from a few thousand to N ≈ 50 000 orbitals. When using
the TPU solver in single precision (green curve) we see
that the O(N) Hamiltonian build on 48 CPU cores takes
longer than the O(N3) density matrix purification run
on 8 TPU cores, thus shifting the bottleneck. Using the
TPU solver in double precision is an order of magnitude
slower and saturates the TPU’s HBM for N ≈ 36 000
orbitals.

Then we consider larger TPU configurations, of up to
512 TPU v3 cores, to perform end-to-end DFT computa-
tions on larger clusters, of up to 10 327 water molecules
(or N = 247 848 orbitals). Fig. 1 shows the TPU wall
time for the O(N3) density matrix purification for one
DFT iteration. These include 350 (5 434) seconds for a
density matrix purification in single (double) precision

10000 20000 30000 40000 50000
Number of orbitals, N

0

1000

2000

3000

4000

5000

6000

Ti
m

e
fo

r s
in

gl
e

D
FT

 it
er

at
io

n
(s

) total time: CPUs only (FP64)
total time: with TPUs (FP64)
total time: with TPUs (FP32)
DFT Hamiltonian matrix
build time:
CPUs only (FP64)

FIG. 3. Wall times for a single DFT iteration on water clus-
ters, using a TPU board composed of a CPU host (48 CPU
cores) and 8 TPU cores with 128 GB of HBM. Green and
purple curves correspond to using single and double preci-
sion in the TPU solver, respectively. The dashed blue curve
corresponds to the CPU time spent on FHI-aims (always in
double precision), and should be subtracted from the other
curves in order to obtain the time spent on the TPU solvers.
For reference, in red we also plot the time required for a CPU-
only computation using the Eigenvalue soLvers for Petaflop
Applications (ELPA), a highly parallelized eigensolver library
[56, 57], run on 48 CPU cores.

on the largest cluster, demonstrating feasibility of DFT
computations at that scale of a quarter of a million or-
bitals.

Dynamic precision on TPUs

In our implementation, early DFT iterations are
treated with single precision and later ones in double
precision. This dynamic precision approach allows us
to cut down on the use of double precision matmuls on
TPUs (which are significantly slower than single preci-
sion ones) without sacrificing accuracy of the final con-
verged DFT result. Our criteria to switch precision is
based on relative density changes, using the L1 norm,
defined as L1[f(r)] ≡

∫
d3r |f(r)|, and relative energy

changes:

1

Ne
L1[n[i](r)− n[i−1](r)] < ε and (10)

|E[i] − E[i−1]|/|E[i]| < ε , (11)

where n[i](r) is the real-space density at DFT iteration i,
E[i] is the corresponding total ground-state energy, and
we use ε = 5× 10−7 for single precision.

Fig. 4 shows the convergence trajectory of a dynamic
precision DFT calculation for the largest cluster we have
considered. We are able to converge such a DFT calcu-
lation to a fairly tight convergence threshold using first

5

10
6

10
4

10
2

10
0

10
2

Ab
so

lu
te

 e
ne

rg
y

 d
iff

er
en

ce
 (H

a)
single precision (FP32)
double precision (FP64)

2 4 6 8 10 12 14 16
Iteration, i

10
4

10
2

10
0

10
2

D
en

si
ty

 d

iff
er

en
ce

 (a
.u

.)

FIG. 4. Convergence trajectory of an end-to-end dynamic
precision DFT calculation on a (H2O)10327 cluster. The ab-
solute total energy differences between subsequent DFT it-
erations, i and i − 1, are plotted (top). The corresponding
difference in real-space densities within the L1 norm is plot-
ted (bottom).

9 single precision DFT iterations, followed by 7 double
precision DFT iterations. In a smaller cluster, (H2O)1481
with N = 35 544 orbitals, a smaller number of double
precision iterations are required for convergence, result-
ing in an overall DFT calculation time that is under 5
hours on a single TPU board (v3-8), see Supporting In-
formation.

DISCUSSION

This work has successfully demonstrated that TPUs
can both accelerate and scale up DFT computations.
Significant acceleration is already achieved using only a
single TPU board with 8 TPU v3 cores, see Fig. 3. For
instance, an end-to-end dynamic precision DFT compu-
tation with N = 35 544 orbitals consisting of 12 itera-
tions in single precision and 4 iterations in double pre-
cision yields converged results in under 5 hours. For
context, using double precision only and the highly op-
timized ELPA O(N3) solver with 48 CPUs, the same
water cluster calculation required 20 hours to achieve 16
DFT iterations.

In order to scale up the size of DFT computations
while retaining high performance two main ingredients
are involved: (i) a larger amount of high bandwidth
memory, scaling as O(N2), to be able to store dense
N×N matrices; (ii) a larger number of cores, with state-
of-the-art inter-core connectivity, to more effectively exe-
cute the O(N3) floating point operations involved in the
required distributed matrix transformations. As shown

in Fig. 1, by using a number of cores that scales as O(N2)
and commensurate amounts of HBM, we can scale up to
N = 500 000 orbitals with wall times that only grow
proportional to N .

Once the main ingredients (i) and (ii) are satisfied, the
Input/Output (IO) time, i.e. the end-to-end communi-
cation time between the TPU and CPU, can become an
important (and possibly limiting) factor. This IO step
is not exclusive to TPUs, for instance, it is also relevant
and analogous in GPU setups that require communica-
tion with CPUs. This step is parallelizable, such that by
using a number of TPU and CPU cores that scales as
O(N2), the total IO time remains constant O(1). How-
ever, in this context, obtaining such optimality will de-
pend on specific implementation details of the DFT code
utilized, such as the matrix distribution pattern on the
CPU processor grid. Our current prototype implemen-
tation is modular and generalizeable and IO times scale
unfavorably as O(N2), even becoming the rate-limiting
step in some cases (see Supporting Information). Less-
general (but straightforward) engineering approaches are
expected to be much more optimal, but are beyond the
scope of this work which aims to demonstrate the use of
TPUs in a more general context.

