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Figure 1. OmniMAE is a single model for images and videos that is trained using masked autoencoding [40]. We use a plain Vision
Transformer [24] architecture but with spatio-temporal patches as input. At training, we ‘patchify’ the visual input (images or videos),
and feed the encoder only a subset of the patches. The decoder reconstructs the pixels for the missing patches using the encoder’s output.
The encoder-decoder model is trained using a pixel reconstruction loss. After training, our single plain Transformer encoder performs
competitively compared to specialized architectures on downstream image and video recognition tasks.

Abstract

Transformer-based architectures have become competi-
tive across a variety of visual domains, most notably images
and videos. While prior work studies these modalities in iso-
lation, having a common architecture suggests that one can
train a single unified model for multiple visual modalities.
Prior attempts at unified modeling typically use architectures
tailored for vision tasks, or obtain worse performance com-
pared to single modality models. In this work, we show that
masked autoencoding can be used to train a simple Vision
Transformer on images and videos, without requiring any
labeled data. This single model learns visual representations
that are comparable to or better than single-modality repre-
sentations on both image and video benchmarks, while using
a much simpler architecture. Furthermore, this model can be
learned by dropping 90% of the image and 95% of the video
patches, enabling extremely fast training of huge model ar-
chitectures. In particular, we show that our single ViT-Huge
model can be finetuned to achieve 86.6% on ImageNet and
75.5% on the challenging Something Something-v2 video
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benchmark, setting a new state-of-the-art.

1. Introduction
The Transformer architecture [78] is rapidly becoming

competitive across the different visual modalities in Com-
puter Vision, from images [24, 27, 55, 77], to 3D [57, 60, 89]
and videos [2, 9, 27, 31, 32, 56]. This convergence toward
a unified architecture naturally suggests that we should be
able to train a single model that works across different vi-
sual modalities. However, recent attempts to train unified
models either lead to worse performance compared to single
modality models [53], or require the use of an alternative
architecture [33], namely the Swin Transformer [55], with
inductive biases tailored towards vision tasks. While special-
ized Transformer architectures for vision [27, 55, 56, 81] can
offer better performance for visual modalities, they lose the
generality and flexibility of the vanilla Transformer, making
it harder to later model different domains like text, speech,
3D etc. in multi-modal architectures.

In this work, we train a single vanilla Transformer that
works for both images and videos, as illustrated in Figure 1.
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To this end, we leverage the findings of several recent works
on the use of the masked pretraining [23] to greatly improve
the training and performance of Transformers in the domain
of images [6, 40, 80, 84], videos [76, 80, 82] or across text,
audio and images [5]. We show that this masked pretraining
is a viable strategy to pretrain a unified ‘omnivorous’ Trans-
former across visual modalities. In particular, we consider
the Masked Auto-Encoding (MAE) approach [40] to train an
Omnivorous visual encoder [33]. The resulting OmniMAE
model learns from all the modalities with the same objective
function and does not require any supervision.

Using a masked pretraining objective has several advan-
tages over supervised objectives [33, 53] or discriminative
self-supervised objectives [13, 17, 41]. First, as opposed to
supervised objectives, a general-purpose unsupervised loss
does not require any human labeling effort. As a result, it is
robust to biases introduced by a predefined set of labels [35].
Moreover, it does not require a multi-head architecture to
incorporate supervision from each of the label spaces cor-
responding to each modality, which is hard to maintain and
scale with new modalities. Second, although discriminative
self-supervised methods produce superior frozen features
compared to reconstruction objectives, they are non trivial
to scale in model and data size [36]. Our masked pretraining
objective is simple, efficient to train, and scales to different
visual modalities with minimal changes.

Contributions. (1) We show that the simple Vision Trans-
former architecture (ViT) [24] originally designed for images
can naturally be applied on videos, and videos and images
jointly. OmniMAE is a single ViT-based model for videos
and images that outperforms architectures and models specif-
ically designed for either modality. (2) Prior and concurrent
work design self-supervised methods and architectures for
either image or video and we find that these models do not
transfer well across modalities. OmniMAE is the first single
self-supervised model that achieves good performance on
both modalities. (3) We show that our joint training using
both images and videos enables us to use much higher mask-
ing ratios than any prior work for training MAE. Since ViT
can processes only the non-masked input, we train Omn-
iMAE models with only 10% of image and 5% of video
patches. This enables us to train large (650M parameter)
models with a ∼ 7× and ∼ 11× reduction in compute and
memory on images and videos. (4) Finally, we propose im-
provements to the MAE training. We show that repeating
samples in a mini-batch reduces dataloading (and thus train-
ing) time without loss in final transfer performance. Sample
replication is particularly useful for masked pretraining as
the unmasked patches are different across sample replicas.
We also show that using a shallow shared decoder for videos
and images leads to better performance while reducing the
number of parameters by 2− 4×.

