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Abstract
Novel computer vision architectures monopo-
lize the spotlight, but the impact of the model
architecture is often conflated with simultane-
ous changes to training methodology and scal-
ing strategies. Our work revisits the canoni-
cal ResNet (He et al., 2015) and studies these
three aspects in an effort to disentangle them.
Perhaps surprisingly, we find that training and
scaling strategies may matter more than archi-
tectural changes, and further, that the result-
ing ResNets match recent state-of-the-art mod-
els. We show that the best performing scaling
strategy depends on the training regime and offer
two new scaling strategies: (1) scale model depth
in regimes where overfitting can occur (width
scaling is preferable otherwise); (2) increase im-
age resolution more slowly than previously rec-
ommended (Tan & Le, 2019). Using improved
training and scaling strategies, we design a fam-
ily of ResNet architectures, ResNet-RS, which
are 1.7x - 2.7x faster than EfficientNets on TPUs,
while achieving similar accuracies on ImageNet.
In a large-scale semi-supervised learning setup,
ResNet-RS achieves 86.2% top-1 ImageNet ac-
curacy, while being 4.7x faster than EfficientNet-
NoisyStudent. The training techniques improve
transfer performance on a suite of downstream
tasks (rivaling state-of-the-art self-supervised al-
gorithms) and extend to video classification on
Kinetics-400. We recommend practitioners use
these simple revised ResNets as baselines for fu-
ture research.

1. Introduction
The performance of a vision model is a product of the ar-
chitecture, training methods and scaling strategy. However,
research often emphasizes architectural changes. Novel ar-
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Figure 1. Improving ResNets to state-of-the-art performance.
We improve on the canonical ResNet (He et al., 2015) with mod-
ern training methods (as also used in EfficientNets (Tan & Le,
2019)), minor architectural changes and improved scaling strate-
gies. The resulting models, ResNet-RS, outperform EfficientNets
on the speed-accuracy Pareto curve with speed-ups ranging from
1.7x - 2.7x on TPUs and 2.1x - 3.3x on GPUs. ResNet (•) is
a ResNet-200 trained at 256×256 resolution. Training times re-
ported on TPUs.

chitectures underlie many advances, but are often simul-
taneously introduced with other critical – and less pub-
licized – changes in the details of the training method-
ology and hyperparameters. Additionally, new architec-
tures enhanced by modern training methods are sometimes
compared to older architectures with dated training meth-
ods (e.g. ResNet-50 with ImageNet Top-1 accuracy of
76.5% (He et al., 2015)). Our work addresses these issues
and empirically studies the impact of training methods and
scaling strategies on the popular ResNet architecture (He
et al., 2015).

We survey the modern training and regularization tech-
niques widely in use today and apply them to ResNets (Fig-
ure 1). In the process, we encounter interactions between

* Code and checkpoints available in TensorFlow:
https://github.com/tensorflow/models/tree/
master/official/vision/beta
https://github.com/tensorflow/tpu/tree/
master/models/official/resnet/resnet_rs
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training methods and show a benefit of reducing weight de-
cay values when used in tandem with other regularization
techniques. An additive study of training methods in Table
1 reveals the significant impact of these decisions: a canon-
ical ResNet with 79.0% top-1 ImageNet accuracy is im-
proved to 82.2% (+3.2%) through improved training meth-
ods alone. This is increased further to 83.4% by two small
and commonly used architectural improvements: ResNet-
D (He et al., 2018) and Squeeze-and-Excitation (Hu et al.,
2018). Figure 1 traces this refinement over the starting
ResNet in a speed-accuracy Pareto curve.

We offer new perspectives and practical advice on scaling
vision architectures. While prior works extrapolate scal-
ing rules from small models (Tan & Le, 2019) or from
training for a small number of epochs (Radosavovic et al.,
2020), we design scaling strategies by exhaustively train-
ing models across a variety of scales for the full training
duration (e.g. 350 epochs instead of 10 epochs). In do-
ing so, we uncover strong dependencies between the best
performing scaling strategy and the training regime (e.g.
number of epochs, model size, dataset size). These depen-
dencies are missed in any of these smaller regimes, leading
to sub-optimal scaling decisions. Our analysis leads to new
scaling strategies summarized as (1) scale the model depth
when overfitting can occur (scaling the width is preferable
otherwise) and (2) scale the image resolution more slowly
than prior works (Tan & Le, 2019).

Using the improved training and scaling strategies, we
design re-scaled ResNets, ResNet-RS, which are trained
across a wide range of model sizes, as shown in Fig-
ure 1. ResNet-RS models use less memory during train-
ing and are 1.7x - 2.7x faster on TPUs (2.1x - 3.3x faster
on GPUs) than the popular EfficientNets on the speed-
accuracy Pareto curve. In a large-scale semi-supervised
learning setup, ResNet-RS obtains a 4.7x training speed-
up on TPUs (5.5x on GPUs) over EfficientNet-B5 when
co-trained on ImageNet and an additional 130M pseudo-
labeled images.

Finally, we conclude with a suite of experiments test-
ing the generality of the improved training and scaling
strategies. We first design a faster version of Efficient-
Net using our scaling strategy, EfficientNet-RS, which im-
proves over the original on the speed-accuracy Pareto
curve. Next, we show that the improved training strategies
yield representations that rival or outperform those from
self-supervised algorithms (SimCLR (Chen et al., 2020a)
and SimCLRv2 (Chen et al., 2020b)) on a suite of down-
stream tasks. The improved training strategies extend to
video classification as well. Applying the training strate-
gies to 3D-ResNets on the Kinetics-400 dataset yields an
improvement from 73.4% to 77.4% (+4.0%).

Through combining minor architectural changes (used

since 2018) and improved training and scaling strategies,
we discover the ResNet architecture sets a state-of-the-art
baseline for vision research. This finding highlights the im-
portance of teasing apart each of these factors in order to
understand what architectures perform better than others.

We summarize our contributions:

• An empirical study of regularization techniques and
their interplay, which leads to a regularization strat-
egy that achieves strong performance (+3% top-1 ac-
curacy) without having to change the model architec-
ture.

• A simple scaling strategy: (1) scale depth when over-
fitting can occur (scaling width can be preferable oth-
erwise) and (2) scale the image resolution more slowly
than prior works (Tan & Le, 2019). This scaling strat-
egy improves the speed-accuracy Pareto curve of both
ResNets and EfficientNets.

• ResNet-RS: a Pareto curve of ResNet architectures
that are 1.7x - 2.7x faster than EfficientNets on TPUs
(2.1x - 3.3x on GPUs) by applying the training and
scaling strategies.

• Semi-supervised training of ResNet-RS with an addi-
tional 130M pseudo-labeled images achieves 86.2%
top-1 ImageNet accuracy, while being 4.7x faster
on TPUs (5.5x on GPUs) than the corresponding
EfficientNet-NoisyStudent (Xie et al., 2020).

• ResNet checkpoints that, when fine-tuned on a diverse
set of computer vision tasks, rival or outperform state-
of-the-art self-supervised representations from Sim-
CLR (Chen et al., 2020a) and SimCLRv2 (Chen et al.,
2020b).

• 3D ResNet-RS by extending our training methods and
architectural changes to video classification. The re-
sulted model improves the top-1 Kinetics-400 accu-
racy by 4.8% over the baseline.

