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Abstract—Given access to a machine learning model, can an
adversary reconstruct the model’s training data? This work
studies this question from the lens of a powerful informed
adversary who knows all the training data points except one. By
instantiating concrete attacks, we show it is feasible to reconstruct
the remaining data point in this stringent threat model. For
convex models (e.g. logistic regression), reconstruction attacks
are simple and can be derived in closed-form. For more general
models (e.g. neural networks), we propose an attack strategy
based on training a reconstructor network that receives as input
the weights of the model under attack and produces as output
the target data point. We demonstrate the effectiveness of our
attack on image classifiers trained on MNIST and CIFAR-10,
and systematically investigate which factors of standard machine
learning pipelines affect reconstruction success. Finally, we theo-
retically investigate what amount of differential privacy suffices
to mitigate reconstruction attacks by informed adversaries. Our
work provides an effective reconstruction attack that model
developers can use to assess memorization of individual points in
general settings beyond those considered in previous works (e.g.
generative language models or access to training gradients); it
shows that standard models have the capacity to store enough
information to enable high-fidelity reconstruction of training
data points; and it demonstrates that differential privacy can
successfully mitigate such attacks in a parameter regime where
utility degradation is minimal.

Index Terms—machine learning, neural networks, reconstruc-
tion attacks, differential privacy

I. INTRODUCTION

Machine learning (ML) models have the capacity to mem-
orize their training data [1], and such memorization is some-
times unavoidable while training highly accurate models [2,
3, 4]. When the training data is sensitive, sharing models
that exhibit memorization can lead to privacy breaches. To
design mitigations enabling privacy-preserving deployment of
ML models we must understand how these breaches arise and
how much information they leak about individual data points.

Membership leakage is considered the gold standard for
privacy in ML, both from the point of view of empirical
privacy evaluation (e.g., via membership inference attacks
(MIA) [5]) as well as mitigation (e.g., differential privacy (DP)
[6]). Membership information represents a minimal level of
leakage: it allows an adversary to infer a single bit determining
if a given data record was present in the training dataset. Mod-
els trained on health data represent a prototypical application
where membership can be considered sensitive: the presence
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Fig. 1: Examples of training data points reconstructed from a
55K parameter CNN classifier trained on CIFAR-10.

of an individual’s record in a dataset might itself be indicative
of whether they were tested or treated for a medical condition.

Reconstruction of training data from ML models sits at the
other extreme of the individual privacy leakage spectrum: a
successful attack enables an adversary to reconstruct all the
information about an individual record that a model might
have seen during training. The possibility of extracting training
data from models can pose a serious privacy risk even in
applications where membership information is not directly
sensitive. For example, reconstruction of individual images
from a model trained on pictures that were privately shared in
a social network can be undesirable even if that individual’s
membership in the social network is public information.

Existing evidence of the feasibility of reconstruction attacks
is sparse and focuses on specialized use cases. For example,
recent work on generative language models highlights their
capacity to memorize and regurgitate some of their training
data [7, 8], while works on gradient inversion show that
adversaries with access to model gradients (e.g. in federated
learning (FL) [9]) can use this information to reconstruct
training examples [10]. Similarly, attribute inference attacks
reconstruct a restricted subset of attributes of a training data
point given the rest of its attributes [11], while property
inference attacks infer global information about the training
distribution rather than individual points [12, 13].

Our work proposes a general approach to study the fea-
sibility of reconstruction attacks against ML models without
assumptions on the type of model or access to intermediate
gradients, and initiates a study of mitigation strategies capable
of preventing this kind of attacks. The starting point is the
instantiation of an informed adversary that, knowing all the
records in a training data set except one, attempts to recon-
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struct the unknown record after obtaining white-box access to
a released model. This choice of adversary is inspired by the
(implicit) threat model in DP [14].

Working with such a powerful, albeit unrealistic, adversary
enables us to demonstrate the feasibility of reconstruction, both
in theory against convex models as well as experimentally
against standard neural network architectures for image classi-
fication. Furthermore, the use of an informed adversary makes
our work relevant for provable mitigations: effective defenses
against optimal informed adversaries will also protect against
attacks run by less powerful and more realistic adversaries.

A. Overview of Contributions and Paper Outline

We start by introducing and motivating the informed adver-
sary threat model (Section II). Our first contribution is a the-
oretical analysis of reconstruction attacks against simple ML
models like linear, logistic, and ridge regression (Section III).
We show that for a broad class of generalized convex linear
models, access to the maximum likelihood solution enables an
informed adversary to recover the target point exactly.

In the convex setting, the attack relies on solving a simple
system of equations. Extending reconstruction attacks to neural
networks requires a different approach due to the inherent
non-convexity of the learning problem. In Section IV, we
propose a generic approach to reconstruction attacks based on
reconstructor networks (RecoNN): networks that are trained
by the adversary to output a reconstruction of the target point
when given as input the parameters of a released model.

Our second contribution is to show that it is feasible to
attack standard neural network classifiers using reconstructor
networks; we present effective RecoNN architectures and
training procedures, and show they can extract high-fidelity
training images from classifiers trained on MNIST1 and
CIFAR-10. Figure 1 provides an illustration of reconstructions
produced by a RecoNN-based attack against a convolutional
neural network (CNN) classifier trained on CIFAR-10. These
experiments provide compelling evidence that image classifi-
cation models can store in their weights enough information
to reconstruct individual training data points.

Section VI describes our third contribution: an in-depth
analysis around what factors affect the success of our RecoNN-
based attack. These include hyper-parameter settings in the
model training pipeline, degree of access to model parameters,
and quality and quantity of side knowledge available to the
adversary. We also explore how different levels of knowledge
about the internal randomness of stochastic gradient descent
(SGD) affect reconstruction; we observe that knowing the
model’s initialization significantly improves the quality of
reconstructions, while knowing the randomness used for mini-
batch sampling is not necessary for good reconstruction.

As part of our experiments, we also investigate the use of
DP-SGD [15] as a mitigation to protect against reconstruction
attacks. We find that large values of ε suffice to defend against

1A minimal implementation of our reconstruction attack on MNIST
is available at https://github.com/deepmind/informed adversary mnist
reconstruction.

TABLE I: Summary of notation
Model Developer Reconstruction Adversary

Z Data domain D- Training dataset minus target point
Θ Model domain z Target point
D Training dataset R Reconstruction algorithm
n size of training set (includes target point) aux Side knowledge about z
A Training algorithm ẑ Candidate reconstruction
θ Released model ` Reconstruction error

our best RecoNN-based attacks – in fact, values that are much
larger than what is necessary to protect against membership
inference attacks by informed adversaries [14]. Section VII
supports this observation by introducing a definition of re-
construction robustness, analyzing its relation to the (Rényi)
DP parameters of the training algorithm, and showing that,
under mild conditions on the adversary’s side knowledge,
ε = o(d) suffices to prevent reconstruction of d-dimensional
data records.

II. RECONSTRUCTION WITH INFORMED ADVERSARIES

We start by instantiating and justifying the informed ad-
versary threat model for reconstruction attacks against ML
models, and by comparing it to related attacks in the literature.
Notation for the most important concepts introduced in this
section is summarized in Table I. At its core, our threat model
assumes a powerful adversary with white-box access to a
model released by a model developer. The developer owns
a dataset D ∈ Zn of n training records from some domain Z ,
and a (possibly randomized) training algorithm A : Zn → Θ.
They train (the parameters of) a model θ = A(D), and then
release it as part of a system or service. For example, records
in D may be feature-label pairs in standard supervised learning
settings, and A may implement an optimization algorithm (e.g.
SGD or Adam) for a loss function associated with D and Θ.

A. Threat Model

A reconstruction adversary with access to the released
model aims to infer enough information about its training data
to reconstruct one of the examples in D. In this paper, we
consider a powerful adversary who already has full knowledge
about all but one of the training points. Formally, they have
access to the following information to carry out the attack.

Definition 1 (Informed reconstruction adversary). Let θ be a
model trained on dataset D of size n using algorithm A. Let
z ∈ D be an arbitrary training data point and D- = D \ {z}
denote the remaining n− 1 points; we refer to z as the target
point. An informed reconstruction adversary has access to:

a) The fixed dataset D-;
b) The released model’s parameters θ;
c) The model’s training algorithm A;
d) (Optional) Side knowledge aux about the target point.

We first discuss each piece of knowledge we give to our
attacker, and then analyze in depth how our adversary relates
to other threat models arising in other privacy attacks.
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a) Fixed dataset: Arguably, the assumption that gives
our attacker the greatest advantage is knowing all the training
data except for the target point. There are two main reasons to
consider such a stringent threat model. First, since our ultimate
goal for studying ML vulnerabilities is to design effective
mitigations, by evaluating the resilience of ML models in this
strong threat model we ensure their resilience against weaker
(and more realistic) attackers. Second, our setup captures the
implicit threat model used in the DP definition; indeed, DP
bounds the ability of a mechanism at preventing the disclosure
of membership information about one data record from an
adversary who knows all the other records in the database.

b) White-box model access: White-box access to the
model is motivated by several real-world scenarios. First, the
practice of publishing models online (e.g. to facilitate their use
or favor public scrutiny) is increasingly widespread. Second,
proprietary models shipped as part of hardware or software
components can be vulnerable to reverse-engineering; it would
be naive to assume that sufficiently motivated adversaries
will never obtain white-box access to such models. Finally,
FL settings may give real-world attackers access to similar
information to the one we capture in our threat model.

c) Training algorithm: Privacy (and security) through
obscurity is generally regarded as a bad practice. Thus, we as-
sume the adversary has access to the model developer’s train-
ing algorithm A, including any associated hyper-parameters
(e.g. learning rate, regularization, batch size, number of iter-
ations, etc). Access to A can be in the form of a concrete
(e.g. open source) implementation. Nevertheless, black-box
access (e.g. through a SaaS API) suffices for the general
reconstruction attack presented in Section IV. In cases where
A is randomized, we will evaluate attacks with and without
knowledge of the different sources of randomness used when
training the released model. In stochastic optimization algo-
rithms these typically include model initialization and mini-
batch sampling. Knowledge of A’s internal randomness could
come from the model developer using a hard-coded random
seed in a public implementation. Alternatively, knowledge
about the model’s initialization will also be available whenever
the released model is obtained by fine-tuning a publicly
available model (e.g. in transfer learning scenarios), or in FL
settings where the adversary has successfully compromised an
intermediate model by taking part in the training protocol.

d) Side knowledge about target point: Privacy attacks
do not happen in a vacuum, so adversaries will often have
some prior information about the target point before observing
the released model. For starters, knowledge of D- and A
provides the adversary with syntactic and semantic context for
a learning task in which the model developer deemed it useful
to include the target point. In our investigations, we often
consider adversaries with additional side knowledge abstractly
represented by aux. From a practical perspective, the attack
presented in Section IV takes aux to be a dataset D̄ of points
disjoint from D-. For example, these could come from a public
academic dataset or from scraping relevant websites. Our
experiments in Section VI-B show that these additional points

do not necessarily need to come from the same distribution as
the training data. In our theoretical investigation (Section VII),
we model the adversary’s side knowledge as a probabilistic
prior π from which the target is assumed to be sampled.

B. Reconstruction Attack Protocol and Error Metric

Algorithm 1 formalizes the interaction between model de-
veloper and reconstruction adversary in our threat model. After
the model θ is trained on D = D- ∪ {z}, the adversary runs
their attack algorithm R using all the information discussed in
the previous section, and produces a candidate reconstruction
ẑ for the target point z. The protocol returns a measure of the
attack’s success based on a reconstruction error function `;
smaller error means the reconstruction is more faithful.

