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Abstract

We study iterative methods based on Krylov subspaces for low-rank approximation under
any Schatten-p norm. Here, given access to a matrix A through matrix-vector products, an
accuracy parameter €, and a target rank k, the goal is to find a rank-k matrix Z with orthonormal
columns such that ||A (I - ZZT)||SP < (1+e€)mingry=y, [|A(I- UUT)IISP, where [[M]|s, denotes
the ¢, norm of the the singular values of M. For the special cases of p = 2 (Frobenius norm)
and p = oo (Spectral norm), Musco and Musco (NeurIPS 2015) obtained an algorithm based
on Krylov methods that uses O(k/+/€) matrix-vector products, improving on the naive O(k/e)
dependence obtainable by the power method, where O(-) suppresses poly(log(dk/e)) factors.

Our main result is an algorithm that uses only O(kp'/®/e!/?) matrix-vector products, and
works for all, not necessarily constant, p > 1. For p = 2 our bound improves the previous
O(k/e'?) bound to O(k/e'/?). Since the Schatten-p and Schatten-co norms of any matrix are
the same up to a 1 + € factor when p > (logd)/e, our bound recovers the result of Musco
and Musco for p = co. Further, we prove a matrix-vector query lower bound of Q(1/€'/3) for
any fixed constant p > 1, showing that surprisingly ©(1/e'/?) is the optimal complexity for
constant k.

To obtain our results, we introduce several new techniques, including optimizing over
multiple Krylov subspaces simultaneously, and pinching inequalities for partitioned operators. Our
lower bound for p € [1,2] uses the Araki-Lieb-Thirring trace inequality, whereas for p > 2,
we appeal to a norm-compression inequality for aligned partitioned operators. As our algorithms
only require matrix-vector product access, they can be applied in settings where alternative
techniques such as sketching cannot, e.g., to covariance matrices, Hessians defined implicitly
by a neural network, and arbitrary polynomials of a matrix.
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1 Introduction

Iterative methods, and in particular Krylov subspace methods, are ubiquitous in scientific comput-
ing. Algorithms such as power iteration, Golub-Kahan Bidiagonalization, Arnoldi iteration, and
the Lanczos iteration, are used in basic subroutines for matrix inversion, solving linear systems,
linear programming, low-rank approximation, and numerous other fundamental linear algebra
primitives [Saa81, LS13]. A common technique in the analysis of Krylov methods is the use of
Chebyshev polynomials, which can be applied to the singular values of a matrix to implement an
approximate interval or step function [MHO02, Riv20]. Further, Chebyshev polynomials reduce the
degree required to accurately approximate such functions, leading to significantly fewer iterations
and faster running time. In this paper we investigate the power of Krylov methods for low-rank
approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an underlying matrix A, which
is often implicit, and for which the only access to A is via matrix-vector products. Namely, the
algorithm chooses a query vector v!, obtains the product A - v!, chooses the next query vector
v2, which is any randomized function of vl and A - v}, then receives A - v2, and so on. If A is a
non-symmetric matrix, we assume access to products of the form ATv as well. We refer to the
minimal number g of queries needed by the algorithm to solve a problem with constant probability
as the query complexity. We note that upper bounds on the query complexity immediately translate
to running time bounds for the RAM model, when A is explicit, since a matrix-vector product
can be implemented in nnz(A) time, i.e., the number of non-zero entries in the matrix. Since this
model captures a large family of iterative methods, it is natural to ask whether Krylov subspace
based methods yield optimal algorithms, where the complexity measure of interest is the number
of matrix-vector products.

This model and related vector-matrix-vector query models were formalized for a number of
problems in [SWYZ19, RWZ20], though the model is standard for measuring efficiency in scientific
computing and numerical linear algebra, see, e.g., [BFG96]; in that literature, methods that use
only matrix-vector products are called matrix-free. Subsequently, for the problem of estimating the
top eigenvector, nearly tight bounds were obtained in [SAR18, BHSW20]. Also, for the problem of
estimating the trace of a positive semidefinite matrix, tight bounds were obtained in [MMMW21]
(see, also [WWZ14], where tight bounds were shown in the related vector-matrix-vector query
model). For recovering a planted clique from a random graph, upper and lower bounds were
obtained in [RWYZ21]. In the non-adaptive setting, where vl ..., v, are chosen before making
any queries to A, this is equivalent to the sketching model, which is thoroughly studied on its own
(see, e.g., [Nelll, Woo14]), and in the context of data streams [Mut05, LNW14b].

Why is the matrix A implicit? A small query complexity g leads to an algorithm running in
time O(T(A) -q+Pn,d, q)), where T(A) is the time to multiply the n X d matrix A by an arbitrary
vector, and P(n,d, q) is the time needed to form the queries and process the query responses,
which is typically small. When the matrix A is given as a list of nnz(A) non-zero entries, then
T(A) < nnz(A). However, in many problems A is not given explicitly, and it is too expensive to
write A down. Indeed, one may be given A but want to compute a low-rank approximation to the



“covariance” (Gram) matrix AT A, and computing ATA is too slow [MW17a]. More generally, one
may be given A = UXVT and a function f : R — R, and want to compute matrix-vector products
with the generalized matrix function f(A) = Uf(Z)V', where U has orthonormal columns, VT
has orthonormal rows, %, is a diagonal matrix, and f is applied entry-wise to each entry on the
diagonal.

The covariance matrix corresponds to f(x) = x2, and other common functions f include the
matrix exponential f(x) = e* and low-degree polynomials. For instance, when A is the adjacency
matrix of an undirected graph, f(x) = x3/6 is used to count the number of triangles [Ts008, Avr10].
Yet another example is when A is the Hessian H of a neural network with a huge number of
parameters, for which it is often impossible to compute or store the entire Hessian [GKX19].
Typically H - v, for any chosen vector v, is computed using Pearlmutter’s trick [Pea94]. However,
even with Pearlmutter’s trick and distributed computation on modern GPUs, it takes 20 hours
to compute the eigendensity of a single Hessian H with respect to the cross-entropy loss on the
CIFAR-10 dataset from a set of fixed weights for ResNet-18 [KH"09], which has approximately
11 million parameters [HHZRS16, GKX19]. This time is directly proportional to the number of
matrix-vector products, and therefore minimizing this quantity is crucial.

Algorithms and Lower Bounds for Low-Rank Approximation. The low-rank approximation
problem is well studied in numerical linear algebra, with countless applications to clustering, data
mining, principal component analysis, recommendation systems, and many more. (For surveys
on low-rank approximation, see the monographs [KV09, Mah11, Woo14] and references therein.)
In this problem, given an implicit n x d matrix A, the goal is to output a matrix Z € R with
orthonormal columns such that

|A(T-2ZT)||, <(1+e) i |A (1T-UuT)|,, (1.1)

where || - ||x denotes some norm. Note that given Z, one can compute AZ with an additional k
queries, which will be negligible, and then (AZ)-ZT is a rank-k matrix written in factored form, i.e.,
as the product of an n X k matrix and a k X d matrix. Among other things, low-rank approximation
provides (1) a compression of A from nd parameters to (n + d)k parameters, (2) faster matrix-vector
products, since AZ-Z" -y can be computed in O((n +d)k) time for an arbitrary vector y, as opposed
to the O(nd) time needed to compute A - y, and (3) de-noising, as often matrices A are close to
low-rank (e.g., they are the product of latent factors) but only high rank due to noise.

Despite its tremendous importance, the optimal matrix-vector product complexity of low-rank
approximation is unknown for any commonly used norm. The best known upper bound is due
to Musco and Musco [MM15], who achieve O(k/e!/?) queries' for both the case when || - ||x is

1/2
the commonly studied Frobenius norm ||B||r = (Zi,]- ij) as well as when || - ||x is the Spectral
(operator) norm ||B||> = SUP|iy(1,=1 1By
On the lower bound front, there is a trivial lower bound of k, since A may be full rank and
achieving (1.1) requires k matrix-vector products since one must reconstruct the column span of
A exactly. However, no lower bounds in terms of the approximation factor € were known. We note that

We let O(f) = f - poly(log(dk/e)).



Simchowitz, Alaoui and Recht [SAR18] prove lower bounds for approximating the top r eigenvalues
of a symmetric matrix; however these guarantees are incomparable to those that follow from a
low-rank approximation, even when the norm || - || x is the operator norm (see Appendix A for a
brief discussion).

Relationship to the Sketching Literature. Low-rank approximation has been extensively stud-
ied in the sketching literature which, when A is given explicitly, can achieve O(nnz(A)) time both
for the Frobenius norm [CW13, MM13a, NN13], as well as for Schatten-p norms [LW20]. However,
these works require reading all of the entries in A, and thus do not apply to any of the settings men-
tioned above. Further, the matrix-vector query model is especially important for problems such as
trace estimation, where a low-rank approximation is used to first reduce the variance [MMMW21].
As trace estimation is often applied to implicit matrices, e.g., in computing Stochastic Lanczos
Quadrature (SLQ) for Hessian eigendensity estimation [GKX19], in studying the effects of batch
normalization and residual connections in neural networks [YGKM?20], and in computing a disen-
tanglement regularizer for deep generative models [PPZ"20], sketching algorithms for low-rank
approximation often do not apply.

Another important application is low-rank approximation of covariance matrices [MW17a], for
which the covariance matrix is not given explicitly. Here, we have a data matrix A and we want
a low-rank approximation for AAT. Even when S is a sparse sketching matrix, the matrix SA is
no longer sparse, and one needs to multiply SA by AT to obtain a sketch of SAAT, which is a
dense matrix-matrix multiplication. Moreover, when viewed in the matrix-vector product model,
sketching algorithms obtain provably worse query complexity than existing iterative algorithms
(see Table 1.1 for a comparison). Further, as modern GPUs often do not exploit sparsity, even when
the matrix A is given, a GPU may not be able to take advantage of sparse queries, which means the total
time taken is proportional to the number of matrix-vector products.

Motivating Schatten-p Norms. The Schatten norms for 1 < p < 2 are more robust than the
Frobenius norm, as they dampen the effect of large singular values. In particular, the Schatten-1
norm, also known as the nuclear norm, has been widely used for robust PCA [XCS10, CLMW11,
YPCC16] as well as a convex relaxation of matrix rank in matrix completion [CR09, CP10], low-
dimensional Euclidean embeddings [REP10, TDSL0O, RS00], image denoising [GZZF14, GXM*17]
and tensor completion [YZ16]. In contrast, for p > 2, Schatten norms are more sensitive to large
singular values and provide an approximation to the operator norm. In particular, for a rank
matrix, it is easy to see that setting p = log(r)/n yields a (1 + n)-approximation to the operator
norm (i.e., p = oo). While the Block Krylov algorithm of Musco and Musco [MM15] implies a
matrix-vector query upper bound of 0 (k/€'/?) for Schatten-co low-rank approximation, the exact
complexity of this problem remains an outstanding open problem. When p > 2, we can interpolate
between Frobenius and operator norm, and setting p to be a large fixed constant can be a proxy for
Schatten-co low-rank approximation, with significantly fewer matrix-vector products (see Theorem
5.1).

Our Central Question. The main question of our work is:

What is the matrix-vector product complexity of low-rank approximation for the Frobenius norm, and more
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generally, for other matrix norms?