2. Related Work
Our work builds upon research in self-supervised learning,

masked pretraining and unified modeling in computer vision.
Self-supervised learning. In recent years, self-supervised
approaches have been dominated by joint embedding meth-
ods which can rely on different objectives including con-
trastive [17,39,41,51,61,65,75,83], non-contrastive [7,18,26,
87], clustering [3,11,12,85] or self-distillation [5,13,38,92].
Such methods are trained to learn invariance to a set of pre-
defined transformations which results in image descriptors
with a strong linear probing and KNN performance. How-
ever, such methods can be challenging to scale since they
can suffer from instabilities [19]. Additionally, the strongest
performance is typically obtained with the help of augmenta-
tions like multi-crop [12, 13, 92] which can be hard to apply
at scale due their compute and memory overhead.
Masked pretraining. We build upon masked prediction
methods where the representation is learned by predicting
masked parts of the input. Such methods have recently
gained popularity given their immense success in NLP. In
particular, BERT [23] showed that masked language mod-
eling by predicting a subset of masked words is a powerful
pre-training objective and leads to impressive finetuning
performance on various downstream tasks. In computer vi-
sion, input reconstruction methods have a rich history with
non-linear PCA [49], sparse reconstruction [64], autoen-
coders [10, 30, 42, 50], RBMs [71] etc. Masked prediction
methods can be viewed as a special case of denoising au-
toencoders [30, 79] where the input ‘noise’ is a masking
function. An example of such a method that uses masking
as noise is context encoders [68]. With the recent and rapid
rise of Vision Transformers [24], masked prediction was
revisited by multiple efforts. SiT [4] replaces variable sized
patches in the image with random noise and trains a ViT
model for reconstruction, among other objectives. BEiT [6]
moves a step closer to BERT with replacing full patches with
mask tokens and training a ViT encoder to predict the dis-
crete visual words of masked patches using a cross-entropy
loss. Masked prediction has also shown impressive perfor-
mance for specialized vision transformer architectures such
as MViT [27, 52, 82] and Swin transformer [54, 55, 84]. Sim-
MIM [84] and MaskedFeat [82] predict pixel values and
HOG features of the masked patches using a Swin-v2 [54]
and MViT-v2 [52] backbones respectively. Finally, Split-
Mask [25] studied the interesting properties of masked pre-
diction methods in terms of high sample efficiency.

Of particular interest to OmniMAE, masked autoencoders
(MAE) [40] demonstrated impressive scaling properties by
utilizing a patch dropping strategy for masked patches ac-
companied with a high masking ratio of 75%. Under this
setting, the encoder only process a small subset of the image
patches followed by a relatively low capacity decoder which
reconstructs the image pixels. This property is even more



crucial for video representation learning given the large num-
ber of patches, and a concurrent work, ST-MAE [76], shows
that MAE pretraining with an even higher masking ratio of
90% works well and obtains strong finetuning performance
on downstream video recognition benchmarks. Notably, the
efficiency gained by patch dropping is specific to vanilla
ViTs, and multiscale architectures such as MViT and Swin
are unable to benefit due to their design. Hence, we use
the simple ViT as our architecture and show that it can be
trained efficiently and jointly for images and videos using
extremely high masking ratios (90-95% on both modalities),
and yet perform competitively to specialized architectures
like MViT [27] and Swin [55].

Unified modeling and multi-modal learning. Multi-modal
learning in computer vision has a long history that includes
training using images and text [15, 34, 47, 58, 59], video and
optical flow [29,72], and video and audio [1,62,63,66]. The
majority of such methods rely on training a separate back-
bone for each modality as well as the availability of align-
ment across modalities. More recently, Omnivore [33] was
proposed for joint training of multiple modalities like images,
videos and single-view 3D, attaining a strong performance
in each of the modality specific benchmarks with a single
shared trunk. PolyViT [53] co-trains a shared transformer
encoder using images, videos and audio data and provides a
competitive performance on various downstream tasks for
each modality. The aforementioned methods differ com-
pared to OmniMAE in that they are trained with supervised
learning and require human annotations. BEVT [80] tackles
BERT pre-training for videos and proposes that jointly pre-
training using static images improves the finetuning perfor-
mance of video recognition benchmarks. Unlike OmniMAE,
BEVT uses the specialized Swin transformer architecture
with separate decoder heads for images and videos. Thus,
BEVT cannot drop patches while training which can limit
its scalability. Furthermore, it relies on a tokenizer which
must be trained apriori, and the tokenizer training itself can
affect the model’s performance.

3. OmniMAE

Our goal is to pretrain a single unified model for images
and videos. Rather than use specialized architectures tai-
lored for a visual modality, we build upon the vanilla Vision
Transformer (ViT) [24] architecture that has limited induc-
tive biases for vision. For pretraining, we extend the simple
self-supervised masked auto-encoding (MAE) approach [40].
The original architecture and pretraining method are tested
only on images, and we show simple design decisions for a
unified model.

3.1. Training OmniMAE jointly on images and
videos

We illustrate our method in Figure 1. For pretraining, we
use an encoder-decoder architecture where the encoder only
operates on a ‘non-masked’ subset of the input. The decoder
predicts the pixel values for the entire input, i.e., masked
and non-masked pixels. The model is trained to minimize
the reconstruction error for the masked (unseen) part of the
input. After pretraining, we evaluate the encoder by transfer
learning (the decoder is discarded). Next, we describe the
pretraining details.

Images and videos as spatio-temporal patches. The
input image or video can be represented as a 4D tensor of
shape T×H×W× 3 where T is the temporal dimension and
H,W are the spatial dimensions, and 3 represents the color
channels. We treat images as being single-frame videos with
T = 1. The input is split into N spatio-temporal patches,
each of size t×h×w×3 [33].

Omnivorous visual encoder. We use an omnivorous [33]
visual encoder that processes both images and video using
the same parameters. The encoder operates on the N spatio-
temporal patches from the images and videos. The encoder
can naturally handle variable number N of patches from im-
ages and videos as it uses the Transformer architecture [78].
The encoder shares the same parameters for both image and
video inputs and processes them in the same way to output
per-patch embeddings.

Pretraining. We convert the input into N spatio-temporal
patches and randomly mask M of them. Following [40], we
feed the non-masked N−M patches (and their positions) to
the encoder to produce per-patch embeddings. The encoder
output is concatenated with M copies of a learnable ‘mask
token’ to obtain N embeddings. We add the appropriate
positional encoding to the N embeddings and feed them into
the decoder, which outputs N×t×h×w×3 pixel values.