We emphasize that other hardware accelerators, most
notably GPUs, can also accelerate and scale up DFT
computations in a similar manner as discussed above,
and Ref. [58] recently presented a useful and positive
development in this direction. Modern distributed
GPU configurations are expected to achieve similar per-
formance to TPUs in this regard, however, a direct com-
parison is complicated by the highly diverse nature of
distributed GPU configurations found in practice. On
the Summit supercomputer configuration, it has been
reported that 432 distributed Nvidia V100 GPUs can
perform matmuls for dense N > 500 000 matrices with
a performance per GPU (measured in FLOPS) that is
roughly 85% of the single V100 GPU maximum perfor-
mance [59].

Here we have focused, for simplicity, on applying DFT
to clusters of water molecules. More complicated sys-
tems may present additional difficulties. For instance,
protein-ligand complexes often require more elaborate
schemes, such as including solvation to facilitate the con-
vergence of the DFT iteration [60, 61]. Work in progress
shows that our TPU-based large-scale DFT computa-
tions can also successfully address protein-ligand com-
plexes with explicit solvents, as well as in a variety of
other large systems, including DNA segments, carbon
nanotubes, and graphene surfaces. In addition to single-
point DFT energy calculations, analytical forces can also
be extracted from the TPU-calculated energy-weighted
density matrix, enabling large-scale geometry optimiza-
tion or Ab initio molecular dynamics calculations.

DFT is a highly successful quantum-based method,
but it is ultimately a consistent-field approximation,
which may not be accurate enough for certain applica-
tions. Fortunately, TPUs can also accelerate and scale
up other, more accurate quantum chemistry approaches

6

where the computational bottleneck is again given by
dense linear algebra operations. For example, in den-
sity matrix renormalization group (DMRG) [62] calcu-
lations, TPUs can be used to reach an unprecedentedly
large bond dimension D = 65 536 [35]. Similarly, we an-
ticipate that TPUs will thrive in other methods such as
coupled cluster [63] and Møller–Plesset perturbation the-
ory [64]. Even when applying such higher-level methods,
large-scale DFT may still be a crucial piece in simula-
tions that require a quantum-mechanically treated re-
gion that embeds a subsystem treated with higher-level
correlated methods [65].

To conclude, in this work we have successfully repur-
posed TPUs as quantum chemistry supercomputers by
tackling the O(N3) computational bottleneck of density
functional theory. We demonstrated performance and
scalability with a water cluster with N = 247 848
orbitals, which to our knowledge is the largest O(N3)
DFT computation to date. We remark that cloud-based
TPUs, and other hardware accelerators such as GPUs,
are more accessible and affordable than traditional
supercomputer resources. Our work thus paves the way
towards accessible and straightforward use of quantum
chemistry computational methods for much larger
systems than were previously possible.

Competing Interests: V.B. received compensation
as an advisor from Google during part of this work. V.B.
is also a board member of MS1P e.V., the non-profit or-
ganization that licenses the FHI-aims electronic struc-
ture code used in this work. He does not receive any
financial gains from this position.

ACKNOWLEDGMENTS

The authors would like to thank Toru Shiozaki and
Garnet Kin-Lic Chan for suggesting to investigate the
use of TPUs to accelerate mean-field quantum chem-
istry methods (by accelerating matrix multiplications for
a diagonalization-free construction of the density matrix,
as in the density matrix purification used in this paper),
and Toru Shiozaki, Garnet Kin-Lic Chan, Chase Roberts
and Stefan Leichenauer for previous exploratory work
in this direction. Also, special thanks to Xing Zhang
and Garnet Kin-Lic Chan for work adjusting PySCF, as
part of an on-going integration of our TPU solver, to
be described elsewhere, and to David Bowler, Tsuyoshi
Miyazaki, and Jun-ichi Iwata for help documenting the
largest DFT computation run on the K computer. Fian-
lly, the authors would also like to thank Giuseppe M. J.
Barca, Anudhyan Boral, Michael Brenner, Kieron Burke,
Rafael Gomez-Bombarelli, JW Feng, Filipp Furche, An-
dreas Goeller, Stephan Hoyer, Olivier Lacombe, Stefan
Leichenauer, Lin Lin, Ruben Martin Romo, Todd Mar-
tinez, Anders M. N. Niklasson, Nicholas Rubin, Zak
Stone, Matthias Tan, Keiran Thompson, Edward Valeev,
and Jae Yoo for useful discussions and comments. Re-
search supported with Cloud TPUs from Google’s TPU

Research Cloud (TRC). Sandbox is a team within the Al-
phabet family of companies, which includes Google, Ver-
ily, Waymo, X, and others. G.V. is a CIFAR fellow in the
Quantum Information Science Program, a Distinguished
Invited Professor at the Institute of Photonic Sciences
(ICFO), and a Distinguished Visiting Research Chair at
Perimeter Institute. Research at Perimeter Institute is
supported by the Government of Canada through the
Department of Innovation, Science and Economic De-
velopment and by the Province of Ontario through the
Ministry of Research, Innovation, and Science. R.S. and
Y.Y. were partially supported by the National Science
Foundation (NSF), USA under Award No. 1450280.

7

SUPPORTING INFORMATION

S1. orthogonalization details

The original set of N basis functions χi(r), corre-
sponding in our current FHI-aims implementation to nu-
meric atom-centered orbitals (NAOs), are not orthogo-
nal, in the sense that the overlap matrix S, with coeffi-
cients

Sij = 〈χi|χj〉 =

∫
d3r χi(r)χj(r) (S1)

is not the identity matrix, but some non-trivial, posi-
tive definite matrix. To identify the linear combinations
of orbitals that are occupied in the ground state of the
system, we need to account for overlaps between the or-
bitals. This can be done using the Löwdin decomposi-
tion, where the Hamiltonian matrix H, with coefficients

Hij = 〈χi|H|χj〉 =

∫
d3r χi(r)H(r)χj(r), (S2)

is transformed into an orthonormal basis as H 7→ H̃ =
S−

1
2HS−

1
2 . The transformed Hamiltonian H̃ can then

be purified, as described in the next section, to yield the
density matrix D̃, which is then transformed back into
the original orbitals basis,

D̃ 7→ D = S−
1
2 D̃S−

1
2 . (S3)

For this purpose, the inverse square root S−
1
2 of the over-

lap matrix is needed. To compute it efficiently on TPUs,
we need an algorithm for computing the matrix inverse
square root for which the computational bottleneck re-
duces to repeated matrix multiplications. As discussed
in [55], this can be achieved using Newton-Schulz itera-
tions. The iteration

X[n+1] =
1

2
X[n](3I −X2

[n]), X[0] = A, (S4)

converges to the matrix sign function of A, which turns
positive eigenvalues to +1 and negative eigenvalues to
−1. Notice that two matrix multiplications are needed
for each iteration. These matrix multiplications can be
executed very quickly when distributed over a set of
TPUs. The inverse square root can in turn be cast as a
sign function as

sgn

([
0 S

I 0

])
=

[
0 S

1
2

S−
1
2 0

]
. (S5)

Applying the iteration (S4) to the block matrix in (S5)
results in the Denman-Beavers iteration for computing
the inverse square root.