Algorithm 1 Reconstruction attack with an informed adver-
sary. (Auxiliary side knowledge aux is optional).

procedure RECONSTRUCTION(A,R,D-, z; aux)
θ ← A(D- ∪ {z})
ẑ ← R(θ,D-, A; aux)
return `(z, ẑ)

Privacy expectations are contextual, and depend on the
information content and modality of the sensitive data. Perfect
reconstruction may not be necessary for the user to claim their
privacy has been violated; e.g., a privacy breach may occur if
the image of a car’s license plate is revealed via an attack, even
if the reconstructed background is inaccurate. In particular,
the error function ` can encode not only proximity between
the feature representations of the target and candidate points,
but also the correctness with which an attack can recover a
(private) property of interest about the target. Our experiments
on image classifiers use the MSE between pixels as a measure
of reconstruction, as well as the similarity between outputs of
machine learning models on z and ẑ (through the LPIPS and
KL metrics cf. Section V-B). In general, an appropriate choice
of ` and a threshold for declaring successful reconstruction is a
policy question that will depend on the particular application:
it should capture the minimum level of leakage that would
cause a significant harm to the involved individual.

C. Relation to Attribute Inference

Reconstruction can be seen as a generalization of attribute
inference attacks (AIA) [11, 16, 17, 18], also sometimes
referred to as model inversion attacks. In AIA, an attacker that
knows part of a data record z aims to reconstruct the entire
record by exploiting (white-box or black-box) access to a
model θ whose training dataset contained z. It is also common
for the attack goal of a model inversion attack to try and reveal
training data information in aggregate, possibly isolated to a
specific target label. Although no individual training records
are reconstructed through this attack, privacy can be leaked if
aggregated training information with respect to a target label is
sensitive (e.g. facial recognition where each label is associated
with an identity). The standard threat model in AIA does
not include an informed adversary, but we can get a more
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direct comparison with our model by considering an informed
AIA adversary. Such an adversary is identical to Definition 1
but also receives as input partial information about the target
point z, which we denote by η(z). This can be incorporated
in Definition 1 via the side knowledge aux, showing that
informed AIA corresponds to reconstruction in our model
with a particular type of side knowledge. We conclude that
any investigation into mitigating general reconstruction attacks
in our threat model will also be useful in protecting against
informed AIA, and, by extension, standard AIA.

D. Relation to Membership Inference

In membership inference attacks (MIA) [5, 17, 19, 20], an
attacker with access to a released model θ and a challenge
example z ∈ Z guesses if z was part of the model’s training
data. Like in AIA, standard MIA does not assume an informed
adversary. Introducing an informed MIA adversary yields a
model matching the adversary in the threat model behind
DP [14]. This adversary is identical Definition 1, with the
exception that it also receives two candidates z0, z1 ∈ Z
for the additional data point that was used for training the
model, and the developer decides which one to use uniformly
at random. The corresponding interaction protocol between
model developer and adversary is summarized in Algorithm 2,
where the adversary uses a MIA algorithm M and the result
provides a bit representing whether it guessed correctly.

Algorithm 2 Informed Membership Inference Attack

1: procedure INFORMED-MIA(A,M,D-, z0, z1)
2: b← Unif({0, 1})
3: θ ← A(D- ∪ {zb})
4: b̂←M(θ,D-, A, z0, z1)
5: return b = b̂

We remark that this attacker is much more powerful than
the one in standard MIA. In particular, if the model’s training
algorithm A is deterministic, then there is a trivial strategy:
the attacker trains models on D- ∪ {z0} and D- ∪ {z1} and
checks which of the two matches the released model θ. This is
coherent with the observation that randomized algorithms are
necessary to (non-trivially) provide DP. Note also that accurate
reconstruction provides an informed MIA. Indeed, assume, for
example, that ` satisfies the triangle inequality and reconstruc-
tion succeeds at achieving error less than `(z0, z1)/2. Then the
reconstruction adversary uses θ to obtain a candidate ẑ, and
then guess z0 if `(ẑ, z0) < `(ẑ, z1) and z1 otherwise.

The contrapositive implication of the above is that if this
powerful notion of MIA is not possible, then accurate recon-
struction is also not possible. Furthermore, the existence of a
standard MIA attacker implies the existence of an informed
one. This argument indicates that protecting against informed
MIA will protect against both standard MIA and accurate
reconstruction, thus motivating the use of DP – a mitigation
against informed MIA – as a strong privacy protection. The
experiments in Section VI and the theoretical investigation
developed in Section VII will, however, illustrate that values

of the DP parameter ε that are too large to protect against
informed MIA can still protect against accurate reconstruction.

E. Further Related Work

Attacks for reconstructing training data have been studied
in the context of generative language models (LM). Carlini
et al. [7] proposed a targeted black-box reconstruction attack
where the adversary knows part of a training example (i.e. a
text prompt) and infers the rest (e.g. a credit card number).
Their attack assumes partial knowledge of the target record
(as with AIA) and a threat model where the adversary has
significant computational power but no additional knowledge
of the training data. An untargeted version of this attack was
later performed against GPT-2 [21] by repeatedly sampling
from the model and comparing the samples with the training
data [8]. Both works crucially exploit the generative aspect of
LMs to carry out reconstruction; our attacks are more general
and require no such assumptions, making them suitable to
attack standard image classification models.

Many works have investigated what an attacker can infer
from inspecting the intermediate gradients in FL settings or
multiple model snapshots during training [22, 23, 24, 25, 26].
These attacks focus on inferring training points, their labels, or
related properties. The task our reconstruction adversary has to
solve is harder: whilst a gradient leakage adversary has access
to information involving only a mini-batch of training points,
our attacks needs to invert the entire training procedure.

Finally, property inference attacks (PIA) are a generalization
of AIA where the adversary infers properties about the training
set [12, 13]. These attacks are effective at recovering overall
statistics (e.g. the percentage of training records coming from a
minority group, the average value of a feature across the data)
but in general do not compromise the privacy of individuals.

III. RECONSTRUCTION IN CONVEX SETTINGS

In this section, we focus on attacking convex supervised
learning models. We discuss a general reconstruction attack
strategy against a broad family of convex models when the
empirical risk minimization (ERM) problem has a unique
minimum and is solved to optimality. Specifically, we show
there exists a closed form solution to perform reconstruction
attacks against Generalized Linear Models (GLMs) without
any additional side knowledge about the target point. This
attack applies to popular models such as linear regression,
ridge regression, and logistic regression.

A. Reconstruction Strategy for Convex Models

Consider an ML model θ trained by exactly solving the
ERM problem. Formally, let C(θ̂) =

∑
z∈D c(z, θ̂) be a risk

function for some loss c, and let θ ∈ argminθ̂∈Θ C(θ̂). If the
loss is strictly convex, this optimization admits a unique global
minimum. Further, if the loss is differentiable and there is no
constraint on the parameters (i.e. Θ = Rd′ ), then the optimum
is characterized by the system of equations ∇C(θ) = 0.

This simplified scenario enables a direct strategy to perform
a reconstruction attack. Recall the adversary has white-box
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access to the released model θ and knowledge of the fixed
dataset D-. This allows them to write the following system of
equations which will be satisfied by the target point z:

∇θc(z, θ) = −
∑
z′∈D-

∇θc(z′, θ) . (1)

Since in supervised training every point z = (x, y) is rep-
resented by a feature vector x ∈ Rd and a label y ∈ R,
this provides d′ equations from which the adversary wants to
recover d+ 1 unknowns (d features plus the label). Note that
this strategy is independent of the algorithm that was used
for training the model as long as the model was trained to
optimality. Next we show a closed-form solution for this attack
exists in the case of GLMs fitted with an intercept term.

B. Closed-Form Reconstruction Against GLMs

Consider fitting a GLM derived from a canonical exponen-
tial family with canonical link function g (see, e.g. [27]).
The GLM parameters are trained via (regularized) ERM
by minimizing the maximum likelihood objective C(θ̂) =

−
∑

(x,y)∈D

(
b(〈x, θ̂〉)− 〈x, θ̂〉y

)
+λ‖θ̂‖2, where b is a func-

tion satisfying b′ = g−1, and λ ≥ 0 is a regularization
parameter. For example, g−1 is the identify function for linear
regression and the sigmoid function for logistic regression.
This optimization admits a unique minimum when either λ >
0, b is strictly concave (as in the examples above) or the data
is in general position [28]. In any of these cases (1) connects
the unknown z = (x, y) with θ and D-. Assuming the model
is trained with an intercept parameter2 (i.e. the first coordinate
of each feature vector is equal to 1) this results in a system
of d equations with d unknowns. The following solution for
this system gives an effective reconstruction attack.

Theorem 1 (Reconstruction attack against GLMs). Let θ be
the unique optimum of C(θ̂) and D- the training data set
except for one point z = (x, y). Suppose X̄ ∈ R(n−1)×d

contains as rows the features of all points in D- where its
first column satisfies X̄1 = ~1, and similarly for the labels
Ȳ ∈ Rn−1. Then taking B = g−1(X̄θ)− Ȳ we get:

x =
X̄>B + λθ

X̄>1 B + λθ1
, y = g−1(〈x, θ〉) + λX̄>1 Bθ1 .

We defer all proofs to the appendix. Two important take-
aways from this result are: 1) an informed adversary needs no
additional side knowledge about z to effectively attack a GLM
trained with intercept; and, 2) whether the model overfits the
data or generalizes well plays no role in the attack’s success.

IV. A GENERAL RECONSTRUCTION ATTACK

We describe a reconstruction attack against general ML
models. Intuitively, our attack stems from the observation that
the influence of the target point z on the released model θ is
similar to the influence an alternative point z̄ would have on
the model θ̄ = A(D-∪{z̄}). By repeatedly training models on
different points, our attack collects enough information about

2In appendix, we show an attack against linear regression without intercept
parameter (Theorem 8), which although assumes the adversary knows y.

the mapping from training points to model parameters to invert
it at the model of interest θ. We give a high-level introduction
to our attack strategy using reconstructor networks (RecoNN).

A. General Attack Strategy

Let us use the shorthand notation AD-
: Z → Θ with

AD-
(z) = A(D- ∪ {z}) to emphasize that, from the point of

view of an informed adversary, when D- is fixed A effectively
becomes a mapping from target points to model parameters.
An ideal reconstruction attack would invert the training proce-
dure and output ẑ = A−1

D-
(θ); whenever A is easy to invert, this

will produce a perfect reconstruction as in the setting analyzed
in Section III. In general, however, the training process is not
(easily) invertible, due to the non-convexity of the optimization
problem solved by A, or to the presence of randomness in the
training process. In such settings, our general reconstruction
attack relies on approximately solving this inverse problem
by producing a function φ : Θ → Z that associates model
weights to a guess for the target point in a similar way to the
(ideal) inverse mapping A−1

D-
. Note that the adversary in this

threat model is extremely powerful; for example, they could
enumerate (a fine discretization of) Z and pick the candidate ẑ
that produces the model θ̂ = AD-

(ẑ) closest to θ. However, for
high-dimensional data this enumerative approach is infeasible,
so we focus on attacks that can be executed in practice.

In this paper, we instantiate the search for φ as a learning
problem, effectively using “neural networks to attack neural
networks”. To solve this learning problem, we first design a
RecoNN architecture for neural networks whose inputs lie in
the parameter space Θ of the released model and outputs lie
in the domain Z of the training data; typically we can encode
both using numerical vectors. The adversary then uses its
knowledge of D- and A, together with side knowledge in the
form of shadow target points D̄ disjoint from D-, to generate
a collection of shadow models. These shadow model and
target pairs comprise the training data for the RecoNN, which
is then applied to the released model to obtain a candidate
reconstruction ẑ for the (previously unseen) target point z.

B. Training Reconstructor Networks

Consider an informed adversary in our threat model (Defi-
nition 1). As side knowledge about z, we assume the attacker
has k additional shadow targets D̄ = {z̄1, . . . , z̄k} from Z .
Ideally, if we think that the attack’s success will depend on
the RecoNN’s ability to exhibit statistical generalization, these
points would be sampled from the same distribution as the
target point z. Nonetheless, we will see in our experimental
evaluation that this requirement is not strictly necessary to
achieve good reconstructions (Section VI-B). The general
reconstruction attack proceeds as follows (see also Figure 2):

1) For i = 1, . . . , k, train model θ̄i = AD-
(z̄i) on the fixed

dataset plus the ith shadow target from the adversary’s
side knowledge pool D̄. Together, we refer to the collec-
tion of shadow model-target pairs S = {(θ̄i, z̄i)}ki=1 as
the attack training data.
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Fig. 2: Overview of RecoNN-based attack.