Loss function and optimization. We minimize the recon-
struction error between the decoder predictions and the input
pixel values. The input pixel values are normalized to zero
mean and unit variance [46] to get the targets for the loss. We
minimize the ℓ2 distance between the predictions and targets
over the M masked patches. At each point in the training, we
sample a mini-batch of either images or video and compute
the loss using the decoder predictions. We study the effect
of different mini-batch construction strategies on the overall
performance and speed of training in § 4.2.
Dataset sample replication. Since we operate on a small
subset of the input patches (M≪N ), we find that our data
reading speed is unable to keep up with the number of data
points we can theoretically process in a single optimization
step. This issue is even more pronounced for videos, where
we spend significant compute to read and decode a full video,
only to discard > 90% of it. Inspired from the success
of RepeatAugment, which shows that replicating samples
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Figure 2. OmniMAE on image and video downstream tasks. We finetune the MAE, ST-MAE, and OmniMAE models on image and
video benchmarks. We use the ViT architecture with two model sizes: ViT-B and ViT-L. MAE has poor video recognition performance
while ST-MAE’s performance drops on image datasets. OmniMAE pretraining generalizes to both benchmarks. All models are trained for
800 epochs on the pretraining datasets. The image-only MAE model is inflated [14] to apply MAE to video recognition tasks. The input
image is replicated to apply ST-MAE to image recognition benchmarks.

within a mini-batch is an effective technique to improve
generalization [8,12,43], we replicate a single data point and
apply different masks to it each time. Even with replicated
samples, the non-masked input to the model is different due
to random cropping and masking being different across the
replicas. We show in § 4.2 that sample replication leads to
gains in runtime without affecting the final transfer accuracy.

3.2. Implementation Details

We note some of the salient implementation details and
provide the complete details in Appendix B.
Architecture. We use the ViT [24] architecture for the
omnivorous encoder and experiment with its ViT-B, ViT-
L, and ViT-H variants. We do not use the [CLS] token in
the ViT models, yielding a small improvement in runtime
without loss in performance. We use a Transformer decoder
with 4 layers (8 for ViT-H) of 384, 512, and 512 embedding
dimensions for ViT-B, ViT-L, and ViT-H, respectively. The
decoder outputs the RGB colors for the pixels in all the input
patches. We use sinusoidal positional encoding [78] for the
patches in both the encoder and the decoder.
Training details. We train our models with a mini-batch
size of 2048. We resize the input images and videos spatially
to 224×224 pixels. For videos, we sample a clip of T =16
frames at 6 FPS. We use a patch size of 2×16×16 for ViT-B
and ViT-L, and 2×14×14 for ViT-H. Images are replicated
temporally to meet the patch size.
Masking the input. Compared to prior work, we use ex-
tremely high masking for pretraining and only 10% and 5%
of the image and video patches are fed to the encoder for pre-
training. We uniform randomly mask the patches for images
and videos and ablate the masking hyperparameters in § 4.2.

4. Experiments
Pretraining data. We pretrain representations by jointly
training on images from the ImageNet (IN1K) [70] dataset

and videos from the Something Something-v2 (SSv2) [37]
dataset. We choose the SSv2 dataset over web video datasets
like Kinetics-400 (K400) [48] for reproducibility, and given
SSv2’s challenging nature requiring temporal reasoning.
Transfer learning datasets. We consider two image
datasets: iNaturalist-2018 (iNat18) [44], a popular fine-
grained recognition dataset, and Places-365 (P365) [91],
a scene recognition benchmark. For video datasets, we
focus on the popular K400 action recognition benchmark,
and EPIC-Kitchens-100 (EK100) [22], an egocentric action
recognition dataset. We report the top-1 classification accu-
racy for all transfer datasets. The details about the datasets
can be found in Appendix A.

4.1. OmniMAE on Image and Video Recognition

We now evaluate the capabilities of OmniMAE’s repre-
sentations on both image and video recognition tasks.
Baselines. We compare OmniMAE’s representations trained
jointly on images and videos to MAE, trained solely on im-
ages [40]. Additionally, we develop a video-only baseline,
SpatioTemporal-MAE (ST-MAE), by training OmniMAE
only on videos. For a fair comparison, all models are pre-
trained for 800 epochs on their respective datasets. The
image-only MAE model is inflated [14] for finetuning on
video tasks, see Appendix B.2 for details.
Observations. Figure 2 presents the evaluation results for
all the models on the image and video benchmarks. The
modality specific MAE and ST-MAE models achieve good
transfer performance when transferring to datasets which
match the pretraining modality. However, both models show
a degradation in performance when transferring to a different
visual modality. MAE has lower video recognition perfor-
mance, especially on egocentric videos from EK100 where
the smaller ViT-B MAE model is 18.4% worse compared to
ST-MAE. Similarly, compared to MAE, ST-MAE is 8.7%
worse on the fine-grained classification task of iNat18. With
a large model, MAE’s performance on the image recognition
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Figure 3. Different types of masking for images (left two) and videos. Causal and tube masking use the data’s spatio-temporal structure.
Random frame masking randomly masks frames in a video. Random masking randomly masks patches and is used by default for OmniMAE.

benchmarks improves but the cross-modality performance
degrades further. On EPIC-Kitchens-100 the large MAE
model is more than 25% worse than ST-MAE.