1.1 Owur Results

Problem Frobenius | Schatten-p, p € [1,2) | Schatten-p, p > 2
Sketching [CW09, LW20] | ®(k/e) Q(k2/p | e4/p+1) Q(min(n, d)-2/r)
Block Krylov [MM15] | O(k/e/?) N/A N/A
Our Upper Bound O(k/e'/3) O(k/e/3) O(kp/6/e113)
Our Lower Bound Q(1/€1/3) Q(1/€3) Q(1/€173)

Figure 1.1: Prior Upper and Lower Bounds on the Matrix Vector Product Complexity for Frobe-
nius and Schatten-p low-rank Approximation. The poly(k/e) factors in prior sketching work for
Schatten-p are not explicit, but we have computed lower bounds on them to illustrate our improve-
ments. Our bounds are optimal, up to logarithmic factors, for constant k. For p > log(d)/e, spectral
low-rank approximation [MM15] implies an 0 (k/+/€) upper bound.

We begin by stating our results for Frobenius and more generally, Schatten-p norm low-rank
approximation for any p > 1; see Table 1.1 for a summary.

Theorem 1.1 (Query Upper Bound, informal Theorem 5.1). Given a matrix A € R™, a target rank
k € [d), an accuracy parameter € € (0,1) and any (not necessarily constant) p € [1,0(log(d)/€)], there
exists an algorithm that uses O (kp'/®/e'/3) matrix-vector products and outputs a d x k matrix Z with
orthonormal columns such that with probability at least 99/100,

A (X-2ZT)s < +e) o min |a (x-uuT) |, -

When p > log(d)/e, we get 0 (k/~f€) matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schatten p for p = 2), we improve
the prior matrix-vector product bound of (j(k /el/?) by Musco and Musco [MM15] to é(k /el/3).
For Schatten-p low-rank approximation for p € [1, 2), we improve work of Li and Woodruff [LW20]
who require query complexity at least Q(k%/? /e*/P*1), which is a polynomial factor worse in both
k and 1/e than our (5(k/e1/3) bound.

For p > 2, [LW20] obtain a query complexity of Q(min(rn, d)1=2/r). We drastically improve this
to (j(k /€1/3), which does not depend on d or n atall. Setting p = log(d)/e suffices to obtain a (1+¢€)-
approximation to the spectral norm (p = o0), and we obtain an 0 (k/+/€) query algorithm, matching
the best known bounds for spectral low-rank approximation [MM15]. When p > log(d)/e, we can
simply run Block Krylov for p = co.



Remark 1.2 (Comments on the RAM Model). Although our focus is on minimizing the number
of matrix-vector products, which is the key resource in the applications described above, our
bounds also improve the running time of low-rank approximation algorithms when the matrix
A has a small number of non-zero entries and is explicitly given. For simplicity, we state our
bounds and those of previous work without using algorithms for fast matrix multiplication; similar
improvements hold when using such algorithms. When nnz(A) = O(n), for Frobenius norm low-
rank approximation, work in the sketching literature, and in particular [ACW17] (building off
of [CW13, NN13, Coh16]), achieves O(nk?/€) time. In contrast, in this setting our runtime is
O(nk?/e2/3). Similarly, for Schatten-p low-rank approximation for p € [1,2), the previous best
[LW20] requires Qnk*? /e®/P-2)) time, while for p > 2 [LW20] requires Q(nd?1-2/p)(k /€)*/P) time.
In both cases our runtime is only O(n k2p'/3/€2/3). We obtain analogous improvements when the
sparsity nnz(A) is allowed to be n(k/€)C for a small constant C > 0.

Next, we state our lower bounds on the matrix-vector query complexity of Schatten-p low-rank
approximation.

Theorem 1.3 (Query Lower Bound for constant p, informal Theorem 6.1 and Theorem 6.4 ). Given

e > 0, and a fixed constant p > 1, there exists a distribution D over n X n matrices such that for A ~ D,

any algorithm that with at least constant probability outputs a unit vector v such that ||A (I - va)llg <
P

(1 + &) miny,,-1 [|AT - uuT)Hg must perform Q(1/e'/3) matrix-vector queries to A.
4

Remark 1.4. We note that this is the first lower bound as a function of € for this problem, even for
the well-studied case of p = 2, achieving an (1/ €!/3) bound, which is tight for any constant k,
simultaneously for all constant p > 1.

Remark 1.5. Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Simchowitz, Alaoui
and Recht [SAR18] establish eigenvalue estimation lower bounds that we use in our arguments,
but their results do not directly imply low-rank approximation lower bounds for any matrix norm
that we are aware of, including spectral low-rank approximation, i.e., p = o (see Appendix A).

Matrix Polynomials and Streaming Algorithms. Since our algorithms are based on iterative
methods, they generalize naturally to low-rank approximations of matrices of the form A (ATA)
and (ATA)" for any integer ¢, given A as input. We defer the details to Appendix B.

Since we work in the matrix-vector model, our algorithms naturally extend to the multi-pass
turnstile streaming setting. Notably, for p > 2, with O(log(d/e)p'/®/€'/?) passes we are able to

improve the O (n (k”:/p 4+ B 20 )) memory bound of [LW20] to O (nk/e'/3). We defer the

e2+2/p

details to Appendix C.

1.2 Open Questions

We note that our lower bounds are tight only when the target rank k and Schatten norm p are fixed
constants. In particular, it is open to obtain matrix-vector lower bounds that grow as a function
of k, p and 1/e. For the important special case of Spectral low-rank approximation (p = ), it is
open to obtain any lower bound that grows as a function of 1/€, even when the target rank k = 1
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(see Appendix A for more details). We also note that improving our upper bound to even pl/ 6-0(1)
would imply a faster algorithm for Spectral low-rank approximation, addressing the main open
question in [Woo14].

2 Technical Overview

For our technical overview, we drop polylogarithmic factors appearing in the analysis and assume
the input A is a symmetric 7 X n matrix (we handle arbitrary n X d matrices in Section 5).

2.1 Algorithms for Low-Rank Approximation

We first describe our algorithm for the special case of rank-1 approximation in the Frobenius norm,
i.e., p = 2. Our algorithm is inspired by the Block Krylov algorithm of Musco and Musco [MM15].
Briefly, their algorithm begins with a random starting vector g (block size is 1) and computes the
Krylov subspace K = [Ag; A%g;...;A%], for g = O(1/€'/?). Next, their algorithm computes an
orthonormal basis for the column span of K, denoted by a matrix Q, and outputs the top singular
vector of QT A2Q, denoted by z (see Algorithm 5.6 for a formal description). It follows from
Theorem 1, guarantee (1) in [MM15] that

2, 2.1)

N L
and it is easy to see that this algorithm requires ® (1/€'/?) matrix-vector products. A naive analysis
requires an O(1/e)-degree polynomial in the matrix A to obtain (2.1), while [MM15] use Chebyshev
polynomials to approximate the threshold function between first and second singular value, and
save a quadratic factor in the degree. The guarantee in (2.1) then follows from observing that
the best vector in the Krylov subspace is at least as good as the one that exists using Chebyshev
polynomial approximation.

Algorithm 2.1 (Algorithm Sketch for Frobenius rank-1 LRA ).
Input: Ann X n symmetric matrix A, accuracy parameter 0 < ¢ < 1.

1. Run Block Krylov for O(1/€'/?) iterations with a random starting vector g. Let z;
be the resulting output.

2. Run Block Krylov for O(log(n/€)) iterations, but initialize with an n X b random
matrix G, where b = O(1/€'/3). Let z be the resulting output.

Output: z = argmax;, -, (||Azll|§ , ||Azzl|§).

Our starting point is the observation that while we require degree ® (1/€'/?) to separate the
tirst and second singular values, if any subsequent singular value is sufficiently separated from o1,
a significantly smaller degree polynomial suffices. In the context of Krylov methods, this translates
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to the intuition that starting with a matrix G with b columns (block size is b) should result in fewer
iterations to find some vector in the top b subspace of A. On the other hand, if no such singular
value exists, the norm of the tail must be large and we can get away with a less accurate solution.
We show that we can indeed exploit this trade-off by running Block Krylov on two different scales
in parallel and then combine the solution. In particular, we use Algorithm 2.1.

Algorithm 2.1 captures the extreme points of the trade-off between the size of the starting
matrix and the number of iterations, such that the total number of matrix-vector products is at
most (5(1 /€'/3). Further, we can compute the squared Euclidean norms of Az; and Az, with an
additional matrix-vector product, and it remains to analyze the Frobenius cost of projecting A on
the subspace I — zz T, where z is the unit vector output by Algorithm 2.1.

Using gap-independent guarantees for Block Krylov (see Lemma 5.2 for a formal statement), it
follows that with 0(1 /el 3) iterations, we have

IAz1]13 > 07(A) - €3 (A). (22)

In contrast, using gap-dependent guarantees (see Lemma 5.4) for Block Krylov initialized with
block size b, it follows that for any y > 0, running g = log(1/7) - v/o1(A)/(01(A) — 65(A)) iterations
results in z, such that

|Az2][5 > 02(A) — yo3(A). (2.3)

If 05(A) < 01(A)/2, we can set ¥ = €/n in Equation (2.3) to obtain a highly accurate solution.
Further, regardless of the input instance, Step 3 in Algorithm 2.1 ensures that we get the best of
both guarantees, (2.2) and (2.3). Then, observing that I — zz " is an orthogonal projection matrix
(see Definition 4.1) and using the Pythagorean Theorem for Euclidean space we have:

IA (1= 227)|2 = 1Al - ||Azz"|2 = 1A - |Az]3, (2.4)

where the second inequality follows from unitary invariance (see Fact 4.8) of the Frobenius norm
and that the squared Frobenius norm of a rank-1 matrix Az (vector) is equal to its squared Euclidean
norm. If it happens that 02(A) < 01(A)/2, i.e., a constant gap exists between the first two singular
values, then since guarantee (2.3) implies that ||Az||§ > of(A) —(e/ n)o%(A), we can plug this into
(2.4) toyield a (1+€/n)-approximate solution. Hence, we focus on instances where 02(A) > 01(A)/2.

Consider the case where the Frobenius norm of the tail is large, i.e., ||A — A1[|2 > ag(A) /el/3,

where A is the best rank-1 approximation to A. Then we only require an €2/3-approximate solution
(plugging guarantee (2.2) into (2.4) ) since
2
A (T=z12])[[; < IAlI7 - 07(A) + €¥°05(A) < |A = Aqllf +e A~ A7 (2.5)

Otherwise, Y./, af(A) < o%(A)/ €l/3, which implies that there is a constant gap between the
second and b-th singular values, where b = O(1/ el/ 3). To see this, observe if 0,(A) > 02(A)/4,
then )1, of(A) > 2?22 af(A) > bo%(A) /4, which is a contradiction when b > 10/e!/3, and thus
0p(A) < 02(A)/4 < 01/2. Now we can apply guarantee (2.3) with g = O(log(n/€)) and conclude
||Az II% > af(A) —(eg/ n)a%(A), yielding a highly accurate solution yet again. Overall, this suffices to
obtain a (1 + €)-approximate solution with (5(1 /€'/3) matrix-vector queries.
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Challenges in generalizing to Schatten p # 2 and rank k > 1. The outline above crucially relies
on the norm of interest being Frobenius. In particular, we use the Pythagorean Theorem to analyze
the cost of the candidate solution in Equation (2.4); however, the Pythagorean Theorem does not
hold for non-Euclidean spaces. Therefore, a priori, it is unclear how to analyze the Schatten-p
norm of a candidate rank-1 approximation. A proxy for the Pythagorean Theorem that holds for
Schatten-p norms is Mahler’s operator inequality (see Fact 4.11), which is in the right direction but
holds only for p > 2, whereas we would like to handle all p > 1. Separately, for p > 2, the case
where the tail is small corresponds to ||A — A4 ||gp < ag (A) /€'/3. Therefore, naively extending the

above argument requires picking a block size that scales proportional to O(2 /€'/3) to induce a
constant gap between o1 and o0y, and the number of matrix-vector products scales exponentially
inp.