2. Characterizing Improvements on ImageNet
Since the breakthrough of AlexNet (Krizhevsky et al.,
2012) on ImageNet (Russakovsky et al., 2015), a wide va-
riety of improvements have been proposed to further ad-
vance image recognition performance. These improve-
ments broadly arise along four orthogonal axes: architec-
ture, training/regularization methodology, scaling strategy
and using additional training data.

Architecture. The works that perhaps receive the most
attention are novel architectures. Notable proposals since
AlexNet (Krizhevsky et al., 2012) include VGG (Simonyan
& Zisserman, 2014), ResNet (He et al., 2015), Incep-
tion (Szegedy et al., 2015; 2016), and ResNeXt (Xie et al.,
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2017). Automated search strategies for designing architec-
tures have further pushed the state-of-the-art, notably with
NasNet-A (Zoph et al., 2018), AmoebaNet-A (Real et al.,
2019) and EfficientNet (Tan & Le, 2019). There have also
been efforts in going beyond standard ConvNets for image
classification, by adapting self-attention (Vaswani et al.,
2017) to the visual domain (Bello et al., 2019; Ramachan-
dran et al., 2019; Hu et al., 2019; Shen et al., 2020; Doso-
vitskiy et al., 2020) or using alternatives such as lambda
layers (Bello, 2021).

Training and Regularization Methods. ImageNet
progress has been boosted by innovations in training and
regularization approaches. When training models for more
epochs, regularization methods such as dropout (Srivastava
et al., 2014), label smoothing (Szegedy et al., 2016),
stochastic depth (Huang et al., 2016), dropblock (Ghiasi
et al., 2018) and data augmentation (Zhang et al., 2017;
Yun et al., 2019; Cubuk et al., 2018; 2019) have signifi-
cantly improved generalization. Improved learning rate
schedules (Loshchilov & Hutter, 2016; Goyal et al., 2017)
have further increased final accuracy. While benchmarking
architectures in a short non-regularized training setup
facilitates fair comparisons with prior work, it is unclear
whether architectural improvements are sustained at larger
scales and improved training setups. For example, the
RegNet architecture (Radosavovic et al., 2020) shows
strong speedups over baselines in a short non-regularized
training setup, but was not tested in a state-of-the-art
ImageNet setup (best top-1 is 79.9%).

Scaling Strategies. Increasing the model dimensions
(e.g. width, depth and resolution) has been another suc-
cessful axis to improve quality (Rosenfeld et al., 2019; Hes-
tness et al., 2017). Sheer scale was exhaustively demon-
strated to improve performance of neural language mod-
els (Kaplan et al., 2020) which motivated the design of ever
larger models including GPT-3 (Brown et al., 2020) and
Switch Transformer (Fedus et al., 2021). Similarly, scale in
computer vision has proven useful. Huang et al. (2018) de-
signed and trained a 557 million parameter model, Amoe-
baNet, which achieved 84.4% top-1 ImageNet accuracy.
Typically, ResNet architectures are scaled up by adding
layers (depth): ResNets, suffixed by the number of layers,
have marched onward from ResNet-18 to ResNet-200, and
beyond (He et al., 2016; Zhang et al., 2020; Bello, 2021).
Wide ResNets (Zagoruyko & Komodakis, 2016) and Mo-
bileNets (Howard et al., 2017) instead scale the width. In-
creasing image resolutions has also been a reliable source
of progress. Thus as training budgets have grown, so have
the image resolutions: EfficientNet uses 600 image reso-
lutions (Tan & Le, 2019) and both ResNeSt (Zhang et al.,
2020) and TResNet (Ridnik et al., 2020) use 448 image
resolutions for their largest model. In an attempt to sys-

tematize these heuristics, EfficientNet proposed the com-
pound scaling rule, which recommended balancing the net-
work depth, width and image resolution. However, Sec-
tion 7.2 shows this scaling strategy is sub-optimal for not
only ResNets, but EfficientNets as well.

Additional Training Data. Another popular way to fur-
ther improve accuracy is by training on additional sources
of data (either labeled, weakly labeled, or unlabeled). Pre-
training on large-scale datasets (Sun et al., 2017; Maha-
jan et al., 2018; Kolesnikov et al., 2019) has significantly
pushed the state-of-the-art, with ViT (Dosovitskiy et al.,
2020) and NFNets (Brock et al., 2021) recently achiev-
ing 88.6% and 89.2% ImageNet accuracy respectively.
Noisy Student, a semi-supervised learning method, ob-
tained 88.4% ImageNet top-1 accuracy by using pseudo-
labels on an extra 130M unlabeled images (Xie et al.,
2020). Meta pseudo-labels (Pham et al., 2020), an im-
proved semi-supervised learning technique, currently holds
the ImageNet state-of-the-art (90.2%). We present semi-
supervised learning results in Table 4 and discuss how our
training and scaling strategies transfer to large data regimes
in Section 8.

3. Related Work on Improving ResNets
Improved training methods combined with architectural
changes to ResNets have routinely yielded competitive Im-
ageNet performance (He et al., 2018; Lee et al., 2020; Rid-
nik et al., 2020; Zhang et al., 2020; Bello, 2021; Brock
et al., 2021). He et al. (2018) achieved 79.2% top-1 Ima-
geNet accuracy (a +3% improvement over their ResNet-50
baseline) by modifying the stem and downsampling block
while also using label smoothing and mixup. Lee et al.
(2020) further improved the ResNet-50 model with ad-
ditional architectural modifications such as Squeeze-and-
Excitation (Hu et al., 2018), selective kernel (Li et al.,
2019), and anti-alias downsampling (Zhang, 2019), while
also using label smoothing, mixup, and dropblock to
achieve 81.4% accuracy. Ridnik et al. (2020) incorporated
several architectural modifications to the ResNet architec-
tures along with improved training methodologies to out-
perform EfficientNet-B1 to EfficientNet-B5 models on the
speed-accuracy Pareto curve.

Most works, however, put little emphasis on identifying
strong scaling strategies. In contrast, we only consider
lightweight architectural changes routinely used since 2018
and instead focus on the training and scaling strategies to
build a Pareto curve of models. Our improved training and
scaling methods lead to ResNets that are 1.7x - 2.7x faster
than EfficientNets on TPUs. Our scaling improvements are
orthogonal to the aforementioned methods and we expect
them to be additive.
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4. Methodology
We describe the base ResNet architecture and the training
methods used throughout this paper.

4.1. Architecture

Our work studies the ResNet architecture, with two widely
used architecture changes, the ResNet-D (He et al., 2018)
modification and Squeeze-and-Excitation (SE) in all bottle-
neck blocks (Hu et al., 2018). These architectural changes
are used in used many architectures, including TResNet,
ResNeSt and EfficientNets.

ResNet-D (He et al., 2018) combines the following four
adjustments to the original ResNet architecture. First,
the 7×7 convolution in the stem is replaced by three
smaller 3×3 convolutions, as first proposed in Inception-
V3 (Szegedy et al., 2016). Second, the stride sizes are
switched for the first two convolutions in the residual path
of the downsampling blocks. Third, the stride-2 1×1 con-
volution in the skip connection path of the downsampling
blocks is replaced by stride-2 2×2 average pooling and
then a non-strided 1×1 convolution. Fourth, the stride-
2 3×3 max pool layer is removed and the downsampling
occurs in the first 3×3 convolution in the next bottleneck
block. We diagram these modifications in Figure 6.