When transferred to both image and video recognition
tasks, OmniMAE performs favorably to the single modality
baselines that use exactly the same architecture. OmniMAE
also uses the same finetuning recipe as the single modal-
ity baselines. OmniMAE matches the video classification
performance of ST-MAE and the image classification perfor-
mance of MAE for both ViT-B and ViT-L, with OmniMAE’s
performance improving on both image and video recognition
benchmarks with the larger model. These results suggest that
our unified model of images and videos serves as a better
pretraining across a wider variety of recognition tasks than
single modality models.
Qualitative results. Following [40], we re-train OmniMAE
without normalizing the pixel targets to obtain easy to visual-
ize RGB reconstructions. We visualize the predictions in Fig-
ure 4 using samples that are unseen during training: either
val sets or different datasets altogether. OmniMAE makes
reasonable predictions on the in-distribution ImageNet and
SSv2 val sets, as well as the unseen, out-of-distribution
K400 and EK100 datasets. As expected, the details in the
reconstruction decrease when increasing the masking ratio.
However, even with 95% masking, the model can reconstruct
coarse details in the input, e.g., in ImageNet, the model re-
constructs the coarse structure of the flower, vehicle, dog etc.
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Figure 5. Sample replication. We study the effect of repeating
samples while training our model. In each case, we repeat a sample
n times within a mini-batch while fixing the overall mini-batch size
and training updates. Replication leads to improved training speeds,
especially on video without affecting the final performance.

4.2. Analyzing OmniMAE

We train the ViT-B architecture jointly on the ImageNet
and the SSv2 datasets for 800 epochs, where an epoch in-
volves training over all samples from both the datasets. For
these analysis experiments, we use the default masking hy-
perparameters of MAE for images (75%). For ST-MAE, due
to redundancy across frames, we use “tube” dropping (i.e.
dropping all patches at a given spatial location over time)
with high masking ratio (90%) All hyperparameters for these
experiments are in Appendix B.3. We evaluate all the pre-
trained models on ImageNet and SSv2 and report the top-1
classification accuracies in Table 1. Please see Appendix D
for additional ablations.

Extreme masking. We vary the ratio of masked patches in
the input while training the model. We observe that videos
benefit from significantly higher amounts of masking than
images. Since video frames have a lot of redundant informa-
tion, the resulting spatio-temporal patches are also redundant
and thus higher masking leads to better self-supervised mod-
els. Unlike our experiments, prior work found that extremely
high masking ratios lead to degradation in performance, for
instance MAE [40] saw a significant degradation in perfor-
mance when masking more than 75% of the patches. How-
ever, as we show in Table 1a, OmniMAE models can use
extremely high masking of the input while learning good
representations.

Reduced compute due to extreme masking. Our models
trained with 90% masking on images and 95% masking on
videos yield good performance, while being trained with just
19 and 78 unmasked image and video patches respectively,
for a patch size of 2×16×16. As we follow [40] and only
pass unmasked patches to the encoder and have a lightweight
decoder, extreme masking leads to a dramatically lower com-
putational cost for training the encoder, and consequently
the model as a whole. Compared to using all the patches, our
masked autoencoder uses 5.9× and 7.8× fewer FLOPS for
ViT-B on images and videos respectively, 7.1× and 11.6×
for ViT-L, and 7.2× and 11.3× for ViT-H. Compared to
MAE, on ViT-B, ViT-L and ViT-H, our higher masking leads
to 1.8×, 2.0× and 2.0× fewer FLOPS on images. On videos,
compared to some concurrent works [28, 76] that use 90%



Ratios Accuracy
IN1K SSv2 IN1K SSv2

75% 75% 82.6 67.2
75% 90% 82.8 67.9
75% 95% 82.8 68.1
90% 75% 82.8 67.7
90% 90% 82.6 68.5
90% 95% 82.8 68.6

(a) Masking ratios.

Type Accuracy
IN1K SSv2 IN1K SSv2

Random Tube 82.8 67.9
Causal Tube 82.1 67.3

Random Frame 82.9 65.8
Random Causal 82.8 64.4
Random Random 82.7 67.8

(b) Masking type.

#params IN1K SSv2

Common 7.9M 82.8 67.9
Separate 33.0M 82.6 67.7

L=2 3.8M 82.7 67.9
L=4 7.9M 82.8 67.9
L=8 14.5M 82.8 68.0

d=384 7.9M 82.8 67.9
d=512 13.0M 82.7 68.1

(c) Decoder capacity.
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Table 1. Ablations. The default setting for all ablations is highlighted in gray. (a) We vary the masking ratios of the input for pretraining the
model. This allows us to use an extremely high masking ratio of 90% on images and 95% on videos. (b) OmniMAE works well across
different masking types. Random masking makes no assumptions about the input patches. Tube masking masks random patches at the
same spatial location across all frames. Causal masking for images masks the ‘future’ patches as determined by a raster left-to-right order.
In videos, causal masking masks all the patches from future frames. Frame masking masks all patches for randomly selected frames. (c)
Different decoder designs (common or separate) and capacities (number of layers L and dimension d of the MLP). A common decoder
for both images and videos performs better than a separate decoder. Our final performance is robust to decoder capacity. (d) We vary the
image/video dataset ratios by replicating the entire datasets by a factor. The number of training updates changes with such replication, and
we observe that the model benefits from higher replication of videos.