2) Train a RecoNN φ using S as examples of successful
reconstrutions. Abusing our notation, we use R to denote
the training algorithm used by the adversary: φ = R(S).

3) Obtain a reconstruction candidate by applying the Re-
coNN to the target model: ẑ = φ(θ).

In all our experiments, we consider classification tasks
where z = (x, y) ∈ X × Y with X ⊂ Rd and Y is a finite
set of labels. We also make the simplifying assumption that y
can be inferred from x, and focus only on reconstructing x.

Related work: The idea of using “neural networks to
attack neural networks” has been used in the literature to
implement a number of attacks, including (black-box and
white-box) membership inference [5, 19, 20], model inversion
[18], and property inference [12, 13]. Our use of RecoNNs
is related to [12], where an invariant representation of a
released neural network parameters is fed into another neural
network to perform a PIA, although the output of our attack
is often a high-dimensional object (e.g. an image) instead of
single scalar. In preliminary experiments we did not see an
improvement from using this invariant representation as a pre-
processing step; standard normalization was sufficient for a
successful attack. Similarly, the use of shadow models trained
by the adversary to imitate the behavior of the released model
is a common approach in MIA and AIA, although most works
do not consider an informed adversary with knowledge of
D-. Despite the attack being an instantiation of the shadow
model technique, it is not a foregone conclusion that this
approach will work for reconstruction attacks. Reconstruction
is a more difficult task than membership inference, and it
entails a considerable amount of engineering, data curation,
and ML training insight to carry out, as we will discuss.

V. EXPERIMENTAL SETUP

We discuss the default experimental settings, and how we
will evaluate reconstruction attacks.

A. Default Settings

We evaluate our reconstruction attacks on the MNIST and
CIFAR-10 datasets using fully connected (i.e. multi-layer
perceptron) and convolutional neural networks (CNN) as the
released (and shadow) models. Our experiments investigate
the influence that training hyperparameters for A have on the
effectiveness of reconstruction. Default model architectures

and hyperparameters for both released and reconstructor mod-
els are summarized in Table VI. Most of these choices are
standard and were selected based on preliminary experiments.
In the following we highlight the most important details.

a) Dataset splits: We split each dataset into three disjoint
parts: fixed dataset (D-), shadow dataset (D̄), and test targets
dataset; the latter contains 1K points, both for MNIST and
CIFAR-10. We train one released model per test target and
report average performance of our attack across test targets.

b) Released model training: The training algorithm for
released and shadow models is standard gradient descent with
momentum. By default, we use full batches (i.e. no mini-batch
sampling) to keep the algorithm deterministic. Additionally, by
default we assume the adversary knows the model initialization
step, so both released and shadow models are trained from the
same starting point. We explore the effect of mini-batching and
random initialization separately in Section VI-B.

The architecture is an MLP for MNIST and a CNN for
CIFAR-10. On average, the released models achieve over 94%
accuracy on MNIST and 40% on CIFAR-10 without significant
overfitting (generalization gap is less 1% on MNIST and 5%
on CIFAR-10). The reason for the subpar performance on
CIFAR-10 is partially3 because the models are trained with
only 10% of the data used in standard evaluations – this
constraint comes from the need to reserve a large disjoint
set of shadow points to train RecoNN. We experiment with
a larger CIFAR-10 fixed set size (50K) in Section VI-B; in
this setting the released models achieve ∼ 50% test accuracy.

We expect reconstructing CIFAR-10 targets will be a more
challenging task than MNIST. CIFAR-10 images have a richer,
more complex structure, and so capturing and reconstructing
the intricacies of such an image may be difficult. Additionally,
the underlying released model is larger; hence: 1) a larger
reconstructor network is required, which comes with higher
computational costs for the adversary; 2) the shadow dataset
may need to be larger, to facilitate learning on high dimen-
sional data (i.e. on the shadow models’ weights).

c) Reconstructor network training: When training the
reconstructor, shadow model parameters across layers are
flattened and concatenated together. We also re-scale each
coordinate in this representation to zero mean and unit vari-
ance; we found this pre-processing step to be important, as
some of the parameters can be extremely small. For MNIST,
we use a mean absolute error (MAE) + mean squared error
(MSE) loss between shadow targets and reconstructor outputs
as the training objective. For CIFAR-10 we modify the re-
constructor training objective by adding an LPIPS loss [29]
and a GAN-like Discriminator loss to improve visual quality
of reconstructed images. We use a patch-based Discriminator
[30] with the architecture given in Table IX, and train it using
mean squared error loss [31] and a learning rate of 10−5. The
patch-based discriminator aims to distinguish shadow targets
from reconstructor generated candidates. At a high-level, we

3Training without random mini-batches, no regularization and a small CNN
architecture also contribute to this effect.
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(b) CIFAR-10. |D̄ ∪D-| = 59K.

Fig. 3: For each test target compute the MSE to all points in
adversary’s available pool of data (D̄∪D-) in the default setting.
Plot the histogram of MSEs (averaged over all test targets) along
with some highlighted order statistics.

can view the reconstructor network as a generative model with
a latent space defined over a distribution of shadow models;
this enables us to apply ideas from Generative Adversarial
Networks (GANs) training. Our discriminator training set-up
is as in [30] – we alternate between one gradient descent step
on the discriminator, and one step on the reconstructor net-
work. From visual inspection, we found using a discriminator
improves sharpness of CIFAR-10 reconstructed images, even
if it does not strictly improve the MSE metric.

B. Criteria for Attack Success

In our experiments, we use several evaluation metrics `
to capture various aspects of information leakage from re-
construction attacks. When reporting an average metric we
measure performance of a single reconstructor network on 1K
released model and target point pairs.

a) Mean squared error (MSE): We report the MSE
between a target and its reconstruction. In the context of
images, while discovery of private information does not neces-
sarily perfectly coincide with a decreasing MSE between the
original and reconstructed training point, in general the two
are correlated (Section VI-A).

b) LPIPS: We report the LPIPS metric [29] as it has been
shown to be closer to the human’s visual systems determina-
tion of image similarity in comparison to the MSE distance.
LPIPS is measured by comparing deep feature representations
from visual models trained with similarity judgements made
by human annotators.

c) KL: After running the attack, a real-world adversary
may need to post-process the reconstructed image; e.g. if they
wanted to extract a license plate from the reconstructed image,
they may need to run a downstream image classifier. We there-
fore include a similarity metric between the outputs of a highly
accurate classifier on the target and reconstructed image based
on the Kullback–Leibler (KL) divergence between predicted
class probabilities. For MNIST, we use a LeNet classifier [32]
achieving 99.4% test accuracy, and for CIFAR-10 use a Wide
ResNet [33] achieving 94.7% test accuracy.

d) Nearest Neighbor Oracle: To contextualize MSE re-
construction metrics we consider an oracle that exploits all
the data available to the adversary in the default setting and
guesses the point ẑ ∈ D- ∪ D̄ that has the smallest MSE
distance to z. The MSE distance between z and its nearest
neighbor ẑ serves as a conservative threshold for successful

Target
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0.01

Reconstructions
MSE
0.02

MSE
0.06

NN
MSE
0.02

(a) MNIST

Target
MSE
0.01

Reconstructions
MSE
0.03

MSE
0.05

NN
MSE
0.03

(b) CIFAR-10

Fig. 4: Visualization of reconstructions for six random targets
selected from the test set. The first column shows the targets,
the second shows the default reconstruction attack, the third
shows reconstructions around the same MSE provided by the
NN oracle. The fourth column corresponds to reconstructions
with distance approximately equal to the 1st percentile (Fig-
ure 3). The last column shows the NN oracle.

reconstruction: although faithful reconstructions with larger
MSE are certainly possible, falling below the threshold means
the reconstruction is closer to the target than to any other point
previously available to the adversary, so the attack must have
extracted unique information about the target point from the
released model. Figure 3 provides average histograms (over
1K test targets) of MSEs between a target point and all points
in D- ∪ D̄. The green line corresponds to the average MSE to
the nearest neighbor across all test targets (0.0232 on MNIST
and 0.0291 on CIFAR-10); if reconstructions have a smaller
MSE than this distance we will judge the target to have been
successfully reconstructed. For reference, we also highlight the
1st, 10th and 50th percentile MSEs, which will be helpful to
contextualize experiments throughout Section VI.

VI. EMPIRICAL STUDIES IN RECONSTRUCTION

We now conduct extensive experiments investigating how
the released model architecture and its training hyperparam-
eters impact reconstruction quality. We first demonstrate the
feasibility of the reconstruction attack against models trained
on our default experimental setup. Then we discuss an in-depth
study on which factors, such as training set size or released
model’s hyperparameters, affect the success of reconstruction.
Finally, we investigate DP as a mitigation against reconstruc-
tion attacks. Our findings are summarized in Table II.

A. Feasibility of Reconstruction Attacks

We first carry out the general reconstruction attack under
the default experimental settings (cf. Section V).

Figure 4 shows examples of targets and respective recon-
structions; we use the nearest neighbor (NN) oracle as a
baseline. We observe a good overall reconstruction quality on
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TABLE II: Effect of different factors on the success of reconstruction attacks.

Factor Description MNIST CIFAR-10

MSE Success MSE Success

— Nearest neighbor (NN) oracle 0.0232 – 0.0291 –
— Default hyper-parameters and architectures (cf. Section V) 0.0089 X 0.0049 X
Fixed set size Change size of fixed set to: 1K (MNIST) 50K (CIFAR-10 + shadows from CIFAR-100) 0.0094 X 0.0039 X
Size & architecture Larger MLP (MNIST) and CNN (CIFAR-10) 0.0079 X 0.0047 X
Released layers Restrict attack to use subset of released model layers 0.0124 X 0.0257 X
Epochs Increase number of released model training epochs: 250 (MNIST) 200 (CIFAR-10) 0.0121 X 0.0094 X
Activation Change released model activations to ReLU 0.0182 X 0.0324 7
Learning rate Decrease released model learning rate: 0.01 (MNIST) 0.001 (CIFAR-10) 0.0049 X 0.0055 X
Random initialization Adversary does not know initial released model parameters 0.0695 7 0.0931 7
Model access Only allow logit-based black-box access to released model 0.0110 X 0.0198 X

both datasets. Running the attack against 1K test targets, we
observe an average reconstruction MSE of 0.0089 (MNIST)
and 0.0049 (CIFAR-10). These numbers, compared to the
NN oracle baselines, demonstrate our attack is effective. To
account for the variance across experimental runs (e.g. differ-
ent random selections of fixed sets across experiments), we
repeated this experimental procedure ten times with differing
fixed sets, initial released model parameters, and evaluation
sets. We saw minimal variance in results; importantly, recon-
structions were consistently better than the NN oracle.

To help the reader calibrate MSE values to reconstruction
quality, Figure 4 shows poor reconstructions with MSE close
to the oracle NN’s MSE (third column) and to its 1st percentile
(fourth column); these reconstructions were obtained in pre-
liminary experiments with weaker RecoNN instances. More
examples are in Figure 24.

Relation between reconstruction metrics: With the same
experimental setup as above, we also evaluate results across
our other metrics (Section V-B) on MNIST. We observe that
MSE and LPIPS are strongly correlated (Figure 5a). Figure 5b
also shows that a small MSE implies a small KL but the
converse is not true; in other words, it is possible for two
images that are not identical to have similar predictions.
Since these metrics exhibit significant correlations, we only
report a subset of them in subsequent experiments, focusing
mostly on comparing the MSE metric with the NN oracle.
We observe similar trends on CIFAR-10, although MSE vs
LPIPS correlation is weaker; this partially motivated including
the LPIPS loss when training RecoNNs on CIFAR-10 (c.f.
Appendix I).

