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Abstract

Recent advances in Transformer-based large language models (LLMs) have led
to significant performance improvements across many tasks. These gains come
with a drastic increase in the models’ size, potentially leading to slow and costly
use at inference time. In practice, however, the series of generations made by
LLMs is composed of varying levels of difficulty. While certain predictions truly
benefit from the models’ full capacity, other continuations are more trivial and can
be solved with reduced compute. In this work, we introduce Confident Adaptive
Language Modeling (CALM), a framework for dynamically allocating different
amounts of compute per input and generation timestep. Early exit decoding involves
several challenges that we address here, such as: (1) what confidence measure to
use; (2) connecting sequence-level constraints to local per-token exit decisions; and
(3) attending back to missing hidden representations due to early exits in previous
tokens. Through theoretical analysis and empirical experiments on three diverse
text generation tasks, we demonstrate the efficacy of our framework in reducing
compute—speedup of up to ×3—while provably maintaining high performance.1

1 Introduction

Recent advances in Large Language Models (LLMs) have led to breakthroughs in language under-
standing and language generation across almost every widely-used Natural Language Processing
(NLP) task considered in the field today [5; 15; 17; 20; 51; 52; 53; 75; 89; 73]. Autoregressive
language modeling provides a flexible framework for solving complex tasks with a unified natural
language input and output format, while also relaxing the need for large-scale task-specific data
collection and training [67; 15; 17; 58; 80]. The large size of LLMs, however, results in massive
computational load that might be limiting for certain real-world applications (e.g., machine transla-
tion) [9; 30; 42; 49; 59; 63; 71]. This is especially pronounced in the autoregressive decoding process
where the full stack of Transformer layers is repeatedly computed for each output token [37; 40; 86].

While large models do better in general, the same amount of computation may not be required for
every input to achieve similar performance (e.g., depending on if the input is easy or hard) [66]. Early
exiting is a promising approach to decreasing the computational cost of multilayered architectures
such as those used in Transformer-based LLMs, where the number of layers used by the model is
dynamically decided on an input-by-input basis [18; 23; 57; 60; 70]. In this setting, an LLM can
choose to generate a new token based off the representation at an intermediate layer instead of using
the full model, and save computation as a result. A natural question that arises, however, is when is it
a good decision to exit early, as opposed to wait? Naively choosing when to exit can be suboptimal in
terms of saving computation time, and also result in unpredictable degradations to model performance,
especially when predictions depend on each other, as in autoregressive language generation.
∗Project leads. Correspondence to: talschuster@google.com
1Code: https://github.com/google-research/t5x/tree/main/t5x/contrib/calm
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Figure 1: Illustration of CALM generation (see Figure 4 for the full example) with local per-token
early exiting decisions that provably satisfy global user-defined constraints on the full sequence.

In this work, we analyze the early exiting paradigm for LLMs, and present a principled method for
increasing model efficiency while remaining confident in the quality of the resulting predictions.
Specifically, we develop a method for calibrating local, per-token, exit decisions such that global,
sequence-level constraints—as determined by lexical or semantic sequence-level metrics like ROUGE
or BLEURT score—are provably maintained with arbitrarily high probability (e.g., 95%). This
process, which we call Confident Adaptive Language Modeling (CALM), is illustrated in Figure 1.

Our approach leverages recent techniques in distribution-free risk control in order to create confident
generations with strong statistical guarantees [2; 3; 10]. Concretely, suppose we have been given
a calibration set Scal := {Pi}ni=1 ∈ Pn of independent and identically distributed (i.i.d.) prompts
to our LLM (e.g., paragraphs to be summarized, sentences to be translated, or questions to be
answered via language modeling). Let Ptest be a new i.i.d. test prompt to our LLM, where Yearly :=
LLMearly(Ptest) and Yfull := LLMfull(Ptest) are the adaptive and standard outputs of our LLM,
respectively. In order to be satisfied with Yearly, we might require it to be textually consistent with
Yfull. Given any bounded text dissimilarity function D, we aim to calibrate the early-exiting LLM
such that its predictions agree to a tolerance δ with the full model in expectation with high probability,

P
(
E
[
D(Yearly, Yfull)

]
≤ δ

∣∣ Scal) ≥ 1− ε, (1)

where the randomness is over draws of Scal, and ε ∈ (0, 1). Eq. (1) has the significant advantage
of being achievable using only unlabeled calibration data Scal (a quality that is critical for few-
shot tasks, for example). Enforcing textual consistency with the original Yfull, however, may be
unnecessarily strict for certain tasks, especially where multiple generations may be acceptable. As
an alternative, given a calibration set of prompts paired with a set of (potentially multiple) target
references, Scal := {(Pi, Zi)}ni=1 ∈ (P × 2Y)n, and any bounded risk functionR, we also consider
an objective that enforces risk consistency by limiting the relative increase in risk of the predictions
Yearly compared to Yfull, with respect to the set of test-time references Ztest, i.e.,

P
(
E
[
R(Yearly, Ztest)−R(Yfull, Ztest)

]
≤ δ

∣∣ Scal) ≥ 1− ε. (2)

Within the constraints of either Eq. (1) or Eq. (2), the goal of our work is to find the most computation-
ally efficient Yearly, i.e., generations that exit as early as possible while still maintaining our desired
performance guarantees. In order to achieve this, it is necessary to develop a reliable signal for how
likely local, per-token early-exit decisions are to disrupt the global properties of the complete sequence.
Here, we first analyze how errors are propagated in Transformer-based LLMs, and then present an
effective and efficient scoring mechanism for assigning “consistent early-exit” confidence scores after
each layer used during the generation of a new token. The decision to exit or not is based on these
scores, and is carefully calibrated using Scal such that our performance bounds are provably satisfied.

Finally, we empirically validate our method on multiple, diverse NLP generation tasks, including
text summarization, machine translation, and question answering. Our experiments demonstrate the
potential of CALM in reducing the average complexity of the model and accelerating inference by
about ×3 while reliably controlling for high performance.

Contributions. In summary, our main contributions are as follows:

• A framework (CALM) for reliably accelerating Transformer-based LLM generations.
• A systematic analysis of the token-wise early exit mechanism that motivates a simple-but-effective

class of confidence measures and threshold functions that are used as part of the CALM framework.
• An empirical demonstration of CALM’s efficiency gains on three diverse generation datasets.
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2 Related Work

Improving inference-time efficiency of LLMs has been an ongoing effort of the research community
over the past several years [49; 72; 85], leveraging techniques such as knowledge distillation [6; 32;
36; 69; 69; 78; 56], floating point quantization [71; 65], layer pruning [24], vector dropping [38], and
others [41]. Another line of work involves conditional computation to train larger models that only
use a sparser subset of the full network during inference, for example by routing over mixture-of-
experts [9; 22; 39; 91], recurring modules [18; 29; 35], or accessing external memory [82]. These
models, however, still use the same amount of compute for all input examples.

