
ar
X

iv
:2

20
2.

05
12

0v
2 

 [
cs

.D
S]

  2
8 

A
pr

 2
02

2

Low-Rank Approximation with 1/&1/3 Matrix-Vector Products

Ainesh Bakshi

abakshi@cs.cmu.edu

CMU

Kenneth L. Clarkson

klclarks@us.ibm.com

IBM

David P. Woodruff

dwoodruf@cs.cmu.edu

CMU

Abstract

We study iterative methods based on Krylov subspaces for low-rank approximation under

any Schatten-? norm. Here, given access to a matrix A through matrix-vector products, an

accuracy parameter &, and a target rank :, the goal is to find a rank-: matrix Z with orthonormal

columns such that ‖A (I − ZZ⊤)‖S? ≤ (1+ &)minU⊤U=I: ‖A (I −UU⊤)‖S? , where ‖M‖S? denotes

the ℓ? norm of the the singular values of M. For the special cases of ? = 2 (Frobenius norm)

and ? = ∞ (Spectral norm), Musco and Musco (NeurIPS 2015) obtained an algorithm based

on Krylov methods that uses $̃(:/
√
&) matrix-vector products, improving on the naïve $̃(:/&)

dependence obtainable by the power method, where $̃(·) suppresses poly(log(3:/&)) factors.

Our main result is an algorithm that uses only $̃(:?1/6/&1/3) matrix-vector products, and

works for all, not necessarily constant, ? ≥ 1. For ? = 2 our bound improves the previous

$̃(:/&1/2) bound to $̃(:/&1/3). Since the Schatten-? and Schatten-∞ norms of any matrix are

the same up to a 1 + & factor when ? ≥ (log 3)/&, our bound recovers the result of Musco

and Musco for ? = ∞. Further, we prove a matrix-vector query lower bound of Ω(1/&1/3) for

any fixed constant ? ≥ 1, showing that surprisingly Θ̃(1/&1/3) is the optimal complexity for

constant :.

To obtain our results, we introduce several new techniques, including optimizing over

multiple Krylov subspaces simultaneously, and pinching inequalities for partitioned operators. Our

lower bound for ? ∈ [1, 2] uses the Araki-Lieb-Thirring trace inequality, whereas for ? > 2,

we appeal to a norm-compression inequality for aligned partitioned operators. As our algorithms

only require matrix-vector product access, they can be applied in settings where alternative

techniques such as sketching cannot, e.g., to covariance matrices, Hessians defined implicitly

by a neural network, and arbitrary polynomials of a matrix.

http://arxiv.org/abs/2202.05120v2


1 Introduction

Iterative methods, and in particular Krylov subspace methods, are ubiquitous in scientific comput-

ing. Algorithms such as power iteration, Golub-Kahan Bidiagonalization, Arnoldi iteration, and

the Lanczos iteration, are used in basic subroutines for matrix inversion, solving linear systems,

linear programming, low-rank approximation, and numerous other fundamental linear algebra

primitives [Saa81, LS13]. A common technique in the analysis of Krylov methods is the use of

Chebyshev polynomials, which can be applied to the singular values of a matrix to implement an

approximate interval or step function [MH02, Riv20]. Further, Chebyshev polynomials reduce the

degree required to accurately approximate such functions, leading to significantly fewer iterations

and faster running time. In this paper we investigate the power of Krylov methods for low-rank

approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an underlying matrix A, which

is often implicit, and for which the only access to A is via matrix-vector products. Namely, the

algorithm chooses a query vector E1, obtains the product A · E1, chooses the next query vector

E2, which is any randomized function of E1 and A · E1, then receives A · E2, and so on. If A is a

non-symmetric matrix, we assume access to products of the form A⊤E as well. We refer to the

minimal number @ of queries needed by the algorithm to solve a problem with constant probability

as the query complexity. We note that upper bounds on the query complexity immediately translate

to running time bounds for the RAM model, when A is explicit, since a matrix-vector product

can be implemented in nnz(A) time, i.e., the number of non-zero entries in the matrix. Since this

model captures a large family of iterative methods, it is natural to ask whether Krylov subspace

based methods yield optimal algorithms, where the complexity measure of interest is the number

of matrix-vector products.

This model and related vector-matrix-vector query models were formalized for a number of

problems in [SWYZ19, RWZ20], though the model is standard for measuring efficiency in scientific

computing and numerical linear algebra, see, e.g., [BFG96]; in that literature, methods that use

only matrix-vector products are called matrix-free. Subsequently, for the problem of estimating the

top eigenvector, nearly tight bounds were obtained in [SAR18, BHSW20]. Also, for the problem of

estimating the trace of a positive semidefinite matrix, tight bounds were obtained in [MMMW21]

(see, also [WWZ14], where tight bounds were shown in the related vector-matrix-vector query

model). For recovering a planted clique from a random graph, upper and lower bounds were

obtained in [RWYZ21]. In the non-adaptive setting, where E1, . . . , E@, are chosen before making

any queries to A, this is equivalent to the sketching model, which is thoroughly studied on its own

(see, e.g., [Nel11, Woo14]), and in the context of data streams [Mut05, LNW14b].

Why is the matrix A implicit? A small query complexity @ leads to an algorithm running in

time O
(
)(A) · @ + %(=, 3, @)

)
, where )(A) is the time to multiply the = × 3 matrix A by an arbitrary

vector, and %(=, 3, @) is the time needed to form the queries and process the query responses,

which is typically small. When the matrix A is given as a list of nnz(A) non-zero entries, then

)(A) ≤ nnz(A). However, in many problems A is not given explicitly, and it is too expensive to

write A down. Indeed, one may be given A but want to compute a low-rank approximation to the
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“covariance” (Gram) matrix A⊤A, and computing A⊤A is too slow [MW17a]. More generally, one

may be given A = UΣV⊤ and a function 5 : ℝ→ ℝ, and want to compute matrix-vector products

with the generalized matrix function 5 (A) = U 5 (Σ)V⊤, where U has orthonormal columns, V⊤

has orthonormal rows, Σ is a diagonal matrix, and 5 is applied entry-wise to each entry on the

diagonal.

The covariance matrix corresponds to 5 (G) = G2, and other common functions 5 include the

matrix exponential 5 (G) = 4G and low-degree polynomials. For instance, when A is the adjacency

matrix of an undirected graph, 5 (G) = G3/6 is used to count the number of triangles [Tso08, Avr10].

Yet another example is when A is the Hessian H of a neural network with a huge number of

parameters, for which it is often impossible to compute or store the entire Hessian [GKX19].

Typically H · E, for any chosen vector E, is computed using Pearlmutter’s trick [Pea94]. However,

even with Pearlmutter’s trick and distributed computation on modern GPUs, it takes 20 hours

to compute the eigendensity of a single Hessian H with respect to the cross-entropy loss on the

CIFAR-10 dataset from a set of fixed weights for ResNet-18 [KH+09], which has approximately

11 million parameters [HZRS16, GKX19]. This time is directly proportional to the number of

matrix-vector products, and therefore minimizing this quantity is crucial.

Algorithms and Lower Bounds for Low-Rank Approximation. The low-rank approximation

problem is well studied in numerical linear algebra, with countless applications to clustering, data

mining, principal component analysis, recommendation systems, and many more. (For surveys

on low-rank approximation, see the monographs [KV09, Mah11, Woo14] and references therein.)

In this problem, given an implicit = × 3 matrix A, the goal is to output a matrix Z ∈ ℝ3×: with

orthonormal columns such that

A
(
I − ZZ⊤

)


-
≤ (1 + &) min

U:U⊤U=I:



A
(
I −UU⊤

)


-
, (1.1)

where ‖ · ‖- denotes some norm. Note that given Z, one can compute AZ with an additional :

queries, which will be negligible, and then (AZ) ·Z⊤ is a rank-: matrix written in factored form, i.e.,

as the product of an =× : matrix and a : × 3 matrix. Among other things, low-rank approximation

provides (1) a compression of A from =3 parameters to (=+ 3): parameters, (2) faster matrix-vector

products, since AZ ·Z⊤ · H can be computed in $((=+3):) time for an arbitrary vector H, as opposed

to the $(=3) time needed to compute A · H, and (3) de-noising, as often matrices A are close to

low-rank (e.g., they are the product of latent factors) but only high rank due to noise.

Despite its tremendous importance, the optimal matrix-vector product complexity of low-rank

approximation is unknown for any commonly used norm. The best known upper bound is due

to Musco and Musco [MM15], who achieve Õ(:/&1/2) queries1 for both the case when ‖ · ‖- is

the commonly studied Frobenius norm ‖B‖� =

(∑
8, 9 B2

8, 9

)1/2
as well as when ‖ · ‖- is the Spectral

(operator) norm ‖B‖2 = sup‖H‖2=1 ‖BH‖2.
On the lower bound front, there is a trivial lower bound of :, since A may be full rank and

achieving (1.1) requires : matrix-vector products since one must reconstruct the column span of

A exactly. However, no lower bounds in terms of the approximation factor & were known. We note that

1We let Õ( 5 ) = 5 · poly(log(3:/&)).
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Simchowitz, Alaoui and Recht [SAR18] prove lower bounds for approximating the top A eigenvalues

of a symmetric matrix; however these guarantees are incomparable to those that follow from a

low-rank approximation, even when the norm ‖ · ‖- is the operator norm (see Appendix A for a

brief discussion).

Relationship to the Sketching Literature. Low-rank approximation has been extensively stud-

ied in the sketching literature which, when A is given explicitly, can achieve O(nnz(A)) time both

for the Frobenius norm [CW13, MM13a, NN13], as well as for Schatten-? norms [LW20]. However,

these works require reading all of the entries in A, and thus do not apply to any of the settings men-

tioned above. Further, the matrix-vector query model is especially important for problems such as

trace estimation, where a low-rank approximation is used to first reduce the variance [MMMW21].

As trace estimation is often applied to implicit matrices, e.g., in computing Stochastic Lanczos

Quadrature (SLQ) for Hessian eigendensity estimation [GKX19], in studying the effects of batch

normalization and residual connections in neural networks [YGKM20], and in computing a disen-

tanglement regularizer for deep generative models [PPZ+20], sketching algorithms for low-rank

approximation often do not apply.

Another important application is low-rank approximation of covariance matrices [MW17a], for

which the covariance matrix is not given explicitly. Here, we have a data matrix A and we want

a low-rank approximation for AA⊤. Even when S is a sparse sketching matrix, the matrix SA is

no longer sparse, and one needs to multiply SA by A⊤ to obtain a sketch of SAA⊤, which is a

dense matrix-matrix multiplication. Moreover, when viewed in the matrix-vector product model,

sketching algorithms obtain provably worse query complexity than existing iterative algorithms

(see Table 1.1 for a comparison). Further, as modern GPUs often do not exploit sparsity, even when

the matrix A is given, a GPU may not be able to take advantage of sparse queries, which means the total

time taken is proportional to the number of matrix-vector products.

Motivating Schatten-? Norms. The Schatten norms for 1 ≤ ? < 2 are more robust than the

Frobenius norm, as they dampen the effect of large singular values. In particular, the Schatten-1

norm, also known as the nuclear norm, has been widely used for robust PCA [XCS10, CLMW11,

YPCC16] as well as a convex relaxation of matrix rank in matrix completion [CR09, CP10], low-

dimensional Euclidean embeddings [RFP10, TDSL00, RS00], image denoising [GZZF14, GXM+17]

and tensor completion [YZ16]. In contrast, for ? > 2, Schatten norms are more sensitive to large

singular values and provide an approximation to the operator norm. In particular, for a rank A

matrix, it is easy to see that setting ? = log(A)/� yields a (1 + �)-approximation to the operator

norm (i.e., ? = ∞). While the Block Krylov algorithm of Musco and Musco [MM15] implies a

matrix-vector query upper bound of Õ
(
:/&1/2) for Schatten-∞ low-rank approximation, the exact

complexity of this problem remains an outstanding open problem. When ? > 2, we can interpolate

between Frobenius and operator norm, and setting ? to be a large fixed constant can be a proxy for

Schatten-∞ low-rank approximation, with significantly fewer matrix-vector products (see Theorem

5.1).

Our Central Question. The main question of our work is:

What is the matrix-vector product complexity of low-rank approximation for the Frobenius norm, and more
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generally, for other matrix norms?

1.1 Our Results

Problem Frobenius Schatten-?, ? ∈ [1, 2) Schatten-?, ? > 2

Sketching [CW09, LW20] Θ(:/&) Ω(:2/?/&4/?+1) Ω(min(=, 3)1−2/?)

Block Krylov [MM15] Õ(:/&1/2) N/A N/A

Our Upper Bound Õ(:/&1/3) Õ(:/&1/3) Õ(:?1/6/&1/3)
Our Lower Bound Ω(1/&1/3) Ω(1/&1/3) Ω(1/&1/3)

Figure 1.1: Prior Upper and Lower Bounds on the Matrix Vector Product Complexity for Frobe-

nius and Schatten-? low-rank Approximation. The poly(:/&) factors in prior sketching work for

Schatten-? are not explicit, but we have computed lower bounds on them to illustrate our improve-

ments. Our bounds are optimal, up to logarithmic factors, for constant :. For ? > log(3)/&, spectral

low-rank approximation [MM15] implies an Õ
(
:/
√
&
)

upper bound.

We begin by stating our results for Frobenius and more generally, Schatten-? norm low-rank

approximation for any ? ≥ 1; see Table 1.1 for a summary.