Squeeze-and-Excitation (Hu et al., 2018) reweighs chan-
nels via cross-channel interactions by average pooling sig-
nals from the entire feature map. For all experiments we
use a Squeeze-and-Excitation ratio of 0.25 based on prelim-
inary experiments. In our experiments, we sometimes use
the original ResNet implementation without SE (referred
to as ResNet) to compare different training methods. Clear
denotations are made in table captions when this is the case.

4.2. Training Methods

We study regularization and data augmentation methods
that are routinely used in state-of-the art classification mod-
els and semi/self-supervised learning.

Matching the EfficientNet Setup. Our training method
closely matches that of EfficientNet, where we train for 350
epochs, but with a few small differences. (1) We use the co-
sine learning rate schedule (Loshchilov & Hutter, 2016) in-
stead of an exponential decay for simplicity (no additional
hyperparameters). (2) We use RandAugment (Cubuk et al.,
2019) in all models, whereas EfficientNets were originally
trained with AutoAugment (Cubuk et al., 2018). We reran
EfficientNets B0-B4 with RandAugment and found it of-
fered no performance improvement and report EfficientNet
B5 and B7 with the RandAugment results from Cubuk et al.

(2019)1. (3) We use the Momentum optimizer instead of
RMSProp for simplicity. See Table 10 in the Appendix C
for a comparison between our training setup and Efficient-
Net.

Regularization. We apply weight decay, label smoothing,
dropout and stochastic depth for regularization. Dropout
(Srivastava et al., 2014) is a common technique used in
computer vision and we apply it to the output after the
global average pooling occurs in the final layer. Stochastic
depth (Huang et al., 2016) drops out each layer in the net-
work (that has residual connections around it) with a spec-
ified probability that is a function of the layer depth.

Data Augmentation. We use RandAugment (Cubuk et al.,
2019) data augmentation as an additional regularizer. Ran-
dAugment applies a sequence of random image transfor-
mations (e.g. translate, shear, color distortions) to each
image independently during training. As mentioned ear-
lier, originally EfficientNets uses AutoAugment (Cubuk
et al., 2018), which is a learned augmentation procedure
that slightly underperforms RandAugment.

Hyperparameter Tuning. To select the hyperparameters
for the various regularization and training methods, we use
a held-out validation set comprising 2% of the ImageNet
training set (20 shards out of 1024). This is referred to as
the minival-set and the original ImageNet validation
set (the one reported in most prior works) is referred to as
validation-set. The hyperparameters of all ResNet-
RS models are in Table 8 in the Appendix B.

5. Improved Training Methods
5.1. Additive Study of Improvements

We present an additive study of training, regularization
methods and architectural changes in Table 1. The baseline
ResNet-200 gets 79.0% top-1 accuracy. We improve its
performance to 82.2% (+3.2%) through improved training
methods alone without any architectural changes. When
adding two common and simple architectural changes
(Squeeze-and-Excitation and ResNet-D) we further boost
the performance to 83.4%. Training methods alone cause
3/4 of the total improvement, which demonstrates their
critical impact on ImageNet performance.

5.2. Importance of decreasing weight decay when
combining regularization methods

Table 2 highlights the importance of changing weight
decay when combining regularization methods together.

1This makes our comparison to EfficientNet-B6 more nuanced
as the B6 performance most likely could be improved by 0.1-0.3%
top-1 if ran with RandAugment (based on improvements obtained
from B5 and B7).
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Improvements Top-1 ∆
ResNet-200 79.0 —
+ Cosine LR Decay 79.3 +0.3
+ Increase training epochs 78.8 † -0.5
+ EMA of weights 79.1 +0.3
+ Label Smoothing 80.4 +1.3
+ Stochastic Depth 80.6 +0.2
+ RandAugment 81.0 +0.4
+ Dropout on FC 80.7 ‡ -0.3
+ Decrease weight decay 82.2 +1.5
+ Squeeze-and-Excitation 82.9 +0.7
+ ResNet-D 83.4 +0.5

Table 1. Additive study of the ResNet-RS training recipe. The
colors refer to Training Methods , Regularization Methods

and Architecture Improvements . The baseline ResNet-200
was trained for the standard 90 epochs using a stepwise learn-
ing rate decay schedule. The image resolution is 256×256. All
numbers are reported on the ImageNet validation-set and
averaged over 2 runs. † Increasing training duration to 350 epochs
only becomes useful once the regularization methods are used,
otherwise the accuracy drops due to over-fitting. ‡ dropout hurts
as we have not yet decreased the weight decay (See Table 2 for
more details).

Model Regularization Weight Decay ∆
1e-4 4e-5

ResNet-50 None 79.7 78.7 -1.0
ResNet-50 RA-LS 82.4 82.3 -0.1
ResNet-50 RA-LS-DO 82.2 82.7 +0.5

ResNet-200 None 82.5 81.7 -0.8
ResNet-200 RA-LS 85.2 84.9 -0.3
ResNet-200 RA-LS-SD-DO 85.3 85.5 +0.2

Table 2. Decrease weight decay when using more regulariza-
tion. Top-1 ImageNet accuracy for different regularization com-
binations. Decreasing the weight decay improves performance
when combining regularization methods such as dropout (DO),
stochastic depth (SD), label smoothing (LS) and RandAugment
(RA). Image resolution is 224×224 for ResNet-50 and 256×256
for ResNet-200. All numbers are reported on the ImageNet
minival-set from an average of two runs.

When applying RandAugment and label smoothing, there
is no need to change the default weight decay of 1e-4. But
when we further add dropout and/or stochastic depth, the
performance can decrease unless we further decrease the
weight decay. The intuition is that since weight decay acts
as a regularizer, its value must be decreased in order to not
overly regularize the model when combining many tech-
niques. Furthermore, Zoph et al. (2020a) presents evidence
that the addition of data augmentation shrinks the L2 norm
of the weights, which renders some of the effects of weight
decay redundant. Other works use smaller weight decay
values, but do not point out the significance of the effect
when using more regularization (Tan et al., 2019; Tan &
Le, 2019).
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Figure 2. Scaling properties of ResNets across varying model
scales. Error approximately scales as a power law with
FLOPs (linear fit on the log-log curve) in the lower FLOPs
regime but the trend breaks for larger FLOPs. We ob-
serve diminishing returns of scaling the image resolutions
beyond 320×320, which motivates the slow image resolu-
tion scaling (Strategy #2). The scaling configurations run
are width multipliers [0.25,0.5,1.0,1.5,2.0], depths
[26,50,101,200,300,350,400] and image resolutions
[128,160,224,320,448]. FLOPs is the number of float-
ing point operations per image. All results are on the ImageNet
minival-set.

6. Improved Scaling Strategies
The prior section demonstrates the significant impact of
training methodology and we now show the scaling strat-
egy is similarly important. In order to establish scal-
ing trends, we perform an extensive search on ImageNet
over width multipliers in [0.25,0.5,1.0,1.5,2.0],
depths of [26,50,101,200,300,350,400] and res-
olutions of [128,160,224,320,448]. We train these
architectures for 350 epochs, mimicking the training setup
of state-of-the-art ImageNet models. We increase the reg-
ularization as the model size increases to limit overfitting.
See Appendix E for regularization and model hyperparam-
eters.