Finally, in the above outline, we also crucially use that ||AzzT ||12c = ||Az ||§. Observe that this no
longer holds if we replace z with a matrix Z that has k orthonormal columns. Therefore, it remains
unclear how to relate ||AZ||gp to ||AZ*,1-||§, yet the vector-by-vector error guarantee obtained by

Block Krylov (see Lemmas 5.2 and 5.4) only bounds the latter.

Handling all Schatten-p Norms and k > 1. We modify our algorithm to run Block Krylov on AT
and obtain an orthonormal matrix W such that for all i € [k],

2
[ATW..i||" > 6%(A) — yo?,,(A), (2.6)

for some y > 0. We then analyze the cost ||A (I - Z2Z")||%. , where Z is a basis for ATW. Our key
insight is to interpret the input matrix A as a partitioned opperator (block matrix) and invoke pinching
inequalities for such operators. Pinching inequalities were originally introduced to understand
unitarily invariant norms over direct sums of Hilbert spaces [VIN37, Sch60]. In our setting, given a
M® M@

block matrix M = ( M3 M®@

), the pinching inequality (see Fact 4.13) implies that forall p > 1,

IMIfs, > MO, + M 2.7)

A priori, it is unclear how to use Equation (2.7) to bound ||A (I - ZZT)llg . First, we establish a
P

general inequality for the Schatten norm of a matrix times an orthogonal projection. Let P and Q
be any n X n orthogonal projection matrices with rank k (see Definition 4.1). Then, we prove (see
Lemma 5.5 for details) that for any matrix A,

1Al > IIPAQIfs +[II-P)AT- Q) - (28)

To obtain this inequality, we use a rotation argument along with the fact that the Schatten-p norms

AL  A@\]|P
(@8} —
(A(g) A@ 5 , Where ||A ”Sp = ||PAQ||SP and
4

||A(4)|| s, = [(T-P)A(I-Q)| Syr and then we can apply Equation (2.7) to the block matrix above.

are unitarily invariant to show that ||A||g =
4



Once we have established Equation (2.8), we can set P = WWT and set Q = ZZT to be the
projection matrix corresponding to the column span of ATWWT. Then, we have that PAQ =
WWTAand (I-P)A(I-Q)=A(I-ZZ"), and combined with (2.8) this yields

I (=220 < 1A, - [ww Al 29

To obtain a bound on ||WWTA||Z , we appeal to the per-vector guarantees in Equation (2.6).
4

However, translating from €22 error to 05 (WTA) incurs a mixed guarantee (see Lemma 5.7 for
details):
p P 2 p-2
IWWTAJlg = 1Al = O(yp) D o7, (M)l (A).
ielk]
To use this bound, we require 01(A) to be comparable to ox+1(A) and thus we require an involved
case analysis, which appears in the proof of Theorem 5.1.

Avoiding an exponential dependence on p. Our main insight here is that we do not require
a block size that induces a constant gap between singular values. Instead, we first observe that
if the block size b is large enough such that o, < 02/(1 + 1/p), then O(log(n/ e)\/r_J) iterations
suffice to obtain a vector z such that ||Az||§ > 0% (A) — (¢/ n)o% (A). Therefore, we can trade-
off the threshold for the Schatten norm of the tail with the number of iterations as follows: if
[|A — Alllgp < WOS (A), then setting b = (1 + 1/p)P [(ep)'/® = ©(1/(ep)*/?) suffices to induce a
gap of 1+1/p with block size b. The total number of matrix-vector products is O(b - log(1n/€)/p) =
O(p1/6/e1/3), since p can be assumed to be at most (log 1) /€. Otherwise, ||A — A ||gp > —p1/3161/3 05 (A),

and we only require a (1 + €%/3/p'/3)-approximate solution instead (compare with Equation (2.5)).
Using gap-independent bounds (see Lemma 5.2), it suffices to start with block size 1 and run
O(log(n/ e)pl/e/el/ 3) iterations to obtain a (1 + e23/pt/ 3)-approximate solution.

Avoiding a Gap-Dependent Bound. We note that even when there is a constant gap between the
first and second singular values, and the per vector guarantee is highly accurate, i.e., forall i € [k],
|AZ. ;||* > a2(A) - poly (§) o7, ,(A), it is not clear how to lower bound ||AZ||gp in Equation 2.9. In
general, the best bound we can obtain using the above equation is

€ 2 p-2

IAZI = A - 0(
which may be vacuous when the top k singular values are significantly larger than oy, and p > 2.
One could revert to a gap-dependent bound, where the error is in terms of the gap between o1 and
0k+1, which one could account for by running an extra factor of O(log(ol / ak+1)) iterations.

To avoid this gap-dependent bound, we split A into a head part Ay and a tail part Ar, such that
Ap has all singular values that are at least (1 + 1/d) ox+1 and A has the remaining singular values.
We then bound ||Ag (I1-ZZT7)|| S, and ||[Ar(I1-ZZ7)|| S, separately. Repeating the above analysis,
we can obtain Equation (2.10) for Ar instead, and since all singular values larger than o441 in At



are bounded, we can obtain ||Ar (I - ZZT)|IZP < O(ek/poly(d)) af .1- To adapt the analysis for At
and obtain this bound, we use Cauchy’s interlacing theorem to relate the j-th singular value of
Ar (I-ZZT7) to the (i* + j)-th singular value of A (I - ZZT), where i* is the rank of Ay;. We lower
bound the (i* + j)-th singular value of A (I — ZZ") using the per vector guarantee of [MM15].

Tobound ||[Ag I1-ZZ7)|| s, We observe it has rank at most k and thus

s (1-227) 5, < VE- [An (1-227)], = VE - lAul? - [AnZIE,

and we show how to bound this term in Section 5. Intuitively, while the k-dimensional subspace
that we find can “swap out" singular vectors corresponding to singular values o; for which o;
is very close to oi41, since they serve equally well for a Schatten-p low-rank approximation, for
singular values o; that are a bit larger than ox.1, the k-dimensional subspace we find cannot do this.
More precisely, if y is a singular vector of Ay with singular value o;, then the projection of y onto
the k-dimensional subspace that our algorithm finds (namely, Z) must be at least 1 — o]% o/ ((af -

o]% .1)poly(d)), which suffices to bound the above since the additive error is inversely proportional

2

2 2
to o; when 05 > 01,y

and so the very tiny additive error negates the effect of very large singular
values.

2.2  Query Lower Bounds.

Our lower bounds rely on the hardness of estimating the smallest eigenvalue of a Wishart en-
semble (see Definition 4.15), as established in recent work of Braverman, Hazan, Simchowitz and
Woodworth [BHSW20]. In particular, [BHSW20] show that for a d X d instance W of a Wishart
ensemble, estimating A;(W) (minimum eigenvalue) to additive error 1/d? requires Q(d) adaptive
matrix-vector product queries (see Theorem 3.1 in [BHSW20]). To obtain hardness for Schatten-p
low-rank approximation, we show that when d = © (1/€'/3), any candidate unit vector z that
satisfies [|(I— W/5) (I - zzT)llgp < (1 + e)minyy 1 II- W/5) (I - uuT)ngp , can be used to obtain

an estimate A4 = 2 (1 - ||(T - W/5) zl;) such that Ai=(1£1/d*)As(I-W/5). Let A = (I- W/5).
To show our query lower bound, in contrast to the analysis of our algorithm, the challenge is now
to lower bound ||A (I - zzT)llg in terms of ||A||g and ||Az ||Z (contrast with Equation (2.9)).

P P

Projection Cost via Araki-Lieb-Thirring. First, we note that the case of p = 2 is easy given the
Pythagorean theorem. For p € [1,2), we can establish an inequality fairly straightforwardly: using
the trace inner product definition of Schatten-p (see Definition 4.7 ) norms, we have,

A (= zzT)[fy, = Tr (((1 — 22T A2 (1 zzT)z)p/z) , (2.11)

10



Since p/2 € [1/2,1), we can use the reverse Araki-Lieb-Thirring inequality (see Fact 4.10) to show
that

Tr (((I —227)? A2 (I- zzT)z)p/z) >Tr((I-2zz") AP (I-2zz"))

=Tr(A?)-Tr ((ZZT)P/2 (Az)P/Z (ZZT)p/Z) (2.12)
> [IAlf - [lazzT]5,

where we use the cyclicity of the trace and again use reverse Araki-Lieb-Thirring (Fact 4.10) to show
that

v
2

Tr ((ZZT)% (A?) (zzT)g) <Tr ((ZZTAZZZT)p/Z) = ”AZZTHZP .

Since we have ||AzzT||gp = ||Az]|}, we conclude ||A (I - ZZT)Ilgp > ||A||gp —||AzzT||§ . This approach
only works for p € [1,2); for p > 2 the application of Araki-Lieb-Thirring is reversed in Equation
2.12 (since p/2 > 1, see Fact 4.10) and we no longer get a lower bound on the cost in Equation 2.11.
We therefore require a new approach.

Projection Cost via Norm Compression. Recall, z is the unit vector output by our candidate
low-rank approximation and let y = Az/||Az|,. We yet again interpret the input matrix A as a
partitioned operator by considering the projection of A onto zz", yy ' and the projection away
from these rank-1 subspaces. In particular, letI — yy" = YY", and I — zz" = ZZ", where Y and Z
have orthonormal columns. Then, using a rotation argument, we show that

yTAz yTAZ
IAlls, =11 yTaz YTAZ

SP
We define the p-compression of A, Cp p:

ly7Azlls (v Az]s,
IYTAzlls, [YTAZIL,

Ap —

Torelate thenorms of A and Cy p, we consider Audenaert’s Norm Compression Conjecture [Aud08],
a question in functional analysis concerning operator inequalities (see also [AK12]):

Conjecture 2.2 (Schatten-p Norm Compression). Let M be a partitioned operator (block matrix) such

M M
M; Mz)' Let Cagp = Mills, [[M2lls,
M; My IMslls, Ml
compression of M for any p > 1. Then, ||M||3p > ”CM/P”Sp ifl <p <2 and ||M||Sp < ”CMrP”Sp if
2<p<oo.

that M = ( be a 2 X 2 matrix that denotes the Schatten-p

We could simply appeal to this conjecture to obtain that for all p > 2,

lyy™Azz"]s, lyyTA (- zzT), )

1Alls, <[|Caslls, = H( 0=y Azz g [T yyT) A@-z=T, (2.13)

Sp
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However, for our choice of y, ||[yyTA (I — zzT)” s, = 0. With padding and rotation arguments, we
can then reduce our problem to a block matrix where the blocks in each row are aligned, i.e., each
row is a scalar multiple of a fixed matrix (see Lemma 6.6). Then, we can use one of the few special
cases of Conjecture 2.2 for aligned operators which has actually been proved, and appears in Fact
4.14. We can thus unconditionally obtain the inequality in Equation (2.13).