In single (double) precision, the above procedure typ-
ically converges in about 35-50 (65-90) iterations, de-
pending on how small the absolute value of the smallest
(in absolute value) eigenvalue of matrix A is. In or-
der to further accelerate this computation, we introduce

the pre-conditioning polynomial iteration (which we de-
scribed and justified in Sect. III.D of [33] in the related
context of the matrix sign function for singular values),

X[n+1] = aX[n](I −
4

27
a2X2

[n]), X[0] = A, (S6)

where a = 3
2

√
3 − s− for some choice of small s− > 0.

[Notice that for a = 3/2, that is s− = 3(
√

3 − 1)/2 we
recover (S4).] This pre-conditioning polynomial accel-
erates the growth of small eigenvalues of A, until they
become of size at least s−. From then on, the regular
Newton-Schulz iteration is used to bring all the posi-
tive eigenvalues to 1, with quadratic convergence. For
s− = 0.1, in single (double) precision we need 15-20 (35)
iterations of the pre-conditioning polynomial and 10 (10)
iterations of the regular polynomial, for a total of 25-30
(45) iterations.

The inverse of S is of course very sensitive to poor con-
ditioning of S, which for the overlap matrix corresponds
to (nearly) linearly dependent orbitals, a common occur-
rence when dealing with large molecules. The danger of
instability and poor accuracy due to small eigenvalues
of S is especially pressing if operating in low numerical
precision. Consequently we always compute S−

1
2 in dou-

ble precision. Because TPUs do not operate natively in
double precision but rather rely on software emulation,
this incurs a significant time cost. However, in a full
DFT simulation that cost gets amortized: the overlap
matrix does not change between DFT iterations (only
the Hamiltonian does), and thus we only need to com-

pute S−
1
2 once at the first iteration, write the result to

disk, and reread and use it at all the successive iterations
with negligible cost.

S2. purification details

By density matrix purification we mean the map from
a Hermitian matrix H̃ of linear size N to a certain den-
sity matrix D̃, itself a projector into the subspace cor-
responding to the Ne smallest (or most negative) eigen-

values of H̃, where Ne is the number of electrons in the
system. [As in the rest of the paper, the tilde in the

Hamiltonian H̃ and density matrix D̃(k) denotes that
these matrices are expressed in an orthonormalized ba-
sis of orbitals, as described in the previous section.] In
symbols, let

H̃ = V ΣV H (S7)

be the ascendingly sorted eigendecomposition of H̃, and
let ρ ≡ diag(11, 12, . . . , 1Ne

, 0Ne+1, 0Ne+2, . . . , 0N) be a
diagonal matrix with Ne 1’s followed by N −Ne 0’s on
the main diagonal. Then D̃ is defined by

D̃ ≡ V ρV H . (S8)

It follows identically that D̃2 = D̃, so that D̃ is indeed
a projector.

8

With the decomposition (S7) in hand, D̃ is trivially
computed by the manual substitution Σ → ρ. Unfortu-
nately an efficient algorithm for Hermitian eigendecom-
position is not presently available in a distributed-TPU
context. Instead, we turn to matrix-multiplication based
purification algorithms originally developed in the con-
text of linear scaling methods (see [53] for a review; note
that since our matrices are dense and are not truncated,
our implementations scale as N3 despite the name).

Density matrix purification algorithms can be divided
into two classes [66] by the manner in which Ne is speci-
fied. In grand canonical purification, a so-called chemical
potential µ is given, and D̃ found so that the Ne + 1’th
most negative entry of Σ is the first to exceed µ. This
can be achieved by shifting the spectrum of H̃ by µ so
that the latter divides negative from positive eigenval-
ues, and then computing a polar decomposition using
the methods of [33].

In the canonical purification used in this work, Ne is
instead specified directly. Compared to the grand canon-
ical case this is more directly relevant to computations of
molecular electronic structure, where µ is unknown but
the number Ne of electrons is provided.

Various algorithms for canonical purification have
been proposed in the literature. The original scheme is
presented in [66], and is variously referred to as canoni-
cal purification (in which case other algorithms are given
a different name), trace-preserving purification, or the
Palser and Manolopoulos scheme. The trace-resetting
schemes proposed in [67, 68] are probably most com-
mon in practical use. We use the generalized or hole-
particle scheme presented in [52]. In our TPU exper-
iments this iteration yields performance comparable to
that of [67, 68], but avoids certain branching conditionals
which are awkward to phrase efficiently on the TPU.

All such schemes work by first mapping the input H̃
to some initial X[0] with eigenvectors unchanged but
eigenvalues bound in [0, 1], and then repeatedly apply-
ing a matrix-multiplication based iteration which also
preserves eigenvectors. This iteration is chosen so that
the eigenvalues of its fixed point X[∞] are exactly either
0 or 1 with Tr(X[∞]) = Ne; X[∞] then satisfies (S8)

and it is thus equal to D̃, up to numerical error. In
practice, the number of purification iterations required
for convergence varies across different Hamiltonians and
the numerical precision desired. Relevant factors include
the size of the energy gap and the fraction of occupied
to unoccupied states. Typically, less than 50 purifica-
tion iterations are required [52]. Calculations performed
to double precision tend to require more purification it-
erations, up to twice as many as the same calculation
performed to single precision.

Details of the specific iteration we use are given in [52].