FLOPs do not accurately predict performance in the
bounded data regime. Prior works on scaling laws ob-
serve a power law between error and FLOPs in unbounded
data regimes (Kaplan et al., 2020; Henighan et al., 2020).
In order to test whether this also holds in our scenario, we
plot ImageNet error against FLOPs for all scaling config-
urations in Figure 2. For the smaller models, we observe
an overall power law trend between error and FLOPs, with
minor dependency on the scaling configuration (i.e. depth
versus width versus image resolution). However, the trend
breaks for larger model sizes. Furthermore, we observe a
large variation in ImageNet performance for a fixed amount
of FLOPs, especially in the higher FLOP regime. There-
fore the exact scaling configuration (i.e. depth, width and
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Figure 3. Scaling of ResNets across depth, width, image resolution and training epochs. We compare depth scaling and width scaling
across four different image resolutions [128,160,224,320] when training models for 10, 100 or 350 epochs. We find that the best
performing scaling strategy depends on the training regime, which reveals the pitfall of extrapolating scaling rules from small scale
regimes. (Left) 10 Epoch Regime: width scaling is the best strategy for the speed-accuracy Pareto curve. (Middle) 100 Epoch Regime:
depth scaling is sometimes outperformed by width scaling. (Right) 350 Epoch Regime: depth scaling consistently outperforms width
scaling by a large margin. Overfitting remains an issue even when using regularization methods. Model Details: All models start from
a depth of 101 and are increased through [101,200,300,400]. All model widths start with a multiplier of 1.0x and are increased
through [1.0,1.5,2.0]. For all models, we tune regularization in an effort to limit overfitting (see Appendix E). Accuracies are
reported on the ImageNet minival-set and training times are measured on TPUs.

image resolution) can have a big impact on performance
even when controlling for the same amount of FLOPs.

The best performing scaling strategy depends on the
training regime. We next look directly at latencies2 on
the hardware of interest to identify scaling strategies that
improve the speed-accuracy Pareto curve. Figure 3 presents
accuracies and latencies of models scaled with either width
or depth across four image resolutions and three different
training regimes (10, 100 and 350 epochs). We observe that
the best performing scaling strategy, especially whether to
scale depth and/or width, highly depends on the training
regime.

6.1. Strategy #1 - Depth Scaling in Regimes Where
Overfitting Can Occur

Depth scaling outperforms width scaling for longer
epoch regimes. In the 350 epochs setup (Figure 3, right
panel), we observe depth scaling to significantly outper-
form width scaling across all image resolutions. Scaling
the width is subject to overfitting and sometimes hurts per-
formance even with increased regularization. We hypoth-
esize that this is due to the larger increase in parameters
when scaling the width. The ResNet architecture maintains
constant FLOPs across all block groups and multiplies the
number of parameters by 4× every block group. Scaling
the depth, especially in the earlier layers, therefore intro-
duces fewer parameters compared to scaling the width.

Width scaling outperforms depth scaling for shorter
epoch regimes. In contrast, width scaling is better when
only training for 10 epochs ( Figure 3, left panel). For 100

2FLOPs is not a good indicator of latency on modern hard-
ware. See Section 7.1 for a more detailed discussion.

epochs (Figure 3, middel panel), the best performing scal-
ing strategy varies between depth scaling and width scal-
ing, depending on the image resolution. The dependency
of the scaling strategy on the training regime reveals a pit-
fall of extrapolating scaling rules. We point out that prior
works also choose to scale the width when training for a
small number of epochs on large-scale datasets (e.g. ∼40
epochs on 300M images), consistent with our experimen-
tal findings that scaling the width is preferable in shorter
epoch regimes. In particular, Kolesnikov et al. (2019) train
a ResNet-152 with 4x filter multiplier while Brock et al.
(2021) scales the width with ∼1.5x filter multiplier.

6.2. Strategy #2 - Slow Image Resolution Scaling

In Figure 2, we also observe that larger image resolutions
yield diminishing returns. We therefore propose to increase
the image resolution more gradually than previous works.
This contrasts with the compound scaling rule proposed by
EfficientNet which leads to very large images (e.g. 600
for EfficientNet-B7, 800 for EfficientNet-L2 (Xie et al.,
2020)). Other works such as ResNeSt (Zhang et al., 2020)
and TResNet (Ridnik et al., 2020)) scale the image resolu-
tion up to 448. Our experiments indicate that slower image
scaling improves not only ResNet architectures, but also
EfficientNets on a speed-accuracy basis (Section 7.2).

6.3. Two Common Pitfalls in Designing Scaling
Strategies

Our scaling analysis surfaces two common pitfalls in prior
research on scaling strategies:

(1) Extrapolating scaling strategies from small-scale
regimes. Scaling strategies found in small scale regimes
(e.g. on small models or with few training epochs) can

6
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fail to generalize to larger models or longer training itera-
tions. The dependencies between the best performing scal-
ing strategy and the training regime are missed by prior
works which extrapolate scaling rules from either small
models (Tan & Le, 2019) or shorter training epochs (Ra-
dosavovic et al., 2020). We therefore do not recommend
generating scaling rules exclusively in a small scale regime
because these rules can break down.

(2) Extrapolating scaling strategies from a single and
potentially sub-optimal initial architecture. Beginning
from a sub-optimal initial architecture can skew the scaling
results. For example, the compound scaling rule derived
from a small grid search around EfficientNet-B0, which
was obtained by architecture search using a fixed FLOPs
budget and a specific image resolution. However, since
this image resolution can be sub-optimal for that FLOPs
budget, the resulting scaling strategy can be sub-optimal.
In contrast, our work designs scaling strategies by training
models across a variety of widths, depths and image reso-
lutions.

6.4. Summary of Improved Scaling Strategies

For a new task, we recommend running a small subset of
models across different scales, for the full training epochs,
to gain intuition on which dimensions are the most useful
across model scales. While this approach may appear more
costly, we point out that the cost is offset by not searching
for the architecture.

For image classification, the scaling strategies are summa-
rized as (1) scale the depth in regimes where overfitting
can occur (scaling the width is preferable otherwise) and
(2) slow image resolution scaling. Experiments indicate
that applying these scaling strategies to ResNets (ResNet-
RS) and EfficientNets (EfficientNet-RS) leads to signifi-
cant speed-ups over EfficientNets. We note that similar
scaling strategies are also employed in recent works that
obtain large speed-ups over EfficientNets such as Lamb-
daResNets (Bello, 2021) and NFNets (Brock et al., 2021).

7. Experiments with Improved Training and
Scaling Strategies

7.1. ResNet-RS on a Speed-Accuracy Basis

Using the improved training and scaling strategies, we de-
sign ResNet-RS, a family of re-scaled ResNets across a
wide range of model scales (see Appendix B and D for
experimental and architectural details). Figure 4 com-
pares EfficientNets against ResNet-RS on a speed-accuracy
Pareto curve. We find that ResNet-RS match Efficient-
Nets’ performance while being 1.7x - 2.7x faster on TPUs.
This large speed-up over EfficientNet may be non-intuitive
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Figure 4. Speed-Accuracy Pareto curve comparing ResNets-
RS to EfficientNet. Properly scaled ResNets (ResNet-RS) are
1.7x - 2.7x faster than the popular EfficientNets when closely
matching their training setup. ResNet-RS are annotated with
(depth - image resolution), so 152-256 means ResNet-RS-152
with image resolution 256×256. All results are on the ImageNet
validation-set and training times are measured on TPUs.
See Appendix B for detailed results.

since EfficientNets significantly reduce both the parameter
count and the FLOPs compared to ResNets. We next dis-
cuss why a model with fewer parameters and fewer FLOPs
(EfficientNet) is slower and more memory-intensive during
training.