masking, we obtain 1.3×, 1.5× and 1.4× fewer FLOPS for
ViT-B/L/H. Given the compute savings and strong perfor-
mance, we choose 90% and 95% masking for images and
videos respectively for our final models.
Type of masking. We study the effect of the type of mask-
ing used in training our models. The different types of
masking are illustrated in Figure 3. We experiment with Ran-
dom masking which masks patches in the image or video
randomly. For videos, we experiment with two types of
masking that exploit the temporal structure. In Tube mask-
ing, we mask random patches at the same spatial location
across all the frames. In Causal masking, we use a raster
order masking, akin to generative image models [16, 67], i.e.
the patches in the top-left of the image, and earlier frames
of the video, are kept while the rest are masked. Finally,
in Frame masking, we randomly mask some frames in the
video, while keeping all patches from the unmasked frames.
As seen in Table 1b, Random and Tube masking perform
comparably well on both image and video tasks. We find
that in case of Causal masking, the prediction task becomes
exceedingly tough due to the uncertainity of the future, and
in case of Frame masking, it becomes relatively easy due to
the high redundancy of pixel values across frames. Hence in
both these cases, the representation learned does not perform
as well on video recognition tasks. Given the simplicity of
random masking, we use that for both modalities.
Decoder architecture. Since image and video prediction
tasks may require specialized parameters, we study two set-
tings: (1) the decoder parameters are shared for image and
video pixel prediction; (2) two separate decoders are used
for image and video prediction. For the latter we use our
default decoder setting for videos (4 layers/384-D), however
a larger 8-layer/512-D decoder for images as proposed in
MAE [40]. The results in Table 1c show that using a shared
decoder for both image and video prediction leads to better

transfer learning accuracy. A shared decoder also offers a
4× reduction in the number of parameters compared to using
separate decoders while also being simpler to implement.
Decoder capacity. In Table 1c, we vary the decoder capacity
and measure its impact on the final transfer learning accuracy.
To change the decoder capacity, we vary the number of
Transformer layers L used and the dimension d of the MLP
used in the Transformer layers. Overall, the final transfer
learning accuracy is robust to decoder capacity. A shallow
decoder of 4 layers (8 for ViT-H) offers a good trade-off
between the decoder size and final accuracies.
Dataset ratios. Since ImageNet and SSv2 have a different
number of samples, we study the effect of varying the ratio
of the datasets used in training. When increasing the ratio of
the datasets, we measure a single epoch as training over the
new oversampled set of samples from the datasets. We vary
the relative ratio for ImageNet and Something Something-v2
by replicating only one dataset at a time as shown in Ta-
ble 1d. We observe that increasing the relative dataset ratio
has a positive effect on the final transfer accuracy for the
oversampled dataset. This is expected as oversampling a
dataset proportionally increases its corresponding parame-
ter updates, thus making the representation better tuned for
the dataset. We also observe that oversampling Something
Something-v2 twice as much as ImageNet leads to an im-
provement for the video transfer accuracy with no drop in
the image transfer performance. Hence, OmniMAE is robust
to changes in dataset sizes of individual modalities, and it
suggests that longer training on both datasets can further
improve the transfer learning performance of our models.
For simplicity, by default we do not replicate any dataset for
training our models.
Sample replication. We replicate samples for both images
and videos, and in each case measure a single epoch as train-
ing over the total samples, counting replicated samples, i.e.
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Figure 4. Reconstruction visualizations using OmniMAE on different video and image datasets. We show the model predictions for
varying masking ratios of the input from 75% to 95% and the ground truth reference (Ref). OmniMAE is trained on ImageNet and SSv2 but
the predictions generalize to other datasets like K400 and EK100. Please see the supplement for video visualizations.

replication maintains the same number of training iterations.
We train models with different replication factors and show
the final transfer accuracy and the normalized training time
in Figs. 5a and 5b. Sample replication leads to faster training
while maintaining or even improving the final transfer accu-
racy. Since a large portion of the input sample is masked,
replicating the sample multiple number of times still pro-
vides enough learning signal for the model and does not
lead to a degradation in performance. This becomes even
more relevant for OmniMAE’s final settings where we use

higher masking ratios. For video data, we use an optimized
dataloader (see details in Appendix B) with asynchronous
I/O and fast video decoding. Even with this optimized dat-
aloader, sample replication leads to 20% faster training. We
believe this is an important practical observation as video
dataloading is often a bottleneck for training models.

4.3. Comparison to Prior Work

In Table 2, we compare OmniMAE’s representation on
our image and video classification benchmarks with other



Method Arch. Pretrain Data IN1K iNat18 P365 K400 SSv2 EK100

DINO ViT-B IN1K 82.8 72.6 – ✗ ✗ ✗
iBOT [92] ViT-L IN1K 84.8 – – ✗ ✗ ✗
MAE [40] ViT-B IN1K 83.6 75.4 57.9 ✗ ✗ ✗
MAE [40] ViT-L IN1K 85.9 80.1 59.4 ✗ ✗ ✗
MAE [40] ViT-H IN1K 86.9 83.0 59.8 ✗ ✗ ✗
BEiT [6] ViT-B IN1K 83.4 72.3 – ✗ ✗ ✗
BEiT [6] ViT-L IN1K 85.2 – – ✗ ✗ ✗

VIMPAC [74] ViT-L/2† HowTo100M ✗ ✗ ✗ 77.4 68.1 –
MaskedFeat [82] MViT-v2-L K400 ✗ ✗ ✗ 84.3 – –
BEVT [80] Swin-B IN1K + K400 ✗ ✗ ✗ 81.1 71.4 –

OmniMAE ViT-B IN1K + K400 82.9 74.2 58.5 80.8 69.0 40.3

OmniMAE ViT-B IN1K + SSv2 83.0 74.0 58.4 80.6 69.5 39.3
OmniMAE ViT-L IN1K + SSv2 85.2 79.6 59.3 84.0 74.2 45.1
OmniMAE ViT-H IN1K + SSv2 86.6 83.2 60.1 85.4 75.5 48.0

Concurrent methods specialized for videos
VideoMAE-16f [76] ViT-L SSv2 ✗ ✗ ✗ – 74.2 –
VideoMAE-16f [76] ViT-L K400 ✗ ✗ ✗ 84.7 – –
MAE-Video [28] ViT-H K400 ✗ ✗ ✗ 85.1 74.1 –