B. What Factors Affect Reconstruction

We study which factors may improve or impact reconstruc-
tion success; these are summarized in Table II.

a) Attack training set size: Recall that the general recon-
struction attack assumes the attacker has access to k shadow
data points D̄ from the same distribution as the target point.
From this knowledge, the attacker generates a collection of
shadow model-target pairs (the attack training data), which is
used to train the RecoNN. Note that the size of the attack
training data depends both on the knowledge of the attacker
(simply, the attacker may not have access to many examples),

and on their computational power: they need to train one
shadow model per data point to create the attack training data.

We explore the fidelity of reconstruction on MNIST as the
amount of attack training data k ranges from 100 to 59K.
Figure 5c shows the average MSE between reconstructions
over the 1K released model targets as k varies. Clearly,
the attack becomes better as more training data is available.
However, high fidelity reconstructions occur already with 1K
shadow models; in our plots we include reconstructed exam-
ples at different values of k illustrating this. Reconstructions
that are (on average) better than the NN oracle only require
8K shadow models. Because the correlation between MSE
and KL is not symmetric, we also plot the average KL
against attack training set size and observe a similar monotonic
decrease (Figure 5d). We observe similar trends on CIFAR-
10 when increasing the attack training set size; 5K shadow
models is enough to generate reconstructions below the 1st
percentile oracle MSE (~0.05) and 10K shadow models will
generate reconstructions below the NN oracle MSE (~0.03).
See Appendix B for full results on CIFAR-10.

b) Out-of-distribution (OOD) data on CIFAR-10: The
previous experiment indicates that reconstructions are poor
when an adversary has relatively little side-information (< 1K
points) to create shadow models. We now investigate if these
additional points must come from the same distribution as the
fixed set and target sample. If the attack succeeds even when D̄
comes from a different distribution, they can potentially create
a larger pool of shadow targets for the attack. In addition, when
reasonable OOD data is scarce or not available, the attacker
could instead use D- to train a generative model and use it to
generate shadow targets from a similar distribution.

To relax the assumption that shadow targets come from the
same distribution as the released model’s training data we use
CIFAR-100, a standard OOD benchmark for CIFAR-10 [34],
to construct the adversary’s side knowledge.
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Fig. 5: Correlation between metrics, and quality of reconstruction as a function of the number of shadow models.
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Fig. 6: Out-of-distribution experiments. Shadow models are cre-
ated by either sampling the target from in-distribution (CIFAR-
10) or out-of-distribution (CIFAR-100) data.

Figure 6 shows the difference between creating an at-
tack training set with a fixed dataset D- sampled from in-
distribution data (CIFAR-10) and the additional shadow target
points sampled from either in-distribution data (CIFAR-10)
or out-of-distribution data (CIFAR-100). We measure attack
success on the 1K released models with in-distribution targets
(CIFAR-10). We observe a negligible difference between the
two, and so conclude the success of the attack is not predicated
on access to the correct prior distribution. We further exploit
OOD data in the next part, when we evaluate how the size of
the fixed set affects reconstruction.

c) Influence of training hyper-parameters: Table II sum-
marizes what factors in training affect reconstruction. The
appendix expands upon these and gives empirical insights.
Fixed set size. We measure the role of the fixed set size by
reducing from 10K to 1K (MNIST) and increasing from 5K
to 50K (CIFAR-10). We observe almost no difference in MSE
in both cases; e.g. CIFAR-10 target points can be reconstructed
even if there are 50K other points in the training set.
Model size and architecture. We assess whether the size and
architecture of the released model affect reconstruction. For
MNIST, we increase the size of the hidden layer from 10 to
100; this increases the number of trainable parameters tenfold.
For CIFAR-10, we double the size from 50K to 100K by
increasing the width of the first linear layer. The rest of the
architecture is kept to the defaults (Table VII). We observe
almost no difference in reconstruction success when attacking
these larger released models. Nevertheless, this attack has a
bigger computational cost: the size of the RecoNN for CIFAR-
10 increases from 226M to over 400M parameters.
Layers. Instead of allowing the RecoNN to process all param-
eters from a released model, we restrict to only the second
layer for MNIST and convolutional layers for CIFAR-10.
This significantly reduces the input size to the reconstructor
network, by 98% on MNIST and 84% on CIFAR-10. We ob-
serve that this does not substantially affect the reconstruction
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Fig. 7: MSE and released model training batch size when the
adversary knows/does not know the data sub-sampling random
seed. MSE is sensitive to the learning rate and momentum.
Learning rate: 0.01 (left), 0.2 (right). Momentum: 0 (both).

fidelity, demonstrating that memorization of training points is
not localized to a specific layer or small group of neurons.
Epochs. The number of epochs has a small impact on recon-
struction. For both MNIST and CIFAR-10 there is a slight
increase in MSE if we more than double the number of training
epochs, although targets are still successfully reconstructed.
We investigate this relationship in more detail in Appendix J
and Appendix L.
Activation. One may wonder why we used ELU activations in
the released model instead of the more common ReLUs. We
noticed that released models with ReLU activations tend to be
harder to attack in comparison to other activation functions,
resulting in poor quality reconstructions on CIFAR-10 (i.e.
MSE larger than the NN oracle). It is well known that ReLUs
induce sparse gradients; we observed that > 60% of weights
are not updated during training when the loss is computed
with respect to the target. We suspect this is why RecoNN
is less effective against ReLU activated models: there is less
mutual information between the model parameters and the
target in comparison to models trained with other activations.
We discuss this in further detail in Appendix M.
Learning rate. Decreasing the learning rate of the released
model did not affect the attack in the deterministic training
setting. If randomness is introduced via mini-batch sampling,
we will see that the learning rate impacts reconstruction. In
Appendix H, we better investigate the role of learning rate;
we find that a larger rate can harm the success of the attack
in settings where the released is trained with mini-batches.

d) Randomness from data sub-sampling: We explore
how randomness stemming from data sub-sampling affects
the attack on MNIST, by removing the assumption that the
released model is trained with full batch gradient descent.
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Fig. 8: TSNE embeddings of 1K released models trained with
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We consider settings where the adversary knows the random
seed used to shuffle the data (this corresponds to SGD but
with no randomness), and settings where the adversary does
not know the random seed. Results in Figure 7 indicate that
when the adversary knows the data shuffling seed, recon-
struction attacks are successful even for small batch sizes.
Without knowing the seed, attack success depends on the
training hyper-parameters, such as the choice of the learning
rate. It appears that attacking models with randomness from
sub-sampling is more difficult than determinstically trained
released models, and that larger learning rates also increase
the hardness of the reconstruction task. Loss landscapes of
neural networks are extremely non-convex and contain many
local optima [35]; if more randomness is introduced, this will
increase the opportunity for different shadow models to reach
different optima. This increases the difficulty of reconstruction
as these shadow models will not be representative of the
optima attained by the released model, and training with a
larger learning rate will exacerbate this issue. In Figure 8, we
show plot TSNE embeddings of parameters for all 1K released
models for each of the two learning rates given in Figure 7
and the two randomness settings (known and unknown seed)
for a batch size of 1024. We represent each released model
with a color depending on the label of the respective target.
For a small learning rate, labels are grouped together in both
known and unknown seed settings, implying the local optima
these models realize are similar; this makes it easier for the
RecoNN to learn and subsequently generalize to the released
model. Conversely, in the large learning rate setting there is
a stark difference between known and unknown seed settings:
if the seed is known, groupings of labels still happen, and a
successful attack is possible; however, if the seed is unknown,
the local optima reached by each released model has less
structure that the reconstructor network can learn on.

In Appendix H we show comprehensive results with more
learning rates and evaluated on more metrics.

e) Randomness from model initialization: We explore
how initialization randomness can affect the attack on MNIST.
Firstly, we remove the assumption that the adversary knows the
initial parameters of the released model; in practice, this means
training each released and shadow model with a new random
seed controlling the model’s initial parameters. By default,
each linear and convolutional layer is initialized with Lecun
Normalization, which is the default in the Haiku library [36].
In our experiments, we evaluated other common initialization
procedures (e.g., Glorot, He), which did not change any of our

findings; we omit these results. We refer the reader to Figure 4
for visual inspection of reconstructions at the two error rates
reported in Table II, and conclude that the attack is unable to
successfully reconstruct without knowledge of initialization, as
they are far larger than the NN oracle described in Section V-B.

One may conjecture that the current attack pipeline is not
suitable for this setting: we only train a single shadow model
per shadow target, which may fail to capture the variance
in shadow model parameters over different initializations for
the same shadow target. For this reason, we further created
an attack training set of 5M shadow model-target pairs,
consisting of 10K shadow targets, where each target has 500
shadow models all differing in initial parameters. Even so, this
approach did not improve the MSE reported in Table II. In Ap-
pendix A, we discuss evidence suggesting that reconstruction
may not be possible without knowing the initial released model
parameters. A similar observation was made by Jagielski et
al. [37], who run attacks to find lower bounds of the privacy
budget ε in DP-SGD. They observed that the bounds become
tighter with less randomness from model initialization.

C. Black-box Access to Released Model

The attack assumes white-box access to the released model
parameters, and so a natural question arises: can we construct
an attack that achieves a similar MSE distance without white-
box access? Our attack is constructed by learning the relation
between the released model parameters and the unknown target
point; the white-box attack uses these parameters directly by
flattening released model parameters, concatenating each layer,
normalizing, and passing this to the reconstructor network.
However, we could instead use other representations that
contain information about the released model. We design
a black-box attack by limiting the adversary’s access to
only the logits predicted by the released model. For each
shadow model, using a set of 200 (500) images from D̄ for
MNIST (CIFAR-10), the adversary collects the logit outputs
of each image, concatenates them together, and uses this as
the feature representation of the model, instead of the flattened
weights. This reduces the dimensionality of the feature vector
from 8K to 2K for MNIST and 55K to 5K for CIFAR-10.
The average MSE using this logit representation approach is
0.011 for MNIST and 0.0198 for CIFAR-10, which is only
marginally worse than the MSE of white-box attacks with
default settings, and still much better that the NN oracle. We
conclude that black-box reconstruction attacks are feasible and
have comparable performance to white-box ones.

D. Released Model Trained with Differential Privacy

Having discussed what factors help and hinder reconstruc-
tion, we now evaluate on MNIST the resilience of models
trained with DP. The released model training set-up is identical
to before (Section IV-B), except we train with full batch
DP gradient descent (DP-GD) with clipped gradients [15].
Gradients are clipped to have a maximum `2 norm of 1,
and Gaussian noise (unknown to the adversary) is added
to make the model (ε, δ)-DP with δ = 10−5. Figure 9
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Fig. 10: Example of MNIST reconstructions under DP.

shows that even a large ε successfully mitigates reconstruction
attacks, and that in these ε regimes the reduction in utility
(measured by test accuracy) is negligible (Appendix E reports
similar results on CIFAR-10). Interestingly, for high levels of
privacy, the reconstruction attack generates realistic but wildly
incorrect reconstructions (Figure 10). These findings motivate
our theoretical investigation into what level of DP is sufficient
to protect against reconstruction attacks.

VII. TOWARDS FORMAL GUARANTEES AGAINST
RECONSTRUCTION ATTACKS

Mitigations that (provably) protect released models against
reconstruction attacks can (and should) be implemented within
the training algorithm used by the model developer. Protec-
tions that defend against effective reconstruction by informed
adversaries will also protect against attacks by weaker, more
realistic adversaries. In this section, we propose a definition
of reconstruction robustness against informed adversaries, and
compare it to the privacy guarantees afforded by DP. As will
soon become apparent, the strength of mitigations against
reconstruction is necessarily going to be relative to the strength
of the prior information available to the adversary.

A. Reconstruction Robustness

Our main definition focuses on bounding the success prob-
ability of achieving accurate reconstruction by any (informed)
adversary. The definition is parameterized by the side informa-
tion available to the adversary, captured by a probabilistic prior
π from which the target z is sampled, and by the adversary’s
goal expressed as a measure of reconstruction error `.