FLOPs vs Latency. While FLOPs provide a hardware-
agnostic metric for assessing computational demand, they
may not be indicative of actual latency times for train-
ing and inference (Howard et al., 2017; 2019; Radosavovic
et al., 2020). In custom hardware architectures (e.g. TPUs
and GPUs), FLOPs are an especially poor proxy because
operations are often bounded by memory access costs and
have different levels of optimization on modern matrix
multiplication units (Jouppi et al., 2017). The inverted bot-
tlenecks (Sandler et al., 2018) used in EfficientNets employ
depthwise convolutions with large activations and have a
small compute to memory ratio (operational intensity) com-
pared to the ResNet’s bottleneck blocks which employ
dense convolutions on smaller activations. This makes Effi-
cientNets less efficient on modern accelerators compared to
ResNets. Table 3 illustrates this point: a ResNet-RS model
with 1.8x more FLOPs than EfficientNet-B6 is 2.7x faster
on a TPUv3 hardware accelerator.

Parameters vs Memory. Parameter count does not nec-
essarily dictate memory consumption during training be-
cause memory is often dominated by the size of the acti-

7
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Model RS-350 ENet-B6 RS-420 ENet-B7

Resolution 256 528 320 600

Top-1 Acc. 84.0 84.0 84.4 84.7

Params (M) 164 43 (3.8x) 192 66 (2.9x)
FLOPs (B) 69 38 (1.8x) 128 74 (1.7x)

TPU-v3
Latency (s) 1.1 3.0 (2.7x) 2.1 6.0 (2.9x)
Memory (GB) 7.3 16.6 (2.3x) 15.5 28.3 (1.8x)

V100
Latency (s) 4.7 15.7 (3.3x) 10.2 29.9 (2.8x)

Table 3. Performance comparison of ResNet-RS and Efficient-
Net (abbreviated ENet). Although ResNet-RS has more parame-
ters and FLOPs, the model employs less memory and runs faster
on TPUs and GPUs. TPU latency is reported as the time per train-
ing step for 1024 images on 8 TPUv3 cores. Memory is reported
on 32 images per core, using bfloat16 precision without fusion
or rematerialization. See Appendix H for more profiling details.

vations3. The large activations used in EfficientNets also
cause larger memory consumption, which is exacerbated
by the use of large image resolutions, compared to our re-
scaled ResNets. A ResNet-RS model with 3.8x more pa-
rameters than EfficientNet-B6 consumes 2.3x less memory
for a similar ImageNet accuracy (Table 3). We emphasize
that both memory consumption and latency are tightly cou-
pled to the software and hardware stack (TensorFlow on
TPUv3) due to compiler optimizations such as operation
layout assignments and memory padding.

7.2. Improving the Efficiency of EfficientNets

The scaling analysis from Section 6 reveals that scaling
the image resolution results in diminishing returns. This
suggests that the scaling rules advocated in EfficientNets
which increases model depth, width and resolution inde-
pendently of model scale is sub-optimal. We apply the slow
image resolution scaling strategy (Strategy #2) to Efficient-
Nets and train several versions with reduced image resolu-
tions, without changing the width or depth. The RandAug-
ment magnitude is set to 10 for image resolution 224 or
smaller, 20 for image resolution larger than 320 and 15 oth-
erwise. All other hyperparameters are kept the same as per
the original EfficientNets. Figure 5 demonstrates a marked
improvement of the re-scaled EfficientNets (EfficientNet-
RS) on the speed-accuracy Pareto curve over the original
EfficientNets.

3Activations are typically stored during training as they are
used in backpropagation. At inference, activations can be dis-
carded and parameter count is a better proxy for actual memory
consumption.
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Figure 5. Speed-Accuracy Pareto curve comparing ResNets-
RS and EfficientNet-RS to EfficientNet. Scaling Efficient-
Nets using the slow image resolution scaling strategy (instead
of the original compound scaling rule) improves the Pareto ef-
ficiency of EfficientNets. Note that ResNet-RS still outperforms
EfficientNet-RS. This figure is a zoomed in version of Figure 4
with EfficientNet-RS added. Models are annotated with (model
depth - image resolution), so 152-192 corresponds to ResNet-RS-
152 with image resolution 192×192. Results are reported on the
ImageNet validation-set and training times are measured
on TPUs.

7.3. Semi-Supervised Learning with ResNet-RS

We measure how ResNet-RS performs as we scale to larger
datasets in a large scale semi-supervised learning setup.
We train ResNets-RS on the combination of 1.2M labeled
ImageNet images and 130M pseudo-labeled images, in a
similar fashion to Noisy Student (Xie et al., 2020). We
use the same dataset of 130M images pseudo-labeled as
Noisy Student, where the pseudo labels are generated from
an EfficientNet-L2 model with 88.4% ImageNet accuracy.
Models are jointly trained on both the labeled and pseudo-
labeled data and training hyperparameters are kept the
same. Table 4 reveals that ResNet-RS models are very
strong in the semi-supervised learning setup as well. We
obtain a top-1 ImageNet accuracy of 86.2%, while being
4.7x faster on TPU (5.5x on GPU) than the corresponding
Noisy Student EfficientNet-B5 model.

Model V100 (s) TPUv3 (ms) Top-1

EfficientNet-B5 8.16 1510 86.1
ResNet-RS-152 1.48 (5.5x) 320 (4.7x) 86.2

Table 4. ResNet-RS are efficient semi-supervised learners.
ResNet-RS-152 with image resolution 224 is 4.7x faster on TPU
(5.5x on GPU) than EfficientNet-B5 Noisy Student (Xie et al.,
2020) for a similar ImageNet accuracy. Both models train on the
same additional 130M pseudo-labeled images. See Appendix H
for details on latency measurements.
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Model Training Epochs CIFAR-100 Pascal Pascal ADE NYU
Method Accuracy Detection Segmentation Segmentation Depth

ResNet-152 Supervised 90 85.5 80.0 70.0 40.2 81.2
ResNet-152 SimCLR 800 87.1 83.3 72.2 41.0 83.5
ResNet-152 SimCLRv2 800 84.7 79.1 73.1 41.1 84.7
ResNet-152 RS 400 88.1 82.2 78.2 42.2 83.4

ResNet-152 2x Supervised 90 86.6 81.1 72.2 41.4 82.5
ResNet-152 2x SimCLR 800 89.0 85.3 78.8 45.2 86.8
ResNet-152 2x SimCLRv2 800 84.8 80.1 75.5 42.5 86.1
ResNet-152 2x RS 400 89.3 84.1 79.2 44.1 84.7

Table 5. Representations from supervised learning with improved training strategies rival or outperform representations from
state-of-the-art self-supervised learning algorithms. Comparison of supervised training methods (supervised, RS) and self-supervised
methods (SimCLR, SimCLRv2) on a variety of downstream tasks. The (RS) strategy greatly outperforms the baseline supervised
training, which highlights the importance of using improved supervised training techniques when comparing to self-supervised learning
algorithms. The RS training method uses a subset of the training methods highlighted in this work (cosine LR decay, RandAugment
label smoothing, reduced weight decay, and dropout on FC) to more closely match those used in the self-supervised algorithms. All
models employ the vanilla ResNet architecture without modifications and are pre-trained on ImageNet.