Table 2. Comparing OmniMAE with prior self-supervised methods on image and video recognition. Prior work trains a specialized
model for a particular visual modality, sometimes using specialized architectures. Our single OmniMAE model is pretrained jointly on
images and videos for 1600 epochs (ViT-H for 2400) and performs competitively across all benchmarks while using a simple architecture
and pretraining method, even outperforming concurrent work specialized for videos. †ViT-L with half the MLP embedding dimension

state-of-the-art self-supervised methods. We focus on meth-
ods which use a Transformer backbone, ViT, or an architec-
ture based on Transformers like Swin. To the best of our
knowledge, prior work does not explore joint pre-training
except for BEVT [80], which does masked image modeling
followed by joint masked image and video modeling. Unlike
OmniMAE, BEVT only focuses on video representations
and does not evaluate on image recognition.

OmniMAE is pretrained for 1600 epochs (ViT-H for 2400
epochs). Training with IN1K and K400 or IN1K and SSv2
leads to similar results, so we use the latter when scaling
model size. OmniMAE performs competitively for both
image and video recognition when compared to the best
models trained separately for either modality. OmniMAE
also performs favorably compared to methods like Masked-
Feat which are pretrained only for video with specialized
architectures on larger video datasets. OmniMAE serves
as a competitive initialization for transferring models on all
modalities. More notably, OmniMAE’s performance im-
proves significantly with larger architectures. Using ViT-H,
OmniMAE performs better or within the margin of error
across all benchmarks. Notably, OmniMAE even outper-
forms concurrent works which use similar approaches while
solely focusing on video representation learning.

5. Conclusion and Future Work
We present OmniMAE, a unified Transformer for images

and videos that can be pretrained using masked autoencod-
ing. OmniMAE uses a simple architecture with minimal

vision-specific changes and is competitive with specialized
architectures and models tailored for images and videos. We
believe such generic models and approaches are a critical and
under explored area of representation learning. OmniMAE
has not been empirically validated on other visual modalities
like 3D, or non-visual modalities like audio. The simplicity
and generality of OmniMAE can likely enable future multi-
modal systems that use shared parameters to model multiple
modalities. We only studied masked autoencoder based pre-
training strategies for OmniMAE since they are easier to
train. However, pixel reconstruction methods do not learn
good linearly separable features or similarity metrics [40].
These properties are essential when finetuning with limited
labeled data. We believe that exploring other pretraining
strategies, particularly in the context of joint modeling, will
likely lead to improved models. Similarly, joint finetuning
strategies [33] could be used to evaluate such unified models
and lead to potentially even superior performance.

Ethical considerations. We study models for visual recog-
nition on images and videos and our technical contributions
are neutral from an ethics standpoint. We do not propose a
new dataset or make claims about the suitability of our model
on production data. Given their self-supervised nature, our
learned representations are free from label bias, however
they are still susceptible to the bias in the distribution of the
visual data We believe all ethical considerations that apply
to visual recognition models equally apply to our model.
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A. Datasets
A.1. Image datasets

ImageNet (IN1K) [70]. We use the ILSVRC 2012 challenge
subset of ImageNet that has 1.28M training and 50K val
images with 1000 classes. The 1000 classes cover a wide
range of concepts from fine-grained species of dogs, to every
day indoor and outdoor objects. The dataset is released
under a non-commercial license. This subset of ImageNet is
widely used for benchmarking image recognition models.
iNaturalist-2018 (iNat18) [44]. The iNaturalist dataset is a
fine-grained plant and animal species classification dataset.
We use the 2018 version of the dataset that has 437K train-
ing and 24K val images with 8142 classes. The dataset
was collected in collaboration with iNaturalist, a citizen sci-
ence effort that uses pictures submitted by people around
the world. The dataset is released under a non-commercial
iNaturalist license. To the best of our knowledge, no PII or
harmful content has been reported in the dataset.
Places-365 (P365) [91]. The Places dataset is a scene recog-
nition dataset that evaluates image recognition models on
indoor and outdoor scene classification. The dataset consists
of 1.8M training and 36K val images with 365 scene classes.
The dataset has public images and is released under a non-
commercial license. To the best of our knowledge, no PII or
harmful content has been reported in the dataset.

A.2. Video datasets

Something Something-v2 (SSv2) [37]. This is a video
action classification dataset with a special emphasis on tem-
poral modeling. It consists of ∼ 169K training and ∼ 25K
validation clips, each a few seconds long, classified into one
of 174 action classes. Due to the nature of the classes con-
sidered (e.g. “covering something” and “uncovering some-
thing”), the dataset requires temporal modeling to correctly
classify each video. The dataset has been collected by con-
senting participants who recorded the videos given the action
label, and released under a non-commercial license. To the
best of our knowledge, no PII or harmful content has been
reported in the dataset.
EPIC-Kitchens-100 (EK100) [22]. This dataset consists of
100 hours total of unscripted egocentric videos. Each video
is densely labeled with human-object interactions (“clips”),
which consists of a start time, end time, one of 300 nouns
(the object interacted with) and one of 97 verbs (the type
of interaction). There are ∼ 67K training and ∼ 10K val-
idation clips. Following prior work [22, 33], we tackle the
task of recognizing the 3,806 (verb, noun) pairs given a
clip. Note that not all (verb, noun) combinations occur
in both training and testing data. We use this dataset as a
transfer task to evaluate the learned representation. The data
is released under CC-BY-NC 4.0 license. The videos were
collected by consenting participants who wore egocentric

cameras while recording their daily activities, typically cook-
ing. Given the egocentric nature of the videos, PII such
as faces are not visible in the videos. To the best of our
knowledge, no offensive content has been reported on this
dataset.
Kinetics-400 (K400) [48]. This dataset consists of ∼ 240K
training and ∼ 20K validation third-person video clips that
are 10 seconds in length. Each clip is labeled into one of
400 action categories. The task requires classifying each
validation video into one of these categories. The dataset is
based on publicly available web videos from YouTube. Due
to the videos being taken down over time, the dataset changes
over time making apples-to-apples comparison with prior
work difficult. Hence, we use a static dataset like SSv2 for
pre-training and the primary comparisons. We will release
the set of train and test videos that we had access to from
this dataset. To the best of our knowledge, no PII or harmful
content has been reported on this dataset.