Theorem 1.1 (Query Upper Bound, informal Theorem 5.1). Given a matrix A ∈ ℝ=×3 , a target rank

: ∈ [3], an accuracy parameter & ∈ (0, 1) and any (not necessarily constant) ? ∈ [1,O
(
log(3)/&

)
], there

exists an algorithm that uses Õ
(
:?1/6/&1/3) matrix-vector products and outputs a 3 × : matrix Z with

orthonormal columns such that with probability at least 99/100,

A
(
I − ZZ⊤

)


S? ≤ (1 + &) min

U: U⊤U=I:



A
(
I −UU⊤

) 


S? .

When ? ≥ log(3)/&, we get Õ
(
:/
√
&
)

matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schatten ? for ? = 2), we improve

the prior matrix-vector product bound of Õ(:/&1/2) by Musco and Musco [MM15] to Õ(:/&1/3).
For Schatten-? low-rank approximation for ? ∈ [1, 2), we improve work of Li and Woodruff [LW20]

who require query complexity at least Ω(:2/?/&4/?+1), which is a polynomial factor worse in both

: and 1/& than our Õ(:/&1/3) bound.

For ? > 2, [LW20] obtain a query complexity of Ω(min(=, 3)1−2/?). We drastically improve this

to Õ(:/&1/3), which does not depend on 3 or = at all. Setting ? = log(3)/& suffices to obtain a (1+ &)-
approximation to the spectral norm (? = ∞), and we obtain an Õ

(
:/
√
&
)

query algorithm, matching

the best known bounds for spectral low-rank approximation [MM15]. When ? > log(3)/&, we can

simply run Block Krylov for ? = ∞.
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Remark 1.2 (Comments on the RAM Model). Although our focus is on minimizing the number

of matrix-vector products, which is the key resource in the applications described above, our

bounds also improve the running time of low-rank approximation algorithms when the matrix

A has a small number of non-zero entries and is explicitly given. For simplicity, we state our

bounds and those of previous work without using algorithms for fast matrix multiplication; similar

improvements hold when using such algorithms. When nnz(A) = $(=), for Frobenius norm low-

rank approximation, work in the sketching literature, and in particular [ACW17] (building off

of [CW13, NN13, Coh16]), achieves $(=:2/&) time. In contrast, in this setting our runtime is

Õ(=:2/&2/3). Similarly, for Schatten-? low-rank approximation for ? ∈ [1, 2), the previous best

[LW20] requires Ω̃(=:4/?/&(8/?−2)) time, while for ? > 2 [LW20] requires Ω̃(=32(1−2/?)(:/&)4/?) time.

In both cases our runtime is only Õ(=:2?1/3/&2/3). We obtain analogous improvements when the

sparsity nnz(A) is allowed to be =(:/&)� for a small constant � > 0.

Next, we state our lower bounds on the matrix-vector query complexity of Schatten-? low-rank

approximation.

Theorem 1.3 (Query Lower Bound for constant ?, informal Theorem 6.1 and Theorem 6.4 ). Given

� > 0, and a fixed constant ? ≥ 1, there exists a distribution D over = × = matrices such that for A ∼ D,

any algorithm that with at least constant probability outputs a unit vector E such that ‖A (I − EE⊤)‖?S? ≤
(1 + �)min‖D‖2=1 ‖A (I − DD⊤)‖?S? must perform Ω(1/�1/3) matrix-vector queries to A.

Remark 1.4. We note that this is the first lower bound as a function of & for this problem, even for

the well-studied case of ? = 2, achieving an Ω(1/&1/3) bound, which is tight for any constant :,

simultaneously for all constant ? ≥ 1.

Remark 1.5. Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Simchowitz, Alaoui

and Recht [SAR18] establish eigenvalue estimation lower bounds that we use in our arguments,

but their results do not directly imply low-rank approximation lower bounds for any matrix norm

that we are aware of, including spectral low-rank approximation, i.e., ? = ∞ (see Appendix A).

Matrix Polynomials and Streaming Algorithms. Since our algorithms are based on iterative

methods, they generalize naturally to low-rank approximations of matrices of the form A (A⊤A)ℓ
and (A⊤A)ℓ for any integer ℓ , given A as input. We defer the details to Appendix B.

Since we work in the matrix-vector model, our algorithms naturally extend to the multi-pass

turnstile streaming setting. Notably, for ? > 2, with O
(
log(3/&)?1/6/&1/3) passes we are able to

improve the Õ
(
=

(
:=1−2/?

&2 + :2/?+=1−2/?

&2+2/?

))
memory bound of [LW20] to Õ

(
=:/&1/3) . We defer the

details to Appendix C.

1.2 Open Questions

We note that our lower bounds are tight only when the target rank : and Schatten norm ? are fixed

constants. In particular, it is open to obtain matrix-vector lower bounds that grow as a function

of :, ? and 1/&. For the important special case of Spectral low-rank approximation (? = ∞), it is

open to obtain any lower bound that grows as a function of 1/&, even when the target rank : = 1
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(see Appendix A for more details). We also note that improving our upper bound to even ?1/6−>(1)

would imply a faster algorithm for Spectral low-rank approximation, addressing the main open

question in [Woo14].

2 Technical Overview

For our technical overview, we drop polylogarithmic factors appearing in the analysis and assume

the input A is a symmetric = × = matrix (we handle arbitrary = × 3 matrices in Section 5).

2.1 Algorithms for Low-Rank Approximation

We first describe our algorithm for the special case of rank-1 approximation in the Frobenius norm,

i.e., ? = 2. Our algorithm is inspired by the Block Krylov algorithm of Musco and Musco [MM15].

Briefly, their algorithm begins with a random starting vector , (block size is 1) and computes the

Krylov subspace K = [A,; A2,; . . . ; A@,], for @ = O
(
1/&1/2) . Next, their algorithm computes an

orthonormal basis for the column span of K, denoted by a matrix Q, and outputs the top singular

vector of Q⊤A2Q, denoted by I (see Algorithm 5.6 for a formal description). It follows from

Theorem 1, guarantee (1) in [MM15] that



A
(
I − II⊤

)

2

�
≤ (1 + &) min

‖D‖2=1



A
(
I − DD⊤

)

2

�
, (2.1)

and it is easy to see that this algorithm requiresΘ
(
1/&1/2) matrix-vector products. A naïve analysis

requires anO(1/&)-degree polynomial in the matrix A to obtain (2.1), while [MM15] use Chebyshev

polynomials to approximate the threshold function between first and second singular value, and

save a quadratic factor in the degree. The guarantee in (2.1) then follows from observing that

the best vector in the Krylov subspace is at least as good as the one that exists using Chebyshev

polynomial approximation.

Algorithm 2.1 (Algorithm Sketch for Frobenius rank-1 LRA ).

Input: An = × = symmetric matrix A, accuracy parameter 0 < � < 1.

1. Run Block Krylov for O
(
1/&1/3) iterations with a random starting vector ,. Let I1

be the resulting output.

2. Run Block Krylov for O
(
log(=/&)

)
iterations, but initialize with an = × 1 random

matrix G, where 1 = O
(
1/&1/3) . Let I2 be the resulting output.

Output: I = arg maxI1 ,I2

(
‖AI1‖22 , ‖AI2‖22

)
.

Our starting point is the observation that while we require degree Θ
(
1/&1/2) to separate the

first and second singular values, if any subsequent singular value is sufficiently separated from �1,

a significantly smaller degree polynomial suffices. In the context of Krylov methods, this translates
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to the intuition that starting with a matrix G with 1 columns (block size is 1) should result in fewer

iterations to find some vector in the top 1 subspace of A. On the other hand, if no such singular

value exists, the norm of the tail must be large and we can get away with a less accurate solution.

We show that we can indeed exploit this trade-off by running Block Krylov on two different scales

in parallel and then combine the solution. In particular, we use Algorithm 2.1.

Algorithm 2.1 captures the extreme points of the trade-off between the size of the starting

matrix and the number of iterations, such that the total number of matrix-vector products is at

most Õ(1/&1/3). Further, we can compute the squared Euclidean norms of AI1 and AI2 with an

additional matrix-vector product, and it remains to analyze the Frobenius cost of projecting A on

the subspace I − II⊤, where I is the unit vector output by Algorithm 2.1.

Using gap-independent guarantees for Block Krylov (see Lemma 5.2 for a formal statement), it

follows that with O
(
1/&1/3) iterations, we have

‖AI1‖22 ≥ �2
1(A) − &2/3�2

2(A). (2.2)

In contrast, using gap-dependent guarantees (see Lemma 5.4) for Block Krylov initialized with

block size 1, it follows that for any � > 0, running @ = log(1/�) ·
√
�1(A)/(�1(A) − �1(A)) iterations

results in I2 such that

‖AI2‖22 ≥ �2
1(A) − ��2

2(A). (2.3)

If �1(A) ≤ �1(A)/2, we can set � = &/= in Equation (2.3) to obtain a highly accurate solution.

Further, regardless of the input instance, Step 3 in Algorithm 2.1 ensures that we get the best of

both guarantees, (2.2) and (2.3). Then, observing that I − II⊤ is an orthogonal projection matrix

(see Definition 4.1) and using the Pythagorean Theorem for Euclidean space we have:



A
(
I − II⊤

)

2

�
= ‖A‖2� −



AII⊤


2

�
= ‖A‖2� − ‖AI‖22 , (2.4)

where the second inequality follows from unitary invariance (see Fact 4.8) of the Frobenius norm

and that the squared Frobenius norm of a rank-1 matrix AI (vector) is equal to its squared Euclidean

norm. If it happens that �2(A) ≤ �1(A)/2, i.e., a constant gap exists between the first two singular

values, then since guarantee (2.3) implies that ‖AI‖22 ≥ �2
1
(A) − (&/=)�2

2
(A), we can plug this into

(2.4) to yield a (1+&/=)-approximate solution. Hence, we focus on instances where �2(A) > �1(A)/2.

Consider the case where the Frobenius norm of the tail is large, i.e., ‖A − A1‖2� ≥ �2
2(A)/&1/3,

where A1 is the best rank-1 approximation to A. Then we only require an &2/3-approximate solution

(plugging guarantee (2.2) into (2.4) ) since



A
(
I − I1I

⊤
1

)

2

�
≤ ‖A‖2� − �2

1(A) + &2/3�2
2(A) ≤ ‖A −A1‖2� + & ‖A −A1‖2� . (2.5)

Otherwise,
∑=

8=2 �
2
8
(A) < �2

2(A)/&1/3, which implies that there is a constant gap between the

second and 1-th singular values, where 1 = O
(
1/&1/3) . To see this, observe if �1(A) > �2(A)/4,

then
∑=

8=2 �
2
8
(A) ≥ ∑1

8=2 �
2
8
(A) ≥ 1�2

2(A)/4, which is a contradiction when 1 > 10/&1/3, and thus

�1(A) ≤ �2(A)/4 < �1/2. Now we can apply guarantee (2.3) with @ = O
(
log(=/&)

)
and conclude

‖AI‖22 ≥ �2
1
(A) − (&/=)�2

2
(A), yielding a highly accurate solution yet again. Overall, this suffices to

obtain a (1 + &)-approximate solution with Õ(1/&1/3)matrix-vector queries.
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Challenges in generalizing to Schatten ? ≠ 2 and rank : > 1. The outline above crucially relies

on the norm of interest being Frobenius. In particular, we use the Pythagorean Theorem to analyze

the cost of the candidate solution in Equation (2.4); however, the Pythagorean Theorem does not

hold for non-Euclidean spaces. Therefore, a priori, it is unclear how to analyze the Schatten-?

norm of a candidate rank-1 approximation. A proxy for the Pythagorean Theorem that holds for

Schatten-? norms is Mahler’s operator inequality (see Fact 4.11), which is in the right direction but

holds only for ? ≥ 2, whereas we would like to handle all ? ≥ 1. Separately, for ? > 2, the case

where the tail is small corresponds to ‖A −A1‖?S? ≤ �
?

2 (A) /&1/3. Therefore, naïvely extending the

above argument requires picking a block size that scales proportional to O
(
2?/&1/3) to induce a

constant gap between �1 and �1 , and the number of matrix-vector products scales exponentially

in ?.

Finally, in the above outline, we also crucially use that ‖AII⊤‖2� = ‖AI‖22. Observe that this no

longer holds if we replace I with a matrix Z that has : orthonormal columns. Therefore, it remains

unclear how to relate ‖AZ‖?S? to ‖AZ∗,8 ‖22, yet the vector-by-vector error guarantee obtained by

Block Krylov (see Lemmas 5.2 and 5.4) only bounds the latter.

Handling all Schatten-? Norms and : > 1. We modify our algorithm to run Block Krylov on A⊤

and obtain an orthonormal matrix W such that for all 8 ∈ [:],

A⊤W∗,8


2 ≥ �2

8 (A) − ��2
:+1(A), (2.6)

for some � > 0. We then analyze the cost ‖A (I − ZZ⊤)‖?S? , where Z is a basis for A⊤W. Our key

insight is to interpret the input matrix A as a partitioned operator (block matrix) and invoke pinching

inequalities for such operators. Pinching inequalities were originally introduced to understand

unitarily invariant norms over direct sums of Hilbert spaces [VN37, Sch60]. In our setting, given a

block matrix M =

(
M(1) M(2)

M(3) M(4)

)
, the pinching inequality (see Fact 4.13) implies that for all ? ≥ 1,

‖M‖?S? ≥


M(1)



?
S? +



M(4)


?
S? . (2.7)

A priori, it is unclear how to use Equation (2.7) to bound ‖A (I − ZZ⊤)‖?S? . First, we establish a

general inequality for the Schatten norm of a matrix times an orthogonal projection. Let P and Q

be any = × = orthogonal projection matrices with rank : (see Definition 4.1). Then, we prove (see

Lemma 5.5 for details) that for any matrix A,

‖A‖?S? ≥ ‖PAQ‖?S? + ‖(I − P)A (I −Q)‖?S? . (2.8)

To obtain this inequality, we use a rotation argument along with the fact that the Schatten-? norms

are unitarily invariant to show that ‖A‖?S? =






(
A(1) A(2)

A(3) A(4)

)




?