It can be reproduced by the initialization

X[0] = β1I + β2(µI − H̃), (S9a)

µ =
TrH̃

N
, (S9b)

β1 =
k/N

e+ − µ
, (S9c)

β2 =
1− k/N
µ− e−

, (S9d)

where e+ and e− are estimates of the largest and smallest

eigenvalues of H̃ obtained by e.g. the Gershgorin circle
theorem. Note that in practice we use the slightly more
complicated initialization referred to as HPCP+ in [52],
which gives moderately improved performance when Ne
is far from N/2. In either case, the iterate X[n+1] is
found from its predecessor X[n] via

X ′[n] = I −X[n], (S10a)

X[n+1] = X[n] + 2

(
X2

[n]X
′
[n] −

Tr(X2
[n]X

′
[n])

Tr(X[n]X
′
[n])

X[n]X
′
[n]

)
.

(S10b)

Once D̃ is found, its counterpart in the non-orthogonal
basis, D, is found by applying (S3).

In Fig. S5 we demonstrate the computational scaling
of density matrix purification on TPUs using dense ran-
dom Hermitian matrices and single precision. In this
benchmark we scale both the system size (dimension of
the matrix, N) and the number of TPU v3 cores used.
Starting with a single TPU board, consisting of 8 TPU
v3 cores, we can systematically scale up to hundreds (or
thousands) of TPU v3 cores. Using a full TPU v3 pod
(consisting of 2048 TPU v3 cores), we project that we
can address dense systems ofN = 500 000 orbitals within
30 minutes using single precision.

For dense linear algebra, the computational scaling
here is cubic. If suitable sparsity is assumed, and the
density matrix is correspondingly truncated, sparse lin-
ear algebra can be used to obtain linear scaling. Such
linear scaling approaches have been implemented and
used in practice within computational quantum chem-
istry packages, however their practical application is lim-
ited to systems whose density matrix has a sufficient
sparsity structure to ensure accurate results.

S3. FHI-aims TPU integration details

We outline the practical details of integrating a TPU-
based density matrix solver with the CPU-based DFT
package FHI-aims. The platform and integration de-
scribed here is a prototype. Its main purpose is to illus-
trate, in actual end-to-end DFT computations, the via-
bility of accelerating the O(N3) bottleneck using TPUs.

The software ELSI [48, 49] is used to facilitate the
connection between FHI-aims and the TPU by provid-
ing an interface and abstraction in which FHI-aims, or

9

103 104 105 106

Matrix dimension, N

10 1

100

101

102

103
T

im
e

(s
)

v3­8
v3­32
v3­128
v3­512
v3­2048 (extr.)
O(N)
O(N3)

FIG. S5. Average wall times for TPU density matrix purifi-
cation (normalized to a total of 50 purification iterations) in
single precision using dense random Hermitian matrices of
dimension N . Open-circle data points (v3-2048 results) are
a linear extrapolation from v3-512 results.

other codes, such as Siesta [69] and DFTB+ [70], can
utilize external eigensolvers launched within ELSI. We
implement in-house routines to launch the TPU-based
density matrix purification (instead of an eigensolver)
using the ELSI standard. In all calculations, we use an
off-the-shelf FHI-aims code with no modifications (ver-
sion 210226).

In the course of a DFT calculation, FHI-aims utilizes
the following matrices: the overlap matrix S, the DFT
Hamiltonian H, and the density matrix D. FHI-aims
distributes each matrix across CPU processes and mem-
ory using a 2D block-cyclic distribution pattern. On the
other hand, in our current TPU implementation which
utilizes SUMMA (Scalable Universal Matrix Multiplica-
tion Algorithm), our TPU-based solver requires matri-
ces to be distributed across a TPU processor grid as
2D blocks in a checkerboard distribution, see [33] for
more details. This poses a practical matrix communica-
tion challenge between the CPU-based and TPU-based
schemes since their matrix distribution patterns differ
in both cyclicity and the number of processors. A sim-
ple solution to communicate such matrices between CPU
and TPU is to serialize and transfer the respective matri-
ces and deserialize and redistribute them in the desired
scheme. Specifically, we utilize available MPI processes
on the CPU to serialize (and deserialize) to a network
disk using the ELSI IO module and compressed sparse
column (CSC) format with no cyclicity. Double precision
is used throughout. We note that each process (CPU and
TPU) calculates where its data should be within the seri-
alized CSC representation of the whole matrix and reads
(writes) to (from) only that portion of the matrix repre-
sentation on the centralized network drive. That is, our
implementation incurs some algorithmic overhead but
only communicates the data that is needed.

This is not the most performant solution, however,

it is generalizable, makes use of existing tooling within
ELSI, and avoids the complexity of the various distribu-
tion patterns. Due to the use of the CSC format, serial-
izing (writing) dense matrices to disk is especially costly
and dominates the total CPU-TPU communication time
for large system sizes. For transparency, in Fig. S6 we
plot the average observed total end-to-end CPU-TPU
communication time (excluding the TPU density matrix
purification time) incurred in our current implementa-
tion. There are, however, several ways to further opti-
mize the current integration. For instance, we are cur-
rently using an off-the-shelf network file system (NFS)
share, and replacing it with a different implementation
of a portable operating system interface (POSIX) com-
pliant distributed file system (one designed for high-
performance applications) would result in a much higher
throughput and would not require any changes to our
code. In addition, further algorithmic optimizations are
likely possible.

36 67 132 248
Number of orbitals, N, in thousands

10
1

10
2

10
3

10
4

10
5

C
PU

-T
PU

 c
om

m
un

ic
at

io
n

 ti
m

e
pe

r D
FT

 it
er

at
io

n
(s

)

v3-8
v3-32
v3-128
v3-512

FIG. S6. Total end-to-end CPU-TPU communication time
per DFT iteration (excluding the TPU density matrix purifi-
cation time) incurred in current integration with FHI-aims.

Within FHI-aims all calculations are performed using
the all-electron “light defaults” numeric atom-centered
basis set [46]. This results in 5 basis functions per H
atom and 14 basis functions per O atom in the water
cluster calculations. All calculations are non-periodic
with open boundary conditions and utilize the PBE [71]
XC functional. The geometries of water clusters are di-
rectly obtained from Ref. [72] which were generated by
taking spherical cutouts of varying radii from a large
molecular dynamics simulation of bulk water at stan-
dard pressure and an average temperature of 300K (fur-
ther details can be found in Ref. [73]).