Now that we have reduced to the case where we have a 2 X 2 matrix with 3 non-zero entries, we
would like to bound its Schatten-p norm. We explicitly compute the singular values of Cp ,, (see

Fact 6.7 ), and then use the structure of the instance to directly lower bound ||Az ||§ as follows:
1AzI5 + (1+0(e¥7) ) 1A - Aully, > [[Calls, = AN, (2.14)

where the last inequality follows from Equation (2.13). Since we understand the spectrum of the
matrix A, we can explicitly compute all the terms in (2.14) above and show that we can obtain an
accurate estimate of the minimum singular value of A from ||Az|| g. See details in Section 6.2.

3 Additional Related Work

Existing approaches to solve low-rank approximation problems under several norms fall into
two broad categories: iterative methods and linear sketching. Iterative methods, such as Krylov
subspace based methods, are captured by the matrix-vector product framework, whereas linear
sketching allows for the choice of a matrix S € R where t is the number of “queries”, and
then observes the product S - A and so on (see [Wool4] and references therein). The model
has important applications to streaming and distributed algorithms and several recent works
have focused on estimating spectral norms and the top singular values [AN13, LNW14a, LW16b,
BBK"21], estimating Schatten and Ky-Fan norms [LW16b, LW17, LW16a, BKKS19] and low-rank
approximation [CW13, MM13b, NN13, BDN15, Coh16].

In addition to studying unitarily invariant norms, such as the Schatten norm, there also has been
significant amount of work on studying low-rank approximation under matrix ¢, norms [SWZ17,
BBB*19, SWZ20, MW21] and weighted low-rank approximation [S]03, RSW16, BWZ19], settings
in which the problem is known to be NP-Hard. Finally, there has been a recent flurry of work
on sublinear time algorithms for low-rank approximation under various structural assumptions
on the input [MW17b, BW18, IVWW19, SW19, BCW20] and in quantum-inspired models [KP16,
CLW18, Tan19, RSML18, GLT18, GSLW19, CCHW20].

4 Preliminaries

Given an n X d matrix A with rank r, and n > d, we can compute its singular value decomposition,
denoted by SVD(A) = UXV'T, such that U is an n X r matrix with orthonormal columns, VT is
an r X d matrix with orthonormal rows and 3 is an r x r diagonal matrix. The entries along the
diagonal are the singular values of A, denoted by 01, 07 ... 0,. Given aninteger k < r, we define the
truncated singular value decomposition of A that zeros out all but the top k singular values of A, i.e.,

12



Ay = U VT, where 3 has only k non-zero entries along the diagonal. It is well-known that the
truncated SVD computes the best rank-k approximation to A under any unitarily invariant norm,
but in particular for any Schatten-p norm (defined below), we have Ay = mingnix)=k [|A — X|| S,
More generally, for any matrix M, we use the notation My and M, to denote the first k components

and all but the first k components respectively. We use M; . and M. ; to refer to the i*"

row and j*"
column of M respectively.

We use the notation I to denote a truncated identity matrix, that is, a square matrix with its top
k diagonal entries equal to one, and all other entries zero. The dimension of Iy will be determined

by context.

Definition 4.1 (Orthogonal Projection Matrices). Given a d X d symmetric matrix P and k € [d], P
is a rank-k orthogonal projection matrix if rank(P) = k and P? = P.

It follows from the above definition that P has eigenvalues that are either 0 or 1 and admits a
singular value decomposition of the form UUT where U has k orthonormal columns.

Definition 4.2 (Unitary Matrices). Given a symmetric matrix U € R¥ we say U is a unitary matrix
ifUTU=UU" =L

Definition 4.3 (Rotation Matrices). Given a symmetric matrix R € R™? we say R is a rotation
matrix if R is unitary and det (R) = 1.

Fact 4.4 (Courant-Fischer for Singular Values). Given an n X d matrix A with singular values o1 >
02 > ... > 0y, the following holds: forall i € [d],

0;j = max min ||xTA||2 )
S: dim(S)=i x€S: ||x||,=1
Fact 4.5 (Weyl’s Inequality for Singular Values (see Exercise 22 [Tao20])). Given n x d matrices X, Y,
foranyi,(j—1) € [d]suchthati+j<d,
oivj X+Y) < 0:(X) + 0j4+1(Y).

Fact 4.6 (Bernoulli’s Inequality). Forany x,p € Rsuch that x > =landp >1,(1+ x)/ > 1+ px.

Schatten Norms and Trace Inequalities. We recall some basic facts for Schatten-p norms. We
also require the following trace and operator inequalities.

Definition 4.7 (Schatten-p Norm). Given a matrix A € R™ let g1 > 0y > ... > 04 be the singular
values of A. Then, for any p € [0, o), the Schatten-p norm of A is defined as
1/p
T a2\ p
IAlls, = Tr (A7A)2) 7 =| 3" ol (a)
ie[d)

Fact 4.8 (Schatten-p norms are Unitarily Invariant). Given an n X d matrix M, for any m X n matrix
U with orthonormal columns, a norm || - ||x is defined to be unitarily invariant if ||[UM||x = |[M||x. The
Schatten-p norm is unitarily invariant for all p > 1.

13



There exists a closed-form expression for the low-rank approximation problem under Schatten-
p norms:

Fact 4.9 (Schatten-p Low-Rank Approximation). Given a matrix A € R™ and an integer k € N,

A = i A-X ,
k=arg min I Ils,

where Ay is the truncated SVD of A.

Fact 4.10 (Araki-Lieb-Thirring Inequality [Ara90]). Given PSD matrices A, B € R™%, for any r > 1,
the following inequality holds:
Tr ((BAB)') < Tr (B"A’B").

Further, for 0 < r < 1, the reverse holds
Tr ((BAB)r) > Tr(B"A’B").

Fact 4.11 (Mahler’s Orthogonal Operator Inequality, Theorem 1.7 in [Mah90]). Given p > 2, and
matrices P and Q such that the row (column) span of P is orthogonal to the row (column) span of Q, the
following inequality holds:

IPI + QI < (1P + QI -

Fact 4.12 (Holder’s Inequality for Schatten-p Norms, Corollary 4.2.6 [Bhal3]). Given matrices
A, BT € R™ and p € [1, o), the following holds

IABls, < llAlls, - IBlls, ,

for any q, r such that % = % +1

We also require pinching inequalities that were originally introduced to relate norms for parti-
tioned operators over direct sums of Hilbert spaces. In our context, these inequalities simplify to
norm inequalities for block matrices:

Fact 4.13 (Pinching Inequalities for Schatten-p Norms, [BKLO02]). Let M € Rt pe the following
block matrix

Mayy Mag -0 May
Mp1y Mg -+ Mg,
M= | Men Mea | an |
M) Mo -0 Mgy

where for all i,j € [t], M jy € R™4. For all p > 1, the following inequality holds:
1p

> IMaalls, | =< IMIls, -
i€[t]

We also require a norm compression inequality that is a special case of Conjecture 2.2 (and
known to be true), when each block is aligned in the following sense:

14



M M
Fact 4.14 (Aligned Norm Compression Inequality, Section 4.3 in [Aud08]). Let M = ( Ml M2) such
3 My

that there exist scalars a1, aa, B1, P2 such that My = a1X, Mo = axX, M3 = 1Yand My = B2Y. Then, for
anyp =2,
Mills, [IM2lls
Mlls, < : P
Mslls, [[Malls,

SP
Random Matrix Theory. Next, we recall some basic facts for Wishart ensembles from random
matrix theory (we refer the reader to [Tao12] for a comprehensive overview).

Definition 4.15 (Wishart Ensemble). An n X n matrix W is sampled from a Wishart Ensemble,
Wishart(n), if W = XX such that forall i, j € [n] X;,; ~ N (0, 11).
Fact 4.16 (Norms of a Wishart Ensemble). Let W ~ Wishart(n) such that n = Q(1/&3). Then, with
probability 99/100, ||W|,, < 5 and for any fixed constant p, | I- %W”g =0 (é}ﬁ)

4

5 Algorithms for Schatten-p LRA

In this section, we focus on obtaining algorithms for low-rank approximation in Schatten-p norm,
simultaneously for all real, not necessarily constant, p € [1,O(log(d)/€)]. For the special case of
p € {2, 00}, Musco and Musco [MM15] showed an algorithm with matrix-vector query complexity
O(k/e'/?), given below as Algorithm 5.6. We show that the number of matrix-vector products we
require scales proportional to O (kp'/®/€'/3) instead. Finally, recall when p > log(d)/e, it suffices
to run Block Krylov for p = oo, which requires O(log(d/e)k/+/€) matrix-vector products.

Theorem 5.1 (Optimal Schatten-p Low-Rank Approximation). Given a matrix A € R™4, a target

rank k € [d], an accuracy parameter € € (0,1) and any p € [1,0(log(d)/¢€)], Algorithm 5.3 performs
O(kp1/6 log(d/e)

173

columns such that with probability at least 9/10,

[a@-zz7)s, <1+e) min la (1-uuT) ||, -

+ log(d/ e)k\/ﬁ) matrix-vector products and outputs a d X k matrix Z with orthonormal

1/6 2 (w-1)/60-1
Further, in the RAM model, the algorithm runs in time O (nnz(A)p 611;310g (@/e) + 22 k )

elw=-1)/3
We first introduce the following lemmas from Musco and Musco [MM15] that provide conver-
gence bounds for the performance of Block Krylov Iteration (Algorithm 5.6) :

Lemma 5.2 (Gap Independent Block Krylov with Arbitrary Accuracy). Let A be an n X d matrix, k be
the target rank and y > 0 be an accuracy parameter. Then, initializing Algorithm 5.6 with block size k and
running for g = Q (log(d/y)/+[y) iterations outputs a d X k matrix Z such that with probability 99/100,
forall i € [k],

IAZ. ;|I5 = 0% = YO,
Further, the total number of matrix-vector products is O(kq) and the running time in the RAM model is
O(nnz(A)kq +n (kq)* + (kq)w).
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The aforementioned lemma follows directly from Theorem 1 in [MM15], using the per-vector
error guarantee (3).

Algorithm 5.3 (Optimal Schatten-p Low-rank Approximation).

Input: Ann X d matrix A, target rank k < d, accuracy parameter 0 < ¢ <1,and p > 1.

1. Lety; = ¢2/3/p!/3. Run Block Krylov Iteration (Algorithm 5.6) on A with block size
k, and number of iterations g = O(log(d/y1)/~/y1 +log(d/€)\/p). Let Z; € Rk be
the corresponding output with orthonormal columns.

2. Run Block Krylov Iteration (Algorithm 5.6) on AT with block size k, and number of
iterations g = O(log(d/y1)/+/71)- Let Wy € R"™¥ be the corresponding output with
orthonormal columns.

3. Lety, = eandlets = O(p~'/3k/'/3). Run Block Krylov Iteration (Algorithm 5.6) on
AT with block size s, and number of iterations g = O(log(d/y2)y/p). Let W, € R
be the corresponding output with orthonormal columns.

4. Run Block Krylov on A with target rank k + 1 and number of iterations q =

O((log(dp) + log(d/€))/F), and let Z; be the resulting d x (k + 1) output matrix.
2

A 2 A
Compute 6% = HA(Z1)*,1 ‘2 and 6% = HA(Z1)*,k+1 )’ rough estimates of the 1-st and

(k + 1)-st singular values of A. Run Block Krylov on A with target rank s, where
s = O(p‘1/3k/el/3) and iterations g = O(log(d/e)/p), and let Z, be the resulting

2
, an estimate to the s-th singular

d X s output matrix. Compute 62 = HA(ZZ)*,S

value of A.