S?
, where



A(1)



S? = ‖PAQ‖S? and

A(4)




S? = ‖(I − P)A (I −Q)‖S? , and then we can apply Equation (2.7) to the block matrix above.
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Once we have established Equation (2.8), we can set P = WW⊤ and set Q = ZZ⊤ to be the

projection matrix corresponding to the column span of A⊤WW⊤. Then, we have that PAQ =

WW⊤A and (I − P)A (I −Q) = A (I − ZZ⊤), and combined with (2.8) this yields

A
(
I − ZZ⊤

)

?
S? ≤ ‖A‖

?

S? −


WW⊤A



?
S? . (2.9)

To obtain a bound on ‖WW⊤A‖?S? , we appeal to the per-vector guarantees in Equation (2.6).

However, translating from ℓ 2
2 error to �

?
? (W⊤A) incurs a mixed guarantee (see Lemma 5.7 for

details): 

WW⊤A


?
S? ≥ ‖A: ‖?S? − O

(
�?

) ∑
8∈[:]

�2
:+1 (A) �

?−2

8
(A) .

To use this bound, we require �1(A) to be comparable to �:+1(A) and thus we require an involved

case analysis, which appears in the proof of Theorem 5.1.

Avoiding an exponential dependence on ?. Our main insight here is that we do not require

a block size that induces a constant gap between singular values. Instead, we first observe that

if the block size 1 is large enough such that �1 ≤ �2/(1 + 1/?), then O
(
log(=/&)√?

)
iterations

suffice to obtain a vector I such that ‖AI‖22 ≥ �2
1 (A) − (&/=) �2

2 (A). Therefore, we can trade-

off the threshold for the Schatten norm of the tail with the number of iterations as follows: if

‖A −A1‖?S? ≤
1

?1/3&1/3 �
?

2
(A), then setting 1 = (1 + 1/?)?/(&?)1/3 = Θ(1/(&?)1/3) suffices to induce a

gap of 1+1/? with block size 1. The total number of matrix-vector products is O
(
1 · log(=/&)√?

)
=

Õ(?1/6/&1/3), since ? can be assumed to be at most (log =)/&. Otherwise, ‖A −A1‖?S? >
1

?1/3&1/3 �
?

2 (A),
and we only require a (1 + &2/3/?1/3)-approximate solution instead (compare with Equation (2.5)).

Using gap-independent bounds (see Lemma 5.2), it suffices to start with block size 1 and run

O
(
log(=/&)?1/6/&1/3) iterations to obtain a (1 + &2/3/?1/3)-approximate solution.

Avoiding a Gap-Dependent Bound. We note that even when there is a constant gap between the

first and second singular values, and the per vector guarantee is highly accurate, i.e., for all 8 ∈ [:],
‖AZ∗,8 ‖2 ≥ �2

8
(A) − poly

(
&
3

)
�2
:+1
(A), it is not clear how to lower bound ‖AZ‖?S? in Equation 2.9. In

general, the best bound we can obtain using the above equation is

‖AZ‖?S? ≥ ‖A: ‖?S? − O
(

&

poly(3)

)
�2
:+1 ·

∑
8∈[:]

�
?−2

8
, (2.10)

which may be vacuous when the top : singular values are significantly larger than �:+1 and ? > 2.

One could revert to a gap-dependent bound, where the error is in terms of the gap between �1 and

�:+1, which one could account for by running an extra factor of O
(
log(�1/�:+1)

)
iterations.

To avoid this gap-dependent bound, we split A into a head part A� and a tail part A) , such that

A� has all singular values that are at least (1 + 1/3) �:+1 and A) has the remaining singular values.

We then bound ‖A� (I − ZZ⊤)‖S? and ‖A) (I − ZZ⊤)‖S? separately. Repeating the above analysis,

we can obtain Equation (2.10) for A) instead, and since all singular values larger than �:+1 in A)
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are bounded, we can obtain ‖A) (I − ZZ⊤)‖?S? ≤ O
(
&:/poly(3)

)
�
?

:+1
. To adapt the analysis for A)

and obtain this bound, we use Cauchy’s interlacing theorem to relate the 9-th singular value of

A) (I − ZZ⊤) to the (8∗ + 9)-th singular value of A (I − ZZ⊤), where 8∗ is the rank of A� . We lower

bound the (8∗ + 9)-th singular value of A (I − ZZ⊤) using the per vector guarantee of [MM15].

To bound ‖A� (I − ZZ⊤)‖S? , we observe it has rank at most : and thus



A�

(
I − ZZ⊤

)


S? ≤

√
: ·



A�

(
I − ZZ⊤

)


�
=
√
: ·

√
‖A� ‖2� − ‖A�Z‖2� ,

and we show how to bound this term in Section 5. Intuitively, while the :-dimensional subspace

that we find can “swap out" singular vectors corresponding to singular values �8 for which �8
is very close to �:+1, since they serve equally well for a Schatten-? low-rank approximation, for

singular values �8 that are a bit larger than �:+1, the :-dimensional subspace we find cannot do this.

More precisely, if H is a singular vector of A� with singular value �8 , then the projection of H onto

the :-dimensional subspace that our algorithm finds (namely, Z) must be at least 1 − �2
:+1
/((�2

8
−

�2
:+1
)poly(3)), which suffices to bound the above since the additive error is inversely proportional

to �2
8

when �2
8
≫ �2

:+1
, and so the very tiny additive error negates the effect of very large singular

values.

2.2 Query Lower Bounds.

Our lower bounds rely on the hardness of estimating the smallest eigenvalue of a Wishart en-

semble (see Definition 4.15), as established in recent work of Braverman, Hazan, Simchowitz and

Woodworth [BHSW20]. In particular, [BHSW20] show that for a 3 × 3 instance W of a Wishart

ensemble, estimating �3(W) (minimum eigenvalue) to additive error 1/32 requires Ω(3) adaptive

matrix-vector product queries (see Theorem 3.1 in [BHSW20]). To obtain hardness for Schatten-?

low-rank approximation, we show that when 3 = Θ
(
1/&1/3) , any candidate unit vector I that

satisfies ‖(I −W/5) (I − II⊤)‖?S? ≤ (1 + &)min‖D‖2=1 ‖(I −W/5) (I − DD⊤)‖?S? , can be used to obtain

an estimate �̂3 =
5
?

(
1 − ‖(I −W/5) I‖?

2

)
such that �̂3 = (1 ± 1/32)�3 (I −W/5). Let A = (I −W/5).

To show our query lower bound, in contrast to the analysis of our algorithm, the challenge is now

to lower bound ‖A (I − II⊤)‖?S? in terms of ‖A‖?S? and ‖AI‖?2 (contrast with Equation (2.9)).

Projection Cost via Araki-Lieb-Thirring. First, we note that the case of ? = 2 is easy given the

Pythagorean theorem. For ? ∈ [1, 2), we can establish an inequality fairly straightforwardly: using

the trace inner product definition of Schatten-? (see Definition 4.7 ) norms, we have,



A
(
I − II⊤

)

?
S? = Tr

(( (
I − II⊤

)2
A2

(
I − II⊤

)2
)?/2)

, (2.11)
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Since ?/2 ∈ [1/2, 1), we can use the reverse Araki-Lieb-Thirring inequality (see Fact 4.10) to show

that

Tr

(( (
I − II⊤

)2
A2

(
I − II⊤

)2
)?/2)

≥ Tr
( (

I − II⊤
)

A?
(
I − II⊤

) )
= Tr (A?) − Tr

( (
II⊤

)?/2 (
A2

)?/2 (
II⊤

)?/2)
≥ ‖A‖?S? −



AII⊤


?
S?

(2.12)

where we use the cyclicity of the trace and again use reverse Araki-Lieb-Thirring (Fact 4.10) to show

that

Tr
((
II⊤

) ?
2
(
A2

) ?
2
(
II⊤

) ?
2

)
≤ Tr

( (
II⊤A2II⊤

)?/2)
=



AII⊤


?
S? .

Since we have ‖AII⊤‖?S? = ‖AI‖?2 , we conclude ‖A (I − II⊤)‖?S? ≥ ‖A‖
?

S?−‖AII⊤‖?2 . This approach

only works for ? ∈ [1, 2); for ? > 2 the application of Araki-Lieb-Thirring is reversed in Equation

2.12 (since ?/2 > 1, see Fact 4.10) and we no longer get a lower bound on the cost in Equation 2.11.

We therefore require a new approach.

Projection Cost via Norm Compression. Recall, I is the unit vector output by our candidate

low-rank approximation and let H = AI/‖AI‖2. We yet again interpret the input matrix A as a

partitioned operator by considering the projection of A onto II⊤, HH⊤ and the projection away

from these rank-1 subspaces. In particular, let I − HH⊤ = YY⊤, and I − II⊤ = ZZ⊤, where Y and Z

have orthonormal columns. Then, using a rotation argument, we show that

‖A‖S? =





(
H⊤AI H⊤AZ

Y⊤AI Y⊤AZ

)




S?

.

We define the ?-compression of A, CA,?:

CA,? =

( 

H⊤AI



S?



H⊤AZ



S?

‖Y⊤AI‖S? ‖Y⊤AZ‖S?

)
.

To relate the norms of A and CA,?, we consider Audenaert’s Norm Compression Conjecture [Aud08],

a question in functional analysis concerning operator inequalities (see also [AK12]):

Conjecture 2.2 (Schatten-? Norm Compression). Let M be a partitioned operator (block matrix) such

that M =

(
M1 M2

M3 M4

)
. Let CM,? =

(
‖M1‖S? ‖M2‖S?
‖M3‖S? ‖M4‖S?

)
be a 2 × 2 matrix that denotes the Schatten-?

compression of M for any ? ≥ 1. Then, ‖M‖S? ≥


CM,?




S? if 1 ≤ ? ≤ 2, and ‖M‖S? ≤



CM,?




S? if

2 ≤ ? < ∞.

We could simply appeal to this conjecture to obtain that for all ? > 2,

‖A‖S? ≤


CA,?




S? =







( 

HH⊤AII⊤




S?



HH⊤A (� − II⊤)



S?

(I − HH⊤

)
AII⊤




S?



(I − HH⊤
)

A (I − II⊤)



S?

)





S?

. (2.13)
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However, for our choice of H,


HH⊤A (� − II⊤)




S? = 0. With padding and rotation arguments, we

can then reduce our problem to a block matrix where the blocks in each row are aligned, i.e., each

row is a scalar multiple of a fixed matrix (see Lemma 6.6). Then, we can use one of the few special

cases of Conjecture 2.2 for aligned operators which has actually been proved, and appears in Fact

4.14. We can thus unconditionally obtain the inequality in Equation (2.13).

Now that we have reduced to the case where we have a 2×2 matrix with 3 non-zero entries, we

would like to bound its Schatten-? norm. We explicitly compute the singular values of CA,? (see

Fact 6.7 ), and then use the structure of the instance to directly lower bound ‖AI‖?
2

as follows:

‖AI‖?2 +
(
1 + O

(
&2?/3

))
‖A −A1‖?S? ≥



CA,?



?
S? ≥ ‖A‖

?

S? , (2.14)

where the last inequality follows from Equation (2.13). Since we understand the spectrum of the

matrix A, we can explicitly compute all the terms in (2.14) above and show that we can obtain an

accurate estimate of the minimum singular value of A from ‖AI‖?
2
. See details in Section 6.2.

3 Additional Related Work

Existing approaches to solve low-rank approximation problems under several norms fall into

two broad categories: iterative methods and linear sketching. Iterative methods, such as Krylov

subspace based methods, are captured by the matrix-vector product framework, whereas linear

sketching allows for the choice of a matrix S ∈ ℝC×= , where C is the number of “queries”, and

then observes the product S · A and so on (see [Woo14] and references therein). The model

has important applications to streaming and distributed algorithms and several recent works

have focused on estimating spectral norms and the top singular values [AN13, LNW14a, LW16b,

BBK+21], estimating Schatten and Ky-Fan norms [LW16b, LW17, LW16a, BKKS19] and low-rank

approximation [CW13, MM13b, NN13, BDN15, Coh16].

In addition to studying unitarily invariant norms, such as the Schatten norm, there also has been

significant amount of work on studying low-rank approximation under matrix ℓ? norms [SWZ17,

BBB+19, SWZ20, MW21] and weighted low-rank approximation [SJ03, RSW16, BWZ19], settings

in which the problem is known to be NP-Hard. Finally, there has been a recent flurry of work

on sublinear time algorithms for low-rank approximation under various structural assumptions

on the input [MW17b, BW18, IVWW19, SW19, BCW20] and in quantum-inspired models [KP16,

CLW18, Tan19, RSML18, GLT18, GSLW19, CCHW20].

4 Preliminaries

Given an = × 3 matrix A with rank A, and = ≥ 3, we can compute its singular value decomposition,

denoted by (+�(A) = UΣV⊤, such that U is an = × A matrix with orthonormal columns, V⊤ is

an A × 3 matrix with orthonormal rows and Σ is an A × A diagonal matrix. The entries along the

diagonal are the singular values of A, denoted by �1, �2 . . . �A . Given an integer : ≤ A, we define the

truncated singular value decomposition of A that zeros out all but the top : singular values of A, i.e.,
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A: = UΣ:V⊤, where Σ: has only : non-zero entries along the diagonal. It is well-known that the

truncated SVD computes the best rank-: approximation to A under any unitarily invariant norm,

but in particular for any Schatten-? norm (defined below), we have A: = minrank(X)=: ‖A − X‖S? .
More generally, for any matrix M, we use the notation M: and M\: to denote the first : components

and all but the first : components respectively. We use M8,∗ and M∗, 9 to refer to the 8Cℎ row and 9Cℎ

column of M respectively.