Definition 2. Let π by a prior over Z and ` : Z×Z → R≥0 a
reconstruction error function. A randomized mechanism M :
Zn → Θ is (η, γ)-ReRo (reconstruction robust) with respect to
π and ` if for any dataset D- ∈ Zn−1 and any reconstruction
attack R : Θ→ Z we have

PZ∼π,θ∼M(D-∪{Z})[`(Z,R(θ)) ≤ η] ≤ γ . (2)

Suppose M is an (η, γ)-ReRo mechanism. The definition
prevents any reconstruction attack with knowledge4 of the
prior π, the dataset D- and the output θ = M(D- ∪ {Z})
to attain a reconstruction error lower than η on an unknown
target Z ∼ π with probability larger than γ. A good ReRo
mechanism is one with large η and very small γ, i.e. one
where even “decent” reconstructions are impossible with high
probability. In practice a tension between these two parameters
is expected, at least for mechanisms providing some form of
utility when computing a function depending on all the inputs.

Definition 2 assumes the reconstruction attack is determin-
istic. We could consider randomized attacks instead, but note
that determinism is not a limitation when trying to capture
worst-case attacks: the R that maximizes P[`(Z,R(θ)) ≤ η]
is given by the (deterministic) maximum a posteriori attack:

R∗(θ) = argmaxẑ∈Z PZ∼π[`(Z, ẑ) ≤ η|M(D- ∪ {Z}) = θ] .

Similarly, the definition protects against adversaries with full
knowledge of the prior π. Since the optimal attack run by an
adversary with a wrong prior is necessarily weaker than the
optimal attack with a correct prior, assuming the adversary
knows π is preferable when designing mitigations.

Our main results provide two connections between recon-
struction robustness and DP. The first observation is that
DP implies reconstruction robustness. Quantitatively, we show
that the ReRo parameters of a Rényi DP (RDP) mechanism
depend in a simple way on its privacy parameters and another
quantity capturing the relation between π and `. The second
observation is that any mechanism that is robust against exact
reconstruction with respect to a sufficiently rich family of
priors supported on pairs of points must satisfy DP. Together,
both results stress the importance of correctly modelling an
adversary’s prior knowledge in effectively protecting against
reconstruction attacks. In particular, we show that very weak
DP guarantees suffice to protect against reconstruction when
the adversary has limited knowledge about the target point.

B. From DP to ReRo

We now show that differentially private mechanisms provide
reconstruction robustness. Let us recall the definitions of
approximate and Rényi DP.

Definition 3 ([6, 38, 39]). Let M : Zn → Θ be a randomized
mechanism, ε > 0, δ ∈ [0, 1] and α > 1. We say that:

1) M is (ε, δ)-DP if for any datasets D,D′ ∈ Zn differing
in a single record and any event E ⊆ Θ we have

P[M(D) ∈ E]− eεP[M(D′) ∈ E] ≤ δ .

When δ = 0 we simply say the mechanism is ε-DP.
2) M is (α, ε)-RDP if for any datasets D,D′ ∈ Zn differing

in a single record we have

Eθ∼M(D′)

[(
P[M(D) = θ]

P[M(D′) = θ]

)α]
≤ e(α−1)ε .

4Knowledge of π and D in the attack is implicit through the fact that (2)
has to hold for any reconstruction attack.
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The effect of the prior on ReRo bounds obtained from DP
is through an anti-concentration property. For prior π, error
function ` and error threshold η, define the baseline error as

κπ,`(η) = sup
z0∈Z

PZ∼π[`(Z, z0) ≤ η] .

When π, ` or η are clear from the context we may drop them
to unclutter our notation. Whenever ` is a metric on Z , an
upper bound on κ provides a measure of anti-concentration
of the prior by guaranteeing that no single point has too
much of probability mass concentrated around it; bounds for
κ for some prior distributions are given in Section VII-D.
Another interpretation of κ is as the success probability of
the best oblivious reconstruction attack that ignores the output
of M . By this interpretation, the next theorem says that if a
mechanism is RDP, the best reconstruction attack cannot have
success probability much larger than the best oblivious attack.

Theorem 2. Fix π, ` and η > 0, and let κ = κπ,`(η). If a
mechanism M satisfies (α, ε)-RDP then it also satisfies (η, γ)-
ReRo with respect to π and ` with γ = (κ · eε)

α−1
α .

Taking α→∞ and recalling that (∞, ε)-RDP is equivalent
to ε-DP [39] we obtain the following corollary.

Corollary 3. Fix π, ` and η > 0, and let κ = κπ,`(η). If a
mechanism M satisfies ε-DP then it also satisfies (η, γ)-ReRo
with respect to π and ` with γ = κ · eε.

Another way to interpret Theorem 2 is through the lens
of zero-concentrated DP (zCDP) [40]. A mechanism is ρ-
zCDP if it satisfies (α, αρ)-RDP for every α > 1. This
definition provides a natural and convenient way to express the
privacy afforded by the ubiquitous Gaussian mechanism [38].
Applying Theorem 2 to a ρ-zCDP mechanism and optimizing
α to minimize the upper bound yields the following.

Corollary 4. Fix π, ` and η > 0, and let κ = κπ,`(η). If
a mechanism M satisfies ρ-zCDP with ρ < log(1/κ) then it
also satisfies (η, γ)-ReRo with respect to π and ` with γ =

e−(
√

log(1/κ)−√ρ)2 .

C. From ReRo to DP

Next we investigate the reverse implication: does a strong
enough level of reconstruction robustness imply a standard
definition of privacy protection like DP? We show that this is
indeed the case if one insists on protecting against exact re-
construction simultaneously for a family of priors concentrated
on pairs of data points. From this lens, the result says that as
soon as a mechanism exhibits strong enough reconstruction
robustness to prevent membership inference it must necessarily
satisfy DP.

Before stating the result we introduce the following nota-
tion. Given p ∈ (0, 1) and z, z′ ∈ Z , z 6= z′, let πp,z,z′ denote
the prior over Z that assigns probability p to z and 1 − p to
z′. We also let `0/1(z, z′) = 1[z 6= z′].

Theorem 5. Fix ε ≥ 0, η ∈ (0, 1) and γ ∈ [0, 1]. Let
Πε = {πp,z,z′ : z, z′ ∈ Z, z 6= z′} be the class of all priors

on Z concentrated on pairs of points with p = 1
eε+1 . If a

mechanism M : Zn → Θ is (η, γ)-ReRo with respect to
`0/1 and every prior π ∈ Πε, then M satisfies (ε, δ)-DP with
δ = max{0, (eε + 1)γ − eε}.

D. ReRo Against High-Dimensional, High-Uncertainty Priors

A standard “rule of thumb” says that DP only provides
a meaningful protection when ε is a small constant. On the
other hand, our experiment on models trained with DP-SGD
(Section VI-D, Appendix E) shows that much larger values
of ε are successful at mitigating our RecoNN-based attack.
This could be interpreted as a limitation of our attack in
the presence of weak levels of DP protection. An alternative
explanation is that DP with large values of ε can protect against
reconstruction attacks if the reconstruction target is high-
dimensional and the adversary’s prior knowledge contains a
large degree of uncertainty. We formalize this intuition by
instantiating the bounds from Section VII-B on two natural
priors where κ is easy to bound: uniform and Gaussian priors.
A similar analysis in the context of local DP was presented in
[41] (see Section VII-F for a detailed comparison).

a) Uniform priors: Suppose training data points in Z are
represented by d-dimensional real vectors and all the adversary
knows about the target point z is a norm bound of the form
‖z‖2 ≤ 1. Then it makes sense for the adversary to take as
prior the uniform distribution U(Bd1 (0)) over the Euclidean d-
dimensional unit ball Bd1 (0) centered at zero. For simplicity,
suppose also that reconstruction error is measured in terms of
the Euclidean distance `2. Then we have the following.

Proposition 6. Fix a constant η ∈ (0, 1). Suppose M is a
mechanism satisfying ε-DP with ε = o(d) or ρ-zCDP with
ρ = o(d). Then M is (η, γ)-ReRo with respect to U(Bd1 (0))
and `2 with γ = e−Ω(d).

This result shows that, in high-dimensional settings where
an informed adversary’s knowledge about the target datapoint
is only in the form a syntactic constraint like ‖z‖2 ≤ 1, privacy
parameters sub-linear in the dimension suffice to make the
reconstruction success probability negligible.

b) Gaussian priors: Another natural prior to consider is
a (d-dimensional, isotropic) Gaussian distribution N (w, σ2Id)
specifying the adversary’s prior knowledge about the location
w of the target point with some degree of uncertainty con-
trolled by σ. Taking again `2 as the measure of reconstruction
error, we obtain the following.

Proposition 7. Fix a constant η > 0. Suppose M is a
mechanism satisfying ε-DP with ε = o(d) or ρ-zCDP with
ρ = o(d). Then M is (η, γ)-ReRo with respect to N (w, σ2Id)
and `2 with γ = e−Ω(d) as long as σ ≥ 2η√

d
.

The idea that large values of ε can protect against re-
construction when the adversary’s prior contains significant
uncertainty (i.e. it is diffused) was previously noticed in [41]
in the context of local DP (LDP) with priors close to uniform.
Inspired by FL applications where adversaries get access to
LDP gradients, the authors propose a notion of protection
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against reconstruction breaches that is more stringent than
Definition 2: it asks that the adversary cannot effectively
reconstruct a particular feature of interest about the target point
no matter what the output of the mechanism is – in contrast,
ReRo uses an average-case requirement over the outputs of
the mechanism. Technically, [41, Lemma 2.2] shows that the
bound in Corollary 3 also holds for this worst-case notion of
protection against reconstruction.5 Such worst-case guarantees,
however, are not attainable under relaxations of ε-DP like RDP
because the latter does not enforce an almost sure bound on
the privacy loss: instead, it just guarantees that the privacy
loss will be small with high probability. Thus, Theorem 2 and
Proposition 6 are natural generalizations of the results from
[41] to RDP, which is the default notion of privacy provided
by DP-SGD and other popular private ML algorithms [42, 43].

E. Is Reconstruction Robustness Useful in Practice?

To deploy the bounds from Theorem 2 two things are
necessary: the description of a criterion for reconstruction error
` with an associated threshold η, and an understanding of the
success rate of η-approximate reconstruction by the adversary
prior to the release. Equipped with ` and η, one can then
engage in a conversation with stakeholders and domain experts
to determine what success rate of reconstruction is reasonable
to adjudicate to a potential adversary before the release is
made. An interesting feature of Theorem 2 is that it reduces
adversarial modelling to a question about determining a single
number κπ,`(η). Furthermore, it is possible that one does not
need to be overly conservative in estimating this number. After
all, the theorem bounds the success probability of the wost-
case adversary which, in particular, knows all the fixed dataset.
Realistic adversaries will often have less knowledge of the
fixed dataset, so it might be possible to trade-off knowledge
of the fixed dataset with the amount of diffusion required from
the prior. We leave this question for future work.

F. Further Related Work

a) Threat modelling and privacy semantics: The use
of informed adversaries in formal privacy analyses can be
tracked back to the sub-linear queries (SuLQ) framework [44].
SuLQ was later subsumed by DP [6], where mentions to a
concrete adversary were expressly avoided in the definition
that is widely used nowadays [45]. Nonetheless, [6, Appendix
A] provides a “semantically flavored” definition equivalent to
DP which involves the likelihood ratio between the prior and
posterior beliefs of an informed adversary about any property
of the target data point. The adversarial model put forward in
Section II uses the same notion of informed adversary.