5. 1f 67 > (1+0.5/p)d7,,, set Z = Z;. Else, if 62 < 67 /(1+0.5/p), set Z to be an
orthonormal basis for A"'WZWZT and otherwise set Z to be an orthonormal basis for
ATW,WT.

Output: A matrix Z € R™* with orthonormal columns such that

A (1-2zZT)|[s <(1+e) g in I (- ouT) -

Lemma 5.4 (Gap Dependent Block Krylov, Theorem 13 [MM15]). Let A be an n X d matrix and y > 0,
be an accuracy parameter and p,k € N be such that b > k. Let 01,02 ...04 be the singular values of
A. Then, initializing Algorithm 5.6 with block size b and running for g = Q (log(n/y)\ok/\/ok — 05)
iterations outputs a d X k matrix Z such that with probability 99/100, for all i € [k]

IAZ.ll; = of + yo,,.
Further, the total number of matrix-vector products is O(pq) and the running time in the RAM model is

O(nnz(A)bq +n (bg)* + (bq)w).
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Next, we prove the following key lemma relating the Schatten-p norm of row and column
projections applied to a matrix A to the Schatten-p norm of the matrix itself. We can interpret this
lemma as an extension of the Pythagorean Theorem to Schatten-p spaces and believe this lemma
is of independent interest. We note that we appeal to pinching inequality for partitioned operators
to obtain this lemma.

Lemma 5.5 (Schatten-p Norms for Orthogonal Projections). Let A be an n X d matrix, let P bean n Xn
matrix, and let Q be a d X d matrix such that both P and Q are orthogonal projection matrices of rank k (see
Definition 4.1). Then, the following inequality holds for all p > 1:

Al > IIPAQI + IT-P)A (- QI -

Proof. Let A = USVT be the SVD of A, where U € R™? and VT € R have orthonormal columns
and rows respectively. We construct unitary matrices R and S, such that R € R™" and S € R4
that satisfy the following constraints:

1. RTIkRASTLS = PAQ, and
2. RTI-L)RAST(I-I)S=(1-P)A(I-Q),

where the trunctated Identity matrix, I, left multiplying A is n X n and right multiplying A is d X d.

Recall, since P is a rank-k projection matrix, it admits a decomposition P = XX such that X
has k orthonormal columns and similarly I - P = YYT, where Y has n — k orthonormal columns.
Further, since X and Y span disjoint subspaces, and the union of their span is R", the matrix (X | Y),
obtained by concatenating their columns, is unitary. Then, it suffices to set R = (X | Y)". To see

this, observe,
.

R'IR =(X|0)- (X

=XXT =P,
)

and similarly,
RTI-L)R=YY =I-P.

We repeat the above argument for the projection matrix Q. Let Q = WW'T, where W is d X k and
has orthonormal columns, and I - Q = ZZT, where Z is d X (d — k) and has orthonormal columns.
Observe, it suffices to set S = (W | Z)T, since S is unitary and S'TI;S=Qand ST(I-1)S=1-Q.
Note, by construction, we satisfy the two aforementioned constraints.

Let A = RAS™. Since R and S are unitary, it follows from unitary invariance of the Schatten-p
norm that

HAHS = [RUSVTST|| = lAlls, (5.1)
P

Further, observe for any n X d matrix M, we have have the following block decomposition

M=IiMI; +iM(I-I;) + (I-Tx) MI; + I -I;) M- I)

[ Mgk Mukk+td
- 7
Miitn e Miitin ks1:d
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where the notation M;.» j.i» picks the (i’ —i+1)X(j’ —j+1) sized sub-matrix corresponding to the rows
indices [i, 1] and column indices [}, j’]. Since appending rows and columns of 0’s does not change
the singular values, we have ||IkMIk||Sp = ||M1:k,1:k||5p and || -T,) M- Ik)”sp = ||Mk+1;n,k+1:d||5p.

Setting M = A, we have

A A p
‘A P ( Avkik  Avkkild )
Sy Aksn ik Aksinkitd/llg)
R p n P
> ([Avk1:k +HAk+1:n,k+l:d (52)
S, S

P

= IkAIk

p ~
+|a-Aa-1
SP

4
Sy’
where the inequality follows from using the pinching inequality on the block matrix (see Fact 4.13).
By the unitary invariance of the Schatten-p norm, we have

HI Arl = (RTI Arns|’ = pag|f
k k Sp - k k Sp - Sp 7
and similarly,
A 14 ~ 14
|a-wAa-1f, =[rR"a-wAa-1s| =1a-raa- .
4 4

Plugging these two bounds back into Equation (5.2), along with Equation (5.1), we can conclude,

Al > IIPAQI + IT-P)A (- QI -

Algorithm 5.6 (Block Krylov Iteration, [MM15]).

Input: An n X d matrix A, target rank k, iteration count g4 and a block size parameter s such
that k <s < d.

1. Let U be a n X s matrix such that each entry is drawn ii.d. from N(0,1). Let
K = [ATU;(ATA)ATU; (ATAYATU;...; (ATA)TATU] be the d X s(q + 1) Krylov
matrix obtained by concatenating the matrices ATU, ..., (ATA)T ATU.

2. Compute an orthonomal basis Q for the column span of K. Let M = QTATAQ.

3. Compute the top k left singular vectors of M, and denote them by Y.

Output: Z = QY

Note, despite establishing Lemma 5.5, it is not immediately apparent how to lower bound
|IAZZT||". , where Z is a candidate solution. Next, we show how to translate a guarantee on the
4

Euclidean norm of A times a column of Z to a lower bound on |AZZ" ||f; .
4
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Lemma 5.7 (Per-Vector Guarantees to Schatten Norms). Let A be an n X d matrix with singular values
denoted by {o0; (A)}ie(a)- Let Z be a d x k matrix with orthonormal columns that is output by Algorithm
5.6, such that for all i € [k], with probability at least 99/100, ||AZ*,i||§ > 01.2 (A) — yo,%+1 (A), for some
y €(0,1). Then, for any p > 1, we have

IAZZT|[5 = IAdls, - O(rp) ) oty (M) ol (A).
i€[k]

Proof. First, we observe that it suffices to show that 0;(AZ)? > ||Azi||§, where z; is shorthand for
Z.;, the i-th columm of Z. Assuming this inequality holds, we can complete the proof as follows:
we know that for all i € [k],

0X(AZ) > ||Azi|l; > 0%(A) - yo?, (A)

o2y 1o yo,%H(A) (5.3)
| o2(A)
Then, taking p/2-th powers in (5.3),
o2, ()"
P(AZ) > ol (A) [1 -y 2L
0; (AZ) 2 0; (A) yaf(A)
o (A (54)
> o'(A) [1- o Lo i (A)
/ (A)

= o/(&) = 0(yp) ot (M)} (A)

where the second inequality follows from the generalized Bernoulli inequality (see Fact 4.6). Sum-
ming over all i € [k], we can conclude

IAZIfg = Al — ) O(yp) of, (A) o}~ (A).
ie[k]

Therefore, it remains to show that 0;(AZ)* > ||Az; ||§. First, we recall that Algorithm 5.6 outputs
{zi}ie[x) such that z; = QZ;, where Q is an orthonormal basis for the Krylov space K (an d X s(g +1)
matrix) and Z; is the i-th singular vector of QTATAQ. Note that the Z;’s are s(g + 1)-dimensional
vectors. Let WQW T be the SVD of QTATAQ. Then, QWQWTQT is the SVD of QQTATAQQT'. To
see this, let the i-th column of QW be denoted by QW., ;. Then,

(QW.;,QW.;) =W .Q"QW,; =1
and similarly for any j # i,
(QW.;, QW. ;) = W] .Q"QW, ; = 0

where we use that QTQ = I and the columns of W are orthonormal, which holds by definition.
Therefore, z; = QZ; is the i-th singular vector of QQTATAQQT. Let Z be the matrix obtained by
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stacking the vectors Z; together. Then, we have

0i(AZ)* = 07(AQZ) = 07(AQ)
= 07(AQQ")
=2z QQ"ATAQQ"z;
=z ATAz;

(5.5)

where the first equality follows from the definition of Z, the second follows from observing that
Z are the singular vectors of AQ as shown above, the third follows from QT having orthonormal
rows, the fourth from z; being the i-th singular vector of AQQT and the last from observing that
z; is in the column span of Q and thus QQ7z; = z;. This concludes the proof. O

Finally, we also need the following lemma:

Lemma 5.8 (Singular Values to Alignment of Singular Vectors). Let A = UXVT be the SVD and let
Z be a d X k orthonormal matrix such that for all i € [k], ||AZ., 1-||§ > 02 (A) —(e/d)o kH,for some fixed
constant ¢ > 10. Further, assume there exists a j* € [k]such that forall j € [j*], 2(A) >(1+e€/d) Gk+1(A)
and 0]%+1(A) <(1-¢€/d) a]{(A). Then,

2
Hv].tz ‘F > it~ (e/d)?,

where V]I is the top-j* rows of V.

Proof. First, using our hypothesis and summing over all ¢ € [j*], we have

Z IAZ. (|I? > [|AF|[ - (e/d) "o, (5.6)
telj*]

Let B be a d X k matrix with entries bj, = (V].T*Z*,g)z, and let v; = X}y¢(j+1 bje. Using this notation,
and since V and Z are orthonormal we have

v; < Y bje < 1forje[d] (5.7)
le[k]
D bje<1fort e k] (5.8)
jeld]
DNAZGIE = ) o= ) ooy, (59)
£elj'] jeld] jeld]
telj']

where we abbreviate 0;(A) by o; in this proof. Define a by

a=j - ‘VTZ‘ —]—Zb]g<]—Zvj, (5.10)
IS jeli’l
teik]
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so the claim of the lemma is an upper bound on a. If @ < 0 the lemma follows, so assume a > 0.
We will show the inequality

D IAZ 3= Y oPo; < Al - (5F) o2 (5.11)

eefj] jeld]

Assuming this, and comparing it with the lower bound on the LHS in (5.6), we can then conclude
that

e\ 1 5 ea ,
(5) otz (5.12)

which in turn bounds a < (%)6_3, which is the claim of the lemma.
It remains to show (5.11). We have constraints (5.7) and (5.10) on v;, and also

Doj= > Y b= > bu<jby(58) (5.13)

jeld] telj*] jeld] lelj* jeld]

The maximum value of ), jeld] 0]20]' under constraints (5.7), (5.10), and (5.13) results by pushing all

the “weight” of }}; v; to the larger 0]2 to the maximum extent possible, that is, for j = |j* — a],
setting

A

i < 1forj € [j]
v]e L ma- 7
vje—1forj=j7+1,...,j" + |a]
Uptlaj+1 < & — Lal.
This is under the assumption that ). ;¢4 v; is equal to its upper bound; it might be smaller, but if so,
jeld] a]zv j can only be smaller. However, if @ > 1, then vj.41 = 1 in the above, and by hypothesis
O]%H <(1-¢€¢/d) o]{, and so Zj o?vj < ||A]||12: - (e/d)o]%, contradicting (5.6). So a < 1, and the
above simplifies to
vj < 1forje[j" 1]
'U]'* —1-«a

qu.] — (.
With this maximizing assignment, we have:

S Y (- +adk, < Al - () o2
P iY== j i et = UE =\ ) O

jeld] jelj-1]