Here, we focus on adaptive compute, a specific kind of conditional compute that aims to dynamically
allocate different computational power per example, with the goal of reducing the overall complexity
while maintaining high performance. This approach, often referred to as early-exiting [16; 25; 47;
74; 79; 87], is complementary to many of the solutions above and can potentially be combined with
them. Multiple early-exit techniques for encoder-only Transformers (e.g., BERT [20]) have been
recently proposed [8; 34; 43; 44; 45; 60; 68; 83; 90; 92]. Most of these methods rely on intrinsic
confidence measures (e.g., based on the softmax distribution), while others try to predict the routing
in advance [46; 70], or train a small early-exit classifier [57; 84], as we also examine here. These
measures can be calibrated to reliably guarantee consistency of the early prediction with the full
model [57]. However, the techniques used for encoder-only classifiers are unsuitable for global
consistency constraints with a sequence of dependent predictions, which are inherent in the decoding
process of autoregressive language models, which we address here.

Our work is also motivated by recent findings on the existence of saturation events in LMs, where the
top-ranked prediction is unchanged after some layer and is propagated upward. Geva et al. [28] exam-
ined interactions of the hidden-state with feed-forward layers to predict these events. However, they
only consider local single predictions and do not address the challenges involved with sequence gen-
eration. Our early-exit LM architecture most closely relates to Elbayad et al. [23], who found a token-
level early-exit classifier to provide the best efficiency-performance tradeoffs on machine translation.
Here, we introduce a theoretically-grounded calibration method for provably controlling the quality
of the full sequence. By doing so, we provide reliable efficiency gains—deriving local early exiting
decisions from the global desirable constraints. Moreover, we introduce several model improvements
and empirical analyses, including (1) analyzing the primary sources of performance degradation, lead-
ing us to propose a decaying threshold function for better tradeoff control without inflating the search
space; (2) improving the early-exit classifier training; and (3) experimenting with two new tasks.

Our calibration procedure for connecting global constraints to local decisions, relates to recent
research around distribution-free uncertainty quantification [1; 62; 77]. Several methods were
developed in recent studies to expand and adjust the theoretical framework for obtaining practical
efficiency gains on target applications [4; 7; 21; 26; 27; 48; 88]. Here, we frame our consistency
requirements around the Learn then Test (LTT) framework [3], and leverage the approximately
monotonic behavior of our confidence measures and the nested structure of our problem, that by
definition guarantees consistency with large enough threshold, to form tight and effective bounds.

3 Early Exiting for Adaptive Language Modeling

In the following, we describe and analyze the early-exiting Transformer LM. We begin with a brief
recap of the Transformer architecture (§3.1) and early exiting (§3.2) for convenience, following
previous work [23; 70; 76]. We then investigate the effects of early exiting on model performance,
and identify primary sources of performance degradation and how to alleviate them (§3.3)—which
guide our architecture and training design (§3.4) and proposed per-token confidence measures (§3.5).

3.1 The Transformer architecture

We use the Transformer sequence-to-sequence model, based on the T5x implementation [55]. Here,
we only review simplified details of the Transformer architecture relevant to early-exiting, and refer
the reader to Vaswani et al. [76] for full details. At a high level, both encoder and decoder networks
contain L stacked layers, where each layer is composed of a multi-head self-attention sub-layer,
followed by a feedforward sub-layer, each with residual connections and layer normalization. The
decoder network has an additional multi-head attention sub-layer that attends to the encoder states.

3



Consider a prompt x = (x1, . . . , xp), processed by the encoder to yield encoder states (e1, . . . , ep),
and the current, partially generated response (y1, . . . , yt). When generating the next token yt+1, the
decoder computes a decoder state dit for layer i out of L as:

hit := Attention(di−1t , di−11:t−1); ait := Attention(hit, e1:p); dit := FeedForward(ait). (3)

Internal to each of the attention mechanisms, written as Attention(x, z1:m) for some input x and
sequence of m states z1:m, x is first projected to a query vector q := WQx ∈ Rdimk , while z is
projected to a matrix of key-value vectors, K := WKz1:m ∈ Rm×dimk and V := WV z1:m ∈
Rm×dimv . The output o is then computed as o := softmax

(
qK>/

√
dimk

)
V.

Multi-head and normalization components are omitted for brevity. Each layer uses different projec-
tions Wi

Q, Wi
K , and Wi

V (which are also unique for computing hit versus ait).

Finally, after layer L, a distribution over vocabulary tokens yt+1 ∈ Y is computed via a softmax-
normalized linear classifier WL, where p(yt+1 | dLt ) = softmax(WLd

L
t ).

3.2 Decoding with early exiting

Instead of always making a prediction based on the representation at the final layer, dLt , the key
idea in early-exiting is to choose yt+1 more quickly, if confident, by computing p(yt+1 | dit) =
softmax(Wid

i
t) for some intermediate layer i < L. Concretely, let cit ∈ [0, 1] denote some local

confidence score for layer i while processing token t, where higher values indicate a higher propensity
to exit early (we will propose effective instantiations of cit in §3.5). Let λit ∈ [0, 1] denote some local
early-exiting threshold, where the model exits early if cit ≥ λit, or otherwise proceeds to compute the
next representation, di+1

t . The (greedily chosen) prediction yt+1 can then be written as:

yt+1 :=


arg max p(yt+1 | d1t ) if c1t ≥ λ1

t ,

arg max p(yt+1 | d2t ) if c2t ≥ λ2
t ,

...
arg max p(yt+1 | dLt ) otherwise.

(4)

Note that due to the self-attention mechanism of the Transformer, computing the input hidden state
hit for layer i depends on di−11:t−1, i.e., the output hidden states of the previous layer for all the tokens
that have been generated so far.2 Therefore, if the model has early exited at some layer j < i− 1 for
a token s < t, then di−1s is not available. As an approximation, we set dks = djs for all layers k > j
following Elbayad et al. [23], with the understanding that this will introduce some error. In the next
section, in addition to other factors, we will analyze the impact of this copied state on performance.

3.3 The effects of early exiting on error propagation

We perform several controlled experiments to investigate the behavior and the potential of early-
exiting during decoding. We use an 8-layer T5 encoder-decoder and the CNN/DM dataset for these
experiments. See §5 for more details on this model and data.