In our implementation with FHI-aims, hybrid func-
tionals can also be used without any modification,
but simply result in longer DFT Hamiltonian build

10

times on CPUs. Analytical forces are also available
from FHI-aims using TPU-computed energy-weighted
density matrices, which are also communicated using
the above scheme and facilitated using ELSI.

S4. dynamic precision on smaller water clusters

The dynamic precision approach illustrated in Fig. 4 of
the main text for 10 327 water molecules, when applied
to smaller systems, allows for a larger part of the compu-
tation to be performed in single precision. For instance,
an end-to-end converged DFT calculation on (H2O)1481
cluster with N = 35 544 orbitals required 11 iterations
in single precision and 4 iterations in double precision,
with an overall time of under 5 hours on a single TPU
(v3-8) board, see Fig. S7.

10
6

10
4

10
2

10
0

10
2

Ab
so

lu
te

 e
ne

rg
y

 d
iff

er
en

ce
 (H

a)

single precision (FP32)
double precision (FP64)

2 4 6 8 10 12 14
Iteration, i

10
4

10
2

10
0

10
2

D
en

si
ty

 d

iff
er

en
ce

 (a
.u

.)

FIG. S7. Convergence trajectory of an end-to-end dynamic
precision DFT calculation on a (H2O)1481 cluster with N =
35 544 orbitals. The absolute total energy differences between
subsequent DFT iterations, i and i−1, are plotted (top). The
corresponding difference in real-space densities within the L1

norm is plotted (bottom).

11

[1] Defang Duan, Hongyu Yu, Hui Xie, and Tian Cui, “Ab
initio approach and its impact on superconductivity,”
Journal of Superconductivity and Novel Magnetism 32,
53–60 (2019).

[2] Claudio N Cavasotto, Natalia S Adler, and Maria G Au-
car, “Quantum chemical approaches in structure-based
virtual screening and lead optimization,” Frontiers in
chemistry 6, 188 (2018).

[3] Jiamei Yu, Lin-Hua Xie, Jian-Rong Li, Yuguang Ma,
Jorge M Seminario, and Perla B Balbuena, “Co2 cap-
ture and separations using MOFs: computational and
experimental studies,” Chemical reviews 117, 9674–9754
(2017).

[4] Gavin O Jones, Alexander Yuen, Rudy J Wojtecki,
James L Hedrick, and Jeannette M Garcia, “Computa-
tional and experimental investigations of one-step con-
version of poly (carbonate) s into value-added poly (aryl
ether sulfone) s,” Proceedings of the National Academy
of Sciences 113, 7722–7726 (2016).

[5] Gabriele Boschetto, Tieying Xu, Mohamad Yehya,
Jérôme Thireau, Alain Lacampagne, Benoit Charlot,
Thierry Gil, and Aida Todri-Sanial, “Exploring 1d and
2d nanomaterials for health monitoring wearable de-
vices,” in 2021 IEEE International Conference on Flexi-
ble and Printable Sensors and Systems (FLEPS) (IEEE,
2021) pp. 1–4.

[6] Jarvist M Frost, Keith T Butler, Federico Brivio,
Christopher H Hendon, Mark Van Schilfgaarde, and
Aron Walsh, “Atomistic origins of high-performance in
hybrid halide perovskite solar cells,” Nano letters 14,
2584–2590 (2014).

[7] Alexander Urban, Dong-Hwa Seo, and Gerbrand Ceder,
“Computational understanding of li-ion batteries,” npj
Computational Materials 2, 1–13 (2016).

[8] Robert O Jones, “Density functional theory: Its ori-
gins, rise to prominence, and future,” Reviews of modern
physics 87, 897 (2015).

[9] Brian Austin, “Nersc-10 workload analysis (data from
2018),” https://portal.nersc.gov/project/m888/

nersc10/workload/N10_Workload_Analysis.latest.

pdf, accessed: 11-20-2022.
[10] Leopold Talirz, Luca M Ghiringhelli, and Berend Smit,

“Trends in atomistic simulation software usage,” Liv-
ing Journal of Computational Molecular Science 3, 1–12
(2021).

[11] William P Huhn, Björn Lange, Victor Wen-zhe Yu,
Mina Yoon, and Volker Blum, “Gpu acceleration of all-
electron electronic structure theory using localized nu-
meric atom-centered basis functions,” Computer Physics
Communications 254, 107314 (2020).

[12] Stefan Seritan, Christoph Bannwarth, Bryan S. Fales,
Edward G. Hohenstein, Christine M. Isborn, Sara I. L.
Kokkila-Schumacher, Xin Li, Fang Liu, Nathan Luehr,
James W. Snyder Jr., Chenchen Song, Alexey V.
Titov, Ivan S. Ufimtsev, Lee-Ping Wang, and Todd J.
Mart́ınez, “Terachem: A graphical processing unit-
accelerated electronic structure package for large-scale
ab initio molecular dynamics,” WIREs Computational
Molecular Science 11, e1494 (2021).

[13] E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind,
K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J.
van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W.

Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman,
J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bo-
gatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner,
E. Cauët, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily,
M. J. O. Deegan, T. H. Dunning, M. Dupuis, K. G.
Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Früchtl,
L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glae-
semann, A. W. Götz, J. Hammond, V. Helms, E. D.
Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen,
B. G. Johnson, H. Jónsson, R. A. Kendall, M. Klemm,
R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Kr-
ishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logs-
dail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del
Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin,
T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J.
Nichols, J. Nieplocha, A. Otero-de-la Roza, B. Palmer,
A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati,
J. Pittner, L. Pollack, R. M. Richard, P. Sadayap-
pan, G. C. Schatz, W. A. Shelton, D. W. Silverstein,
D. M. A. Smith, T. A. Soares, D. Song, M. Swart,
H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truh-
lar, K. Tsemekhman, T. Van Voorhis, Á. Vázquez-
Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vo-
giatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L.
Windus, K. Woliński, A. T. Wong, Q. Wu, C. Yang,
Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, and R. J. Har-
rison, “Nwchem: Past, present, and future,” The Journal
of Chemical Physics 152, 184102 (2020).