7.4. Transfer Learning of ResNet-RS

We now investigate whether the improved supervised train-
ing strategies yield better representations for transfer learn-
ing and compare them with self-supervised learning algo-
rithms. Recent self-supervised learning algorithms claim
to surpass the transfer learning performance of supervised
learning and create more universal representations (Chen
et al., 2020a;b). Self-supervised algorithms, however,
make several changes to the training methods (e.g training
for more epochs, data augmentation) making comparisons
to supervised learning difficult. Table 5 compares the trans-
fer performance of improved supervised training strategies
(denoted RS) against self-supervised SimCLR (Chen et al.,
2020a) and SimCLRv2 (Chen et al., 2020b). In an effort
to closely match SimCLR’s training setup and provide fair
comparisons, we restrict the RS training strategies to a sub-
set of its original methods. Specifically, we employ data
augmentation (RandAugment), label smoothing, dropout,
decreased weight decay and cosine learning rate decay for
400 epochs but do not use stochastic depth or exponential
moving average (EMA) of the weights. We choose this sub-
set to closely match the training setup of SimCLR: longer
training, data augmentation and a temperature parameter
for their contrastive loss4. We use the vanilla ResNet ar-
chitecture without the ResNet-D modifications or Squeeze-
and-Excite, matching the SimCLR and SimCLRv2 archi-
tectures.

We evaluate the transfer performance on five downstream
tasks: CIFAR-100 Classification (Krizhevsky et al., 2009),

4Note that SimCLR and SimCLRv2 might benefit further
when combining with RandAugment, but the same may also hold
true when combining SimCLR’s augmentation with RandAug-
ment for supervised learning.

Pascal Detection & Segmentation (Everingham et al.,
2010), ADE Segmentation (Zhou et al., 2017) and NYU
Depth (Silberman et al., 2012). We find that, even when
restricted to a smaller subset, the improved training strate-
gies improve transfer performance5. The improved super-
vised representations (RS) outperform SimCLR on 5/10
downstream tasks and SimCLRv2 on 8/10 tasks. Further-
more, the improved training strategies significantly out-
perform the standard supervised ResNet representations,
highlighting the need for using modern training techniques
when comparing to self-supervised learning. While self-
supervised learning can be used on unlabeled data, our re-
sults challenge the notion that self-supervised algorithms
lead to more universal representations than supervised
learning when labels are available.

7.5. Revised 3D ResNet for Video Classification

We conclude by applying the training strategies to the
Kinetics-400 video classification task, using a 3D ResNet
as the baseline architecture (Qian et al., 2020) (see Ap-
pendix G for experimental details). Table 6 presents an
additive study of the RS training recipe and architectural
improvements.

The training strategies extend to video classification, yield-
ing a combined improvement from 73.4% to 77.4%
(+4.0%). The ResNet-D and Squeeze-and-Excitation ar-
chitectural changes further improve the performance to
78.2% (+0.8%). Similarly to our study on image classifi-
cation (Table 1), we find that most of the improvement can

5Kornblith et al. (2019) similarly observed that better Ima-
geNet top-1 accuracy (either through better architectures or train-
ing strategies) strongly correlates with improved transfer learning
performance.
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Improvements Top-1 ∆

3D ResNet-50 73.4 –
+ Dropout on FC 74.4 +1.0
+ Label smoothing 74.9 +0.5
+ Stochastic depth 76.1 +1.2
+ EMA of weights 76.1 –
+ Decrease weight decay 76.3 +0.2
+ Increase training epochs 76.4 +0.1
+ Scale jittering 77.4 +1.0
+ Squeeze-and-Excitation 77.9 +0.5
+ ResNet-D 78.2 +0.3

Table 6. Additive study of training methods for video
classification. The colors refer to Training Methods ,

Regularization Methods and Architecture Improvements .
The ResNet-RS training recipe transfers to a 3D ResNet model
on Kinetics-400 video classification (Kay et al., 2017). Reported
accuracies are averaged over 2 runs. The baseline 3D ResNet-50
was trained for 200 epochs with a cosine learning rate decay.

be obtained without architectural changes. Without model
scaling, 3D ResNet-RS-50 is only 2.2% less than the best
number reported on Kinetics-400 at 80.4% (Feichtenhofer,
2020).

8. Discussion
Why is it important to tease apart improvements com-
ing from training methods vs architectures? Train-
ing methods can be more task-specific than architectures
(e.g. data augmentation is more helpful on small datasets).
Therefore, improvements coming from training methods do
not necessarily generalize as well as architectural improve-
ments. Packaging newly proposed architectures together
with training improvements makes accurate comparisons
between architectures difficult. The large improvements
coming from training strategies, when not being controlled
for, can overshadow architectural differences.

How should one compare different architectures?
Since training methods and scale typically improve perfor-
mance (Lee et al., 2020; Kaplan et al., 2020), it is critical
to control for both aspects when comparing different ar-
chitectures. Controlling for scale can be achieved through
different metrics. While many works report parameters
and FLOPs, we argue that latencies and memory consump-
tion are generally more relevant (Radosavovic et al., 2020).
Our experimental results (Section 7.1) re-emphasize that
FLOPs and parameters are not representative of latency
or memory consumption (Radosavovic et al., 2020; Norrie
et al., 2021).

Do the improved training strategies transfer across
tasks? The answer depends on the domain and dataset
sizes available. Many of the training and regulariza-
tion methods studied here are not used in large-scale pre-

training (e.g. 300M images) (Kolesnikov et al., 2019;
Dosovitskiy et al., 2020). Data augmentation is useful
for small datasets or when training for many epochs, but
the specifics of the augmentation method can be task-
dependent (e.g. scale jittering instead of RandAugment in
Table 6).

Do the scaling strategies transfer across tasks? The
best performing scaling strategy depends on the training
regime and whether overfitting is an issue, as discussed in
Section 6. When training for 350 epochs on ImageNet,
we find scaling the depth to work well, whereas scal-
ing the width is preferable when training for few epochs
(e.g. 10 epochs). This is consistent with works employing
width scaling when training for few epochs on large-scale
datasets (Kolesnikov et al., 2019). We are unsure how our
scaling strategies apply in tasks that require larger image
resolutions (e.g. detection and segmentation) and leave this
to future work.

Are architectural changes useful? Yes, but training
methods and scaling strategies can have even larger im-
pacts. Simplicity often wins, especially given the non-
trivial performance issues arising on custom hardware. Ar-
chitecture changes that decrease speed and increase com-
plexity may be surpassed by scaling up faster and sim-
pler architectures that are optimized on available hardware
(e.g convolutions instead of depthwise convolutions for
GPUs/TPUs). We envision that future successful archi-
tectures will emerge by co-design with hardware, particu-
larly in resource-tight regimes like mobile phones (Howard
et al., 2019).

How should one allocate a computational budget to pro-
duce the best vision models? We recommend beginning
with a simple architecture that is efficient on available hard-
ware (e.g. ResNets on GPU/TPU) and training several
models, to convergence, with different image resolutions,
widths and depths to construct a Pareto curve. Note that
this strategy is distinct from Tan & Le (2019) which instead
allocate a large portion of the compute budget for identify-
ing an optimal initial architecture to scale. They then do a
small grid search to find the compound scaling coefficients
used across all model scales. RegNet (Radosavovic et al.,
2020) does most of their studies when training for only 10
epochs.