In other frameworks where the adversary is not (necessarily)
informed (e.g. Pufferfish privacy [46] and inferential privacy
[47]), side knowledge about the whole dataset is encoded in a
probabilistic prior capturing information about the individual
entries in the dataset as well as their statistical dependencies.
These frameworks extend the semantic approach to DP by

5Although the bound in [41] is stated in terms of ε-LDP, it is easy to see
that the same holds for central ε-DP in the presence of an informed adversary.

replacing the prior-vs-posterior condition with an odds ratio
condition – such modification is motivated by the observa-
tion that prior-vs-posterior bounds cannot hold in general
for uninformed adversaries unless the prior distribution over
the dataset assumes the records are mutually independent.
Alternatively, [48] provides posterior-vs-posterior semantics
for DP in the presence of an uninformed adversary with
an arbitrary prior. In the definition of reconstruction robust-
ness, our use of an informed adversary with a prior over
the target data point circumvents the complications arising
from dependencies between points in the training data: the
prior captures the adversary’s residual uncertainty about the
target point after observing the fixed dataset. On the opposite
direction, several authors have proposed approaches where the
adversary’s uncertainty with respect to the input data of a
mechanism is leveraged to increase the privacy provided to
individuals [49, 50, 51, 52]. Implicitly, these works assume a
less powerful adversary than the one considered in this paper.

Most of the semantic definitions we discussed formalize
the privacy protection goal without assuming the adversary is
interested in a particular inference task; that is, protection ap-
plies simultaneously to all possible inferences about the target
point(s). In contrast, the use of an explicit reconstruction error
` makes the definition of reconstruction robustness syntactic in
nature. Section II-B briefly discusses how the problem of de-
signing an appropriate error function for each application can
be approached. A similar dilemma arises in location privacy,
where distortion-based notions include an explicit measure
of reconstruction error [53, 54]. Nonetheless, as Theorem 5
shows, by considering a very stringent reconstruction goal
and a set of sufficiently informative priors one can recover
semantic privacy notions from reconstruction robustness.

The connection between DP and protection against mem-
bership inference is perhaps best understood via its hypothesis
testing interpretation [55, 56]. A comprehensive discussion of
the adversary implicit in the definition of DP from the hy-
pothesis testing standpoint can be found in [14]. Interestingly,
[57] shows that, unlike standard DP, RDP does not admit
a hypothesis testing interpretation. A semantic (Bayesian)
interpretation of RDP in terms of moment bounds on the odds
ratio is presented in [39]. Theorem 2 provides an alternative
characterization of the privacy protection afforded by RDP in
terms of resilience to reconstruction attacks.

b) DP and protection against reconstruction: How stan-
dard DP offers concrete protection against reconstruction
attacks has been studied in other contexts. Indeed, one of the
original motivations for the definition of DP was to defeat
database reconstruction attacks in the context of interactive
query mechanisms [58, 59, 60, 61, 62]. In such attacks, the
adversary receives (noisy) answers to a sequence of specially
crafted queries against a database and, if the noise is small
enough, uses the answers to (partially) reconstruct every record
in the database. The success of these attacks is contingent on
the adversary’s ability to control these queries; in contrast, in
ML applications like the ones we consider the computation
performed by the mechanism is completely under the model
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developer’s control.
The quantitative information flow literature seeks to provide

information-theoretic bounds on data leakage in information
processing systems [63, 64]. When applied to differentially
private mechanisms, these ideas yield bounds on the protection
against exact reconstruction when Z is finite. In particular,
when specialized to informed adversaries and translated into
our terminology, [65, Theorem 3] shows that any ε-DP mech-
anism is (η, γ)-ReRo with η ∈ (0, 1) with respect to `0/1 and
any prior π with γ ≤ |Z|κeε

|Z|+eε−1 . Taking |Z| → ∞ recovers
the bound from Corollary 3 in the case of `0/1. Our results
can thus be interpreted as a generalization of this line of work
where no assumptions about Z are necessary.

VIII. CONCLUSIONS

Our work provides compelling evidence that standard ML
models can memorize enough information about their training
data to enable high-fidelity reconstructions in a very stringent
threat model. By instantiating an informed adversary that
learns to map model parameters to training images, we suc-
cessfully attacked standard MNIST and CIFAR-10 classifiers
with up to 100K parameters, and showed the attack is signifi-
cantly robust to changes in the training hyper-parameters. Two
aspects of our attack we would like to improve in future work
are its data and computational efficiency, and its scalability
to larger, more performant released models. This would not
lead to real-world adversaries mounting practical attacks due
to the nature of our threat model, but it would enable model
developers to assess potential privacy leakage in models before
deployment. Extending our attacks to reconstruct N > 1
targets simultaneously would also be interesting, but we expect
this to be substantially harder. For example, in this setting
our attacks against convex models lead to a problem with
more unknowns than equations. On the defenses side, we
empirically showed that DP training with large values of ε can
effectively mitigate our reconstruction attacks. Our theoretical
discussion, stemming from a new definition of reconstruction
robustness and a study of its connection to (R)DP, shows this
is a general phenomenon: informed reconstruction attacks can
be prevented with large values of ε under some assumptions
on the adversary. Validating such assumptions in particular
applications would open the door to practical models which
are accurate and resilient against reconstruction attacks.
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M. Brockschmidt, “Analyzing information leakage
of updates to natural language models,” in ACM
Conference on Computer and Communications Security
(CCS), 2020.

[26] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and
Y. Zhang, “Updates-leak: Data set inference and recon-
struction attacks in online learning,” in USENIX Security
Symposium, 2020.

[27] P. McCullagh and J. A. Nelder, Generalized linear mod-
els. Routledge, 2019.

[28] R. W. Wedderburn, “On the existence and uniqueness of
the maximum likelihood estimates for certain generalized

linear models,” Biometrika, 1976.
[29] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and

O. Wang, “The unreasonable effectiveness of deep fea-
tures as a perceptual metric,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[30] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-
image translation with conditional adversarial networks,”
in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[31] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and
S. Paul Smolley, “Least squares generative adversarial
networks,” in IEEE International Conference on Com-
puter Vision (ICCV), 2017.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, 1998.

[33] S. Zagoruyko and N. Komodakis, “Wide residual net-
works,” in British Machine Vision Conference (BMVC),
2016.

[34] S. Fort, J. Ren, and B. Lakshminarayanan, “Ex-
ploring the limits of out-of-distribution detection,”
arXiv:2106.03004, 2021.

[35] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Gold-
stein, “Visualizing the loss landscape of neural nets,” in
Conference on Neural Information Processing Systems
(NeurIPS), 2018.

[36] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin,
“Haiku: Sonnet for JAX,” 2020. [Online]. Available:
http://github.com/deepmind/dm-haiku

[37] M. Jagielski, J. Ullman, and A. Oprea, “Auditing differ-
entially private machine learning: How private is private
sgd?” Advances in Neural Information Processing Sys-
tems, 2020.

[38] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor, “Our data, ourselves: Privacy via distributed
noise generation,” in International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), 2006.
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APPENDIX
PROOFS

Proof of Theorem 1. A GLM model θ is trained as the solu-
tion to:

−
n∑
i=1

xi(g
−1(〈xi, θ〉)− yi) + λθ = 0 . (3)

We solve for target point x to obtain a reconstruction attack:

x(g(xθ)− y) = −X̄>(g(X̄θ)− Ȳ )− λθ . (4)

(X̄, Ȳ ) = D- are resp. the fixed objects and labels, which are
known to the attacker. We indicate with Xj the j-th column of
the data points. This attack assumes the model is fitted with the
intercept coefficient, i.e. X1 = (1, ..., 1). Equation (4) defines
a system of d equations; consider the j-th of them:

g(xθ) = y −
X̄>j (g(X̄θ)− X̄) + λθj

xj

Now observe that g(xθ) can be determined by the attacker
for the intercept column, j = 1; (note that also x1 = 1).
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By plugging this back into Equation (4) we get the desired
form. The target label y is reconstructed similarly, by plugging
the solution for x into the same system.

Theorem 8 (Alternative attack to linear regression without
intercept). Consider a linear regression model θ trained on
dataset (X,Y ) = (X̄ ∪{x}, Ȳ ∪{y}); that is, θ is the unique
minimizer of 1

2‖Xθ− Y ‖
2. (The model may or may not have

been fitted with an intercept term.) Then x can be retrieved
given θ, X̄ , Ȳ , and y, as follows:

x̂ = X̄>(X̄θ − Ȳ ) · y ±
√
y2 − 4(X̄θ − Ȳ )>X̄θ

2(X̄θ − Ȳ )>X̄θ
.

Note that this expression returns two candidate guesses for x.

Proof. Write the objective as

1

2
‖Xθ − Y ‖2 =

1

2
‖X̄θ − Ȳ ‖2 +

1

2
(x>θ − y)2 .

Since θ is the unique minimizer we can take the gradient
of the objective above and set it to zero to find the system of
equations

X̄>(X̄θ − Ȳ ) + x(x>θ − y) = 0

Reorganizing the terms we have x(x>θ−y) = −X̄>(X̄θ−Ȳ ).
Since x>θ − y is a scalar we see that for x to satisfy this
equation it must be a multiple of the vector X̄>(X̄θ − Ȳ );
(here we assume that X̄θ − Ȳ 6= 0). So we only need to
consider solutions of the form x = αX̄>(X̄θ − Ȳ ) for some
α ∈ R.

Plugging this expression for x in the system we obtain an
equation for α:

X̄>(X̄θ − Ȳ )(α2(X̄θ − Ȳ )>X̄θ − αy + 1) = 0

so
α2(X̄θ − Ȳ )>X̄θ − αy + 1 = 0

Solving for α we get the desired expression.

Theorem 2. Fix π, ` and η > 0, and let κ = κπ,`(η). If a
mechanism M satisfies (α, ε)-RDP then it also satisfies (η, γ)-
ReRo with respect to π and ` with γ = (κ · eε)

α−1
α .

Proof of Theorem 2. Fix arbitrary R : Θ → Z , D- ∈ Zn−1

and z0 ∈ Z . Let Z ∼ π, DZ = D-∪{Z} and θ ∼M(DZ). We
write pM (θ|z) = P[M(Dz) = θ] to denote the output density
of M on input Dz . Then the probability P[`(Z,R(θ)) ≤ η]
equals∫
Z

∫
Θ

1[`(z,R(θ)) ≤ η]pM (dθ|z)π(dz)

=

∫
Z

∫
Θ

1[`(z,R(θ)) ≤ η]pM (dθ|z0)
pM (θ|z)
pM (θ|z0)

π(dz)

=

∫
Θ

(∫
Z
1[`(z,R(θ)) ≤ η]

pM (θ|z)
pM (θ|z0)

π(dz)

)
pM (dθ|z0) .

Taking α′ = α
α−1 and applying Hölder’s inequality to the inner

integral we get:∫
Z
1[`(z,R(θ)) ≤ η]

pM (θ|z)
pM (θ|z0)

π(dz)

≤
(∫
Z
1[`(z,R(θ)) ≤ η]π(dz)

)1/α′

×
(∫
Z

(
pM (θ|z)
pM (θ|z0)

)α
π(dz)

)1/α

≤ κ1/α′ ·
(∫
Z

(
pM (θ|z)
pM (θ|z0)

)α
π(dz)

)1/α

.

After plugging the bound above into the expression for
P[`(Z,R(θ)) ≤ η] and re-arranging terms, we use Jensen’s
inequality and the RDP assumption on M to obtain:(

P[`(Z,R(θ)) ≤ η]

κπ(η)1/α′

)α
≤

≤

(∫
Θ

(∫
Z

(
pM (θ|z)
pM (θ|z0)

)α
π(dz)

)1/α

pM (dθ|z0)

)α
≤
∫
Z

(∫
Θ

(
pM (θ|z)
pM (θ|z0)

)α
pM (dθ|z0)

)
π(dz)

≤ sup
z

∫
Θ

(
pM (θ|z)
pM (θ|z0)

)α
pM (dθ|z0)

≤ e(α−1)ε .

The result follows from re-arranging this inequality.

Corollary 4. Fix π, ` and η > 0, and let κ = κπ,`(η). If
a mechanism M satisfies ρ-zCDP with ρ < log(1/κ) then it
also satisfies (η, γ)-ReRo with respect to π and ` with γ =

e−(
√

log(1/κ)−√ρ)2 .