We use the notation I: to denote a truncated identity matrix, that is, a square matrix with its top

: diagonal entries equal to one, and all other entries zero. The dimension of I: will be determined

by context.

Definition 4.1 (Orthogonal Projection Matrices). Given a 3 × 3 symmetric matrix P and : ∈ [3], P

is a rank-: orthogonal projection matrix if rank(P) = : and P2 = P.

It follows from the above definition that P has eigenvalues that are either 0 or 1 and admits a

singular value decomposition of the form UU⊤ where U has : orthonormal columns.

Definition 4.2 (Unitary Matrices). Given a symmetric matrix U ∈ ℝ3×3 we say U is a unitary matrix

if U⊤U = UU⊤ = I.

Definition 4.3 (Rotation Matrices). Given a symmetric matrix R ∈ ℝ3×3 we say R is a rotation

matrix if R is unitary and det (R) = 1.

Fact 4.4 (Courant-Fischer for Singular Values). Given an = × 3 matrix A with singular values �1 ≥
�2 ≥ . . . ≥ �3, the following holds: for all 8 ∈ [3],

�8 = max
(: dim(()=8

min
G∈(: ‖G‖2=1



G⊤A




2
.

Fact 4.5 (Weyl’s Inequality for Singular Values (see Exercise 22 [Tao20])). Given = × 3 matrices X,Y,

for any 8 , (9 − 1) ∈ [3] such that 8 + 9 ≤ 3 ,

�8+9 (X + Y) ≤ �8(X) + �9+1(Y).

Fact 4.6 (Bernoulli’s Inequality). For any G, ? ∈ ℝ such that G ≥ −1 and ? ≥ 1, (1 + G)? ≥ 1 + ?G.

Schatten Norms and Trace Inequalities. We recall some basic facts for Schatten-? norms. We

also require the following trace and operator inequalities.

Definition 4.7 (Schatten-? Norm). Given a matrix A ∈ ℝ=×3 , let �1 ≥ �2 ≥ . . . ≥ �3 be the singular

values of A. Then, for any ? ∈ [0,∞), the Schatten-? norm of A is defined as

‖A‖S? = Tr
( (

A⊤A
)?/2)1/?

=
©­«
∑
8∈[3]

�
?

8
(A)ª®¬

1/?

.

Fact 4.8 (Schatten-? norms are Unitarily Invariant). Given an = × 3 matrix M, for any < × = matrix

U with orthonormal columns, a norm ‖ · ‖- is defined to be unitarily invariant if ‖UM‖- = ‖M‖- . The

Schatten-? norm is unitarily invariant for all ? ≥ 1.
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There exists a closed-form expression for the low-rank approximation problem under Schatten-

? norms:

Fact 4.9 (Schatten-? Low-Rank Approximation). Given a matrix A ∈ ℝ=×3 and an integer : ∈ ℕ,

A: = arg min
rank(X)≤:

‖A − X‖S? ,

where A: is the truncated SVD of A.

Fact 4.10 (Araki–Lieb–Thirring Inequality [Ara90]). Given PSD matrices A,B ∈ ℝ3×3, for any A ≥ 1,

the following inequality holds:

Tr
(
(BAB)A

)
≤ Tr (BAAABA) .

Further, for 0 < A < 1, the reverse holds

Tr
(
(BAB)A

)
≥ Tr (BAAABA) .

Fact 4.11 (Mahler’s Orthogonal Operator Inequality, Theorem 1.7 in [Mah90]). Given ? ≥ 2, and

matrices P and Q such that the row (column) span of P is orthogonal to the row (column) span of Q, the

following inequality holds:

‖P‖?S? + ‖Q‖
?

S? ≤ ‖P +Q‖?S? .

Fact 4.12 (Hölder’s Inequality for Schatten-? Norms, Corollary 4.2.6 [Bha13]). Given matrices

A,B⊤ ∈ ℝ=×3 and ? ∈ [1,∞), the following holds

‖AB‖S? ≤ ‖A‖S@ · ‖B‖SA ,

for any @, A such that 1
? =

1
@ + 1

A .

We also require pinching inequalities that were originally introduced to relate norms for parti-

tioned operators over direct sums of Hilbert spaces. In our context, these inequalities simplify to

norm inequalities for block matrices:

Fact 4.13 (Pinching Inequalities for Schatten-? Norms, [BKL02]). Let M ∈ ℝC3×C3 be the following

block matrix

M =



M(1,1) M(1,2) · · · M(1,C)
M(2,1) M(2,2) · · · M(1,C)

...
. . .

...

M(C ,1) M(C ,2) · · · M(C ,C)


,

where for all 8 , 9 ∈ [C], M(8, 9) ∈ ℝ3×3 . For all ? ≥ 1, the following inequality holds:

©­«
∑
8∈[C]



M(8,8)


?
S?

ª®¬
1/?

≤ ‖M‖S? .

We also require a norm compression inequality that is a special case of Conjecture 2.2 (and

known to be true), when each block is aligned in the following sense:

14



Fact 4.14 (Aligned Norm Compression Inequality, Section 4.3 in [Aud08]). Let M =

(
M1 M2

M3 M4

)
such

that there exist scalars 
1, 
2, �1, �2 such that M1 = 
1X, M2 = 
2X, M3 = �1Yand M4 = �2Y. Then, for

any ? ≥ 2,

‖M‖S? ≤






(
‖M1‖S? ‖M2‖S?
‖M3‖S? ‖M4‖S?

)





S?

.

Random Matrix Theory. Next, we recall some basic facts for Wishart ensembles from random

matrix theory (we refer the reader to [Tao12] for a comprehensive overview).

Definition 4.15 (Wishart Ensemble). An = × = matrix W is sampled from a Wishart Ensemble,

Wishart(=), if W = XX⊤ such that for all 8 , 9 ∈ [=] X8, 9 ∼ N
(
0, 1

= I
)
.

Fact 4.16 (Norms of a Wishart Ensemble). Let W ∼ Wishart(=) such that = = Ω(1/�3). Then, with

probability 99/100, ‖W‖op ≤ 5 and for any fixed constant ?,


I − 1

5W


?
S? = Θ

(
1

�1/3

)
.

5 Algorithms for Schatten-? LRA

In this section, we focus on obtaining algorithms for low-rank approximation in Schatten-? norm,

simultaneously for all real, not necessarily constant, ? ∈ [1,O
(
log(3)/&

)
]. For the special case of

? ∈ {2,∞}, Musco and Musco [MM15] showed an algorithm with matrix-vector query complexity

$̃(:/&1/2), given below as Algorithm 5.6. We show that the number of matrix-vector products we

require scales proportional to $̃
(
:?1/6/&1/3) instead. Finally, recall when ? > log(3)/&, it suffices

to run Block Krylov for ? = ∞, which requires O
(
log(3/&):/

√
&
)

matrix-vector products.

Theorem 5.1 (Optimal Schatten-? Low-Rank Approximation). Given a matrix A ∈ ℝ=×3 , a target

rank : ∈ [3], an accuracy parameter & ∈ (0, 1) and any ? ∈ [1,O
(
log(3)/&

)
], Algorithm 5.3 performs

O
(
:?1/6 log(3/&)

&1/3 + log(3/&):√?
)

matrix-vector products and outputs a 3 × : matrix Z with orthonormal

columns such that with probability at least 9/10,

A
(
I − ZZ⊤

)


S? ≤ (1 + &) min

U: U⊤U=I:



A
(
I −UU⊤

) 


S? .

Further, in the RAM model, the algorithm runs in time O
(
nnz(A)?1/6: log2(3/&)

&1/3 + =?($−1)/6:$−1

&($−1)/3

)
.

We first introduce the following lemmas from Musco and Musco [MM15] that provide conver-

gence bounds for the performance of Block Krylov Iteration (Algorithm 5.6) :

Lemma 5.2 (Gap Independent Block Krylov with Arbitrary Accuracy). Let A be an =× 3 matrix, : be

the target rank and � > 0 be an accuracy parameter. Then, initializing Algorithm 5.6 with block size : and

running for @ = Ω
(
log(3/�)/√�

)
iterations outputs a 3 × : matrix Z such that with probability 99/100,

for all 8 ∈ [:],
‖AZ∗,8 ‖22 = �2

8 ± ��2
:+1.

Further, the total number of matrix-vector products is O
(
:@

)
and the running time in the RAM model is

O
(
nnz(A):@ + =

(
:@

)2 +
(
:@

)$)
.
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The aforementioned lemma follows directly from Theorem 1 in [MM15], using the per-vector

error guarantee (3).

Algorithm 5.3 (Optimal Schatten-? Low-rank Approximation).

Input: An = × 3 matrix A, target rank : ≤ 3, accuracy parameter 0 < � < 1, and ? ≥ 1.

1. Let �1 = �2/3/?1/3. Run Block Krylov Iteration (Algorithm 5.6) on A with block size

:, and number of iterations @ = O
(
log(3/�1)/

√
�1 + log(3/&)√?

)
. Let Z1 ∈ ℝ3×: be

the corresponding output with orthonormal columns.

2. Run Block Krylov Iteration (Algorithm 5.6) on A⊤ with block size :, and number of

iterations @ = O
(
log(3/�1)/

√
�1

)
. Let W1 ∈ ℝ=×: be the corresponding output with

orthonormal columns.

3. Let �2 = � and let B = O
(
?−1/3:/�1/3) . Run Block Krylov Iteration (Algorithm 5.6) on

A⊤ with block size B, and number of iterations @ = O
(
log(3/�2)

√
?
)
. Let W2 ∈ ℝ=×:

be the corresponding output with orthonormal columns.

4. Run Block Krylov on A with target rank : + 1 and number of iterations @ =

O
(
(log(3?) + log(3/&))√?

)
, and let Ẑ1 be the resulting 3 × (: + 1) output matrix.

Compute �̂2
1 =




A(Ẑ1)∗,1



2

2
and �̂2

:+1
=




A(Ẑ1)∗,:+1




2

2
, rough estimates of the 1-st and

(: + 1)-st singular values of A. Run Block Krylov on A with target rank B, where

B = O
(
?−1/3:/�1/3) and iterations @ = O

(
log(3/&)√?

)
, and let Ẑ2 be the resulting

3 × B output matrix. Compute �̂2
B =




A(Ẑ2)∗,B



2

2
, an estimate to the B-th singular

value of A.

5. If �̂2
1
≥ (1 + 0.5/?)�̂2

:+1
, set Z = Z1. Else, if �̂2

B ≤ �̂2
:+1
/
(
1 + 0.5/?

)
, set Z to be an

orthonormal basis for A⊤W2W⊤2 and otherwise set Z to be an orthonormal basis for

A⊤W1W⊤1 .

Output: A matrix Z ∈ ℝ3×: with orthonormal columns such that

A
(
I − ZZ⊤

)

?
S? ≤ (1 + &) min

U: U⊤U=I:



A
(
I −UU⊤

)

?
S? .

Lemma 5.4 (Gap Dependent Block Krylov, Theorem 13 [MM15]). Let A be an =× 3 matrix and � > 0,

be an accuracy parameter and ?, : ∈ N be such that 1 ≥ :. Let �1 , �2 . . . �3 be the singular values of

A. Then, initializing Algorithm 5.6 with block size 1 and running for @ = Ω
(
log(=/�)√�:/

√
�: − �1

)
iterations outputs a 3 × : matrix Z such that with probability 99/100, for all 8 ∈ [:]

‖AZ∗,8 ‖22 = �2
8 ± ��2

:+1.

Further, the total number of matrix-vector products is O
(
?@

)
and the running time in the RAM model is

O
(
nnz(A)1@ + =

(
1@

)2 +
(
1@

)$)
.
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Next, we prove the following key lemma relating the Schatten-? norm of row and column

projections applied to a matrix A to the Schatten-? norm of the matrix itself. We can interpret this

lemma as an extension of the Pythagorean Theorem to Schatten-? spaces and believe this lemma

is of independent interest. We note that we appeal to pinching inequality for partitioned operators

to obtain this lemma.

Lemma 5.5 (Schatten-? Norms for Orthogonal Projections). Let A be an =× 3 matrix, let P be an =×=
matrix, and let Q be a 3 × 3 matrix such that both P and Q are orthogonal projection matrices of rank : (see

Definition 4.1). Then, the following inequality holds for all ? ≥ 1:

‖A‖?S? ≥ ‖PAQ‖?S? + ‖(I − P)A (I −Q)‖?S? .

Proof. Let A = UΣV⊤ be the SVD of A, where U ∈ ℝ=×3 and V⊤ ∈ ℝ3×3 have orthonormal columns

and rows respectively. We construct unitary matrices R and S, such that R ∈ ℝ=×= and S ∈ ℝ3×3

that satisfy the following constraints:

1. R⊤I:RAS⊤I:S = PAQ, and

2. R⊤ (I − I:)RAS⊤ (I − I:)S = (I − P)A (I −Q),

where the trunctated Identity matrix, I: , left multiplying A is =×= and right multiplying A is 3× 3.

Recall, since P is a rank-: projection matrix, it admits a decomposition P = XX⊤ such that X

has : orthonormal columns and similarly I − P = YY⊤, where Y has = − : orthonormal columns.

Further, since X and Y span disjoint subspaces, and the union of their span is ℝ= , the matrix (X | Y),
obtained by concatenating their columns, is unitary. Then, it suffices to set R = (X | Y)⊤. To see

this, observe,

R⊤I:R = (X | 0) ·
(
X⊤

0

)
= XX⊤ = P,

and similarly,

R⊤ (I − I:)R = YY⊤ = I − P.