3.3.1 State propagation

First, we control for the correctness of the predicted tokens to examine the effect of state copying
(§3.2), and also measure an approximate upper bound for compute reduction. We use an oracle
confidence measure that exits at the earliest layer that agrees with the top prediction (i.e., replacing
the conditions in Eq. 4 with arg max p(yt+1 | dit) = arg max p(yt+1 | dLt )). Hence, the only factor
that can cause divergence in the generation is the state copying mechanism for skipped layers. The
results of this experiment are highly encouraging. This oracle achieves an ROUGE-L score of 38.24,
compared to 38.32 with the full model, while only using an average of 1.53 layers per token. We
also try an oracle that always uses d11:t−1 and it reaches 38.31 ROUGE-L. These results indicate that
(1) the model is robust to state copying from lower layers, and (2) there is remarkable potential for
saving compute—by up to ×5.2—while preserving performance, given a good confidence measure.

We also experiment with copying the projected states Kj ,Vj to skipped layers k > j. This version
of the oracle results in a significant drop in performance to 23.02 ROUGE-L. Overall, we conjecture

2In autoregressive decoding, the ks,vs vectors are cached to avoid repetitive compute for tokens t > s.
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(a) Sensitivity to local errors. (b) Decaying threshold (λ = 0.9). (c) Perf.-efficiency tradeoffs.

Figure 2: Earlier noise in the decoding process has greater effect on the overall output (a), though
in practice the affect of early exits is minor due to high performance of early layers. A decaying
confidence threshold (b) allows finer control over the performance-efficiency tradeoff (c).

that the self-attention at layer i for token t can safely use hidden-states djs for j < i− 1 as key-values
of tokens s < t, as long as the projections Wi

K/V of layer i are used. Notably, this projection can
now be computed concurrently for all skipped layers as they all use the same d from the exited layer.

3.3.2 Sensitivity to local errors

Next, we examine the impact of local token modifications—which might occur due to early exits—on
the whole generated sequence. We experiment with two kinds of perturbations: sampling-based,
where we select the 10th-ranked token according to layer L; and layer-based, where we select the the
first layer’s prediction at timestep t. All other tokens are predicted greedily by layer L. As shown in
Figure 2a, earlier perturbations result in lower sequence-level scores as there are more tokens that
might suffer from the divergence. The degradation, though, is much smaller with layer- compared to
sampling-based perturbations since, in practice, the early exit predictions are mostly accurate.

Decaying threshold. Following the above observation, we introduce a decaying early-exiting
threshold that is more permissive towards exiting as the decoding process continues. Motivated by the
logarithmic behavior in Figure 2a, we use an exponential function with a user-defined temperature τ :

λ′(λ, t) := clip[0,1]

(
9

10
λ+

1

10
e−τ ·t/N

)
, (5)

where N is the maximum output length. Figure 2b illustrates this function. Essentially, this function
presents an effective compromise between simply using the same threshold for all tokens, and
searching over a huge space of per-position different thresholds. Practically, it supports finer and
better control over the performance-efficiency tradeoff compared to a single threshold. Figure 2c
presents the outcomes of a search over λ with steps of 0.01 and softmax-based confidence (§3.5).
With the single threshold variant (τ = 0), attempting to improve the efficiency will lead to a drastic
drop of more than 10 points in the textual similarity against the full model’s prediction. In contrast,
the decaying thresholds reveal several intermediate points with desirable tradeoffs to consider.

3.4 Training early exit classifiers for local consistency

While our goal is to preserve the quality of the complete output sequence, we note that this doesn’t
necessarily demand local token-level consistency. Consider the target sequence “the concert was
wonderful and long.” An output that switches the order of adjectives to “the concert was long and
wonderful” would be called consistent by most semantic measures (and obtain 100 token-F1 score).
Yet, the sentences diverge at the first adjective long which is semantically different from wonderful.

Training for global consistency, however, could be challenging [81] as it depends on possibly noisy
signals that might affect the learning, and also breaks the efficient teacher-forcing training strategy
of LMs that relies on local-decisions. On the other hand, perfect local consistency implies global
consistency. Therefore, we opt to train for local consistency, which requires minimal changes to the
training procedure, and relax the local requirement to a global one during inference.

Specifically, similar to Elbayad et al. [23], we average losses for each layer to obtain the objective

L =

L∑
i=1

ωiLi, where
L∑
i=1

ωi = 1. (6)
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L is the negative log-likelihood loss. We set ωi = i/
∑L
j=1 j to favor higher layers, and find this objec-

tive to mostly preserve the full model’s performance compared to regular training. We note that there
is some misalignment between this training and inference behavior due to the hidden states of skipped
layers. However, as discussed in §3.3.1, the performance is not affected if the hidden-state is copied.

3.5 Local confidence measures

We experiment with three confidence measures for Eq. (4) that differ in their parameter and compute
operation efficiencies. Our experiments (§6) will also show that they differ in their predictive power.

Softmax response. We take the difference between the top two values of Softmax(Wid
i
t). With a

large output vocabulary, this results in many floating point operations (FLOPs)—though, the next
layer i+ 1 can start its computation in parallel, avoiding additional runtime.

Hidden-state saturation. As a simple parameter-free and fast to compute alternative, we take the
cosine similarity sim(dit, d

i−1
t ) for i > 1. By definition, the first possible exit is at the second layer

(unless λ = 0). This measure tries to identify early saturation events of the hidden-state [28].

Early exit classifier. We train a dedicated linear classifierM to predict the likelihood of exiting
with local consistency given the current hidden-state: cit = M(dit). This measure is very fast to
compute at inference, and adds only |d|+ 1 new parameters. To avoid any impact on the core model’s
performance, we train it as a second step where we freeze all parameters other thanM. We simply
use a per-layer independent cross-entropy loss against a consistency oracle 1[arg max(p(yt+1|dit) =
arg max(p(yt+1|dLt )], and average across the L−1 layers. We also experimented with the geometric-
like training of Elbayad et al. [23], but find it to be less effective here (see App. D). The two objectives
are closely related, but the geometric one ignores any signal from the states post the first oracle exit.

4 Calibrating Local Early Exits from Global Constraints

We now describe our calibration procedure for finding a shared exit threshold λ ∈ [0, 1] that can be
used directly in Eq. (4), or via Eq. (5), such that we provably satisfy our desired global constraints
over the fully generated sequences. At a high level, our approach uses the following basic recipe:

1. We specify a grid of possible values of Λ = (λ1, . . . , λk) that may result in acceptable generations;
2. We choose the lowest valid λ ∈ Λ that we can identify with rigorous statistical testing tools.

Let Ptest be an i.i.d. prompt given to the LLM at test time, and let Yfull := LLMfull(Ptest) ∈ Y and
Yearly := LLMearly(Ptest, λ) ∈ Y denote the full and adaptive responses, respectively. Optionally,
let Ztest be a set of gold references for our task, if assumed. Our goal, as introduced in §1, is to find a
valid λ using Scal such that we satisfy either of two types of global “consistency” constraints:

Definition 1 (Textual consistency). An adaptive LLM is textually consistent if given any bounded
text dissimilarity function, D : Y × Y → R, and tolerance δ ∈ R, E

[
D(Yearly, Yfull)

]
≤ δ.