Proof of Corollary 4. Theorem 2 yields the bound γ =

(κ · eαρ)
α−1
α for any α > 1. This is minimized by taking

α =
√

log(1/κ)
ρ , which is greater than 1 by assumption.

Plugging this value of α into γ and re-organizing the terms
completes the proof.

Theorem 5. Fix ε ≥ 0, η ∈ (0, 1) and γ ∈ [0, 1]. Let
Πε = {πp,z,z′ : z, z′ ∈ Z, z 6= z′} be the class of all priors
on Z concentrated on pairs of points with p = 1

eε+1 . If a
mechanism M : Zn → Θ is (η, γ)-ReRo with respect to
`0/1 and every prior π ∈ Πε, then M satisfies (ε, δ)-DP with
δ = max{0, (eε + 1)γ − eε}.

Proof of Theorem 5. Fix arbitrary D- ∈ Zn−1, z, z′ ∈ Z ,
z 6= z′, and E ⊆ Θ. Define the reconstruction mapping RE
given by

RE(θ) =

{
z if θ ∈ E ,

z′ if θ /∈ E .

By the ReRo assumptions on M we have

PZ∼πp,z,z′ ,θ∼M(DZ)[RE(θ) = Z] ≤ γ .
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On the other hand, by definition of πp,z,z′ and RE we have

PZ∼πp,z,z′ ,θ∼M(DZ)[RE(θ) = Z] =

=
1

eε + 1
P[M(Dz) ∈ E] +

eε

eε + 1
P[M(Dz′) /∈ E]

=
P[M(Dz) ∈ E]− eεP[M(Dz′) ∈ E] + eε

eε + 1
.

Thus, we get

P[M(Dz) ∈ E]− eεP[M(Dz′) ∈ E]

≤ (eε + 1)γ − eε ≤ max{0, (eε + 1)γ − eε} .

Proof of Proposition 6. Let π = U(Bd1 (0)) and write Vol(A)
to denote the Eucliean volume of a set A ⊂ Rd. By definition
of the baseline error, for η ∈ (0, 1) we have

κπ,`2(η) = sup
z0

Vol(Bd1 (0) ∩Bdη(z0))

Vol(Bd1 (0))
= ηd = e−Ω(d) ,

where the calculation follows by the standard volume formula
for d-dimensional Euclidean balls. Plugging this expression in
Corollary 3 shows that any ε-DP mechanism with ε = o(d)
provides (η, γ)-ReRo with respect to π and ` with γ = e−Ω(d).
A similar claim follows from Corollary 4 applied to ρ-zCDP
mechanisms with ρ = o(d).

Proposition 7. Fix a constant η > 0. Suppose M is a
mechanism satisfying ε-DP with ε = o(d) or ρ-zCDP with
ρ = o(d). Then M is (η, γ)-ReRo with respect to N (w, σ2Id)
and `2 with γ = e−Ω(d) as long as σ ≥ 2η√

d
.

Proof of Proposition 7. Let Z ∼ N (0, I) and Fη(z0) =
P[‖Z+z0‖2 ≤ η2]. First we claim that argmaxz0 Fη(z0) = 0.
To see this, fix z0 and let z̄0 = z0/‖z0‖. We can then write the
orthogonal decomposition Z = Z‖+Z⊥ with Z‖ = 〈Z, z̄0〉z̄0,
where Z‖ and Z⊥ are independent multivariate Gaussians. By
orthogonality we have ‖Z+z0‖2 = ‖Z⊥‖2+(〈Z, z̄0〉+‖z0‖)2,
which is a sum of independent chi-squared random variables.
Note 〈Z, z̄0〉 ∼ N (0, 1), and let f be the density function
of ‖Z⊥‖2. Using that for a standard normal random variable
W ∼ N (0, 1) we have P[(W + a)2 ≤ t] ≤ P[W 2 ≤ t] for all
a, t ∈ R (see, e.g., [66, Example 1.A.27]), we get

Fη(z0) =

∫
P[(W + ‖z0‖)2 ≤ η2 − t]f(t)dt

≤
∫

P[W 2 ≤ η2 − t]f(t)dt = Fη(0) .

This proves the claim. For ν = N (w, σ2I) this implies

κν,`2(η) = sup
z0

PZ∼ν [‖Z − z0‖ ≤ η]

= sup
z0

PZ∼N (0,I)[‖Z + z0‖2 ≤ η2/σ2] = Fη/σ(0) .

Therefore, using a tail lower bound for chi-squared random
variables [67, Lemma 2.2] we get

κν,`2(η) ≤ e
d
2

(
1− η2

σ2d
+log η2

σ2d

)
.

In particular, for σ ≥ 2η√
d

we get κν,`2(η) ≤ e−Ω(d) – this
follows from a simple calculation using that 5/8 < log 2.

The remaining of the proof follows the same pattern as in
Proposition 6.

APPENDIX
ADDITIONAL EXPERIMENTAL RESULTS

A. Randomness from Released Model Initialization

TABLE III: Reconstruction metrics with and without ran-
dom released model initialization for different released model
learning rate and momentum hyperparameters on MNIST. See
section V-B for a description of each metric.

Randomly initialize Released model Released model LPIPS MSE KLreleased models learning rate momentum

3

0.01 0.0 0.3342 0.0693 5.2477
0.01 0.9 0.3326 0.0691 5.2218
0.20 0.0 0.3326 0.0692 5.3599
0.20 0.9 0.3226 0.0695 5.5261

7

0.01 0.0 0.0197 0.0041 0.0140
0.01 0.9 0.0225 0.0049 0.0179
0.20 0.0 0.0286 0.0063 0.0357
0.20 0.9 0.0382 0.0089 0.0414
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Fig. 11: On the MNIST dataset, given a target point z we
train 1K released models with (blue) and without (orange) this
point included in two settings: when each model is initialized
with a new random seed, and when each model has the same
initialization. We plot the distribution of losses on this target
point in these two settings. Clearly, when there is no model
randomization the distributions are perfectly separable and so
membership is easy to infer, while in the random setting, the
distributions nearly perfectly overlap implying membership
may be more difficult.

In Table III, we show results both with and without ran-
domization from initialization for different released model
learning rates on the MNIST dataset. The average MSE with
and without random initialization was 0.0089 and 0.0695,
respectively. The choice of learning rate negatively impacts
the attack in settings where initial parameters are known, but
not when initial parameters are unknown, since the attack fails
for any choice.

The attack fails when the adversary does not have knowl-
edge of the initial parameters of the released model and
so must instantiate each shadow model used to train the
attack with a new seed that controls the selection of initial
parameters. We provide evidence that it may not be possible
to perform a reconstruction attack in this setting by appealing
to a simpler task of inferring membership, and demonstrating
this problem is also difficult without knowledge of the initial
parameters. We instantiate an informed MIA as described in
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Section II on the MNIST dataset. Specifically, given a target
point z we train 1K released models with and without this
point included (but with the same fixed set) in two settings:
when each model is initialized with a new seed (differing
initial parameters), and when each model is initialized with
the same seed (identical initial parameters). In Figure 11,
we plot the distribution of losses on this target point in
these two settings. Clearly, when there is no initial parameter
randomization the distributions are perfectly separable and so
membership is easy to infer, while in the random setting, the
distributions nearly perfectly overlap implying membership
may be more difficult, if not impossible. Note that if released
model training was fully deterministic, the distribution of
losses on the target point in the setting with no random
initialization would collapse to a point distribution. However,
all our models are trained with JAX on GPUs that compile
with non-deterministic reductions, introducing a small source
of randomness [68].

B. Transfer Learning from a Reconstructor Network Trained
on a Different Fixed Set
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(a) MNIST, |D-| =
|D′

-| = 10K, leaving a
maximum 49K shadow
models.

0 1K 5K 10K 49K
Attack training set size

10 1

Av
er

ag
e 

M
SE

With fine-tuning Without fine-tuning

(b) CIFAR-10, |D-| =
|D′

-| = 5K, leaving a
maximum 49K shadow
models.

Fig. 12: Fine-tuning the reconstruction network for a new
target. The reconstruction network is initially trained to attack
a released model trained with fixed dataset D-, and then fine-
tuned for a new released model trained with fixed dataset
D′-. Interestingly, the reconstructor network can do zero-shot
learning on MNIST images, despite being trained on entirely
separate data (i.e. D′- ∩D- = ∅).

Given a reconstructor network, φ, trained to attack released
models of the form θ = AD-(z), can the adversary amortize
the cost training a new φ′ that aims to attack a released
model θ′ = AD′-(z), where D′- ∩ D- = ∅? On both MNIST
and CIFAR-10, in Figure 12 we show that fine-tuning the
reconstructor φ on only a small number of shadow models
can reach comparative performance to a reconstructor trained
from scratch on substantially more data.

C. Adversary Knowledge of Starting Point: Initialization vs
Near Convergence

0.00 0.05 0.10 0.15 0.20
MSE

0

100

200

300
From initialization
From pre-trained

Fig. 13: A histogram of MSE for 1K released model targets for
an adversary that observes the initial parameters compared to
first observing a pre-trained released model near convergence.
We also give the NN oracle for reference.

By default we assume the adversary knows the initial
released model parameters, motivated by scenarios where the
random seed used to generate initial parameters is made public
or is leaked. Another motivating example is that of federated
learning, where an adversary participates in the learning pro-
tocol. However, in such a setting, it is not guaranteed the
adversary will observe a model at it’s initial state. If the
adversary is only included in the protocol after a sufficient
number of time steps, the state at which they first observe
released model parameters may be close to convergence. Here,
we measure how reconstructions are affected by this subtle
assumption. We pre-train a released model on 10K MNIST
images (this model already achieves > 92% MNIST test set
accuracy), and then following the experimental set-up reported
in Section V on the remaining MNIST data, and compare
to a released model in the standard setting where no pre-
training occurs. Figure 13 shows the MSE for each 1K released
model target in both settings. Clearly there is a difference
in reconstruction fidelity that depends on the step at which
the adversary first observes the released model parameters. A
model that has nearly converged may be less dependent / not
memorize it’s newly seen training data, making reconstructions
more challenging.

D. Visualization of Easy and Hard CIFAR-10 Reconstructions
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Fig. 14: Example of the six smallest and size largest MSE
reconstructions for CIFAR-10.

In Figure 14 we show the six reconstructed CIFAR-10
examples with smallest MSE and six examples with largest
MSE out the 1K targets used for evaluation. The easiest targets
to reconstruct correspond to structurally simple images with
a constant background, while the most difficult often have
complex background and color schemes.
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E. Reconstructing Against a Released Model Trained with DP
on CIFAR-10
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Fig. 15: Average MSE of reconstructions and test accuracy of
released model using (ε, δ)-DP on the CIFAR-10 dataset.

We perform analogous DP experiments as in Section VI-D
for CIFAR-10. Gradients are clipped to have a maximum `2
norm of 10, and Gaussian noise is added such that the model
is (ε, δ = 10−5)-DP. In Figure 15 we see that again, a large
ε in (ε, δ)-DP successfully mitigates against reconstruction
attacks while preserving test accuracy in comparison to non-
DP training.

F. Size of Released Model
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Fig. 16: Average MSE for different widths of a 1-hidden layer
released model on MNIST. We denote the attack that only uses
the second layer of the released model by *.

TABLE IV: How the size of the released model impacts
the reconstruction attack on MNIST. We denote the case
where the attack only uses the second layer of the released
model by *, resulting in a significant decrease in attack input
dimensionality.