We repeat the above argument for the projection matrix Q. Let Q = WW⊤, where W is 3× : and

has orthonormal columns, and I −Q = ZZ⊤, where Z is 3 × (3 − :) and has orthonormal columns.

Observe, it suffices to set S = (W | Z)⊤, since S is unitary and S⊤I:S = Q and S⊤ (I − I:)S = I −Q.

Note, by construction, we satisfy the two aforementioned constraints.

Let Â = RAS⊤. Since R and S are unitary, it follows from unitary invariance of the Schatten-?

norm that 


Â




S?

=


RUΣV⊤S⊤




S? = ‖A‖S? (5.1)

Further, observe for any = × 3 matrix M, we have have the following block decomposition

M = I:MI: + I:M (I − I:) + (I − I:)MI: + (I − I:)M (I − I:)

=

(
M1::,1:: M1::,:+1:3

M:+1:=,1:: M:+1:=,:+1:3

)
,
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where the notation M8:8′ , 9:9′ picks the (8′−8+1)×(9′− 9+1) sized sub-matrix corresponding to the rows

indices [8 , 8′] and column indices [9 , 9′]. Since appending rows and columns of 0’s does not change

the singular values, we have ‖I:MI: ‖S? =


M1::,1::




S? and ‖(I − I:)M (I − I:)‖S? =



M:+1:=,:+1:3




S? .

Setting M = Â, we have




Â



?
S?

=






(

Â1::,1:: Â1::,:+1:3

Â:+1:=,1:: Â:+1:=,:+1:3

)




?

S?

≥



Â1::,1::




?
S?
+




Â:+1:=,:+1:3




?
S?

=




I:ÂI:




?
S?
+




(I − I:) Â (I − I:)



?
S?

,

(5.2)

where the inequality follows from using the pinching inequality on the block matrix (see Fact 4.13).

By the unitary invariance of the Schatten-? norm, we have


I:ÂI:




?
S?

=




R⊤I:ÂI:S



?
S?

= ‖PAQ‖?S? ,

and similarly,


(I − I:) Â (I − I:)



?
S?

=




R⊤ (I − I:) Â (I − I:)S



?
S?

= ‖(I − P)A (I −Q)‖?S? .

Plugging these two bounds back into Equation (5.2), along with Equation (5.1), we can conclude,

‖A‖?S? ≥ ‖PAQ‖?S? + ‖(I − P)A (I −Q)‖?S? .

�

Algorithm 5.6 (Block Krylov Iteration, [MM15]).

Input: An = × 3 matrix A, target rank :, iteration count @ and a block size parameter B such

that : ≤ B ≤ 3.

1. Let U be a = × B matrix such that each entry is drawn i.i.d. from N(0, 1). Let

K =
[
A⊤U; (A⊤A)A⊤U; (A⊤A)2A⊤U; . . . ; (A⊤A)@A⊤U

]
be the 3 × B(@ + 1) Krylov

matrix obtained by concatenating the matrices A⊤U, . . . , (A⊤A)@ A⊤U.

2. Compute an orthonomal basis Q for the column span of K. Let M = Q⊤A⊤AQ.

3. Compute the top : left singular vectors of M, and denote them by Y: .

Output: Z = QY:

Note, despite establishing Lemma 5.5, it is not immediately apparent how to lower bound

‖AZZ⊤‖?S? , where Z is a candidate solution. Next, we show how to translate a guarantee on the

Euclidean norm of A times a column of Z to a lower bound on ‖AZZ⊤‖?S? .
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Lemma 5.7 (Per-Vector Guarantees to Schatten Norms). Let A be an = × 3 matrix with singular values

denoted by {�8 (A)}8∈[3] . Let Z be a 3 × : matrix with orthonormal columns that is output by Algorithm

5.6, such that for all 8 ∈ [:], with probability at least 99/100, ‖AZ∗,8 ‖22 ≥ �2
8
(A) − ��2

:+1
(A), for some

� ∈ (0, 1). Then, for any ? ≥ 1, we have

AZZ⊤


?
S? ≥ ‖A: ‖?S? − O

(
�?

) ∑
8∈[:]

�2
:+1 (A) �

?−2

8
(A) .

Proof. First, we observe that it suffices to show that �8(AZ)2 ≥ ‖AI8 ‖22, where I8 is shorthand for

Z∗,8, the 8-th columm of Z. Assuming this inequality holds, we can complete the proof as follows:

we know that for all 8 ∈ [:],

�2
8 (AZ) ≥ ‖AI8 ‖22 ≥ �2

8 (A) − ��2
:+1(A)

= �2
8 (A)

(
1 − �

�2
:+1
(A)

�2
8
(A)

)
(5.3)

Then, taking ?/2-th powers in (5.3),

�
?

8
(AZ) ≥ �

?

8
(A)

(
1 − �

�2
:+1
(A)

�2
8
(A)

)?/2

≥ �
?

8
(A)

(
1 − O

(
�?�2

:+1
(A)

�2
8
(A)

))

= �
?

8
(A) − O

(
�?

)
�2
:+1 (A) �

?−2

8
(A)

(5.4)

where the second inequality follows from the generalized Bernoulli inequality (see Fact 4.6). Sum-

ming over all 8 ∈ [:], we can conclude

‖AZ‖?S? ≥ ‖A: ‖?S? −
∑
8∈[:]
O
(
�?

)
�2
:+1 (A) �

?−2

8
(A) .

Therefore, it remains to show that �8(AZ)2 ≥ ‖AI8 ‖22. First, we recall that Algorithm 5.6 outputs

{I8}8∈[:] such that I8 = QĨ8 , where Q is an orthonormal basis for the Krylov space K (an 3× B(@+1)
matrix) and Ĩ8 is the 8-th singular vector of Q⊤A⊤AQ. Note that the Ĩ8’s are B(@ + 1)-dimensional

vectors. Let WΩW⊤ be the SVD of Q⊤A⊤AQ. Then, QWΩW⊤Q⊤ is the SVD of QQ⊤A⊤AQQ⊤. To

see this, let the 8-th column of QW be denoted by QW∗,8. Then,

〈QW∗,8 ,QW∗,8〉 = W⊤∗,8Q
⊤QW∗,8 = 1

and similarly for any 9 ≠ 8, 〈
QW∗,8 ,QW∗, 9

〉
= W⊤∗,8Q

⊤QW∗, 9 = 0

where we use that Q⊤Q = I and the columns of W are orthonormal, which holds by definition.

Therefore, I8 = QĨ8 is the 8-th singular vector of QQ⊤A⊤AQQ⊤. Let Z̃ be the matrix obtained by
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stacking the vectors Ĩ8 together. Then, we have

�8(AZ)2 = �2
8 (AQZ̃) = �2

8 (AQ)
= �2

8 (AQQ⊤)
= I)8 QQ⊤A⊤AQQ⊤I8

= I⊤8 A⊤AI8

(5.5)

where the first equality follows from the definition of Z̃, the second follows from observing that

Z̃ are the singular vectors of AQ as shown above, the third follows from Q⊤ having orthonormal

rows, the fourth from I8 being the 8-th singular vector of AQQ⊤ and the last from observing that

I8 is in the column span of Q and thus QQ⊤I8 = I8 . This concludes the proof. �

Finally, we also need the following lemma:

Lemma 5.8 (Singular Values to Alignment of Singular Vectors). Let A = UΣV⊤ be the SVD and let

Z be a 3 × : orthonormal matrix such that for all 8 ∈ [:], ‖AZ∗,8 ‖22 ≥ �2
8
(A) − (&/3)2�2

:+1
, for some fixed

constant 2 ≥ 10. Further, assume there exists a 9∗ ∈ [:] such that for all 9 ∈ [9∗], �2
9
(A) ≥ (1 + &/3) �2

:+1
(A)

and �2
9∗+1
(A) ≤ (1 − &/3) �2

9∗(A). Then,




V⊤9∗Z



2

�
≥ 9∗ − (&/3)2−4 ,

where V⊤
9∗ is the top-9∗ rows of V⊤.

Proof. First, using our hypothesis and summing over all ℓ ∈ [9∗], we have∑
ℓ∈[9∗]
‖AZ∗,ℓ ‖22 ≥



A9∗


2

�
− (&/3)2−1�2

:+1. (5.6)

Let B be a 3 × : matrix with entries 1 9ℓ = (V⊤9,∗Z∗,ℓ )2, and let E 9 =
∑

ℓ∈[9∗] 1 9ℓ . Using this notation,

and since V and Z are orthonormal we have

E 9 ≤
∑
ℓ∈[:]

1 9ℓ ≤ 1 for 9 ∈ [3] (5.7)

∑
9∈[3]

1 9ℓ ≤ 1 for ℓ ∈ [:] (5.8)

∑
ℓ∈[9∗]
‖AZ∗,ℓ ‖22 =

∑
9∈[3]
ℓ∈[9∗]

�2
9 1 9ℓ =

∑
9∈[3]

�2
9 E 9 , (5.9)

where we abbreviate �9(A) by �9 in this proof. Define 
 by


 ≡ 9∗ −



V⊤9∗Z




2

�
= 9∗ −

∑
9∈[9∗]
ℓ∈[:]

1 9ℓ ≤ 9∗ −
∑
9∈[9∗]

E 9 , (5.10)
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so the claim of the lemma is an upper bound on 
. If 
 ≤ 0 the lemma follows, so assume 
 > 0.

We will show the inequality∑
ℓ∈[9∗]
‖AZ∗,ℓ ‖22 =

∑
9∈[3]

�2
9 E 9 ≤



A9∗


2

�
−

( &

3

)
�2
9∗ . (5.11)

Assuming this, and comparing it with the lower bound on the LHS in (5.6), we can then conclude

that ( &
3

) 2−1

�2
:+1 ≥

&


3
�2
9∗ (5.12)

which in turn bounds 
 ≤
(
&
3

) 2−3
, which is the claim of the lemma.

It remains to show (5.11). We have constraints (5.7) and (5.10) on E 9 , and also∑
9∈[3]

E 9 =

∑
ℓ∈[9∗]

∑
9∈[3]

1 9ℓ =
∑
ℓ∈[9∗

∑
9∈[3]

1 9ℓ ≤ 9∗ by (5.8) (5.13)

The maximum value of
∑

9∈[3] �
2
9
E 9 under constraints (5.7), (5.10), and (5.13) results by pushing all

the “weight” of
∑

9 E 9 to the larger �2
9

to the maximum extent possible, that is, for 9̂ ≡ ⌊ 9∗ − 
⌋,
setting

E 9 ← 1 for 9 ∈ [ 9̂]
E 9̂+1 ← 9∗ − 
 − 9̂

E 9 ← 1 for 9 = 9∗ + 1, . . . , 9∗ + ⌊
⌋
E 9∗+⌊
⌋+1 ← 
 − ⌊
⌋.

This is under the assumption that
∑

9∈[3] E 9 is equal to its upper bound; it might be smaller, but if so,∑
9∈[3] �

2
9
E 9 can only be smaller. However, if 
 ≥ 1, then E 9∗+1 = 1 in the above, and by hypothesis

�2
9∗+1
≤ (1 − &/3) �2

9∗, and so
∑

9 �
2
9
E 9 ≤



� 9∗


2

�
− (&/3)�2

9∗ , contradicting (5.6). So 
 < 1, and the

above simplifies to

E 9 ← 1 for 9 ∈ [9∗ − 1]
E 9∗ ← 1 − 


E 9∗+1 ← 
.

With this maximizing assignment, we have:


V⊤9∗Z



2

�
=

∑
9∈[3]

�2
9 E 9 ≤

∑
9∈[9∗−1]

�2
9 + (1 − 
)�2

9∗ + 
�2
9∗+1 ≤



A9∗


2

�
−

( &

3

)
�2
9∗ ,

proving (5.11), which then implies the lemma as discussed.

�

Finally, we need a lemma relating the Schatten-? norm of AZ to that of W⊤A, where Z is an

arbitrary orthonormal basis and W is an orthonormal basis for AZ.

21



Lemma 5.9. Given a full-rank = × 3 matrix A, let Z be a 3 × : matrix with orthonormal columns. Further,

let W be an = × : matrix with orthonormal columns such that W is a basis for AZ. Then, for all 8 ∈ [:],

�8
(
W⊤A

)? ≥ �8 (AZ)?

Proof. We use the following fact that for two matrices A and B, we have that for all 8, �8(A · B) ≤
�8(A) · �1(B); see, e.g., (2) in [LC15] and references [33-36] therein.

Using this fact, we have

�8(AZ) = �8(AZZ)) = �8(WW)AZZ)) ≤ �8(WW)A) · �1(ZZ)) = �8(WW)A) = �8(W)A),

where we have used that �1(ZZ)) = 1 since ZZ) is a projection matrix, and the fact that WW) is a

basis for the column span of AZ. Raising both sides to the ?-th power establishes the lemma.

�

We now have all the ingredients we need to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Observe, using Lemma 5.2 with probability at least 97/100, Step 3 of Al-

gorithm 5.3 outputs �̂2
1
=

(
1 ± 0.1/?

)
�2

1
, �̂2

:+1
=

(
1 ± 0.1/?

)
�2
:+1

and �̂2
B =

(
1 ± 0.1/?

)
�2
B , for

B = O
(
:?−1/3/&1/3) . Condition on this event. Our proof proceeds via case analysis. The case where

there is at least a constant gap between the first and (: + 1)-st singular value is easy to handle since

we can use gap-dependent guarantees to obtain highly accurate estimates of the top-: singular

values. When there is no gap, either the Schatten-? norm of the tail is large compared to the

(: + 1)-st singular value, and we don’t require a highly accurate solution, or the Schatten-? norm

of the tail is small, and increasing the block size induces a gap. We formalize this intuition into a

proof.