Definition 2 (Risk consistency). An adaptive LLM is risk consistent if given any bounded risk
function,R : Y × 2Y → R, and tolerance δ ∈ R, E[R(Yearly, Ztest)] ≤ E[R(Yfull, Ztest)] + δ.

Without loss of generality, we will assume that D andR are always normalized to the unit interval
[0, 1], and therefore will only be considering tolerances δ ∈ (0, 1). At a glance, to find a λ that
produces a consistent LLMearly, we cast our problem as a multiple hypothesis testing problem
over a large array of k candidate classifier exit thresholds, Λ = (λ1, . . . , λk), and apply the Learn
then Test (LTT) framework of Angelopoulos et al. [3] to identify a subset of statistically valid,
constraint-satisfying thresholds Λvalid ⊆ Λ. Our final λ is then chosen as λ := min(Λvalid ∪ {1}).

4.1 The Learn then Test calibration framework

Choosing a value of λ that rigorously satisfies our consistency objectives is challenging, as the
performance impact of increasing or decreasing λ is not necessarily monotonic. Naively setting λ,
for example, based simply on average calibration set performance, can lead to statistically invalid
results in our finite-sample, distribution-free setting. The LTT framework proposed by Angelopoulos
et al. [3] solves this problem by reframing hyper-parameter selection as a multiple testing problem.
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Let Λ = (λ1, . . . , λk) be a finite grid of hyper-parameter values that may, or may not, obtain valid
consistency. For example, when searching for a value of λ ∈ [0, 1], we might consider the evenly
spaced set Λ = { i

k+1 : i = 1, . . . , k}. LTT then identifies a subset of values, Λvalid ⊆ Λ, where

P
(
∃λ ∈ Λvalid : LLMearly(Ptest, λ) and LLMfull(Ptest) are not consistent

)
≤ ε. (7)

Here, we are using consistency to refer to either textual consistency or risk consistency. Eq. (7) can
be satisfied by applying standard multiple hypothesis testing techniques as long as super-uniform
p-values, pj , are supplied for each value λj ∈ Λ that support the null hypothesis

Hj : LLMearly(Ptest, λj) and LLMfull(Ptest) are not consistent. (8)

λj is placed in Λvalid if Hj is rejected, and discarded otherwise. This yields a consistent LLMearly.
Proposition 1 (LTT for CALM). Suppose pj is super-uniform for all j under Hj for some specified
tolerance δ ∈ (0, 1). Let A be any family-wise error rate (FWER) controlling procedure at a level
ε ∈ (0, 1), where A(p1, . . . , pk) selects Hj to reject. Choosing λ := min(Λvalid ∪ {1}) then yields
a consistent LLMearly with probability at least 1− ε.

Note that a FWER-controlling procedure at a level ε is an algorithm that decides to accept or reject
hypotheses {Hi}ki=1, while ensuring that the probability of falsely rejecting anyHj is less than ε. The
proof of Proposition 1, given in Appendix A.1, follows directly from Theorem 1 of Angelopoulos et al.
[3], and the fact that LLMearly(Ptest, 1) = LLMfull(Ptest) by construction per Eq. (4), so that we can
always use λ = 1 as a valid fallback if we fail to identify non-empty Λvalid. In the next sections, we
describe how we calculate valid p-values using Scal, and our choice of FWER-controlling procedure.

4.2 Defining p-values for consistent early-exiting

LTT relies on valid p-values pj , where pj is a random variable satisfying P(pj ≤ u) ≤ u under Hj

for all u ∈ [0, 1]. For our purposes, we can obtain valid p-values from the empirical consistency of
LLMearly(Pi, λ) measured over the random calibration sample, Scal. Since we have assumed w.l.o.g.
that either of our bounded consistency functionsD andR from Defs. 1 and 2 have been normalized to
lie in [0, 1], we can, for example, obtain a valid p-value by simply inverting Hoeffding’s inequality:3

pHoeffding
j := e−2n(max(0,δ−Ê(λj)))

2

, (9)

where Ê(λj) := 1
n

∑n
i=1 Li(λj) is the empirical average of random variable Li(λj) ∈ [0, 1], with

Li(λj) := D(LLMearly(Pi, λj),LLMfull(Pi)) or (10)

Li(λj) := max (0,R(LLMearly(Pi, λj), Zi)−R(LLMfull(Pi), Zi)) , (11)
for textual consistency versus risk consistency, respectively. Note that, as a technicality of enforcing
the r.v. Li(λj) to be within [0, 1], Eq. (11) computes a conservative estimate of the difference in the
empirical risk that doesn’t reward instances in which the risk of the early-exit model is lower.

4.3 Efficient fixed sequence testing

The more values of λ we test, the higher the chance that we might accidentally choose a λ that
does not in fact result in consistent generations, despite whatever misleading performance we might
have measured by chance on Scal. As part of LTT, we must select a multiple testing procedure that
corrects for this (i.e., that controls the FWER at level ε). Though the precise dependence between
the early-exit LLM’s performance and λ is unknown, in practice we find that it tends to be fairly
smooth and roughly monotonic. That is, nearby thresholds λ ≈ λ′ tend to perform similarly, whereas
λ > λ′ tends to result in relatively more consistent performance. Taking advantage of this structure,
we choose to employ fixed sequence testing (FST) as our FWER-controlling procedure [3; 11].

Here we define a sequence of descending thresholds λ1 > λ2 > . . . λk with a relatively coarse step
size (e.g., increments of 0.05). For each λj in order, we compute pj , and rejectHj if pj ≤ ε. The first
time we fail to rejectHj , we immediately terminate our search, and return λj−1 to use as our calibrated
threshold (or 1, if we fail to reject H1). An Algorithm of the full procedure is provided in Appendix E.

3In practice, we use the more powerful Hoeffding-Bentkus bound [3; 10; 12; 33].

7



(a) CNN/DM (b) WMT (c) SQUAD

Figure 3: Validation empirical performance-efficiency tradeoffs for different confidence measures,
compared to static baselines and a local oracle measure with state propagation for skipped layers.

5 Experimental Setting

Table 1: Average number of to-
kens in reference targets of eval-
uation datasets (5/95th percentiles
in parenthesis).

Dataset Output length

CNN/DM 82 (42 - 141)
WMT EN-FR 39 (10 - 82)
SQUAD 5 (1 - 13)

We empirically evaluate our methods on three popular text gen-
eration tasks that vary in their target generation length and ex-
tractive degrees against the input. CNN/DM [31] is a collection
of news articles to be summarized in few sentences. WMT15
EN-FR [13] contains English sentences (one per example) to be
machine translated to French. Open-book SQUAD 1.1 [54] is
a QA dataset with Wikipedia paragraphs paired with questions,
where the target answer is a text span from the input. Length
statistics of the validation sets are summarized in Table 1.