T
ij*z

proving (5.11), which then implies the lemma as discussed.
]

Finally, we need a lemma relating the Schatten-p norm of AZ to that of W' A, where Z is an
arbitrary orthonormal basis and W is an orthonormal basis for AZ.
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Lemma 5.9. Given a full-rank n X d matrix A, let Z be a d X k matrix with orthonormal columns. Further,
let W be an n X k matrix with orthonormal columns such that W is a basis for AZ. Then, for all i € [k],

o; (WTA) > 0, (AZ)

Proof. We use the following fact that for two matrices A and B, we have that for all i, 0;(A - B) <
gi(A) - 01(B); see, e.g., (2) in [LC15] and references [33-36] therein.
Using this fact, we have

0i(AZ) = 6;(AZZT) = 6;( WWTAZZT) < 6;(WWTA) - 61(ZZ") = 6;(WWTA) = 5;(WTA),

where we have used that 61(ZZ") = 1 since ZZT is a projection matrix, and the fact that WWT is a
basis for the column span of AZ. Raising both sides to the p-th power establishes the lemma.
O

We now have all the ingredients we need to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Observe, using Lemma 5.2 with probability at least 97/100, Step 3 of Al-
gorithm 5.3 outputs 67 = (1+0.1/p)o}, 62, = (1£0.1/p) o7, , and 62 = (1£0.1/p) o2, for
s = O(kp~'/3/€'/?). Condition on this event. Our proof proceeds via case analysis. The case where
there is at least a constant gap between the first and (k + 1)-st singular value is easy to handle since
we can use gap-dependent guarantees to obtain highly accurate estimates of the top-k singular
values. When there is no gap, either the Schatten-p norm of the tail is large compared to the
(k + 1)-st singular value, and we don’t require a highly accurate solution, or the Schatten-p norm
of the tail is small, and increasing the block size induces a gap. We formalize this intuition into a
proof.

Let us first consider the case where there is a constant gap between the top and the (k + 1)-st
singular values, i.e., 01 > (1 +1/p)ok+1. Observe, since we have (1 + 0.1/p)-approximate estimates
to 01 and o041, we can detect that we are in this case and Algorithm 5.3 outputs Z = Z;. We
further observe that the Algorithm 5.3 runs at least Q(log(d/€)+/p) iterations (since p < log(d)/e€)
since Z = Z;. We observe that in this case, there exists a gap of size p between o1 and 041, since
1—0+1/01 < 1/p. Itfollows from Lemma 5.4 that running Block Krylov Iteration for O(log(d/ eNp )
iterations with block size > k suffices to output a matrix Z such that with probability at least 99/100,
forall i € [k],
€
d
We note that we cannot simply take p/2-th powers here (for large p) as this would introduce cross
terms that scale proportional to g;(A), which can be significantly larger than o+1(A). Instead, we
require a finer analysis by splitting A into a head and tail term.

Let A = UXVT be the SVD of A and for all j € [d], let v; = V;* denote the j-th row of VT. By

IAZ. ;|2 > 02(A) - poly( )aiH(A). (5.14)
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the Pythagorean Theorem, we have

IAZ|Z = | AZIZ + [|(A - A Z||2
< [2evizll; + o2, [0 - Vevy) Z];

2 2
_ 2 T 2 2 T
=3 oo zL+ak+1 IzIE - > v].ZL (5.15)
i) k)
T 2 2
= E ( 0k+1) ]Z‘2+0k+1k.

jelk]

Summing over j € [k] for the guarantee obtained in Equation 5.14, we have

2
IAZI} = )" |AZ[l; = Y o? = O(yk) o2, (5.16)
jelk] jelk]

where y = poly(e/d). Combining Equations (5.15) and (5.16), we can conclude
2 2_ 2 |1
Z (a] - Gk+1) O(yk) Gk+1 Z (aj - Uk+1) Hv]. ZHZ. (5.17)
jelk] jelk]

i1+ Next, let j* € [j/, k]
be such that oj-y1 < (1 — €/d)oj-. Observe, such a j* is guaranteed to exist since there is a gap

Letj’ € [k] be the largest integer such that forall j < j/, 0]2 > (1+¢€/d)o}

2
X < 1, we can restate Equation (5.17), as follows:

between o1 and ox,41. Since ||v]

2 2
2 2_ 2 2_ 2
S (=)ot = 3 (G-t )l 3 (-t
jelk] i€l JEl*+1,k]
2
2_ 2 2_ 2
< Z (oj—ok+1)‘v].TZ‘2+ o} —0k+1)
jelj’] JE*+1.k]
Subtracting e[ 4+1,k] ( oy +1) from both sides, and rearranging, we have
2_ 2 2 2 | 2|7
Z (aj —ak+1)—0(yk)ak+1+ak+1 ZL < Z Jj ‘v]-ZL. (5.18)
jelj] jelj] jeli]
We are now ready to bound ||A (I-ZZT)| s,- By the triangle inequality,
la (t-2z7)[ls, <|lay (1-227)]s +[[(a - Ap) (1-2Z7)], (5.19)

227, < VE[A (-
with p = 1 achieving the worst inequality. Therefore, using the Pythagorean theorem again, and

” since Aj- has rank at most k,
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plugging in the lower bound from Equation (5.18)

1/2
2
2_ 2
Iy @-2z7)|ls, < Vk-| 3, 0~ 02 o] 2]
jelj*]
1/2
2
<Vk| Y or-( D (F-ctn)-00kat, + oty 3 [orz] || G20
jelj*] jelj*] jelj]
1/2
2
<o [~ 3 el oo
jelj*]
2
It therefore remains to lower bound e[+ HUJ.TZ‘L. Applying Lemma 5.8, we have,
T 2 T 2 e 4
> erz L - ij*z ‘F > i - O((e/d)}) (5.21)
jelj*]

Plugging back into Equation (5.20),
tion (5.19),

Aj(I- ZZT)” s, < O(%akﬂ) and thus substituting into Equa-

A (1-zz7)[| < 0(2) 1A - Axlls, +[|(A - Az) (1-2Z7)]5 - (5.22)

5.221

It remains to bound term 5.22.1 above.
Applying Lemma 5.5 with Q = ZZT and P = WW being the projection on the column span of
AZZT, we have

IA

(A -Ap) @-ZZT)[s < (A-Az)[ls —[[WWT (A- Az

= > d =) (W (A-Ay))

jelj+1,d] jelk]

Next, we show that for all j € [k], 0; (W' (A —Aj)) > gj4j- (WTA). Here, we invoke Fact 4.5
forX=(A-Aj)and Y = Aj,, withi = j and j = j*. Note, the precondition on the indices i, in
Fact 4.5 is satisfied since X, Y are n X k matrices, and j € [k] and j* < k. Then, we have

ojrj (WTA) = ojsj (WT (A - Aj) + WTA;)
<0j (W' (A-Aj)) +0/4 (WTA),

but WTA]‘* is a rank < j* matrix, and thus 041 (WTA]‘*) = 0. Therefore, we can conclude,

lAa-ap) @-zzN)s < >, of = >, of (WTA) (5.23)
jelj*+1,d] jelj* k+j*]

24



Recall, for all j € [k ] it follows from Equation (5.4) in the proof of Lemma 5.7 that op (AZ) >
P

U?(A) - O()/P) G£+1 j

forall j € [j*+1, k],

Further by definition, for j € [j* + 1,k + j*], 0; < (1 + €/d) o1 and thus,

o/ (AZ) > o} — (yp (1+e/d)” 2) O

> of - O(yp) ok, .,

(5.24)

where the last inequality uses that p = O(log(d)/€). Finally, it follows from Lemma 5.9 that
of (WTA) > Of (AZ). Substituting this back into Equation (5.23), we have

l(A-ap)(t-2zzT)g < >, of = >, of +O(ykp)ol,
jeli+Ldl el +1K] (5.25)
< (1+O0(ypk)) I|A - Ak||§p .

Taking the p-th root and substituting back into Equation (5.22),
|A(1-2ZT) ||S (1+0(ypk)) Y7 A - Aills, +O( ) IA = Aklls, , (5.26)

and since y = poly (¢/d), we have ||A (I - ZZT)||SP <(1+0())|A - Ak||5p, which completes the
analysis for this case.

Next, we consider the case where the gap between the top and the (k + 1)-st singular value
is small, i.e., 01 < (1+1/p) ok+1. We yet again split into Cases and consider the case where the
Schatten-p norm of the tail is small, i.e. ||A — Akllp < pl /3ke1 7 o .- Observe, forany t € [1,d—k-1],

k k+1+t
PRVERY T = 1A= Acllg > Y ol 2tol, .. (5.27)
P i=k+1

(1+1/p)"k ( k

e m), we have o414+ < 0k41/(1+1/p). It suffices to show that

we can detect this gap for some s > k + 1 + f. Recall, we know that 6441 = (1 £0.1/p)0ok+1 and
Gs = (1+£0.1/p)os. Then, we have

6‘5 < (1+£) 05 < (1+£) Ok+1+t < (1+01) (;) Ok+1 < ;6'](4,1. (528)
P P p) \1+1/p (1+ 075)

Therefore, Algorithm 5.3 outputs Z, an orthonormal basis for ATWZ, where W, is obtained by
running Algorithm 5.6 on AT, initialized with a block size of ©® ( Tap173 ) and run for O(log(d/€)+/p)

iterations. Observe, since o114+ < 0k+1/ (1 +1/ p), this suffices to demonstrate a gap that depends
Gk_?;ml < p. Recall, we account for this gap by running O(log(d)+/p) iterations.
Using the gap dependent analysis (Lemma 5.4), we can conclude that with probability at least
99/100, for all i € [k],

Then, setting t =

on p as follows:

||AT(W2)*,1‘

> o7 — poly (d) ofﬂ. (5.29)
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Then, applying Lemma 5.7 with W, W, satisfying the guarantee in (5.29), we have

p p € 2 p2
”ATWZWzT“sp 2 ”Ak”sp - poly (3) Z Ok+19;
ie[k] (5.30)
€
> Ay, —poly (5) ol
where the last inequality uses that 01 < (1+1/p)ok+1 and (1+1/p)P~2 = O(1). Next, we use Lemma
5.5 to relate ||ATW2W2T ||g to [|[A(I—2ZZ")|%., where Z is an orthonormal basis for ATW,W;
P P
as output by the algorithm. Setting Q = ZZ" and P = W,W., we observe that ||PAQ||§ =
P
|ATWo WS = [WoWT Al and (- P)AI-Q)|If, =[|A(I—-2ZZ7)]|% . Then,invoking Lemma
P 4 P P
5.5 and plugging in Equation (5.30), we have
P _ 14 P 14
Ia-P)AT-QIf = A (X-2zz")[ <Al - [A™W2wWS |5

€
< Al - A, +poly (5) ol 631

< (1+poly () 1A - Al |

which concludes the analysis in this case.
As shown in Equation 5.28, we can detect a gap between 0114+ and ox4+1 by comparing 65 and
O0k+1. When 5.28 does not hold, we know that 6, > (1 + O.S/p) 0k+1 and Algorithm 5.3 outputs

Z, an orthonormal basis for ATW; W/ . Since we have (1 + 0.1/p)-approximate estimates to these
quantities, we can conclude that o5 > (1 +0.1/ p) o0k+1. Then, we have

k
p P_ p
||A—Ak||3p >s-0; =Q (61/3P1/3) Opiq

It therefore remains to consider the case where ||A — Ak||g > pl/g—'ém . oz .- for a fixed universal
P

constant c. Here, we note that the tail is large enough that an additive error of O(e?/3p!/3) oz
on each of the top-k singular values suffices. Formally, it follows from Lemma 5.2 (setting y =
€2/3p~1/3, and invoking it for AT) that initializing Algorithm 5.6 with block size k and running for
O(log(d/e)p'/®/€'/?) iterations suffices to output a n X k matrix Wy such that with probability at
least 99/100, for all i € [k],

2/3. -1/3 2

2
|AT (W), ; , 207 —ePpTPal .