[14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scal-
mani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li,
M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko,
R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Or-
tiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-
Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe,
V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N.
Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. P. Ren-
dell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi,
J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.
Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman, and D. J. Fox, “Gaussian 16 Revision C.01,”
(2016), gaussian Inc. Wallingford CT.

[15] X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams,
B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken,
J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval,
D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau,
M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste,
L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet,
D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen,
S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević,
A. Martin, C. Martins, M.J.T. Oliveira, S. Poncé,
Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero,
B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski,
M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Ver-
straete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou,
and J.W. Zwanziger, “Recent developments in the abinit

https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_Analysis.latest.pdf
http://dx.doi.org/https://doi.org/10.1002/wcms.1494
http://dx.doi.org/https://doi.org/10.1002/wcms.1494
http://dx.doi.org/10.1063/5.0004997
http://dx.doi.org/10.1063/5.0004997

12

software package,” Computer Physics Communications
205, 106–131 (2016).

[16] Luigi Genovese, Brice Videau, Matthieu Ospici, Thierry
Deutsch, Stefan Goedecker, and Jean-François Méhaut,
“Daubechies wavelets for high performance electronic
structure calculations: The bigdft project,” Comptes
Rendus Mécanique 339, 149–164 (2011).

[17] Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier
Rozanska, Diego Klahr, Thomas Guignon, and Paul
Fleurat-Lessard, “Accelerating vasp electronic structure
calculations using graphic processing units,” Journal of
computational chemistry 33, 2581–2589 (2012).

[18] Hao Bin Wu and Xiong Wen David Lou, “Metal-organic
frameworks and their derived materials for electrochem-
ical energy storage and conversion: Promises and chal-
lenges,” Science Advances 3, eaap9252 (2017).

[19] Norman Jouppi, Doe Yoon, George Kurian, Sheng Li,
Nishant Patil, James Laudon, Cliff Young, and David
Patterson, “A domain-specific supercomputer for train-
ing deep neural networks,” Communications of the ACM
63, 67–78 (2020).

[20] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gotti-
pati, William Gulland, Robert Hagmann, C. Richard Ho,
Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Ju-
lian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Ka-
plan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,
Jonathan Ross, Matt Ross, Amir Salek, Emad Samadi-
ani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon, “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceed-
ings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17 (Association for Com-
puting Machinery, New York, NY, USA, 2017) p. 1–12.

[21] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang, “JAX: com-
posable transformations of Python+NumPy programs,”
(2018).

[22] Roy Frostig, Matthew Johnson, and Chris Leary, “Com-
piling machine learning programs via high-level tracing,”
(2018).

[23] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng, “Tensorflow: A system for
large-scale machine learning,” in Proceedings of the 12th
USENIX Conference on Operating Systems Design and

Implementation, OSDI’16 (USENIX Association, USA,
2016) p. 265–283.

[24] Francois Belletti, Davis King, Kun Yang, Roland Nelet,
Yusef Shafi, Yi-Fan Shen, and John Anderson, “Tensor
processing units for financial monte carlo,” in Proceed-
ings of the 2020 SIAM Conference on Parallel Processing
for Scientific Computing (2020) pp. 12–23.

[25] Qing Wang, Matthias Ihme, Yi-Fan Chen, and John
Anderson, “A tensorflow simulation framework for scien-
tific computing of fluid flows on tensor processing units,”
Computer Physics Communications , 108292 (2022).

[26] Zhixin Pan and Prabhat Mishra, “Hardware acceleration
of explainable machine learning using tensor processing
units,” arXiv preprint arXiv:2103.11927 (2021).

[27] Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen,
and Chao Ma, “Accelerating mri reconstruction on
tpus,” in 2020 IEEE High Performance Extreme Com-
puting Conference (HPEC) (IEEE, 2020) pp. 1–9.

[28] Tianjian Lu, Thibault Marin, Yue Zhuo, Yi-Fan Chen,
and Chao Ma, “Nonuniform fast fourier transform on
tpus,” in 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI) (IEEE, 2021) pp. 783–787.

[29] Tianjian Lu, Yi-Fan Chen, Blake Hechtman, Tao Wang,
and John Anderson, “Large-scale discrete fourier trans-
form on tpus,” IEEE Access 9, 93422–93432 (2021).

[30] Fantine Huot, Yi-Fan Chen, Robert Clapp, Carlos
Boneti, and John Anderson, “High-resolution imaging
on tpus,” arXiv preprint arXiv:1912.08063 (2019).

[31] Alan Morningstar, Markus Hauru, Jackson Beall, Mar-
tin Ganahl, Adam GM Lewis, Vedika Khemani, and
Guifre Vidal, “Simulation of quantum many-body dy-
namics with tensor processing units: Floquet prether-
malization,” PRX Quantum 3, 020331 (2022).

[32] Markus Hauru, Alan Morningstar, Jackson Beall, Martin
Ganahl, Adam Lewis, and Guifre Vidal, “Simulation of
quantum physics with tensor processing units: brute-
force computation of ground states and time evolution,”
arXiv preprint arXiv:2111.10466 (2021).

[33] Adam GM Lewis, Jackson Beall, Martin Ganahl, Markus
Hauru, Shrestha Basu Mallick, and Guifre Vidal,
“Large-scale distributed linear algebra with tensor pro-
cessing units,” Proceedings of the National Academy of
Sciences 119, e2122762119 (2022).

[34] E. Gustafson, B. Holzman, J. Kowalkowski, H. Lamm,
A. Y. Li, G. Perdue, S. V. Isakov, O. Martin, R. Thom-
son, J. Beall, M. Ganahl, G. Vidal, and E. Peters,
“Large scale multi-node simulations of z2 gauge theory
quantum circuits using google cloud platform,” in 2021
IEEE/ACM Second International Workshop on Quan-
tum Computing Software (QCS) (IEEE Computer Soci-
ety, Los Alamitos, CA, USA, 2021) pp. 72–79.

[35] Martin Ganahl, Jackson Beall, Markus Hauru,
Adam GM Lewis, Jae Hyeon Yoo, Yijian Zou,
and Guifre Vidal, “Density matrix renormalization
group with tensor processing units,” arXiv preprint
arXiv:2204.05693 (2022).

[36] Pierre Hohenberg and Walter Kohn, “Inhomogeneous
electron gas,” Physical review 136, B864 (1964).