9. Conclusion
By updating the de facto vision baseline with modern train-
ing methods and an improved scaling strategy, we have re-
vealed the remarkable durability of the ResNet architec-
ture. Simple architectures set strong baselines for state-
of-the-art methods. We hope our work encourages further
scrutiny in maintaining consistent methodology for both
proposed innovations and baselines alike.
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A. Author Contributions
IB, BZ: led the research, designed and ran the scaling experiments, designed and experimented with the training strate-
gies. JS, TL, EC, AS, WF, XD: advised the research, proposed experiments and helped with the writing. AS, IB, BZ:
ran preliminary experiments using label smoothing, longer training and RandAugment. IB: demonstrated ResNets out-
performing EfficientNets across all scales, designed the scaling strategies and the Pareto curve of models, designed/ran
(semi-)supervised learning experiments and significantly contributed to the writing. BZ: ran the regularization studies.
WF, BZ: did a majority of the writing. BZ, EC: analyzed scaling experiments and generated the scaling plots. XD:
proposed, designed and ran the 3D video classification experiments, lead the open-sourcing. AS: proposed lowering the
weight decay for better performance and ran preliminary experiments comparing SimCLR to supervised learning. TL:
designed and ran the transfer learning experiments comparing to self-supervised learning.

B. Details of all ResNet-RS models in the Pareto curve
This section details all the models in the ResNet-RS Pareto curve. In Table 7, we observe that our ResNet-RS models get
speedups ranging from 1.7x - 2.7x across the EfficientNet Pareto curve on TPUs.

Model Image Resolution Params (M) FLOPs (B) V100 Latency (s) TPUv3 Latency (ms) Top-1

EfficientNet-B0 224 5.3 0.8 0.47 90 77.1
EfficientNet-B1 240 7.8 1.4 0.82 150 79.1
ResNet-RS-50 160 36 4.6 0.31 70 78.8

EfficientNet-B2 260 9.2 2.0 1.03 210 80.1
ResNet-RS-101 160 64 8.4 0.48 (2.1×) 120 (1.8×) 80.3

EfficientNet-B3 300 12 3.6 1.76 340 81.6
ResNet-RS-101 192 64 12 0.70 170 81.2
ResNet-RS-152 192 87 18 0.99 240 82.0

EfficientNet-B4 380 19 8.4 4.0 710 82.9
ResNet-RS-152 224 87 24 1.48 (2.7×) 320 (2.2×) 82.8
ResNet-RS-152 256 87 31 1.76 (2.3×) 410 (1.7×) 83.0

EfficientNet-B5 456 30 20 8.16 1510 83.7
ResNet-RS-200 256 93 40 2.86 570 83.4
ResNet-RS-270 256 130 54 3.76 (2.2×) 780 (1.9×) 83.8

EfficientNet-B6 528 43 38 15.7 3010 84.0
ResNet-RS-350 256 164 69 4.72 (3.3×) 1100 (2.7×) 84.0

EfficientNet-B7 600 66 74 29.9 6020 84.7
ResNet-RS-350 320 164 107 8.48 1630 84.2
ResNet-RS-420 320 192 128 10.16 2090 84.4

Table 7. Details of ResNet-RS models in Pareto curve. All models are trained for 350 epochs using the improvements mentioned in
Section 5. The exact hyperparameters for all ResNet-RS models are in Table 8. Latencies on Tesla V100 GPUs are measured with
full precision (float32). Latencies on TPUv3 are measured using bfloat16 precision. All latencies are measured with an initial
training batch size of 128 images, which is divided by 2 until it fits onto the accelerator.

Hyperparameters Table 8 presents the training and regularization hyperparameters used for training ResNet-RS mod-
els. We increase regularization as with model scale. Note that we have less hyperparameter setups compared to Efficient-
Nets (Tan & Le, 2019). We perform early stopping on the minival-set set for the two largest models from Table 7
(ResNet-RS-350 at resolution 320 and ResNet-RS-420 at resolution 320). For every other model, we simply report the final
accuracy. We present top-1 accuracies on the ImageNet test-set for two ResNet-RS models in Table 9. We observe no
sign of overfitting.

C. ResNet-RS Training and Regularization Methods
Table 10 shows the differences in training and regularization methods between ResNets, ResNet-RS and EfficientNets.
Overall we closely match EfficientNet’s training setup, while making a few minor simplications: cosine learning rate
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Model Depth Image Resolution RandAugment Stochastic Depth Dropout
Magnitude Rate Rate

ResNet-RS 50 160 × 160 10 0.0 0.25

ResNet-RS 101 160 × 160 10 0.0 0.25

ResNet-RS 101 192 × 192 15 0.0 0.25
ResNet-RS 152 192 × 192 15 0.0 0.25
ResNet-RS 152 224 × 224 15 0.0 0.25

ResNet-RS 152 256 × 256 15 0.0 0.25

ResNet-RS 200 256 × 256 15 0.1 0.25
ResNet-RS 270 256 × 256 15 0.1 0.25

ResNet-RS 350 256 × 256 15 0.1 0.25

ResNet-RS 350 320 × 320 15 0.1 0.4
ResNet-RS 420 320 × 320 15 0.1 0.4

Table 8. Hyperparameters for all ResNet-RS models. All models train for 350 epochs, use a weight decay of 4e-5, an EMA value of
0.9999 (for both weights and Batch Norm moving averages), 2 layers of RandAugment (with different magnitudes as shown above) and
a label smoothing rate of 0.1. The learning rate is warmed up to a maximum value of 0.1/B, with B the batch size, and decayed to 0
using a cosine schedule (Loshchilov & Hutter, 2016). Dropout rate means each activation after the global average pooling layers gets
dropped out with probability dropout rate.

Model Image Resolution top-1 Val top-1 Test

ResNet-RS-152 224 82.8 82.7
ResNet-RS-270 256 83.8 83.7

Table 9. ImageNet accuracies on the validation and test splits.

isntead of exponential decay and Momentum instead of RMSProp. Both simplifications reduce the total number of hyper-
parameters as (1) cosine decay has no hyperparameters associated with it and (2) Momentum has one less than RMSProp.

ResNet (2015) ResNet-RS (2021) EfficientNets (2019)
Epochs Trained 90 350 350

LR Decay Schedule Stepwise Cosine Exponential Decay
Optimizer Momentum Momentum RMSProp

EMA of Weights X X
Label Smoothing X X
Stochastic Depth X X
RandAugment X X
Dropout on FC X X

Smaller Weight Decay X X
Squeeze-Excitation X X
Stem Modifications X X

Table 10. Comparing training method between ResNet, ResNet-RS and EfficientNet. ResNet (2015) refers to the ResNet originally
trained in He et al. (2015).