Let us first consider the case where there is a constant gap between the top and the (: + 1)-st
singular values, i.e., �1 > (1 + 1/?)�:+1. Observe, since we have (1 + 0.1/?)-approximate estimates

to �1 and �:+1, we can detect that we are in this case and Algorithm 5.3 outputs Z = Z1. We

further observe that the Algorithm 5.3 runs at least Ω(log(3/&)√?) iterations (since ? ≤ log(3)/&)

since Z = Z1. We observe that in this case, there exists a gap of size ? between �1 and �:+1, since

1−�:+1/�1 ≤ 1/?. It follows from Lemma 5.4 that running Block Krylov Iteration forO
(
log(3/&)√?

)
iterations with block size ≥ : suffices to output a matrix Z such that with probability at least 99/100,

for all 8 ∈ [:],
‖AZ∗,8 ‖22 ≥ �2

8 (A) − poly
( &
3

)
�2
:+1(A). (5.14)

We note that we cannot simply take ?/2-th powers here (for large ?) as this would introduce cross

terms that scale proportional to �8(A), which can be significantly larger than �:+1(A). Instead, we

require a finer analysis by splitting A into a head and tail term.

Let A = UΣV⊤ be the SVD of A and for all 9 ∈ [3], let E 9 = V⊤
9,∗ denote the 9-th row of V⊤. By
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the Pythagorean Theorem, we have

‖AZ‖2� = ‖A:Z‖2� + ‖(A −A:)Z‖2�
≤



Σ:V
⊤
: Z



2

�
+ �2

:+1



(I −V:V
⊤
:

)
Z


2

�

=

∑
9∈[:]

�2
9




E⊤9 Z



2

2
+ �2

:+1

©­«
‖Z‖2� −

∑
9∈[:]




E⊤9 Z



2

2

ª®¬
=

∑
9∈[:]

(
�2
9 − �2

:+1

) 


E⊤9 Z



2

2
+ �2

:+1:.

(5.15)

Summing over 9 ∈ [:] for the guarantee obtained in Equation 5.14, we have

‖AZ‖2� =

∑
9∈[:]



AZ∗, 9


2

�
≥

∑
9∈[:]

�2
9 − O(�:) �

2
:+1. (5.16)

where � = poly(&/3). Combining Equations (5.15) and (5.16), we can conclude

∑
9∈[:]

(
�2
9 − �2

:+1

)
− O(�:) �2

:+1 ≤
∑
9∈[:]

(
�2
9 − �2

:+1

) 


E⊤9 Z



2

2
. (5.17)

Let 9′ ∈ [:] be the largest integer such that for all 9 ≤ 9′, �2
9
≥ (1 + &/3) �2

:+1
. Next, let 9∗ ∈ [9′, :]

be such that �9∗+1 ≤ (1 − &/3)�9∗ . Observe, such a 9∗ is guaranteed to exist since there is a gap

between �1 and �:+1. Since



E⊤9 Z




2

2
≤ 1, we can restate Equation (5.17), as follows:

∑
9∈[:]

(
�2
9 − �2

:+1

)
− O(�:) �2

:+1 ≤
∑
9∈[9∗]

(
�2
9 − �2

:+1

) 


E⊤9 Z



2

2
+

∑
9∈[9∗+1,:]

(
�2
9 − �2

:+1

) 


E⊤9 Z



2

2

≤
∑
9∈[9∗]

(
�2
9 − �2

:+1

) 


E⊤9 Z



2

2
+

∑
9∈[9∗+1,:]

(
�2
9 − �2

:+1

)
.

Subtracting
∑

9∈[9∗+1,:]

(
�2
9
− �2

:+1

)
from both sides, and rearranging, we have

∑
9∈[9∗]

(
�2
9 − �2

:+1

)
− O(�:) �2

:+1 + �2
:+1

∑
9∈[9∗]




E⊤9 Z



2

2
≤

∑
9∈[9∗]

�2
9




E⊤9 Z



2

2
. (5.18)

We are now ready to bound ‖A (I − ZZ⊤)‖S? . By the triangle inequality,



A
(
I − ZZ⊤

)


S? ≤



A9∗
(
I − ZZ⊤

)


S? +



(A −A9∗
) (

I − ZZ⊤
)


S? (5.19)

Observe, for any ? ≥ 1,


A9∗ (I − ZZ⊤)




S? ≤

√
:


A9∗ (I − ZZ⊤)




�
, since A9∗ has rank at most :,

with ? = 1 achieving the worst inequality. Therefore, using the Pythagorean theorem again, and
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plugging in the lower bound from Equation (5.18)



A9∗
(
I − ZZ⊤

)


S? ≤

√
: · ©­«

∑
9∈[9∗]

�2
9 − �2

9




E⊤9 Z



2

2

ª®¬
1/2

≤
√
: · ©­«

∑
9∈[9∗]

�2
9 −

©­«
∑
9∈[9∗]

(
�2
9 − �2

:+1

)
− O(�:) �2

:+1 + �2
:+1

∑
9∈[9∗]




E⊤9 Z



2

2

ª®¬
ª®¬

1/2

≤
√
:�:+1 ·

©­«
9∗ −

∑
9∈[9∗ ]




E⊤9 Z



2

2
+ O(�:)ª®¬

1/2

(5.20)

It therefore remains to lower bound
∑

9∈[9∗]




E⊤9 Z



2

2
. Applying Lemma 5.8, we have,

∑
9∈[9∗]




E⊤9 Z



2

2
=




V⊤9∗Z



2

�
≥ 9∗ − O

(
(&/3)4

)
(5.21)

Plugging back into Equation (5.20),


A9∗ (I − ZZ⊤)




S? ≤ O

(
&
3�:+1

)
and thus substituting into Equa-

tion (5.19), 

A
(
I − ZZ⊤

)


S? ≤ O

( &
3

)
‖A −A: ‖S? +



(A −A9∗
) (

I − ZZ⊤
)


S?︸                         ︷︷                         ︸

5.22.1

. (5.22)

It remains to bound term 5.22.1 above.

Applying Lemma 5.5 with Q = ZZ⊤ and P = WW⊤ being the projection on the column span of

AZZ⊤, we have 

(A −A9∗
) (

I − ZZ⊤
)

?
S? ≤



(A −A9∗
)

?
S? −



WW⊤
(
A −A9∗

)

?
S?

=

∑
9∈[9∗+1,3]

�
?

9
−

∑
9∈[:]

�
?

9

(
W⊤

(
A −A9∗

) )

Next, we show that for all 9 ∈ [:], �9

(
W⊤

(
A −A9∗

) )
≥ �9+9∗ (W⊤A). Here, we invoke Fact 4.5

for X =
(
A −A9∗

)
and Y = A9∗, with 8 = 9 and 9 = 9∗. Note, the precondition on the indices 8 , 9 in

Fact 4.5 is satisfied since X,Y are = × : matrices, and 9 ∈ [:] and 9∗ < :. Then, we have

�9+9∗
(
W⊤A

)
= �9+9∗

(
W⊤

(
A −A9∗

)
+W⊤A9∗

)
≤ �9

(
W⊤

(
A −A9∗

) )
+ �9∗+1

(
W⊤A9∗

)
,

but W⊤A9∗ is a rank ≤ 9∗ matrix, and thus �9∗+1

(
W⊤A9∗

)
= 0. Therefore, we can conclude,



(A −A9∗
) (

I − ZZ⊤
)

?
S? ≤

∑
9∈[9∗+1,3]

�
?

9
−

∑
9∈[9∗ ,:+9∗]

�
?

9

(
W⊤A

)
(5.23)
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Recall, for all 9 ∈ [:], it follows from Equation (5.4) in the proof of Lemma 5.7 that �
?

9
(AZ) ≥

�
?

9
(A) − O

(
�?

)
�2
:+1

�
?−2

9
. Further, by definition, for 9 ∈ [9∗ + 1, : + 9∗], �9 ≤ (1 + &/3) �:+1 and thus,

for all 9 ∈ [9∗ + 1, :],

�
?

9
(AZ) ≥ �

?

9
− O

(
�? (1 + &/3)?−2

)
�
?

:+1

≥ �
?

9
− O

(
�?

)
�
?

:+1
,

(5.24)

where the last inequality uses that ? = O
(
log(3)/&

)
. Finally, it follows from Lemma 5.9 that

�
?

9
(W⊤A) ≥ �

?

9
(AZ). Substituting this back into Equation (5.23), we have



(A −A9∗
) (

I − ZZ⊤
)

?
S? ≤

∑
9∈[9∗+1,3]

�
?

9
−

∑
9∈[9∗+1,:]

�
?

9
+ O

(
�:?

)
�
?

:+1

≤
(
1 + O

(
�?:

) )
‖A −A: ‖?S? .

(5.25)

Taking the ?-th root and substituting back into Equation (5.22),



A
(
I − ZZ⊤

)


S? ≤

(
1 + O

(
�?:

) )1/? ‖A −A: ‖S? + O
( &
3

)
‖A −A: ‖S? , (5.26)

and since � = poly (&/3), we have ‖A (I − ZZ⊤)‖S? ≤ (1 + O(&)) ‖A −A: ‖S? , which completes the

analysis for this case.

Next, we consider the case where the gap between the top and the (: + 1)-st singular value

is small, i.e., �1 <
(
1 + 1/?

)
�:+1. We yet again split into cases, and consider the case where the

Schatten-? norm of the tail is small, i.e. ‖A −A: ‖?S? ≤
:

?1/3&1/3 ·�
?

:+1
. Observe, for any C ∈ [1, 3−:−1],

:

?1/3&1/3 · �
?

:+1
≥ ‖A −A: ‖?S? ≥

:+1+C∑
8=:+1

�
?

8
≥ C�

?

:+1+C . (5.27)

Then, setting C =
(1+1/?)? :
&1/3?1/3 = Θ

(
:

&1/3?1/3

)
, we have �:+1+C ≤ �:+1/

(
1 + 1/?

)
. It suffices to show that

we can detect this gap for some B ≥ : + 1 + C. Recall, we know that �̂:+1 = (1 ± 0.1/?)�:+1 and

�̂B = (1 ± 0.1/?)�B . Then, we have

�̂B ≤
(
1 + 0.1

?

)
�B ≤

(
1 + 0.1

?

)
�:+1+C ≤

(
1 + 0.1

?

)
·
(

1

1 + 1/?

)
�:+1 ≤

1(
1 + 0.5

?

) �̂:+1. (5.28)

Therefore, Algorithm 5.3 outputs Z, an orthonormal basis for A⊤W2, where W2 is obtained by

running Algorithm 5.6 on A⊤, initialized with a block size of Θ
(

:
&1/3?1/3

)
and run forO

(
log(3/&)√?

)
iterations. Observe, since �:+1+C ≤ �:+1/

(
1 + 1/?

)
, this suffices to demonstrate a gap that depends

on ? as follows: �:

�:−�:+C+1
≤ ?. Recall, we account for this gap by running O

(
log(3)√?

)
iterations.

Using the gap dependent analysis (Lemma 5.4), we can conclude that with probability at least

99/100, for all 8 ∈ [:], 

A⊤(W2)∗,8


2

2
≥ �2

8 − poly
( &
3

)
�2
:+1. (5.29)
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Then, applying Lemma 5.7 with W2W⊤
2

satisfying the guarantee in (5.29), we have



A⊤W2W⊤2


?
S? ≥ ‖A: ‖?S? − poly

( &
3

) ∑
8∈[:]

�2
:+1�

?−2

8

≥ ‖A: ‖?S? − poly
( &
3

)
�
?

:+1
.

(5.30)

where the last inequality uses that �1 < (1+1/?)�:+1 and (1+1/?)?−2 = O(1). Next, we use Lemma

5.5 to relate


A⊤W2W⊤2



?
S? to ‖A (I − ZZ⊤)‖?S? , where Z is an orthonormal basis for A⊤W2W⊤2

as output by the algorithm. Setting Q = ZZ⊤ and P = W2W⊤
2

, we observe that ‖PAQ‖?S? =

A⊤W2W⊤2


?
S? =



W2W⊤2 A


?
S? and ‖(I − P)A (I −Q)‖?S? = ‖A (I − ZZ⊤)‖?S? . Then, invoking Lemma

5.5 and plugging in Equation (5.30), we have

‖(I − P)A (I −Q)‖?S? =


A

(
I − ZZ⊤

)

?
S? ≤ ‖A‖

?

S? −


A⊤W2W⊤2



?
S?

≤ ‖A‖?S? − ‖A: ‖?S? + poly
( &
3

)
�
?

:+1

≤
(
1 + poly

( &
3

))
‖A −A: ‖?S? ,

(5.31)

which concludes the analysis in this case.

As shown in Equation 5.28, we can detect a gap between �:+1+C and �:+1 by comparing �̂B and

�̂:+1. When 5.28 does not hold, we know that �̂B ≥
(
1 + 0.5/?

)
�̂:+1 and Algorithm 5.3 outputs

Z, an orthonormal basis for A⊤W1W⊤
1

. Since we have (1 ± 0.1/?)-approximate estimates to these

quantities, we can conclude that �B ≥
(
1 + 0.1/?

)
�:+1. Then, we have

‖A −A: ‖?S? ≥ B · �?
B = Ω

(
:

&1/3?1/3

)
�
?

:+1
.

It therefore remains to consider the case where ‖A −A: ‖?S? > 2:
?1/3&1/3 · �

?