[37] Walter Kohn and Lu Jeu Sham, “Self-consistent equa-
tions including exchange and correlation effects,” Phys-
ical review 140, A1133 (1965).

[38] A Seidl, Andreas Görling, Peter Vogl, Jacek A Majewski,
and Mel Levy, “Generalized kohn-sham schemes and the
band-gap problem,” Physical Review B 53, 3764 (1996).

http://dx.doi.org/10.1145/3360307
http://dx.doi.org/10.1145/3360307
http://github.com/google/jax

13

[39] Yukihiro Hasegawa, Jun-Ichi Iwata, Miwako Tsuji,
Daisuke Takahashi, Atsushi Oshiyama, Kazuo Minami,
Taisuke Boku, Hikaru Inoue, Yoshito Kitazawa, Ikuo
Miyoshi, and Mitsuo Yokokawa, “Performance evalu-
ation of ultra-large-scale first-principles electronic struc-
ture calculation code on the k computer,” Int. J. High
Perform. Comput. Appl. 28, 335–355 (2014).

[40] Joseph C. A. Prentice, Jolyon Aarons, James C.
Womack, Alice E. A. Allen, Lampros Andrinopou-
los, Lucian Anton, Robert A. Bell, Arihant Bhan-
dari, Gabriel A. Bramley, Robert J. Charlton, Re-
becca J. Clements, Daniel J. Cole, Gabriel Constanti-
nescu, Fabiano Corsetti, Simon M.-M. Dubois, Kevin
K. B. Duff, José Maŕıa Escart́ın, Andrea Greco, Quintin
Hill, Louis P. Lee, Edward Linscott, David D. O’Regan,
Maximillian J. S. Phipps, Laura E. Ratcliff, Álvaro Ruiz
Serrano, Edward W. Tait, Gilberto Teobaldi, Valerio Vi-
tale, Nelson Yeung, Tim J. Zuehlsdorff, Jacek Dziedzic,
Peter D. Haynes, Nicholas D. M. Hine, Arash A. Mostofi,
Mike C. Payne, and Chris-Kriton Skylaris, “The onetep
linear-scaling density functional theory program,” The
Journal of Chemical Physics 152, 174111 (2020).

[41] David R Bowler and T Miyazaki, “Calculations for mil-
lions of atoms with density functional theory: linear scal-
ing shows its potential,” Journal of Physics: Condensed
Matter 22, 074207 (2010).

[42] José M Soler, Emilio Artacho, Julian D Gale, Al-
berto Garćıa, Javier Junquera, Pablo Ordejón, and
Daniel Sánchez-Portal, “The SIESTA method for ab ini-
tio order-n materials simulation,” Journal of Physics:
Condensed Matter 14, 2745 (2002).

[43] Joost VandeVondele, Matthias Krack, Fawzi Mohamed,
Michele Parrinello, Thomas Chassaing, and Jürg Hut-
ter, “Quickstep: Fast and accurate density functional
calculations using a mixed gaussian and plane waves ap-
proach,” Computer Physics Communications 167, 103–
128 (2005).

[44] DJ Cole, C-K Skylaris, Eeson Rajendra, AR Venkitara-
man, and MC Payne, “Protein-protein interactions from
linear-scaling first-principles quantum-mechanical calcu-
lations,” Europhysics Letters 91, 37004 (2010).

[45] Christopher A White, Benny G Johnson, Peter MW
Gill, and Martin Head-Gordon, “Linear scaling density
functional calculations via the continuous fast multipole
method,” Chemical Physics Letters 253, 268–278 (1996).

[46] Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu,
Ville Havu, Xinguo Ren, Karsten Reuter, and Matthias
Scheffler, “Ab initio molecular simulations with numeric
atom-centered orbitals,” Computer Physics Communica-
tions 180, 2175–2196 (2009).

[47] Volker Blum, Sebastian Kokott, Mariana Rossi, and
Matthias Scheffler, “FHI-AIMS,” https://fhi-aims.org/,
accessed: 11-20-2022.

[48] Victor Wen zhe Yu, Carmen Campos, William Dawson,
Alberto Garćıa, Ville Havu, Ben Hourahine, William P.
Huhn, Mathias Jacquelin, Weile Jia, Murat Keçeli, Raul
Laasner, Yingzhou Li, Lin Lin, Jianfeng Lu, Jonathan
Moussa, Jose E. Roman, Álvaro Vázquez-Mayagoitia,
Chao Yang, and Volker Blum, “Elsi — an open in-
frastructure for electronic structure solvers,” Computer
Physics Communications 256, 107459 (2020).

[49] Victor Wen zhe Yu, Fabiano Corsetti, Alberto Garćıa,
William P. Huhn, Mathias Jacquelin, Weile Jia, Björn
Lange, Lin Lin, Jianfeng Lu, Wenhui Mi, Ali Seifi-
tokaldani, Álvaro Vázquez-Mayagoitia, Chao Yang,

Haizhao Yang, and Volker Blum, “Elsi: A unified
software interface for kohn–sham electronic structure
solvers,” Computer Physics Communications 222, 267–
285 (2018).

[50] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, 3rd ed. (Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1999).

[51] Intel Math Kernel Library. Reference Manual (Intel Cor-
poration, Santa Clara, USA, 2009) iSBN 630813-054US.

[52] Lionel A. Truflandier, Rivo M. Dianzinga, and David R.
Bowler, “Communication: Generalized canonical purifi-
cation for density matrix minimization,” The Journal of
Chemical Physics 144, 091102 (2016).

[53] Jaehoon Kim and Yousung Jung, “A perspective on the
density matrix purification for linear scaling electronic
structure calculations,” Int. J. Quantum Chem (2015),
10.10002/qua.25048.

[54] R. A. Van De Geijn and J. Watts, “SUMMA: scal-
able universal matrix multiplication algorithm,” Concur-
rency: Practice and Experience 9, 255–274 (1997).

[55] Nicholas J Higham, “Stable iterations for the matrix
square root,” Numerical Algorithms 15, 227–242 (1997).