B. Implementation Details

B.1. Details about Pretraining

We pretrain the model jointly on IN1K and SSv2 using
the hyperparameters in Table 3. The dataset-specific hyper-
parameters are in the individual columns, and others are in
the middle. These apply to ViT-B, ViT-L, and ViT-H unless
specified otherwise. We use the same hyperparameters for
pretraining the models on IN1K and K400 (Table 2). The
ViT-H model in Table 2 is pretrained for 2400 epochs.

Config IN1K SSv2

Optimizer AdamW
Peak learning rate 3e-4
Weight decay 0.05
Optimizer Momentum β1 = 0.9, β2 = 0.95 [16]
Batch size 2048
Sample replication 1 4
Warmup epochs 40
Total epochs 800 (default), 1600 (Table 2)
Augmentations:
ShortSideScale N/A 256px
RandomResizedCrop
size 224px
scale [0.2, 1.0] [0.08, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic Bilinear

RandomHorizontalFlip p = 0.5 p = 0.0
Normalize Yes

Table 3. Pretraining hyperparameters

We train the model using 64 (or 128 for ViT-L, ViT-H)



32GB+ GPUs (A100 or Volta 32GB). The model is trained
with an ℓ2 loss on the pixel values. We normalize the target
using the mean and variance of the pixels in the patch, where
the norm is computed for each color channel separately,
before applying the loss. Note that we use the original 0-
255 pixel values before normalizing for this loss. We use
a a decoder with 4 layers and 384 dimension for ViT-B, 4
layers and 512 dimension for ViT-L, and 8 layers and 512
dimension for ViT-H.
Optimized video dataloading. AI training clusters usually
load data from high-latency high-throughput filesystems,
where dataloading for image and video datasets is bottle-
necked not by the throughput, but by the latency for each
read. For videos, this problem is exacerbated by the addi-
tional time spent decoding videos, ultimately resulting in
situations where video training is bottlenecked by dataload-
ing. In OmniMAE, where the training step is lightweight,
owing to 95% masking for videos, in order to see a congru-
ent improvement in wall-clock times, we needed to optimize
our video dataloading. PyTorch dataloaders read data in
synchronous fashion, which means that while a sample is
loaded from disk and decoded, the corresponding dataload-
ing process blocks without doing any work while waiting.
Having multiple dataloader workers can mitigate this, but
there is a cap to it based on the CPU memory and cores.
To mitigate this issue, we implemented asynchronous dat-
aloaders using asyncio, allowing the same process to send
multiple requests without blocking. This allows us to reduce
the amortized data reading time to effectively zero, resulting
in much faster training speeds. As Figure 5b shows, our
sample replication strategy provides a training speedup over
this optimized dataloading setup.

B.2. Transfer Learning

Table 4 specifies the hyperparameters for finetuning ViT-
B, ViT-L and ViT-H on the image datasets we utilize – IN1K,
iNat18 and P365. We report the peak test accuracy observed
during training. For all three datasets we use the same set-
tings with just different peak learning rates and total epochs.

For fine tuning on video datasets, we sample 16 frames
from clips. For SSv2 and EK100 we sample 2.7 second clips.
For K400 we sample 2 second clips. At test time, we sample
5 clips with 3 spatial crops and report the final test accuracy
at the end of training. Table 5 specifies the hyperparameters
for finetuning on SSv2 and EK100, and Table 6 on K400.

For all the datasets, we use the same finetuning hyperpa-
rameters for ViT-L and ViT-H.

B.3. Details about Ablations

For ablations, we start from a base pretraining config-
uration on IN1K and SSv2 that includes 1) 75% and 90%
masking on IN1K and SSv2 respectively; 2) Random and
Tube masking on IN1K and SSv2 respectively; 3) A common

Config ViT-B ViT-{L, H}

Optimizer AdamW
Peak learning rate

IN1K 4e-3 2e-3
iNat18 2e-3
P365 2e-3

Total epochs
IN1K 100 50
iNat18 300 100
P365 60 50

Warmup epochs 5
Weight decay 1e-4 5e-2
Layerwise LR decay [6, 20] 0.65 0.75
Optimizer Momentum β1 = 0.9, β2 = 0.999
Batch size 1024
DropPath [45] 0.1 0.2
EMA [69] 1e-4
Augmentations:
RandomResizedCrop
size 224px
scale [0.08, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomHorizontalFlip p = 0.5
RandomAugment [21]
magnitude 9
num_layers 0.5

RandomErasing [90] p = 0.25
Normalize Yes
mixup [88] 0.8
CutMix [86] 1.0
LabelSmoothing [73] 0.1