Model. We implement CALM on top of the T5 encoder-decoder model that showed good performance
on the tasks above [53], using the T5X framework [55]. We use the 8 layers T5 1.1 model that doesn’t
share input and output embeddings. We share all output embeddings for the softmax predictions, and
the early-exit classifier across all decoder layers. Based on validation results, we set the temperature
of our decaying threshold to τ = 4 for the softmax and classifier measures of CNN/DM and WMT.
In other settings, we use τ = 0. See App. C for more details, and App. B.3 for a 12 layers T5 model.

Evaluation metrics. We use the standard metrics for each task: ROUGE-L for CNN/DM, BLEU [50]
for WMT, and Token-F1 [54] for SQUAD. We rely on the same metrics for computing the risk
and textual distance, other than BLEU which is a corpus-level metric that doesn’t directly en-
able expectation control. Instead, we use the BLEURT learned metric [61]. For a given metric
m(yearly, yfull or ztest) ∈ [0, 1], we use 1−m for distance or risk computation, respectively.

Our main efficiency metric is the average number of decoder layers used per output token, as it
directly measures complexity reduction without conflating with implementation or infrastructure spe-
cific details [19]. For reference, we also report the average decoder FLOPs reduction per token [23].
Also, we compute an estimated speedup of the whole encoder-decoder model for generating the
full sequence, based on TPUv3 benchmarking with 200 examples in Colab (see App. C for details).

Calibration experiments. For each task, we use the validation and test sets to evaluate our calibration
method (§4) (for SQUAD we only use the validation set as the test answers are hidden). We run 50
random trials per target tolerance δ and consistency objective (textual or risk), where we partition the
data to 80% calibration (Scal) and 20% test (Ptest). We set ε = 0.05 for all experiments.

Baselines. We emphasize that the CALM framework is general for any autoregressive multi-layered
LM with any confidence measure, allowing controlled consistency by Eq. (1) or Eq. (2). To
empirically evaluate the efficiency gains enabled by our proposed confidence measures, we compare
with static baselines that use the same number of layers for all tokens. We also compare our
early-exit classifier training with the geometric method of [23] in Appendix D. Also, we compute
an oracle local measure (§3.3.1) as an upper-bound estimate of the performance-efficiency tradeoff.

6 Experimental Results

We first report the empirical performance-efficiency tradeoff achieved with each confidence measure.
For each task and measure, we evaluate the full range of λ on the validation set, with steps of 0.05.
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Table 2: Test efficiency gains per choice of δ, consistency objective, and confidence measure. For
plots of the full range of δ with standard deviation, see Appendix B.

CNN/DM WMT SQUAD
δ Measure layers FLOPs r. speedup layers FLOPs r. speedup layers FLOPs r. speedup

Te
xt

ua
lc

on
si

st
.

0
.1

softmax 5.73 ×0.44 ×1.41 3.35 ×0.66 ×2.01 1.65 ×3.15 ×1.63
state 8.00 ×1.00 ×1.00 7.68 ×1.01 ×1.00 2.00 ×3.65 ×1.68
classifier 7.16 ×1.03 ×1.42 5.50 ×1.06 ×2.05 2.59 ×2.37 ×1.10

0
.2

5 softmax 2.62 ×0.49 ×2.57 1.76 ×0.91 ×2.83 1.03 ×5.68 ×1.88
state 7.97 ×1.00 ×1.01 2.84 ×1.93 ×1.55 2.00 ×3.65 ×1.68
classifier 4.51 ×1.15 ×2.04 2.97 ×1.22 ×2.00 1.37 ×5.09 ×1.11

R
is

k
co

ns
is

t.

0
.0

2 softmax 3.75 ×0.47 ×1.96 3.19 ×0.67 ×2.10 1.65 ×3.15 ×1.63
state 7.97 ×1.00 ×1.01 7.68 ×1.01 ×1.00 3.13 ×2.11 ×1.68
classifier 6.49 ×1.06 ×1.71 5.05 ×1.08 ×1.97 3.36 ×1.55 ×1.11

0
.0

5 softmax 1.73 ×0.50 ×3.53 1.96 ×0.85 ×2.73 1.65 ×3.15 ×1.63
state 5.22 ×1.11 ×1.64 2.72 ×2.01 ×1.58 2.00 ×3.65 ×1.68
classifier 2.30 ×1.25 ×2.09 3.08 ×1.21 ×1.98 2.59 ×2.37 ×1.10

The results, presented in Figure 3, show the power of the softmax response measure, allowing only
minor performance loss while reducing more than half of the layers in all three tasks. The early-exit
classifier, that is more FLOP-efficient, is also effective, mostly when targeting high performance
(right hand side of plots). The simple and parameter-free state saturation measure is competitive, but
often falls bellow the static baseline, despite enabling per-token exit decisions.

The dynamic oracle obtains compelling efficiency gains, using only 1.5, 1.3, and 1.2 layers on average
for summarization, WMT, and QA, respectively, without losing any performance. This illustrates the
full potential of CALM and leaves further room for improvements with better confidence measures.
It also shows the effectiveness of inference-time state propagation for skipped layers (§3.3.1).

6.1 Calibrated performance with guaranteed textual or risk consistency

Next, we examine the outcomes of the calibration process. Since the obtained risk is guaranteed to be
valid (i.e., ≤ δ at least 95% of the time), we focus here on efficiency gains per chosen δ. We refer the
reader to Appendix B for empirical validation and for additional results and qualitative examples.

Table 2 presents the efficiency gains per choice of δ for each consistency objective and confidence
measure. We examine larger δ values for textual consistency as this is generally a stricter requirement
since the full model’s error is not considered.

Across all, the softmax confidence measure leads to the greatest decrease in number of decoder
layers required. Accordingly, softmax mostly enables the highest speedup gains of up to about three
times faster than running through all the model’s layers. The very lightweight early-exit classifier
sometimes provides better gains than softmax, even if more decoding layers are used. Since the
speedup is computed over the full generated output, we see more gains on the longer outputs of
summarization and translation where the decoding takes most of the time, compared to the short QA
outputs where the whole decoding time is not much longer than the encoding time.

These encouraging efficiency gains are enabled even with the rigorous performance guarantees that
are sometimes conservative (e.g., Eq. (11)). We note that relaxing these constraints, or tightening the
confidence intervals (e.g., with larger calibration sets), can further improve the empirical gains.

The softmax operation over the full output vocabulary is FLOPs heavy (though, this compute can
potentially be paralleled), sometime leading to increased total FLOPs, even with fewer used layers.
The state-based and early-exit classifier measures require minimal FLOPs and provide a good
alternative with compelling efficiency gains, if total (parallizeable, or not) FLOPs is of concern.