:+1
, for a fixed universal

constant 2. Here, we note that the tail is large enough that an additive error of O
(
&2/3?1/3) �2

:+1

on each of the top-: singular values suffices. Formally, it follows from Lemma 5.2 (setting � =

&2/3?−1/3, and invoking it for A⊤) that initializing Algorithm 5.6 with block size : and running for

O
(
log(3/&)?1/6/&1/3) iterations suffices to output a = × : matrix W1 such that with probability at

least 99/100, for all 8 ∈ [:], 

A⊤ (W1)∗,8


2

2
≥ �2

8 − &2/3?−1/3�2
:+1.

Then, invoking Lemma 5.7 with A⊤ and W1 as defined above, we have

A⊤W1W⊤1


?
S? =



W1W⊤1 A


?
S?

≥ ‖A: ‖?S? −
∑
8∈[:]
O
(
&2/3?−1/3?

)
�2
:+1�

?−2

8

≥ ‖A: ‖?S? − O
(
:&2/3?2/3

)
�
?

:+1

(5.32)

where the last inequality uses that �1 < (1 + 1/?)�:+1 and (1 + 1/?)? = O(1). Recall, in this case,

Algorithm 5.3 outputs ZZ⊤where Z is an orthonormal basis for A⊤W1W⊤1 . Next, we invoke Lemma
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5.5 to relate


A⊤W1W⊤

1



?
S? to ‖A (I − ZZ⊤)‖?S? . Setting Q = ZZ⊤ and P = W1W⊤

1
, we observe that

‖PAQ‖?S? =


W1W⊤1 A



?
S? and ‖(I − P)A (I −Q)‖?S? = ‖A (I − ZZ⊤)‖?S? . Then, invoking Lemma 5.5

and plugging in Equation (5.32), we have

‖(I − P)A (I −Q)‖?S? =


A

(
I − ZZ⊤

)

?
S? ≤ ‖A‖

?

S? −


W1W⊤1 A



?
S?

≤ ‖A‖?S? − ‖A: ‖?S? + O
(
:&2/3?2/3

)
�
?

:+1

≤
(
1 + O

(
?&

) )
‖A −A: ‖?S? ,

(5.33)

where the last inequality follows from our assumption on the Schatten-? norm of the tail, given

the case we are in. Taking the (1/?)-th root, and recalling that & < 1/2, we obtain

A
(
I − ZZ⊤

)


S? ≤ (1 + O(&)) ‖A −A: ‖? , (5.34)

which concludes the final case.

Next, we analyze the running time and matrix-vector products. Running Algorithm 5.6 with

block size : for @ = O
(
log(3)?1/6/&1/3) iterations requires O

(
nnz(A):?1/6 log(3)

&1/3

)
time and O

(
:?1/6 log(3)

&1/3

)
matrix-vector products. Similarly, running with block size O

(
:/

(
&?

)1/3
)

for @ = O
(
log(3/&)√?

)
iterations requires O

(
nnz(A):?1/6 log(3/&)

&1/3

)
time and O

(
:?1/6 log(3)

&1/3

)
matrix-vector products. Finally, we

observe that to obtain a
(
1 + 1/?

)
-approximation to �1 and �:+1, we need O

(
log(3)√?

)
iterations

with blocksize : + 1 and this requires O
(
log(3)√?:

)
matrix-vector products. Note, our setting of

the exponent of ? and & was chosen to balance the two cases, and this concludes the proof.

�

6 Query Lower Bounds

Next, we show that the &-dependence obtained by our algorithms for Schatten-? low-rank approxi-

mation is optimal in the restricted computation model of matrix-vector products. The matrix-vector

product model is defined as follows: given a matrix A, our algorithm is allowed to make adaptive

matrix-vector queries to A, where one matrix-vector query is of the form AE, for any E ∈ ℝ3.

Our lower bounds are information-theoretic and rely on the hardness of estimating the smallest

eigenvalue of a Wishart ensemble, as established in recent work of Braverman, Hazan, Simchowitz

and Woodworth [BHSW20].

We split the lower bounds into the case of ? ∈ [1, 2] and ? > 2. For ? ∈ [1, 2], we have a

simple argument based on the Araki-Lieb-Thirring inequality (Fact 4.10), whereas for ? > 2, our

lower bounds require an involved argument using a norm compression inequality for partitioned

operators (Fact 4.14).

6.1 Lower Bounds for ? ∈ [1, 2]
The main lower bound we prove in this sub-section is as follows:
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Theorem 6.1 (Query Lower Bound for ? ∈ [1, 2]). Given � > 0, and ? ∈ [1, 2], there exists a distribution

D over = × = matrices such that for A ∼ D, any randomized algorithm that with probability at least 9/10

outputs a rank-1 matrix B such that ‖A − B‖?S? ≤ (1+ �) ‖A −A1‖?S? must make Ω(1/�1/3)matrix-vector

queries to A.

We require the following theorem on the hardness of computing the minimum eigenvalue of a

Wishart Matrix, introduced recently by Braverman,Hazan, Simchowitz and Woodworth [BHSW20]:

Theorem 6.2 (Computing Min Eigenvalue of Wishart, Theorem 3.1 [BHSW20]). Given & ∈ (0, 1),
there exists a function d : (0, 1) → ℕ such that for all 3 ≥ d(&), the following holds. Let W ∼Wishart(3) be

a Wishart matrix and {�8}8∈[3] be the eigenvalues of W, in descending order. Then, there exists a universal

constant 2∗ such that:

1. Let �1 be the event that �3(W) ≤ 21/32, �2 be the event that �3−1(W) − �3(W) ≥ 22/32 and

�3 be the event that ‖W‖>? ≤ 5, where 21 and 22 are constants that depend only on &. Then,

PrW [�1 ∩ �2 ∩ �3] ≥ 1 − 2∗
√
&

2 .

2. Any randomized algorithm that makes at most (1 − &)3 adaptive matrix-vector queries and outputs

an estimate �̂3 must satisfy

Pr
W

[����̂3 − �3

��� ≥ 1

432

]
≥ 2∗
√
&.

We also use the following lemma from [BHSW20] bounding the minimum eigenvalue of a

Wishart ensemble:

Lemma 6.3 (Non-Asymptotic Spectra of Wishart Ensembles, Corollary 3.3 [BHSW20]). Let W ∼
Wishart(=) be such that = = Ω(1/�3). Then, there exists a universal constant 22 > 0 such that

Pr

[
�= (W) ≥

1

=2

]
≥ 22, and Pr

[
�= (W) <

1

2=2

]
≥ 22

2
.

We are now ready to prove Theorem 6.1. Our high level approach is to show that we can take

any solution that is a (1+ �)-relative-error Schatten-? low-rank approximation to the hard instance

I − 1
5W, where W is a Wishart ensemble, and extract from it an accurate estimate of the minimum

eigenvalue of W, thus appealing to the hardness stated in (2) of Theorem 6.2 above.

Proof of Theorem 6.1. Let = = Θ
(
1/&1/3) and let A = I − 1

5W be an = × = instance where W ∼
Wishart(=). Let �1 be the event that ‖W‖op ≤ 5. It follows from Fact 4.16 that �1 holds with

probability at least 99/100, and we condition on this event. Let �2 be the event that �= (W) ≥ 1
=2 =

�2/3
2∗ and �3 be the event that �= (W) < 1

2=2 =
�2/3
22∗ .

Then, conditioning on �2, we have that

1 − 1

5
�=(W) ≤ 1 − �2/3

52∗
. (6.1)
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Similarly, conditioning on �3, we have that

1 − 1

5
�=(W) ≥ 1 − �2/3

102∗
. (6.2)

We observe that for ? ∈ [1, 2], using Bernoulli’s inequality (Fact 4.6) we have(
1 − 1

5
�=(W)

) ?
≥ 1 −

?

5
�=(W)

and since (1 − G)? ≤ (1 − G) for any G ∈ (0, 1), we also have that,(
1 − 1

5
�=(W)

) ?
≤ 1 − 1

5
�=(W)

Therefore, we can conclude,
(
1 − 1

5�=(W)
)?

= 1 − Θ (�=(W)). Further, it follows from part (1) of

Fact 4.16 that 0 � I − 1
5W � I, and thus

‖A‖?S? =
∑
8∈[=]

�
?

8

(
I − 1

5
W

)
≤

∑
8∈[=]

�8

(
I − 1

5
W

)
≤ O

(
1

&1/3

)
(6.3)

where the last inequality follows from the fact that = =
√
2∗/&1/3. Let A1 denote the best rank-1

approximation to A. Then, it follows from Equation (6.3) that

& ‖A −A1‖?S? ≤ & ‖A‖?S? ≤ O
(
&2/3

)
(6.4)

Observe, any (1 + &)-approximate relative-error Schatten-? low-rank approximation algorithm for

: = 1 outputs a matrix EE⊤ such that

A
(
I − EE⊤

)

?
S? ≤ (1 + &) ‖A −A1‖?S?
≤ ‖A‖?S? − ‖A‖

?
op + Θ(&2/3)

(6.5)

By definition of the Schatten-? norm we have:



A
(
I − EE⊤

)

?
S? = Tr

(((
I − EE⊤

)2
A2

(
I − EE⊤

)2
)?/2)

≥ Tr
( (

I − EE⊤
)?

A?
(
I − EE⊤

)?)
= Tr

(
A? −A?EE⊤

)
= ‖A‖?S? − Tr

( (
EE⊤

)?/2 (
A2

)?/2 (
EE⊤

)?/2)
≥ ‖A‖?S? − Tr

( (
EE⊤A2EE⊤

)?/2)
= ‖A‖?S? −



AEE⊤


?
S?

= ‖A‖?S? − ‖AE‖?
2

(6.6)
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where the first and last inequality follows from the reverse Araki-Lieb-Thirring inequality (Fact

4.10). Combining equations (6.5) and (6.6), we have that

‖A‖?op ≥ ‖AE‖?
2
≥ ‖A‖?op − Θ(&2/3) (6.7)

Next, we observe that AE = (I − 1/5W) E can be computed with one additional matrix-vector

product and

‖A‖?op =

(
1 − 1

5
�=(W)

)?
= 1 −

?

5
�=(W) + O

(
�2
=(W)

)
(6.8)

Consider the estimator �̂(W) = 5
?

(
1 −



(I − 1
5W

)
E


?

2

)
. Combining equations (6.7) and (6.8), we can

conclude

�̂(W) = �min(W) ± Θ(&2/3).
obtaining an additive error estimate to the minimum eigenvalue of W by computing an additional

matrix-vector product. It follows that we satisfy conditions (1) and (2) in Theorem 6.2 and thus

any algorithm for computing a rank-1 approximation to the matrix A = I− 1
5W in Schatten ? norm

must make at least 1
&1/3 queries to the aforementioned matrix, completing the proof. The claim

follows from Theorem 6.2. �

6.2 Lower Bound for ? > 2

We now consider the case when ? > 2. We note that the previous approach no longer works since

we cannot lower bound the cost of ‖ (I −W/5) (I − EE⊤) ‖S? , as the Araki-Lieb-Thirring inequality

reverses (see application in Equation 6.6). Therefore, we require a new approach, and appeal to

a special case of Conjecture 2.2 that is known to be true, i.e. the Aligned Norm Compression

inequality (see Fact 4.14). The main theorem we prove in this sub-section is as follows:

Theorem 6.4 (Query Lower Bound for ? > 2). Given � > 0, and ? ≥ 2 such that ? = O(1), there

exists a distribution D over = × = matrices such that for A ∼ D, any randomized algorithm that with

probability at least 99/100 outputs a unit vector D such that ‖A −ADD⊤‖?S? ≤ (1 + �) ‖A −A1‖?S? must

make Ω
(
1/�1/3) matrix-vector queries to A.

We first introduce a sequence of key lemmas required for our proof.

Corollary 6.5 (Special Case of Lemma 5.2). Given � ∈ [0, 1], a vector E ∈ ℝ3 and an = × 3 matrix A,

let C = log(=/�)/(2√�), for a fixed universal constant 2. Then, there exists an algorithm that computes C

matrix-vector products with A and outputs a unit vector D such that with probability at least 99/100,

‖A‖2op − ‖AD‖22 ≤ $
(
��2

2

)
.

where �2 is the second largest singular value of A.

Next, we prove a key lemma relating the norm of a matrix to norms of orthogonal projections

applied to the matrix. We note that this lemma is straight forward and holds for arbitrary vectors

unit D, E if Conjecture 2.2 holds. However, we show that we can transform our matrix to have

structure such that we can apply Fact 4.14 instead.
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Lemma 6.6 (Orthogonal Projectors to Block Matrices ). Given an = × 3 matrix A, ? > 2 and unit

vectors D ∈ ℝ3 , E ∈ ℝ= , such that (I − EE⊤)ADD⊤ = 0. Then, we have

‖A‖S? ≤






(
‖EE⊤ADD⊤‖S? ‖EE⊤A (I − DD⊤)‖S?

0 ‖(I − EE⊤)A (I − DD⊤)‖S?

)





S?

.

Proof. Let I − EE⊤ = YY⊤, where Y has = − 1 orthonormal columns. Further, since E and Y span

disjoint subspaces, and the union of their span is ℝ= , the matrix (E | Y), obtained by concatenating

their columns is unitary. Then, let R = (E | Y)⊤ and observe, R has orthonormal rows and columns

(since R is unitary). Next, let I − DD⊤ = ZZ⊤, where Z is 3 × (3 − 1) and has orthonormal columns.

Let S = (D | Z)⊤, and observe S has orthonormal rows and columns.

Let Â = RAS⊤, which admits the following block-matrix form:

Â =

(
E⊤

Y⊤

)
· A · (D | Z) =

(
E⊤

Y⊤

)
(AD | AZ) =

(
E⊤AD E⊤AZ

Y⊤AD Y⊤AZ

)

Since R and S are unitary, it follows from unitary invariance of the Schatten-? norm that

‖A‖S? =



Â





S?