Table 4. Finetuning hyperparameters for IN1K, iNat18 and P365

4-layer 384D decoder for both datasets; 4) Peak learning rate
of 3e-4.
Masking ratio. For the masking ratio ablation, we vary the
amount of patches that are masked for each of the modalities.
We start from the default 75% masking for each modal-
ity [40], and increase it upto 90% for images and 95% for
videos. We notice that while downstream performance on
images is stable across different masking ratios on the im-
age dataset during pretraining, increasing the video masking
leads to improved performance on downstream video tasks.
We observe the best performance at 95% masking on videos.
Masking type. For this ablation, we vary the type of mask-
ing used in each modality. Starting from the default masking
type of (Random, Tube), we experiment with Causal mask-
ing on images, and Frame, Causal or Random masking on
videos. In all cases we keep the masking ratio to be 75% for



Config ViT-B ViT-{L, H}

Optimizer AdamW
Peak learning rate 1e-3
Total epochs 40
Batch size 512
Warmup epochs 5
Weight decay 5e-2
Layerwise LR decay [6, 20] 0.75
Optimizer Momentum β1 = 0.9

β2 = 0.999
DropPath [45] 0.1 0.2
Augmentations:
ShortSideScale 256px
RandomResizedCrop
size 224px
scale [0.08, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomAugment [21]
magnitude 7
num_layers 4

RandomErasing [90] p = 0.25
Normalize Yes
mixup [88] 0.8
CutMix [86] 1.0
LabelSmoothing [73] 0.1

Table 5. Finetuning hyperparameters for SSv2 & EK100.

images and 90% for videos.
Decoder capacity. For this ablation, we explored different
decoder capacities by varying the decoder depth and embed-
ding dimension. In particular, we test decoder depths of 2,
4 and 8 layers as well as embedding dimensions of 384 and
512.
Sample replication. We briefly note the procedure for sam-
ple replication. Let B denote the total batch size for training
without any replication. To maintain the total batch size for
training, when replicating a sample t times, we sample B

t
training samples from the dataset. After replication, each
of the B samples is augmented and processed individually.
Thus, sample replication reduces the I/O associated with
reading and decoding a sample by a factor proportional to
the replication factor t.
Dataset ratio. We experiment with varying the relative
dataset ratio of IN1K and SSv2 such that we replicate only
one dataset at a time. In addition to the default dataset ratio
of 1:1 (IN1K:SSv2), we test dataset ratios of 1:2, 1:3, 2:1
and 3:1. For such dataset ratios, the samples for one of the
datasets are replicated for every epoch, leading to longer
training wall clock time.
Specify random variance. Due to the large number of ex-

Config ViT-B ViT-{L, H}

Optimizer AdamW
Peak learning rate 1e-3
Total epochs 175 100
Sample replication 2
Batch size 1024 512
Warmup epochs 9
Weight decay 5e-2
Layerwise LR decay [6, 20] 0.75
Optimizer Momentum β1 = 0.9

β2 = 0.999
DropPath [45] 0.1 0.2
Augmentations:
ShortSideScale 256px
RandomResizedCrop
size 224px
scale [0.08, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomHorizontalFlip p = 0.5
RandomAugment [21]
magnitude 9
num_layers 2

Normalize Yes
mixup [88] 0.8
CutMix [86] 1.0
LabelSmoothing [73] 0.1

Table 6. Finetuning hyperparameters for K400.

periments and compute associated with training the models,
we note the random variance across a small subset of our
experiments from § 4.2. We measure the random variance of
both pretraining and transfer learning. We pretrain the model
with different random seeds and finetune it on ImageNet and
SSv2. Across a trial of 3 such pretraining and 2 finetuning
(total 6 runs), we observed a variance of 0.3% and 0.7% on
ImageNet and SSv2 respectively.

B.4. Visualization details

To visualize the pixel reconstructions, we train another
model without the patch mean/var normalization in the loss.
This ensures the model can directly generate the pixel val-
ues that we can visualize without needing to provide it the
patch’s mean/variance. For visualization, we reshape the
predicted pixel values to the original image dimensions, and
replace the unmasked patches with the ground truth pixel
values.

C. Additional Visualizations
We present additional visualizations in Figs. 6 and 7. To

match the model’s training settings, we visualize by masking



SSv2

K400

EK100

Figure 6. Additional Reconstruction visualizations using Omni-
MAE on different video datasets. We show the model predictions
for a masking ratio of 95%.

Figure 7. Additional Reconstruction visualizations using Omni-
MAE on the IN1K image dataset. We show the model predictions
for a masking ratio of 90%.

90% of the image patches and 95% of the video patches.

D. Additional Ablations

Effect of extra data. Since OmniMAE is trained with extra
data compared to MAE, one concern is whether the gains
can be attributed to joint training or simply the extra frames.
To that end, we experiment with training MAE with indi-
vidual frames from SSv2 instead of videos. To ensure an
exact apples-to-apples comparison, we use the exact setup
for OmniMAE, and simply convert each video input into
individual frames, hence ensuring the exact same epochs,
number of parameter updates, data, learning rates schedule
etc. As we see in Table 7, the SSv2 video classification per-

Setting Data IN1K SSv2
OmniMAE IN1K + SSv2 frames 82.7 64.2
OmniMAE IN1K + SSv2 82.8 69.0
MAE (cf . Figure 2) IN1K 83.4 59.5

Table 7. Effect of extra data. We train OmniMAE with the
exact set of IN1K images and SSv2 frames used during original
OmniMAE pretraining with IN1K images and SSv2 videos. This
follows our setup in § 4.2, where we train ViT-B for 800 epochs.
While the IN1K image classification performance in both settings
is comparable, the SSv2 video classification performance drops
significantly by almost 5% when trained only using frames and
not video clips, although it is better than just training with IN1K
images. This shows that the performance gains with OmniMAE
are not merely due to the additional data being used for training.

formance drops by almost 5% when trained with frames and
not video clips, although it is better than training with only
IN1K images. This ensures that the gains are indeed from
jointly training on the two modalities, rather than simply
using more data during training.