6.2 Example output: effectively distributing the model’s capacity across timesteps

Figure 4 presents two CALM summary generations for an article from the CNN/DM dataset, com-
pared to the output of the full model (See Figure B.5 in the Appendix for examples from the other
tasks). Y (2)

early uses a lower confidence threshold for early exiting compared to Y (1)
early. The colors,

depicting the number of decoder layers used per output token, illustrate how CALM obtains the
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South Africa-born Grant Elliott hit match-winning 84 not out in semi-final . Black Caps reached first World Cup final with Elliott's penultimate ball six . 
Elliott, 36, had not played international cricket for 14 months when picked . Win is vindication for the attacking brand played under Brendon 
McCullum . New Zealand play the winner of the semi-final between Australia or India .
Grant Elliott hit a six to put New Zealand through to the World Cup final . The 36-year-old was born in South Africa but a naturalised Kiwi . Elliott will 
surely never play another innings like his 84 . New Zealand will take on either Australia or India in the final on Sunday .

▁Grant▁Elliott▁hit▁a▁six▁to▁put▁New▁Zealand▁through▁to▁the▁World▁Cup▁final▁.▁Elliott▁was▁born▁in▁South▁Africa▁but▁
a▁naturalised▁Kiwi▁.▁The▁36-year-old▁will▁surely▁never▁play▁another▁innings▁like▁his▁unbeaten▁84▁. 
▁New▁Zealand▁will▁now▁take▁on▁either▁Australia▁ or▁India▁in▁the▁final▁on▁Sunday▁.<EOS>

▁Grant▁Elliott▁hit▁84▁in▁the▁Black▁Caps▁chase▁.▁New▁Zealand▁reached▁the▁World▁Cup▁final▁.▁Elliott▁was▁born▁in▁So
uth▁Africa▁but▁a▁naturalised▁Kiwi▁.▁Elliott▁will▁surely▁never▁play▁another▁innings▁like▁his▁unbeaten▁84▁.<EOS>

Yfull :

Y (1)
early :

Y (2)
early :

Exit layer — color mapping: 12345678

 and  are computed with ROUGE-LD R

Ztest :

0.02 0.01 2.1 X 2.9

0.33 -0.3 1.9 X 3.6

D(Yearly, Yfull) Rearly − Rfull Average layers Speedup

Y (1)
early

Y (2)
early

Figure 4: CALM accelerates the generation by early exiting when possible, and selectively using
the full decoder’s capacity only for few tokens, demonstrated here on a CNN/DM example with
softmax-based confidence measure. Y (1)

early and Y (2)
early use different confidence thresholds for early

exiting. Bellow the text, we report the measured textual and risk consistency of each of the two
outputs, along with efficiency gains. The colors represent the number of decoding layers used for
each token—light green shades indicate less than half of the total layers.

efficiency gains. Only a few selected tokens use the full capacity of the model (colored in red), while
for most tokens the model exits after one or few decoding layers (colored in green).

The example in Figure 4 also demonstrates one difference between the two types of consistency
constraints, given a reference output Ztest. Textual consistency D(Yearly, Yfull) generally (though,
not always) degrades (i.e., increases) when decreasing the confidence threshold as the outputs tend to
more significantly diverge from Yfull. The trend of risk consistency, however, depends also on the
reference output Ztest. If Yfull ≈ Ztest then the two constraints are nearly the same. In this example,
they are sufficiently different that Y (2)

early obtained better (lower) risk even though the textual distance
from Yfull is higher. On the one hand, given the availability of reference outputs for calibration, this
suggests that for an imperfect model, risk consistency could lead to more aggressive early-exiting
while maintaining the quality of generations. On the other hand, since the Relu in Eq. (11) doesn’t
reward negative risk differences, the benefits might not fully materialize. Overall, the two constraints
provide different alternatives for the user to choose from depending on the availability of reference
outputs, the performance of the full model, and the exact desired performance guarantees.

7 Conclusion

We present confident adaptive language modeling (CALM) for dynamically allocating different
amounts of compute per generated token, following explicitly defined tolerance levels on the full gen-
eration output. This paper covers both modeling solutions and analyses towards this goal, as well as
a theoretically-grounded framework for provably controlling the quality of the full output to meet the
user-specified tolerance levels. We investigate the effects of local early exiting during decoding on the
final output, leading us to propose a decaying function over the initial threshold that enables finer con-
trol over the performance-efficiency tradeoffs without inflating the search space. We also study differ-
ent solutions for addressing missing computations of early-exited tokens that are dependent upon for
future tokens. Overall, our complete adaptive compute framework for LMs requires minimal modifica-
tions to the underlying model and enables efficiency gains while satisfying rigorous quality guarantees
for the output. Also, our oracle experiments and runtime analysis demonstrates the full potential of this
framework and leave room for future research to further improve the efficiency in a controllable way.
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A Mathematical Details

A.1 Proof of Proposition 1

Proof. Define λ to be risk-controlling if LLMearly(Ptest, λ) LLMfull(Ptest) are consistent. Suppose
Λvalid is non-empty. Then all λ ∈ Λvalid are risk-controlling w.p. ≥ 1−ε, per Thm. 1 of Angelopoulos
et al. [3]. Furthermore, per Eq. (4) for λ = 1 we have LLMearly(Ptest, 1) = LLMfull(Ptest) by
definition, since supMi(hi) = 1, ∀i ∈ [1, . . . , L]. Thus λ = 1 is also risk-controlling by definition.
Combined, all λ ∈ Λvalid∪{1} are risk-controlling w.p. ≥ 1−ε, and therefore λ := min(Λvalid∪{1})
is always well-defined and guaranteed to be risk-controlling w.p. ≥ 1− ε.

B Additional Results

We provide additional experimental results to supplement Section 6. In Section B.1, we include
calibration plots, for both the validation and test sets, with the full range of δ, also showing the standard
deviation across random trials. In Section B.2, we present a few example outputs with a visualization
of the per-token early-exit decisions to illustrate CALM’s behavior. In Section B.3, we include results
of a larger 12-layer model, showing the generalizability of our framework to other configurations.

B.1 Calibration results for the full tolerance range

We present complementary results to Table 2. Figure B.1 and Figure B.2 present the empirical
consistencies and efficiency gains for textual and risk consistency constraints, respectively. Figure B.3
and Figure B.4 report the same on the validation datasets. First, we observe that the calibration
holds empirically, achieving risk values that are not greater than the specified δ (i.e., being under the
diagonal in the upper subplots). We also see that the risk is often lower than allowed for (a good thing),
especially with the risk consistency objective. This is due to the conservativeness of our measure
(Eq. (11)), not rewarding instances where the early prediction has lower risk. While obtaining lower
risk than the target is not a downside, this indicates that there is further potential in improving the
efficiency gains achieved per δ. Yet, even with the rigorous and conservative theoretical guarantees,
we already obtain significant efficiency gains that, naturally, increase with larger tolerance values.