Then, invoking Lemma 5.7 with AT and W as defined above, we have

r _ 14
laTwiwilfs, = [Wawi A,
_ -2
> 1Akl -~ )" O pPp) ot 1o (5.32)
i€[k]
> Al - O(ke?p??) ol

where the last inequality uses that 01 < (1 + 1/p)ok+1 and (1 + 1/p)? = O(1). Recall, in this case,
Algorithm 5.3 outputs ZZ" where Z is an orthonormal basis for ATW1W1T. Next, we invoke Lemma
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5.5 to relate ||ATW1W1T||Z to ||A(I- ZZT)||g . Setting Q = ZZ" and P = W; W/, we observe that
4 4
IPAQ|; = ||w1w1TA||§ and [[(I-P)A(T-Q)|; = |A(I-2ZZ")| . Then, invoking Lemma 5.5
P P 4 4
and plugging in Equation (5.32), we have

Ia-P)AX-Q)l =|a@-2zT)[5 <Al - [WiWTAlg

< 1Al — Al +O(ke2p?) o (533)

k+1
< (1+O(pe)) IIA - Ak||”p ,

where the last inequality follows from our assumption on the Schatten-p norm of the tail, given
the case we are in. Taking the (1/p)-th root, and recalling that € < 1/2, we obtain

A (1-2Z7)|s < (1+O0(e) 1A - Acll, (5.34)

which concludes the final case.

Next, we analyze the running time and matrix-vector products. Running Algorithm 5.6 with
z / . /
block size k for g = O(log(d)p'/®/€l/3) iterations requires O naz(Akp P 10g(@) ) im0 and (0] kp log(d)
q gld)p q SV

PSVE]

matrix-vector products. Similarly, running with block size O(k / (ep)l/ 3) for g = O(log(d/€)/p)

nnz(A)kp'/®log(d/e)\ .. kp'/®log(d)
73 time and O| ~—7>—

observe that to obtain a (1 +1/ p)—approximation to 01 and o0x4+1, we need O(log(d)\/ﬁ) iterations
with blocksize k + 1 and this requires O(log(d)/pk) matrix-vector products. Note, our setting of
the exponent of p and € was chosen to balance the two cases, and this concludes the proof.

iterations requires O( ) matrix-vector products. Finally, we

O

6 Query Lower Bounds

Next, we show that the e-dependence obtained by our algorithms for Schatten-p low-rank approxi-
mation is optimal in the restricted computation model of matrix-vector products. The matrix-vector
product model is defined as follows: given a matrix A, our algorithm is allowed to make adaptive
matrix-vector queries to A, where one matrix-vector query is of the form Av, for any v € R
Our lower bounds are information-theoretic and rely on the hardness of estimating the smallest
eigenvalue of a Wishart ensemble, as established in recent work of Braverman, Hazan, Simchowitz
and Woodworth [BHSW20].

We split the lower bounds into the case of p € [1,2] and p > 2. For p € [1,2], we have a
simple argument based on the Araki-Lieb-Thirring inequality (Fact 4.10), whereas for p > 2, our
lower bounds require an involved argument using a norm compression inequality for partitioned
operators (Fact 4.14).

6.1 Lower Bounds forp € [1,2]

The main lower bound we prove in this sub-section is as follows:
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Theorem 6.1 (Query Lower Bound for p € [1,2]). Given ¢ > 0, and p € [1,2], there exists a distribution
D over n X n matrices such that for A ~ D, any randomized algorithm that with probability at least 9/10
outputs a rank-1 matrix B such that ||A — Bllgp <(1+e¢)||A-A; ||gp must make Q(1/ &'/3) matrix-vector
queries to A.

We require the following theorem on the hardness of computing the minimum eigenvalue of a
Wishart Matrix, introduced recently by Braverman, Hazan, Simchowitz and Woodworth [BHSW20]:

Theorem 6.2 (Computing Min Eigenvalue of Wishart, Theorem 3.1 [BHSW20]). Given € € (0,1),
there exists a function d : (0, 1) — N such that for all d > d(€), the following holds. Let W ~ Wishart(d) be
a Wishart matrix and {A;};e[q) be the eigenvalues of W, in descending order. Then, there exists a universal
constant c* such that:

1. Let Cq be the event that Ay(W) < c1/d?, (o be the event that Ag_1(W) — Ag(W) > co/d?* and
C3 be the event that ||W||0p < 5, where c1 and cy are constants that depend only on €. Then,

Prw[CiNCNC3] 21— C*ze-

2. Any randomized algorithm that makes at most (1 — €)d adaptive matrix-vector queries and outputs
an estimate Ag must satisfy

. 1
Pr “/\d —/\d‘ > | > Ve

T 44

We also use the following lemma from [BHSW20] bounding the minimum eigenvalue of a
Wishart ensemble:

Lemma 6.3 (Non-Asymptotic Spectra of Wishart Ensembles, Corollary 3.3 [BHSW20]). Let W ~
Wishart(n) be such that n = Q(1/€%). Then, there exists a universal constant cy > 0 such that

1

1
Pr [An (W) > ) 2

>cy, and Pr [An (W) <

C
> 2
2

We are now ready to prove Theorem 6.1. Our high level approach is to show that we can take
any solution that is a (1 + ¢)-relative-error Schatten-p low-rank approximation to the hard instance
I- %W, where W is a Wishart ensemble, and extract from it an accurate estimate of the minimum
eigenvalue of W, thus appealing to the hardness stated in (2) of Theorem 6.2 above.

Proof of Theorem 6.1. Let n = © (1/€'/3) and let A = I - iW be an n X n instance where W ~
Wishart(n). Let C; be the event that [W||,, < 5. It follows from Fact 4.16 that C; holds with
probability at least 99/100, and we condition on this event. Let (; be the event that A,, (W) > nl—z =

£ and (5 be the event that A,, W) < =55 = B

c* 2z = 20t
Then, conditioning on C;, we have that

2/3

1—%An(w)§1—€

— (6.1)
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Similarly, conditioning on (3, we have that
2/3
~ 10c*

1- %An(W) > 1 (6.2)

We observe that for p € [1, 2], using Bernoulli’s inequality (Fact 4.6) we have

1 P P
(1 - gAn(W)) >1- LA, (W)

and since (1 — x)? < (1 — x) for any x € (0, 1), we also have that,

1 F 1
(1 - EAH(W)) <1- EAH(W)

Therefore, we can conclude, (1 - %/\n (W))p =1-0(A,(W)). Further, it follows from part (1) of
Fact4.16 that0 <I - %W <1, and thus

1 1 1
P _ p _ - . — I
Al = E A (1 5w) < E Ai (I 5w) 30(61/3) (6.3)
ien] icn]

where the last inequality follows from the fact that n = Vc*/e!/3. Let A; denote the best rank-1
approximation to A. Then, it follows from Equation (6.3) that

ella-Ailly <ellally <0(e*) (64)

Observe, any (1 + €)-approximate relative-error Schatten-p low-rank approximation algorithm for
k =1 outputs a matrix vv " such that

la (T-o0T)[fs <@ +e)llA-Adlly

< Al - Al +©() (6
By definition of the Schatten-p norm we have:
A (1- UUT)HZP =Tr (((I - UUT)ZAZ (I- UUT)z)p/Z)
> T ((1-007)" A7 (1-007))
=Tr (A? — APovo")
= Al ~Tr ((va)”/2 (A2)""? (wT)”/Z) (6.6)

> ||A||gp ~Tr ((UUTAZUUT)WZ)
_ P _ T||IP
= A1, - acoT]l;

= IIAIIZP ~ [|Av]l}
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where the first and last inequality follows from the reverse Araki-Lieb-Thirring inequality (Fact
4.10). Combining equations (6.5) and (6.6), we have that

IAllG, > lAvll; > [AllG, - ©(*?) (6.7)

Next, we observe that Av = (I - 1/5W) v can be computed with one additional matrix-vector
product and

P
1Al = (1 - éAn(W)) = 1= EA,(W) + O(A3(W) (68)

Consider the estimator )A\(W) = % (1 - || (I - %W) v||§) Combining equations (6.7) and (6.8), we can
conclude
A(W) = Amin(W) + ©(e?).

obtaining an additive error estimate to the minimum eigenvalue of W by computing an additional
matrix-vector product. It follows that we satisfy conditions (1) and (2) in Theorem 6.2 and thus
any algorithm for computing a rank-1 approximation to the matrix A = I - %W in Schatten p norm
must make at least ﬁ queries to the aforementioned matrix, completing the proof. The claim

follows from Theorem 6.2. O

6.2 Lower Bound forp > 2

We now consider the case when p > 2. We note that the previous approach no longer works since
we cannot lower bound the cost of || (I-W/5)(I—voT) || s, as the Araki-Lieb-Thirring inequality
reverses (see application in Equation 6.6). Therefore, we require a new approach, and appeal to
a special case of Conjecture 2.2 that is known to be true, i.e. the Aligned Norm Compression
inequality (see Fact 4.14). The main theorem we prove in this sub-section is as follows:

Theorem 6.4 (Query Lower Bound for p > 2). Given ¢ > 0, and p > 2 such that p = O(1), there

exists a distribution O over n X n matrices such that for A ~ D, any randomized algorithm that with

probability at least 99/100 outputs a unit vector u such that ||A — AuuTHg <(Q+e¢)l|A- A1||~pS must
4 P

make Q) (1/€/3) matrix-vector queries to A.
We first introduce a sequence of key lemmas required for our proof.

Corollary 6.5 (Special Case of Lemma 5.2). Given y € [0,1), a vector v € RY and an n X d matrix A,
let t = log(n/y)/(c+fy), for a fixed universal constant c. Then, there exists an algorithm that computes t
matrix-vector products with A and outputs a unit vector u such that with probability at least 99/100,

AL, = llAul < O (yo3).
where o7 is the second largest singular value of A.

Next, we prove a key lemma relating the norm of a matrix to norms of orthogonal projections
applied to the matrix. We note that this lemma is straight forward and holds for arbitrary vectors
unit u, v if Conjecture 2.2 holds. However, we show that we can transform our matrix to have
structure such that we can apply Fact 4.14 instead.
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Lemma 6.6 (Orthogonal Projectors to Block Matrices ). Given an n X d matrix A, p > 2 and unit
vectors u € R?, v € R", such that (I —voT) Auu™ = 0. Then, we have

IAlls, <

T T T _ T
loo™AuuTlls,  llooTAQ—uu")lls,
0 ||(I—va)A(I—uuT)||Sp

SP
Proof. LetI—ovov" = YYT, where Y has n — 1 orthonormal columns. Further, since v and Y span
disjoint subspaces, and the union of their span is R", the matrix (v | Y), obtained by concatenating
their columns is unitary. Then, let R = (v | Y)" and observe, R has orthonormal rows and columns
(since R is unitary). Next, letI —uu' = ZZT, where Z is d X (d — 1) and has orthonormal columns.
LetS = (u | Z)", and observe S has orthonormal rows and columns.