[56] P. Kůs, A. Marek, S.S. Köcher, H.-H. Kowalski, C. Car-
bogno, Ch. Scheurer, K. Reuter, M. Scheffler, and
H. Lederer, “Optimizations of the eigensolvers in the elpa
library,” Parallel Computing 85, 167–177 (2019).

[57] Andreas Marek, Volker Blum, Rainer Johanni, Ville
Havu, Bruno Lang, Thomas Auckenthaler, Alexander
Heinecke, Hans-Joachim Bungartz, and Hermann Led-
erer, “The ELPA library: scalable parallel eigenvalue
solutions for electronic structure theory and computa-
tional science,” Journal of Physics: Condensed Matter
26, 213201 (2014).

[58] Sambit Das, Phani Motamarri, Vishal Subramanian,
David M Rogers, and Vikram Gavini, “Dft-fe 1.0:
A massively parallel hybrid cpu-gpu density functional
theory code using finite-element discretization,” arXiv
preprint arXiv:2203.07820 (2022).

[59] Thomas Herault, Yves Robert, George Bosilca, and Jack
Dongarra, “Generic matrix multiplication for multi-gpu
accelerated distributed-memory platforms over parsec,”
in 2019 IEEE/ACM 10th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems (ScalA)
(IEEE, 2019) pp. 33–41.

[60] Greg Lever, Daniel J Cole, Nicholas DM Hine, Peter D
Haynes, and Mike C Payne, “Electrostatic considera-
tions affecting the calculated homo–lumo gap in protein
molecules,” Journal of Physics: Condensed Matter 25,
152101 (2013).

[61] Elias Rudberg, “Difficulties in applying pure Kohn–
Sham density functional theory electronic structure
methods to protein molecules,” Journal of Physics: Con-
densed Matter 24, 072202 (2012).

[62] Steven R. White, “Density matrix formulation for quan-
tum renormalization groups,” Phys. Rev. Lett. 69, 2863–
2866 (1992).

[63] B Scott Fales, Ethan R Curtis, K Grace Johnson, Dean
Lahana, Stefan Seritan, Yuanheng Wang, Hayley Weir,
Todd J Mart́ınez, and Edward G Hohenstein, “Perfor-
mance of coupled-cluster singles and doubles on modern
stream processing architectures,” Journal of Chemical
Theory and Computation 16, 4021–4028 (2020).

http://dx.doi.org/10.10002/qua.25048
http://dx.doi.org/10.10002/qua.25048
http://dx.doi.org/ https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
http://dx.doi.org/ https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2

14

[64] Leslie Vogt, Roberto Olivares-Amaya, Sean Kermes, Yi-
han Shao, Carlos Amador-Bedolla, and Alan Aspuru-
Guzik, “Accelerating resolution-of-the-identity second-
order Møller-Plesset quantum chemistry calculations
with graphical processing units,” The Journal of Physi-
cal Chemistry A 112, 2049–2057 (2008).

[65] Qiming Sun and Garnet Kin-Lic Chan, “Quantum em-
bedding theories,” Accounts of chemical research 49,
2705–2712 (2016).

[66] Adam H. R. Palser and David E. Manolopoulos, “Canon-
ical purification of the density matrix in electronic-
structure theory,” Phys. Rev. B 58, 12704–12711 (1998).

[67] Anders M. N. Niklasson, “Expansion algorithm for the
density matrix,” Phys. Rev. B 66, 155115 (2002).

[68] Anders M. N. Niklasson, C. J. Tymczak, and Matt Chal-
lacombe, “Trace resetting density matrix purification in
O(N) self-consistent-field theory,” The Journal of Chem-
ical Physics 118, 8611–8620 (2003).

[69] Alberto Garćıa, Nick Papior, Arsalan Akhtar, Emilio Ar-
tacho, Volker Blum, Emanuele Bosoni, Pedro Brandi-
marte, Mads Brandbyge, J. I. Cerdá, Fabiano Corsetti,
Ramón Cuadrado, Vladimir Dikan, Jaime Ferrer, Ju-
lian Gale, Pablo Garćıa-Fernández, V. M. Garćıa-
Suárez, Sandra Garćıa, Georg Huhs, Sergio Illera,
Richard Korytár, Peter Koval, Irina Lebedeva, Lin
Lin, Pablo López-Tarifa, Sara G. Mayo, Stephan
Mohr, Pablo Ordejón, Andrei Postnikov, Yann Pouil-
lon, Miguel Pruneda, Roberto Robles, Daniel Sánchez-

Portal, Jose M. Soler, Rafi Ullah, Victor Wen-zhe Yu,
and Javier Junquera, “Siesta: Recent developments and
applications,” The Journal of Chemical Physics 152,
204108 (2020).

[70] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buc-
cheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Du-
mitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der
Heide, J. Hermann, S. Irle, J. J. Kranz, C. Köhler,
T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J.
Maurer, S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus,
A. M. N. Niklasson, A. J. Page, A. Pecchia, G. Penazzi,
M. P. Persson, J. Řezáč, C. G. Sánchez, M. Sternberg,
M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W.-z. Yu,
and T. Frauenheim, “Dftb+, a software package for effi-
cient approximate density functional theory based atom-
istic simulations,” The Journal of Chemical Physics 152,
124101 (2020).

[71] John P Perdew, Kieron Burke, and Matthias Ernzer-
hof, “Generalized gradient approximation made simple,”
Physical review letters 77, 3865 (1996).

[72] Daniel Sp̊angberg, “Ergoscf xyz - water clusters,”
http://www.ergoscf.org/xyz/h2o.php, accessed: 11-
20-2022.

[73] Elias Rudberg, Emanuel H Rubensson, Pawe l Sa lek, and
Anastasia Kruchinina, “Ergo: An open-source program
for linear-scaling electronic structure calculations,” Soft-
wareX 7, 107–111 (2018).

http://dx.doi.org/10.1063/1.1559913
http://dx.doi.org/10.1063/1.1559913
http://www.ergoscf.org/xyz/h2o.php

	Large scale quantum chemistry with tensor processing units
	Abstract
	 introduction
	 Results
	 DFT with TPUs
	 Dynamic precision on TPUs

	 Discussion
	 Acknowledgments
	 Supporting information
	S1 orthogonalization details
	S2 purification details
	S3 FHI-aims TPU integration details
	S4 dynamic precision on smaller water clusters

	 References