(a) CNN/DM (b) WMT

Figure B.1: Textual consistency and efficiency gains over the test sets per choice of δ (ε = 0.05).
The top row presents the empirical consistency where being under the diagonal means satisfying
δ consistency. The bottom row presents the average number of decoder layer used. Shaded areas
represent the standard deviation over random trials.
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(a) CNN/DM (b) WMT

Figure B.2: Risk consistency and efficiency gains over the test sets per choice of δ (ε = 0.05).
The top row presents the empirical consistency where being under the diagonal means satisfying
δ consistency. The bottom row presents the average number of decoder layer used. Shaded areas
represent the standard deviation over random trials.

B.2 Qualitative examples

Figure B.5 presents two example outputs of CALM for instances from the machine translation, and
question-answering (QA) datasets (See Figure 4 for summarization). The colors depict the per-token
number of decoder layers that were used for generating that output. We also report the risk values
for textual and risk consistency of both outputs, as well as the speedup compared to the full model.
We observe that the textual distance generally increases as we accelerate the decoding. Though, the
outputs still remain relatively similar to the full model even when using very few layers. The risk
consistency doesn’t always correlate with the textual one when the full model’s risk is non-zero. In
some cases, the accelerated output has even lower risk than the full model’s output. This demonstrates
the value of having both our textual and risk consistency configurations, which the user can pick from
based on their objective, and whether quality reference outputs for calibration are available or not.

Interestingly, following our initial intuition, CALM distributes the compute unevenly, using very
few layers for certain “easy” tokens, and additional compute to “hard” tokens. Examining the
examples, we see that many times “hard” generation steps come at the beginning of sentences, or
when generating a verb. We leave further investigations on perceived difficulties to future work.

B.3 T5-base results

While throughout the rest of this paper we experiment with a 8-layer encoder-decoder T5 model. We
include here results for a 12-layer T5-base model that besides the additional layers is also larger in its
internal dimensions, having 12 attention heads and 64, 768, and 2048 dimensions for the attention
head, embeddings, and MLP, respectively.

Figure B.6 shows the empirical performance-efficiency tradeoffs achieved with this model on the
three tasks. Overall, we the trends are very similar to the one observed with the 8-layer model
(Figure 3). One exception is the SQUAD model where the static baseline that uses only one or two
decoder layers completely fails. This suggests that the actual predictions of this model are starting to
be formed only from the third layer. Also, the local oracle measure on SQUAD obtains slightly lower
global performance compared to the full model, also suggesting that in this case the hidden-state
of the very low layers might not be a good enough representation for followup generations. Yet,
the softmax and early-exit classifier confidence measure provide good proxies for the consistency
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(a) CNN/DM (b) WMT (c) SQUAD

Figure B.3: Textual consistency and efficiency gains over the validation sets per choice of δ (ε = 0.05).
The top row presents the empirical consistency where being under the diagonal means satisfying
δ consistency. The bottom row presents the average number of decoder layer used. Shaded areas
represent the standard deviation over random trials.

(a) CNN/DM (b) WMT (c) SQUAD

Figure B.4: Risk consistency and efficiency gains over the validation sets per choice of δ (ε = 0.05).
The top row presents the empirical consistency where being under the diagonal means satisfying
δ consistency. The bottom row presents the average number of decoder layer used. Shaded areas
represent the standard deviation over random trials.

and often outperform the static baselines. In the other two datasets, the local oracle matches the
performance of the full model, similar to the behavior of the 8-layer model.

Figure B.7 and Figure B.8 present the validity and efficiency gains of our calibration procedure on the
12-layer model for textual and risk consistency objectives, respectively. We observe a largely similar
behavior as the 8-layer model, showing the generality of our framework to other configurations of the
backbone language model.
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translate English to French: It should be noted that the neo-classical economic theory is completely incapable of answering such a question because, 
as far as the theory is concerned, there are no intrinsic limits to economic growth, and there is nothing to stop economic growth from getting stronger 
and stronger, decade after decade.

Notez que la théorie (néo-)classique de l’économie est totalement incapable de répondre à une telle question, car pour elle, il n’existe pas de limite 
intrinsèque à la croissance économique, et il n’existe aucun élément susceptible de contraindre, de plus en plus fortement décennie après décennie, 
le rythme de croissance économique.
Il convient de noter que la théorie économique néo-classique est totalement incapable de répondre à une telle question parce que, en ce qui 
concerne la théorie, il n'y a pas de limites intrinsèques à la croissance économique et rien n'empêche la croissance économique de s'affermir et de 
s'affermir, décennie après décennie.

▁Il▁convient▁de▁noter▁que▁la▁théorie▁économique▁néo-classique▁est▁totalement▁incapable▁de▁répondre▁à▁une▁telle▁ 
question▁parce▁que,▁en▁ce▁qui▁concerne▁la▁théorie,▁il▁n'y▁a▁pas▁de▁limites▁intrinsèques▁à▁la▁croissance▁économique▁et
▁rien▁n'empêche▁la▁croissance▁économique▁de▁s'accroître▁et▁de▁s'affermir,▁décennie▁après▁décennie.<EOS>

▁Il▁convient▁de▁noter▁que▁la▁théorie▁économique▁néoclassique▁est▁totalement▁incapable▁de▁répondre▁à▁une▁telle▁question
▁parce▁que,▁en▁ce▁qui▁concerne▁la▁théorie,▁il▁n'y▁a▁pas▁de▁limites▁intrinsèquement▁à▁la▁croissance▁économique▁et▁il▁
n'y▁a▁rien▁à▁empêcher▁la▁croissance▁économique▁d'être▁plus▁forte,▁décennie▁après▁décennie.<EOS>
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question: The freedom to provide services under TFEU article 56 applies to who ? context: The " freedom to provide services " under TFEU article 56 
applies to people who give services " for remuneration " , especially commercial or professional activity . For example , in Van Binsbergen v Bestuur 
van de Bedrijfvereniging voor de Metaalnijverheid a Dutch lawyer […]

Ref. 1: to people who give services " for remuneration "
Ref. 2: people who give services " for remuneration " , especially commercial or professional activity
Ref. 3: people who give services " for remuneration " 

people who give services " for remuneration "

▁people▁who▁give▁services▁"▁for▁remuneration<EOS>

▁people▁who▁give▁services<EOS>

Yfull :
Y (1)

early :
Y (2)

early :

Ztest :

Input :

Y (1)
early

Y (2)
early

(b) SQUAD

Figure B.5: Example outputs of CALM using a softmax-based confidence measure. Bellow the text,
we report the measured textual and risk consistency of each of the two outputs, along with efficiency
gains. See Figure 4 for an example from the CNN/DM task.