Hidden layer width Number of Dimensionality of input LPIPS MSE KLtrainable parameters to reconstructor network

1 805 805 0.0325 0.0079 0.0448
10 7960 7960 0.0392 0.0089 0.0516
100 79420 79420 0.0338 0.0079 0.0258
100* 79420 1010 0.0477 0.0124 0.0840

Here we expand on our investigation around the interplay
between size of the released model and reconstruction success
by varying the width of the released model hidden layer
between 1, 10, and 100 for the MNIST dataset. Figure 16
and Table IV show that the width of the hidden layer does
not significantly affect reconstruction, as all have an average
MSE on the 1K targets far below the NN oracle of 0.0232.
We also investigate the case in which the attacker only trains
and evaluates the attack using the second layer of the shadow
model (and released model) for the MNIST dataset. Because
the architecture of the 1-hidden layer released model has

7850 parameters in the first layer and 110 in the second,
by only using the second layer as inputs to the attack, we
reduce the dimensionality of attack inputs by 98%. Using
only the second layer of released model for the input to
the reconstructor network marginally increases average MSE,
but substantially reduces the dimensionality of inputs, thereby
improving efficiency during training the attack.

G. Variance over Different Initializations
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(a) Variance in reconstructions
over ten different experiment
runs (ten different initial param-
eter configurations).
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colour (shown for targets out of
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Fig. 17: Variance in MSE across ten different experimental
runs each with a different initial parameter configuration for
the release model, for the MNIST dataset.

We repeat our default reconstruction attack on MNIST ten
times, where at each repetition we will sample a new seed
controlling initial parameters over that experiment run. We
the measure how consistent our experimental results are for
different choices of seeds. From Figure 17 we can see that
while there is variance in results, almost all reconstructions
lie close or below the NN oracle distance in Figure 3a. One
may wonder if certain seeds are more amenable to attacks
than others? That is, are there configurations of initial released
model parameters that result in better reconstructions across all
target points in comparison to other initializations? We show
this is not the case in Figure 17b by marking each seed in
a different color and showing the MSE for ten test targets
over the ten different seeds; this highlights that the ordering
of seeds with respect to MSE changes for different images.

H. Effect of Batch Size, Learning Rate, and Fixed Set Size on
MNIST Reconstructions
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Fig. 18: Reconstruction metrics (on MNIST) for different fixed
set sizes, D-. We observe a slight increase in in reconstruction
error across all metrics when |D-| grows.

We summarize other aspects of the training procedure of the
released model that impact the quality of reconstructions on
the MNIST dataset. Firstly, larger learning rates when training
the released model can negatively influence the quality of
reconstructions in SGD (i.e. using mini-batches), but in full-
batch gradient descent we observed similar a MSE across
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different learning rates (cf. Figure 23). Secondly, in Figure 18,
we measure the influence of the size of the fixed set, by varying
it between 100, 1K, and 10K (which is the default in our
MNIST experiments). Interestingly, we only observe a small
decrease in MSE as the fixed set size decreases.

I. Correlation between Metrics on CIFAR-10
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Fig. 19: Correlation between different metrics over 1K released
model targets for CIFAR-10.

We measure the correlation between MSE, LPIPS, and KL
on the 1K test targets for CIFAR-10 in Figure 19, and observe
similar relationships between the metrics as in Figure 5a and
Figure 5b.

J. Expanded Investigation into Factors that Affect CIFAR-10
Reconstructions

In Table X, we investigate reconstructions under different
released model optimizers, fixed set sizes and number of train-
ing epochs. We find that the dominant factor in reconstruction
fidelity is the number of training epochs of the released model.
A smaller number of training epochs and smaller fixed set
size improves the quality of reconstructions. Note also that
the ability to reconstruct does not seem to be correlated with
overfitting or (standard) membership inference success, and
that the attack succeeds for different choices of optimizer.

Due to the size of the released model, and other restrictions
such as full-batch training with no regularizers, the test ac-
curacy of the released model for which we can successfully
perform attacks is approximately 35-50%. Improving the ef-
ficiency of the attack such that it can scale to larger released
models is a challenge to address in future work.

K. Correlation between Gradient Norm and Ease of Recon-
struction
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Fig. 20: For each target point z in the 1K released model
target set, we plot MSE against gradient norm ‖∂`(z)∂θ ‖ for
MNIST.

Following on from Appendix C, we investigate the rela-
tionship between reconstruction and the gradient norm of loss
with respected to released model parameters computed on
the target point through training. Recent work on training

data memorization [2] and individual privacy accounting in
differential privacy [69] have used the gradient norm of a
model with respect to the loss induced by a training point as
a measure of memorization or privacy leakage. In Figure 20,
we evaluate the MSE between target and reconstructions for
each 1K target point on MNIST, and also plot the sum of
gradient norms over training. The two quantities are weakly
correlated with one another, however one may expect that
the two would be inversely correlated if examples that are
strongly memorized are easier to reconstruct – targets with
a larger gradient norm throughout training are outliers that
the released model must necessarily memorize to perform
well on ([2]). We conjecture that the effect we are observing
stems from “outliers” that are harder to reconstruct not because
the released model memorizes them less, but because they’re
also outliers for the RecoNN, and therefore target where the
reconstructor also performs poorly.

L. Fine-Grained Analysis of CIFAR-10 Reconstructions over
Released Model Training Epochs
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Fig. 21: How average MSE increases with the number of
training epochs of the released model for CIFAR-10.

As we observed in Appendix J, reconstructing CIFAR-10
images is sensitive to the number of training epochs of the
released model. We perform a fine-grained analysis to inspect
at what epoch the attack becomes unsuccessful. This can be
seen in Figure 21, where we plot average MSE over 1K
released model targets as a function of the number of training
epochs. MSE slowly increases with number of epochs up until
approximately 240-250 epochs, at which point we observe
that “reconstructability” undergoes a phase transition. Initially,
we conjectured this was due to non-determinism from GPU
training increasing the variance of shadow model parameters
for a larger number of training epochs. However, when we
implemented shadow model training in a deterministic set-
up (using TPUs) we observed no difference in experimental
outcomes. We leave a more in-depth investigation into the
relationship between reconstruction success and number of
training epochs for future work.
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M. ReLU Activations in Released Model
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Fig. 22: Evidence on CIFAR-10 reconstruction task that ReLU
activations make reconstruction attacks harder. For the target,
z, we plot ∂`(z)

∂θ for each layer in the released model θ,
throughout training. A large fraction of these gradients are
zero, implying less influence of this additional point on the
trained model, in comparison to other activations that have
non-zero gradients everywhere.

TABLE V: Comparison of reconstructions for different re-
leased model activations on MNIST. Please refer to [70] for a
description of each activation function.

Activation Average MSE over 1K test targets

ReLU 0.0182
max(−0.5, x) 0.0096
ELU 0.0089
Sigmoid 0.0085
Softplus 0.0083
Swish 0.0091
Leaky ReLU 0.0092
Tanh 0.0086
CELU 0.0077
SELU 0.0083
GELU 0.0088
Identity 0.0085

As we saw in Section VI-B, released models with ReLU
activations tend to be harder to attack in comparison to other
activation functions with non-zero gradients almost every-
where, and result in poor quality reconstructions (an MSE
larger than the NN oracle distance). We conjecture that this
is caused by a large fraction of parameters receiving zero
gradients at each step of training, thereby diminishing the
mutual information shared between model parameters and the
unknown target training point. In Figure 22, for each layer
of the released model, we show the fraction of parameters
that received zero gradient when computing the loss of the
unknown training point. Over 80% of the parameters in
the convolutional layers have zero gradients. Additionally, in
Table V we compare reconstructions against released models
that employ different activation functions, and find that ReLU
remains the outlier. Note that we also reconstruct against a
released model that uses a modified version of ReLU that has
zero gradient for x < −0.5, and find that allowing a small
negative signal is enough to reach parity with reconstruction
MSE on smooth activations or activations that contain a non-
zero signal almost everywhere.

TABLE VI: Experimental setup.

MNIST CIFAR10

Data

Resolution 28× 28 (grayscale) 32× 32 (RGB)
Size 70K 60K
Fixed size 10K 5K
Shadow size 59K 54K
Test targets 1K 1K

θ, θ̄

Type MLP CNN
Architecture 1-hidden layer, width 10 Table VII
Activations ELU ELU
Parameters 8K 55K

φ

Type MLP Transposed CNN
Architecture 2-hidden layers, width 1K Table VIII
Activations ReLU ReLU
Parameters 9.7M 226M

A

Algorithm GD+Momentum GD+Momentum
Loss Cross-entropy Cross-entropy
Learning rate 0.2 0.01
Momentum 0.9 0.9
Epochs 100 100

R

Algorithm RMSProp Adam
Loss MAE+MSE +LPIPS+Discriminator
Learning rate 0.001 0.0001
Weight decay 0 0.0001
Batch size 128 128
Epochs 100 1000

TABLE VII: CIFAR-10 released model, θ.

Layer Parameters

Convolution 16 filters of 4× 4, strides 2
Convolution 32 filters of 4× 4, strides 1
Fully connected 10 units
Softmax 10 units

TABLE VIII: CIFAR-10 reconstructor network, φ.

Layer Parameters

Fully connected 4096 units
Reshape 64× 64
Transposed convolution 32 filters of 5× 5, strides 2
Transposed convolution 3 filters of 5× 5, strides 2

TABLE IX: CIFAR-10 attack PatchGAN Discriminator model.

Layer Parameters

Convolution 64 filters of 4× 4, stride 2
Convolution 128 filters of 4× 4, stride 2
Convolution 256 filters of 4× 4, stride 2
Convolution 512 filters of 4× 4, stride 1
Convolution 1 filter of 4× 4, stride 1
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TABLE X: Reconstruction metrics for different released model learning hyperparameters on the CIFAR-10 dataset. We also
include a column denoting the membership inference AUC for the released model using [71] and show that vulnerability
to reconstruction attacks occurs even when standard membership inference attacks pose little risk. For reference the nearest
neighbor oracle distance for the CIFAR-10 dataset is 0.0291, and so we judge a reconstruction to be successful if it is below
this value. The Adam optimizer is set with a learning rate of 0.002.

Fixed set size Optimizer Training epochs MSE LPIPS Released model Released model Membership AUC OOD shadow targettrain accuracy test accuracy

1K

GD + momentum
100 0.0041 0.1861 0.451 0.327 0.61

7

250 0.0126 0.3117 0.759 0.324 0.80
500 0.0170 0.3594 0.998 0.328 0.89

Adam
100 0.0052 0.2042 0.952 0.299 0.87
250 0.0065 0.2355 1.000 0.300 0.92
500 0.0068 0.2428 1.000 0.303 0.91

5K

GD + momentum
100 0.0049 0.2070 0.392 0.388 0.51
250 0.0201 0.3863 0.461 0.401 0.60
500 0.0761 0.5272 0.610 0.451 0.61

Adam
100 0.0052 0.2179 0.546 0.395 0.63
250 0.0062 0.2148 0.844 0.418 0.75
500 0.0143 0.3460 0.999 0.421 0.87

10K

GD + momentum
100 0.0209 0.4184 0.401 0.397 0.52
250 0.0385 0.4851 0.420 0.410 0.52
500 0.0761 0.5287 0.514 0.473 0.54

Adam
100 0.0081 0.2501 0.477 0.443 0.56
250 0.0208 0.3950 0.662 0.470 0.66
500 0.0357 0.4930 0.937 0.474 0.73

50K

GD + momentum
100 0.0039 0.1929 0.419 0.400 0.55

CIFAR-100

500 0.0563 0.5260 0.503 0.501 0.51
2000 0.0693 0.5350 0.726 0.633 0.55

Adam
100 0.0109 0.3042 0.422 0.436 0.51
500 0.0653 0.5585 0.546 0.541 0.52
2000 0.0721 0.5727 0.730 0.596 0.57
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Fig. 23: How randomness from data sub-sampling affects reconstructions on MNIST. Each row shows a different metric
(MSE, LPIPS or KL) as a function of the batch size used in training the released model, for settings when the adversary
does and does not know the seed from which data sub-sampling is initiated. Each column corresponds to a released model
trained with a different learning rate and momentum setting.
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Fig. 24: More examples of CIFAR-10 reconstructions in the default attack setting. Odd columns are reconstructions and even
columns are targets.
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