D. ResNet-RS Architecture Details
We provide more details of the ResNet-RS architectural changes. We reiterate that ResNet-RS is a combination of: im-
proved scaling strategies, improved training methodologies, the ResNet-D modifications (He et al., 2018) and the Squeeze-
Excitation module (Hu et al., 2018). Table 11 shows the block layouts for all ResNet depths used throughout our work.
ResNet-50 through ResNet-200 use the standard block configurations from He et al. (2015). ResNet-270 and onward pri-
marily scale the number of blocks in c3 and c4 and we try to keep their ratio roughly constant. We empirically found
that adding blocks in the lower stages limits overfitting as blocks in the lower layers have significantly less parameters,
even though all blocks have the same amount of FLOPs. Figure 6 shows the ResNet-D architectural changes used in our
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Model Depth Block Configuration
ResNet 50 [3-4-6-3]
ResNet 101 [3-4-23-3]
ResNet 152 [3-8-36-3]
ResNet 200 [3-24-36-3]
ResNet 270 [4-29-53-4]
ResNet 350 [4-36-72-4]
ResNet 420 [4-44-87-4]

Table 11. Block configurations for all ResNet depths used in the ResNet-RS Pareto Curve. ResNets of depths 50, 101, 152 and
200 use the standard block allocations from He et al. (2015). The different numbers represent the number of blocks in c2, c3, c4 and
c5 respectively. Note that our depth scaling mainly scales the blocks in c3 and c4, which limits overfitting (due to the increase in
parameters) that can occur when blocks are added to c5.

ResNet-RS models.
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Figure 6. ResNet-RS Architecture Diagram. Output Size assumes a 224×224 input image resolution. In the convolutional layout
column x2 refers to the the first 3×3 convolution being applied with a stride of 2. The ResNet-RS architecture is a simple combination of
Squeeze-and-Excitation and ResNet-D. The × symbol refers to how many times the blocks are repeated in the ResNet-101 architecture.
These values change across depths according to the blocks layouts in Table 11.

E. Scaling Analysis Regularization and Model Details
Regularization for 350 epoch models. The dropout rates used for various filter multipliers (across all image resolutions
and depths) are in Table 12. RandAugment is used with 2 layers and its magnitude is set to 10 for filter multipliers in
[0.25, 0.5] or image resolution in [64, 160], 15 for image resolution in [224, 320] and 20 otherwise. We apply stochastic
depth with a drop rate of 0.2 for image resolutions 224 and above. We do not apply stochastic depth filter multiplier 0.25
(or images smaller than 224). All models use a label smoothing of 0.1 and a weight decay of 4e-5. These values were set
based on the preliminary experiments across various model scales on the ImageNet minival-set.
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Filter Scaling Dropout Rate
0.25 0.0
0.5 0.1
1.0 0.25
1.5 0.6
2.0 0.75

Table 12. Dropout values for filter scaling. Filter scaling refers to the filter scaling multiplier based on the number of filters in the
original ResNet architecture.

Regularization for 10 and 100 epochs. We did not use RandAugment, Dropout, Stochastic Depth or Label Smoothing.
Flips and crops were used and a weight decay of 4e-5.

Block allocation for ResNet-300 and ResNet-400. For ResNet 101 and ResNet-200 we use the block allocations decribed
in Table 11. For ResNet-300, our block allocation is [4-36-54-4] and ResNet-400 is [6-48-72-6].

F. Fine-Tuning Protocols
For fine-tuning we initialize the parameters in the ResNet backbone with a pre-trained model and randomly initialize the
rest of the layers. We perform end-to-end fine-tuning with an extensive grid search of the combinations of learning rate and
training steps to ensure each pre-trained model achieves its best fine-tuning performance. We experiment with different
weight decays but do not find it making a big difference and set it to 1e-4. All models are trained with cosine learning rate
for simplicity. Below we describe the dataset, evaluation metric, model architecture, and training parameters for each task.

CIFAR-100: We use standard CIFAR-100 train and test sets and report the top-1 accuracy. We resize the image resolution
to 256×256. We replace the classification head in the pre-trained model with a randomly initialized linear layer that predicts
101 classes, including background. We use a batch size of 512 and search the combination of training steps from 5000
to 20000 and learning rates from 0.005 to 0.32. We find the best learning rate for SimCLR (0.16) is much higher than
SimCLRv2 (0.01) and the supervised model (0.005). This trend holds for the following tasks.

PASCAL Segmentation: We use PASCAL VOC 2012 train and validation sets and report the mIoU metric. The training
images are resampled into 512 × 512 with scale jittering [0.5, 2.0] (i.e. randomly resample image between 256 × 256 to
1024 × 1024 and crop it to 512 × 512). We remove the classification head and add randomly initialized FPN (Lin et al.,
2017) layers. We follow the practice in (Zoph et al., 2020b) to combine P3 to P7 and upsample it to P2. The segmentation
head consists of 3 convolution layers after P2 layer and a linear layer to predict 21 categories including background at each
pixel location. We use a batch size of 64 and search the combination of training steps from 5000 to 20000 and learning
rates from 0.005 to 0.32.

PASCAL Detection: We use PASCAL VOC 2007+2012 trainval set and VOC 2007 test set and report the AP50 with 11
recall points to compute average precision. The training images are resampled into 896 with scale jittering [0.5, 2.0]. We
remove the classification head and add randomly initialized FPN (Lin et al., 2017) layers from P3 to P7. We use Faster
R-CNN (Ren et al., 2015) consisting a region proposal head and a 4conv1fc Fast R-CNN head. We use a batch size of
32 and search the combination of training steps from 5000 to 20000 and learning rates from 0.005 to 0.32.

NYU Depth: We use NYU depth v2 dataset with 47584 train and 654 validation images. We report the percentage of
predicted depth values within 1.25 relative ratio compared to the ground truth. The training images are resampled into
640 with scale jittering [0.5, 2.0]. The model architecture is identical to segmentation model, except the last linear layer
predicts a single depth value per pixel. We use a batch size of 64 and search the combination of training steps from 10000
to 40000 and learning rates from 0.005 to 0.32.

G. Video Classification Experimental Details
We follow the training and inference protocols in (Qian et al., 2020; Feichtenhofer et al., 2019). We train with a random
224×224 crop or its horizontal flip on the spatial domain and sample a 32-frame clip with temporal stride 2. We use a 1024
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batch size, 0.8 learning rate with cosine decay and train for 200 epochs for the baseline. At inference, we use 256×256
crop size for the spatial domain and adopt the 30 views protocol (Feichtenhofer et al., 2019).

Starting from the baseline, we apply the following training methods: dropout with a rate of 0.5, 0.1 label smoothing,
stochastic depth with 0.2 drop rate, EMA of weights, smaller weight decay (set to 4e-5) and a 350 epoch training schedule.
For data augmentation, we use scale jittering (Qian et al., 2020) as a replacement to RandAugment. We adjust the stochastic
depth rate to 0.1 when applying scale jittering to optimize performance. To implement the ResNet-D stem for the 3D
ResNet, we use the same kernel configurations for the spatial domain and use temporal kernel sizes of [5, 1, 1] for the three
layers.

H. Profiling Setup
All latencies refer to training latencies. All models were run on TPUv3 (Jouppi et al., 2017) with bfloat16 precision
in TensorFlow 1.x. TPU latencies are measured on 8 TPUv3 cores with a batch size of 1024 (i.e. 128 per core) which
is divided by 2 until it fits onto the accelerator’s memory. In the cases where a smaller batch size is employed, we
normalize the reported latency to the original batch size of 1024 images. For GPU profiling we use a single Tesla-V100
with float32 precision with a starting batch size of 128, also divided by multiples of 2 if necessary.
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