(a) CNN/DM (b) WMT (c) SQUAD

Figure B.6: T5-base (12 layers) validation empirical performance-efficiency tradeoffs for different
confidence measures, compared to static baselines and a local oracle measure.

C Implementation Details

As mentioned in Section 5, we build on the T5 encoder-decoder model [53], and us the T5X
repository [55] for implementing CALM. Appendix E describes the main algorithmic components.

Our main experiments use the T5 1.1 version with 8 layers for both the encoder and decoder modules,
6 attention heads with dimensions of 64, 512, and 1024 for the attention head, embeddings, and MLP,
respectively. The vocabulary contains 32,128 tokens. This model doesn’t share the input and output
embeddings. For our early-exit head, we share the output embeddings between all intermediate with
the top one, not introducing any new parameters to the model. Our binary early-exit classifier is also
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(a) CNN/DM (b) WMT (c) SQUAD

Figure B.7: Textual consistency and efficiency gains with a 12-layer T5-base model over the validation
sets per choice of δ (ε = 0.05). The top row presents the empirical consistency where being under
the diagonal means satisfying δ consistency. The bottom row presents the average number of decoder
layer used. Shaded areas represent the standard deviation over random trials.

(a) CNN/DM (b) WMT (c) SQUAD

Figure B.8: Risk consistency and efficiency gains with a 12-layer T5-base model over the validation
sets per choice of δ (ε = 0.05). The top row presents the empirical consistency where being under
the diagonal means satisfying δ consistency. The bottom row presents the average number of decoder
layer used. Shaded areas represent the standard deviation over random trials.

shared across all layers, adding only a very small amount of new parameters. We add early-exit heads
to all layers.

We fine-tune the models on the training set of each task for a maximum of 500K steps, and choose
the best checkpoint by performance on the validation set (using the full models’ predictions). We use
a batch size of 128, the regular LM cross-entropy loss, the AdaFactor optimizer [64], and experiment
with learning rates 10−3 and 10−4. We aggregate the loss of individual layers with a weighted
average, as discussed in Section 3.4. For the early-exit classifier training, we use an unweighted
average (See Appendix D for more details). We use 64 TPUv3 chips for training. For inference,
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we use a single TPUv4 chip with a batch size of one, simulating a one-at-a-time processing setting,
that is convenient when serving models for online requests. As described in Section 3.2, CALM
exits early whenever the per-token confidence value c (Section 3.5) exceeds the possibly-decaying
threshold λ (Section 3.3.2) derived from the user-defined δ, ε tolerance levels and textual or risk
consistency objective (Section 4). If necessary, the hidden-state is propagated to the skipped layers
(Section 3.3.1).

C.1 FLOPs and speedup computations

We detail our procedures for approximating the reference efficiency gains using the FLOPs and
speedup measures. For FLOPs computation, to be consistent with Elbayad et al. [23] (See their
Appendix B), we adopt their formula to compute the average decoder FLOPs per output token.

To measure the speedup of early exiting with CALM, we execute 200 inference predictions for each
task under each examined configuration in a JIT compiled function in colab with TPUv3. We ignore
the time of the first execution, since it is drastically slower due to compilation, and average the
rest of the measured times. For each inference prediction, we use batch size one, and measure the
full generation time including both the encoder and all decoding steps until completion. For each
examined confidence measure (softmax, state, or classifier), we compute the speedup by comparing
to the average inference time of the full model that uses all layers, by setting the confidence threshold
to maximum. We note that our implementation adds conditionals between layers that add some
overhead to the compute graph. Yet, even compared to a conditional-free implementation, the gains
of CALM’s early exits often outweigh the overheads of the added conditionals. We leave studying
further technical improvements to the implementation to future work.

D Training Details of the Early Exit Classifier

Table D.1: F1 scores of early-exit classifier for predicting not to exit. Measured at layers 1,4, and 7.
CNN/DM WMT SQUAD

Training method i = 1 4 7 i = 1 4 7 i = 1 4 7

Geometric-like .59 .35 .24 .33 .18 .11 .73 .16 .11
Independent .62 .49 .37 .51 .34 .24 .76 .26 .18

As discussed in Section 3.5, we train the early exit classifier to predict whether the top-ranked
prediction of a specific intermediate layer is the same as the prediction of the top layer. This classifier
is using the intermediate hidden-state as its input features. The target labels are computed on-the-fly
following an oracle that compares the intermediate prediction head with the prediction of the full
model (1[arg max(p(yt+1|dit) = arg max(p(yt+1|dLt )]). We use the same training hyper-parameters
used for the full model, but freeze all parameters of the backbone model (to eliminate any affect on
the model’s performance) and only train the newly added parameters for early-exit classifier, which
are shared across all layers.

Following the setup above, we compute the binary cross-entropy loss for each layer individually,
and aggregate by taking the unweighted average across all layers. We use the loss value on the
validation set to pick the best checkpoint. We also explore with the geometric-like objective proposed
by Elbayad et al. [23]. Their approach views the exiting decisions as a Bernoulli process, using the
“exit”/ “don’t exit” predicted probabilities. The goal is to make an “exit” prediction at the first true
layer, determined by the oracle, and “don’t exit” predictions by all preceding layers. Accordingly, the
training objective maximizes the probability of this oracle-guided event, modeled as a product of all
respective predicted probabilities. In practice, due to numerical instability of this product operation,
we maximize the summation over the log probabilities.

Table D.1 presents the F1 validation scores of “don’t exit” predictions (with a 0.5 threshold) by
early-exit classifier, measured against the oracle for layers 1,4, and 7. Our per-layer independent
training objective outperforms the geometric-like objective across all layers and tasks. The advantage
is typically most pronounced for higher layers. We conjecture that this is due to the equal weight of
the independent objective that utilizes signal from all layers, whereas the geometric-like objective
only learns from layers up to the first oracle exit.
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E Algorithms and Code

Algorithm 1 Calibrating CALM for global consistency within δ, ε tolerance levels with FST-based LTT [3].

1: function CALIBRATE(LLMearly,LLMfull, δ, ε)
2: λmin = 1
3: Λ = (λ1, λ2, . . . , λk) . Arrange decreasing candidate thresholds, λi > λj ∀i < j.
4: for λj ∈ Λ do
5: Ê(λj) = 1

n

∑n
i=1 Li(λj) . Following Eqs. (10) or (11) for textual vs. risk consistency.

6: pj = exp(−2n(max(0, δ − Ê(λj)))
2) . Compute p-value. Can replace with Hoeffding-Bentkus.

7: if pj > ε then
8: return λmin

9: λmin = λj
10: return λmin

Algorithm 1 describes the calibration process of CALM for obtaining global textual or risk δ, ε
consistency (Section 4).

The JAX [14] code for training CALM models and for executing the early-exit functionality
at inference-time is available at: https://github.com/google-research/t5x/tree/
main/t5x/contrib/calm
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