=






(
E⊤AD E⊤AZ

Y⊤AD Y⊤AZ

)




S?

=






(
E⊤AD E⊤AZ

0 Y⊤AZ

)




S?

, (6.9)

where the last equality follows from observing that ‖Y⊤AD‖� = ‖YY⊤ADD⊤‖� = ‖(I − EE⊤)ADD⊤‖� =

0 and therefore Y⊤AD is a matrix of all 0s. Next, we append a set of 3 − 2 columns of 0’s to make

the top left and top right block the same size. Since this does not change the singular values, we

have

‖A‖S? =





(
E⊤AD 0 E⊤AZ

0 0 Y⊤AZ

)




S?

(6.10)

Next, we construct a rotation matrix R such that on right multiplying a row vector by R, the first

3−1 coordinates remain the same and on the remaining coordinates, the vector E⊤AZ gets mapped

to 24⊤
1

for some scalar 2. Let S be the 3 − 1 × 3 − 1 rotation matrix such that E⊤AZS = 24⊤
1

. Then,

R =

(
I 0

0 S

)
and it is easy to verify that R is unitary. Therefore,

(
E⊤AD 0 E⊤AZ

0 0 Y⊤AZ

)
· R =

(
E⊤AD 0 24⊤1

0 0 Y⊤AZS

)

Now, we observe the final matrix above has a block matrix form we can apply the Aligned Norm

Compression inequality from Fact 4.14, with 
1 = E⊤AD, 
2 = 2, �1 = 0 and �2 = 0, and therefore

‖A‖S? =





(
E⊤AD 0 24⊤

1

0 0 Y⊤AZS

)




S?
≤







(
‖E⊤AD‖S? 0



24⊤
1




S?

0 0 ‖Y⊤AZS‖S?

)





S?

=







(
‖EE⊤ADD⊤‖S? ‖EE⊤AZZ⊤‖S?

0 ‖YY⊤AZZ⊤‖S?

)





S?

(6.11)
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where the last equality follows from unitary invariance and substituting the definition of YY⊤ and

ZZ⊤ completes the proof.

�

Fact 6.7 (SVD of a 2 × 2 Matrix). Given a 2 × 2 matrix M =

(
0 1

2 3

)
let UΣV⊤ be the SVD of M. Then,

Σ1,1 =

√√
02 + 12 + 22 + 32 +

√
(02 + 12 − 22 − 32)2 + 4 (02 + 13)2

2
,

and

Σ2,2 =

√√
02 + 12 + 22 + 32 −

√
(02 + 12 − 22 − 32)2 + 4 (02 + 13)2

2
.

Now, we are ready to prove Theorem 6.4.

Proof of Theorem 6.4. Let A = I − 1
5W where W is an = × = Wishart matrix as in the proof of

Theorem 6.1 and we have by hypothesis that there is an algorithm that with probability at least

99/100, outputs a unit vector D such that ‖A (I − DD⊤)‖?S? ≤ (1+ �) ‖A −A1‖?S? . Let E = AD/‖AD‖2
and observe, (I − EE⊤)ADD⊤ = 0. Further, by the unitary invariance of the Schatten-? norm,



EE⊤ADD⊤



S? =

��E⊤AD
�� = |D⊤A⊤AD |

‖AD‖2
= ‖AD‖2 . (6.12)

Similarly,



EE⊤A
(
I − DD⊤

)


S? =

√
‖E⊤A (I − DD⊤)‖22 =

√
‖E⊤A‖22 − ‖E⊤ADD⊤‖22

=

√
‖D⊤A⊤A‖22
‖AD‖22

− ‖AD‖22

≤

√√
‖D⊤A⊤‖22 · ‖A‖2op

‖AD‖22
− ‖AD‖22

≤ &1/3�2,

(6.13)

where we use sub-multiplicativity of the ℓ2 norm and Corollary 6.5 with � = &2/3. Note that we

can assume w.l.o.g. that Corollary 6.5 holds since we can just iterate Block Krylov @ = (1/2&1/3)
times, for a sufficiently large constant 2, starting the iterations with the vector D output by the

algorithm hypothesized for the theorem, and pay only (1/2&1/3) extra matrix-vector products.

Since EE⊤A +ADD⊤ − EE⊤ADD⊤ has rank at most 3,

(I − EE⊤
)

A
(
I − DD⊤

)

?
S? =



A − EE⊤A −ADD⊤ + EE⊤ADD⊤


?
S?

≥ ‖A −A3‖?S?

= Ω

(
1

&1/3

)
,

(6.14)
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where the last inequality follows from Fact 4.16.

Let M =

(
0 1

2 3

)
=

(
‖EE⊤ADD⊤‖S? ‖EE⊤A (I − DD⊤)‖S?
‖(I − EE⊤)ADD⊤‖S? ‖(I − EE⊤)A (I − DD⊤)‖S?

)⊤
. Then, it follows from

Fact 6.7 that

Σ1,1 (M) =
1√
2
·
√

02 + 22 + 32 +
√
(02 − 22 − 32)2 + 4 (02)2

=
1√
2
·

√
02 + 22 + 32 + (22 + 32 − 02) + Θ

(
40222

22 + 32 − 02

)

=

√
22 + 32 + Θ

(
0222

22 + 32 − 02

)
,

(6.15)

where we use that 1 = 0, 2, 0 ≤ 1 and 1 ≪ 3 and the Taylor expansion of
√
G + H for G, H ≥ 0.

Similarly,

Σ2,2 (M) =

√
02 − Θ

(
0222

22 + 32 − 02

)
. (6.16)

Then, using equations (6.15) and (6.16) we can bound the Schatten-? norm of M as follows:

‖M‖?S? ≤
(
22 + 32 + Θ

(
0222

22 + 32 − 02

))?/2
︸                                   ︷︷                                   ︸

6.17.1

+
(
02 − Θ

(
0222

22 + 32 − 02

))?/2
︸                             ︷︷                             ︸

6.17.2

. (6.17)

We now bound each of the terms above. Consider the first term:(
22 + 32 + Θ

(
0222

22 + 32 − 02

))?/2
=

( 

EE⊤A
(
I − DD⊤

)

2

S?

+


(I − EE⊤

)
A

(
I − DD⊤

)

2

S? + Θ

(
�2/3 ‖AD‖22

) )?/2

≤
(
Θ

(
�2/3

)
+



A
(
I − DD⊤

)

2

S?

)?/2
≤

(
1 + O

(
&2?/3

))
‖A −A1‖?S? ,

(6.18)

where we use equation (6.12), (6.13), and (6.14), and ‖A (I − DD⊤)‖2S? ≤ (1 + &)2/? ‖A −A1‖2S? . The

last inequality follows from observing that

�2/3 ≤ O
(
�4/3 · 1

&2/3?

)
≤ O

(
�4/3 · ‖A −A1‖2S?

)
.

We can now bound the second term in Equation 6.17 as follows:
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(
02 − Θ

(
0222

22 + 32 − 02

))?/2
=

(
‖AD‖22 − Θ

(
&2/3 ‖AD‖22

))?/2
≤ ‖AD‖?2 . (6.19)

Then, we have

‖M‖?S? ≤
(
1 + O

(
&2?/3

))
‖A −A1‖?S? + ‖AD‖?2 .

It follows from Lemma 6.6, that ‖M‖?S? ≥ ‖A‖
?

S? and thus

‖AD‖?2 ≥ ‖A‖
?

S? −
(
1 + O

(
&2?/3

))
‖A −A1‖?S?

= ‖A‖?op − O
(
&2?/3

)
‖A −A1‖?S?

≥ ‖A‖?op − O
(
& ‖A −A1‖?S?

)
≥ ‖A‖?op − O

(
�2/3

)
(6.20)

where the second to last inequality follows from recalling ? ≥ 2. The remainder of the proof is as

in that following (6.7) in the proof of Theorem 6.1. �
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A Extending Prior Work on Lower Bounds

In this section, we briefly discuss prior work on estimating top singular/eigenvalues in the matrix-

vector product model and why existing approaches do not immediately imply a lower bound for

low-rank approximation, under any unitarily invariant norm, including Frobenius and spectral

norm.

In a sequence of works, Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Sim-

chowitz, Alaoui and Recht [SAR18] establish eigenvalue estimation lower bounds in the matrix-

vector query model. We draw on their techniques and use the hard instance at the heart of their

lower bound, but require additional techniques to obtain a lower bound for low-rank approxima-

tion.

The main theorem (Theorem 2.2 of [SAR18]), for k =1, states that any randomized algorithm

which outputs a vector E such that with constant probability

E⊤ |A| E >= (1 − O
(
gap

)
) ‖A‖op ,

requires Ω
(
1/√gap

)
matrix-vector products, where |A| = (A2)1/2 has the same singular values

as A and gap ∈ (0, 1). However, this guarantee is too weak to imply a lower bound for spectral

low-rank approximation.

Indeed, for this theorem to be meaningful in our setting, we require setting gap = Θ(&).
However, there exist input matrices A, e.g., A = diag (1 + &, 1, . . . , 1, 0), and vector E = Θ

(√
&
)
41 +

((1 − Θ(&)) 4= such that 

A(I − EE⊤)




op
≤ (1 + &) �2(A),

i.e. E yields a valid low-rank approximation but E⊤AE is only Θ(&). Note, here the gap is

Θ(1) instead of the required 1 − & and thus we obtain no lower bound for spectral low-rank

approximation.

41



Moreover, it can be shown that when A is the hard instance considered in [SAR18], i.e. A =

G + �DD), where G is a Gaussian Orthogonal Ensemble (GOE) and D is a random unit vector on

the sphere, there exists a vector E that does not satisfy the guarantee of Theorem 2.2, yet yields

a spectral low-rank approximation. In particular, consider E = Θ(
√
&)A1 + (1 − Θ(&)) A3 where A1

is the largest singular vector of |A| and A3 is the smallest singular vector. Since the smallest $(1)
singular values of a 3× 3 GOE can be shown to be $(1/3), and A is a rank-1 perturbation of a GOE,

similar to the diagonal case above, we can show

A
(
I − EE)

)


op
≤ (1 + &) �2(A),

yet E⊤ |A| E is only Θ(&). Therefore, it is not possible to obtain a lower bound for low-rank

approximation from Theorem 2.2 in a black-box manner.

B Low Rank Approximation of Matrix Polynomials

We note that polynomials of matrices are implicitly defined, even in the RAM model, and comput-

ing them explicitly would be prohibitively expensive and may destroy any sparsity structure. The

proof just follows from running our algorithm on M = (A⊤A)ℓ . It is straightforward to simulate a

matrix-vector product of the form ME using access to matrix-vector products for A and A⊤ with

an O(ℓ ) overhead.

Theorem B.1 (Low Rank Approximation of Matrix Polynomials). Given an = × 3 matrix A, ℓ ∈ ℕ,

target rank : and an accuracy parameter � > 0, let M = (A⊤A)ℓ or M = A (A⊤A)ℓ . Then, for any

? ≥ 1, there exists an algorithm that uses at most O
(
:ℓ log(=:)?1/6/�1/3) matrix-vector products and with

probability at least 9/10 outputs a matrix Z ∈ ℝ3×: with orthonormal columns such that,

M
(
I − ZZ⊤

)


S? ≤ (1 + �) min

U: U⊤U=I:



M
(
I −UU⊤

)


S? .

The only prior work we are aware of is the algorithm of [MM15], which would achieve a

worse O
(
:ℓ log(=:)/�1/2) number of matrix-vector products for the Frobenius norm and match our

guarantee for the spectral norm.

C Improved Streaming Bounds

In the streaming model, the input matrix is initialized to all zeros, and at each time step, the

(8 , 9)-th entry is updated. The updates can be positive or negative, and the goal is to output a

low-rank approximation, without storing the whole matrix. The number of passes required by

our algorithm is proportional to the number of adaptive matrix-vector queries we require. As an

immediate corollary of this observation, we obtain the following formal guarantee:

Corollary C.1 (Schatten LRA in a Stream). Given a matrix A ∈ ℝ=×3, a target rank : ∈ [3], an accuracy

parameter & ∈ (0, 1) and any ? ≥ 1, there exists a streaming algorithm that makes O
(
log(3/&)?1/6/&1/3)
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passes over the input, requires O
(
=:/&1/3) space, and outputs a 3 × : matrix Z with orthonormal columns

such that with probability at least 9/10,

A
(
I − ZZ⊤

)

?
S? ≤ (1 + &) min

U: U⊤U=I:



A
(
I −UU⊤

) 

?
S? .

The only prior work on low-rank approximation in a stream is by Boutsidis, Woodruff and

Zhong, who consider the special case of ? = 2 [BWZ16]. They obtain a single pass algorithm

that requires O
(
=:/& + poly(:/&)

)
space and a two pass algorithm that requires O

(
=: + poly(:/&)

)
space. For general ?, we note that recent work by Li and Woodruff [LW20] can be used to derive

a streaming algorithm that obtains a worse space dependence but only requires a single pass:

for 1 ≤ ? < 2, the space required is Õ
(
=

(
:+:2/?

&2 + :2/?

&1+2/?

))
and for ? > 2, the space required is

Õ
(
=

(
:=1−2/?

&2 + :2/?+=1−2/?

&2+2/?

))
.

We note that for ? < 2, we obtain a polynomially better dependence on & and for ? > 2, the

space complexity of our algorithm is linear in =, as compared to =2−2/? above. The optimal space

complexity of Schatten-? low-rank approximation (for ? ≠ 2) in a single pass remains open.
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