Let A = RAST, which admits the following block-matrix form:

A a o’ vTAu ovTAZ
A = . . = =
(YT) A-wl2) (YT) (Au | AZ) (YTAu YTAZ)

Since R and S are unitary, it follows from unitary invariance of the Schatten-p norm that

Ialls, = &
SP

(6.9)

Y'Au YTAZ 0 YTAZ

(UTAM UTAZ)

(UTAL{ UTAZ)

S, s, ’
where the last equality follows from observing that |[YT Au||r = [|[YYTAuu || = |[I-vo") AuuT||; =
0 and therefore YT Au is a matrix of all 0s. Next, we append a set of d — 2 columns of 0’s to make
the top left and top right block the same size. Since this does not change the singular values, we
have

IAlls, = (6.10)

0 0 YTAZ

(UTAM 0 UTAZ)

SP

Next, we construct a rotation matrix R such that on right multiplying a row vector by R, the first
d —1 coordinates remain the same and on the remaining coordinates, the vector v" AZ gets mapped
to celT for some scalar c. Let S be the d — 1 X d — 1 rotation matrix such that v " AZS = celT . Then,

I 0
R = ( 0 S) and it is easy to verify that R is unitary. Therefore,

vTAu 0 vTAZ _(vTAu 0 celT
0 0 YTAZ - 0 0 YTAZS

Now, we observe the final matrix above has a block matrix form we can apply the Aligned Norm
Compression inequality from Fact 4.14, with a1 = vTAu, az = ¢, f1 = 0 and B = 0, and therefore

1Al = vTAu 0 cef ||UTA”||SP 0 ||C€1T||Sp
Sp 0 0 YTAZS)|| ~ 0 0 [IYTAZS||s
’ TS 6.11)
T T T T )
_||(reoT AuuTi, ||vaAzzT||sp)
0 IYYTAZZT|s, s,
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where the last equality follows from unitary invariance and substituting the definition of YY" and
ZZT completes the proof.
O

Fact 6.7 (SVD of a 2 X 2 Matrix). Given a 2 X 2 matrix M = (i b) let UXVT be the SVD of M. Then,

d

a2+b2+C2+d2+\/(ﬂ2+b2—cz—d2)2+4(ac+bd)2
2 7

21,1 = \

and

cz2+b2+c2+d2—\/(cl2+192—c2—dZ)2+4(ac+bd)2
5 :

3o = \
Now, we are ready to prove Theorem 6.4.

Proof of Theorem 6.4. Let A = 1 — LW where W is an n X n Wishart matrix as in the proof of

Theorem 6.1 and we have by hypothesis that there is an algorithm that with probability at least

99/100, outputs a unit vector u such that ||A (I - uuT)H?S <(I+¢)||A- Al“f; . Letv = Au/||Au||,
P 4

and observe, (I —vv") Auu ' = 0. Further, by the unitary invariance of the Schatten-p norm,

[uTATAu|

= ||Au]l,. (6.12)
[Aull, 2

||UZ)TAML£T||S = |vTAu| =
14

Similarly,

looTA (1 - uu)||s = loTA @~ unT)IE = 0T AI - o AT
[uTATA|3
= \/—22 — || Aul3
1Au3

2 2
J luTATI3 - A,
< 0 -
Au|?

(6.13)

2
lIAul

< 61/3(72,

where we use sub-multiplicativity of the ¢, norm and Corollary 6.5 with y = €2/3. Note that we
can assume w.l.o.g. that Corollary 6.5 holds since we can just iterate Block Krylov g = (1/ce'/3)
times, for a sufficiently large constant c, starting the iterations with the vector u output by the
algorithm hypothesized for the theorem, and pay only (1/ce'/®) extra matrix-vector products.
Since voTA + Auu" —vo T Auu " has rank at most 3,

J-o07) A (= uuT)[fg, = [lA - 00T A - Aun” + 00" Aun |

> [|1A - Al

1
-0(5).
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where the last inequality follows from Fact 4.16.
T T T T
Coni o V) [ eTAwdTls,  ooTA@-unDl,
¢ d =\ Ia-voT) AunTlls, [I-ooT)AT-uuT)s,
Fact 6.7 that

-
) . Then, it follows from

311 (M) = %-\/az+c2+dz+\/(az—cz—dz)2+4(ac)2

(6.15)

1
:ﬁ\/a2+cz+d2+<c2+d2-“2>+®(m

a2c?
=\/Cz+d2+@(m)'

where we use that b = 0, c,a < 1 and 1 < d and the Taylor expansion of \/x +y for x,y > 0.
Similarly,

4q2c? )

) a?c?
22,2 (M) = a‘? -0 (m) (616)
Then, using equations (6.15) and (6.16) we can bound the Schatten-p norm of M as follows:
2,2 p/2 2,2 p/2
p s o asc » a“c
”M“Sp < (C +d +®(m)) +([1 —@(m)) . (6.17)
6.17.1 6.17.2

We now bound each of the terms above. Consider the first term:

S a2c? P/Z_ . e
c“+d +0 m = ||’UU A(I—uu )”Sp

p/2
+ ||(I -0 )A(I- uuT)”; +0 (82/3 ||Au||§)

(6.18)
< (0(e2%) + A t- w2 )"
s@+0&wﬂﬁm—Amp,

P

where we use equation (6.12), (6.13), and (6.14), and ||A (I - uuT)|I§p <(1+e?r|A- A1||?Sp. The
last inequality follows from observing that

1
2/3 4/3 4/3 — 2
e < O(e 62/3?7) < O(e ||A A1||Sp) .

We can now bound the second term in Equation 6.17 as follows:
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2 a*c? b2 2 2/3 2)\P/? P
-0 ||| = (I1auli-© (7 jaulE)) " < aul. (6.19)

Then, we have

IMI < (1+0(e¥7)) A - Aully +llAull.

It follows from Lemma 6.6, that ||M||g > ||A||g and thus
P P

lAully > Al - (1+0(e%7)) 1A - Adlly,

= 1A, - O(¢¥7) 1A - Al
’ (6.20)
> (1Al - OfellA - Al |

> (|l - O(2")

where the second to last inequality follows from recalling p > 2. The remainder of the proof is as
in that following (6.7) in the proof of Theorem 6.1. m]
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A Extending Prior Work on Lower Bounds

In this section, we briefly discuss prior work on estimating top singular/eigenvalues in the matrix-
vector product model and why existing approaches do not immediately imply a lower bound for
low-rank approximation, under any unitarily invariant norm, including Frobenius and spectral
norm.

In a sequence of works, Braverman, Hazan, Simchowitz and Woodworth [BHSW20] and Sim-
chowitz, Alaoui and Recht [SAR18] establish eigenvalue estimation lower bounds in the matrix-
vector query model. We draw on their techniques and use the hard instance at the heart of their
lower bound, but require additional techniques to obtain a lower bound for low-rank approxima-
tion.

The main theorem (Theorem 2.2 of [SAR18]), for k =1, states that any randomized algorithm
which outputs a vector v such that with constant probability

v’ |Alv >=(1- O(gap)) “A”op ’

requires Q (1/ \/@) matrix-vector products, where |A| = (A2)1/2 has the same singular values
as A and gap € (0,1). However, this guarantee is too weak to imply a lower bound for spectral
low-rank approximation.

Indeed, for this theorem to be meaningful in our setting, we require setting gap = ©(e).
However, there exist input matrices A, e.g., A = diag(1 +¢,1,...,1,0), and vectorv = © (\/E) el +
((1 — ©(e)) e, such that

||A(I - UUT)”OP < (1+¢€)02(A),

ie. v yields a valid low-rank approximation but v"Av is only ©(e). Note, here the gap is
O(1) instead of the required 1 — € and thus we obtain no lower bound for spectral low-rank
approximation.
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Moreover, it can be shown that when A is the hard instance considered in [SAR18], i.e. A =
G + Auu’, where G is a Gaussian Orthogonal Ensemble (GOE) and u is a random unit vector on
the sphere, there exists a vector v that does not satisfy the guarantee of Theorem 2.2, yet yields
a spectral low-rank approximation. In particular, consider v = @(+Ve)r1 + (1 — ©(¢€)) r4 where 11
is the largest singular vector of |A| and 7, is the smallest singular vector. Since the smallest O(1)
singular values of a d X d GOE can be shown to be O(1/d), and A is a rank-1 perturbation of a GOE,
similar to the diagonal case above, we can show

A (=00, < (1+)oala),

yet v |A|v is only ©(e). Therefore, it is not possible to obtain a lower bound for low-rank
approximation from Theorem 2.2 in a black-box manner.

B Low Rank Approximation of Matrix Polynomials

We note that polynomials of matrices are implicitly defined, even in the RAM model, and comput-
ing them explicitly would be prohibitively expensive and may destroy any sparsity structure. The
proof just follows from running our algorithm on M = (ATA). Ttis straightforward to simulate a
matrix-vector product of the form Mo using access to matrix-vector products for A and AT with
an O({) overhead.

Theorem B.1 (Low Rank Approximation of Matrix Polynomials). Given an n X d matrix A, { € N,
target rank k and an accuracy parameter ¢ > 0, let M = (ATA) or M = A(ATA)". Then, for any
p > 1, there exists an algorithm that uses at most O(k{ log(nk)p'/®/&'/3) matrix-vector products and with
probability at least 9/10 outputs a matrix Z € R™¥ with orthonormal columns such that,

[M(-2zz7)s, <(+e) min M (1-UUT)| -

The only prior work we are aware of is the algorithm of [MM15], which would achieve a
worse O(k{ log(nk)/e'/?) number of matrix-vector products for the Frobenius norm and match our
guarantee for the spectral norm.

C Improved Streaming Bounds

In the streaming model, the input matrix is initialized to all zeros, and at each time step, the
(i, j)-th entry is updated. The updates can be positive or negative, and the goal is to output a
low-rank approximation, without storing the whole matrix. The number of passes required by
our algorithm is proportional to the number of adaptive matrix-vector queries we require. As an
immediate corollary of this observation, we obtain the following formal guarantee:

Corollary C.1 (Schatten LRA in a Stream). Given a matrix A € R"™, a target rank k € [d], an accuracy
parameter € € (0,1) and any p > 1, there exists a streaming algorithm that makes O(log(d/e)p'/®/e/3)
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passes over the input, requires O(nk/e'/3) space, and outputs a d x k matrix Z with orthonormal columns
such that with probability at least 9/10,

-2zl = e min, | 0-v0T) [}

The only prior work on low-rank approximation in a stream is by Boutsidis, Woodruff and
Zhong, who consider the special case of p = 2 [BWZ16]. They obtain a single pass algorithm
that requires O(nk/e + poly(k/€)) space and a two pass algorithm that requires O(nk + poly(k/e))
space. For general p, we note that recent work by Li and Woodruff [LW20] can be used to derive

a streaming algorithm that obtains a worse space dependence but only requires a single pass:

k+k?r | k2P
€2 el+2/p

+

for 1 < p < 2, the space required is 0 (n ( )) and for p > 2, the space required is

o (n (knl—Z/p 4 Blrant 2 ))
€2 :

e2+2/p
We note that for p < 2, we obtain a polynomially better dependence on € and for p > 2, the

space complexity of our algorithm is linear in 1, as compared to n27%/? above. The optimal space
complexity of Schatten-p low-rank approximation (for p # 2) in a single pass remains open.
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