
A Large Batch Optimizer Reality Check:
Traditional, Generic Optimizers Suffice Across Batch Sizes

Zachary Nado * 1 Justin M. Gilmer * 1 Christopher J. Shallue 2 Rohan Anil 1 George E. Dahl 1

Abstract
Recently the LARS and LAMB optimizers have
been proposed for training neural networks faster
using large batch sizes. LARS and LAMB add
layer-wise normalization to the update rules of
Heavy-ball momentum and Adam, respectively,
and have become popular in prominent bench-
marks and deep learning libraries. However, with-
out fair comparisons to standard optimizers, it
remains an open question whether LARS and
LAMB have any benefit over traditional, generic
algorithms. In this work we demonstrate that stan-
dard optimization algorithms such as Nesterov
momentum and Adam can match or exceed the
results of LARS and LAMB at large batch sizes.
Our results establish new, stronger baselines for
future comparisons at these batch sizes and shed
light on the difficulties of comparing optimizers
for neural network training more generally.

1. Introduction
In recent years, hardware systems employing GPUs and
TPUs have enabled neural network training programs to
process dramatically more data in parallel than ever before.
The most popular way to exploit these systems is to increase
the batch size in the optimization algorithm (i.e. the number
of training examples processed per training step). On many
workloads, modern systems can scale to larger batch sizes
without significantly increasing the time per step (Jouppi
et al., 2017; Wang et al., 2019), thus proportionally increas-
ing the number of training examples processed per second.
If researchers can use this increased throughput to reduce
the time required to train each neural network, then they
should achieve better results by training larger models, using

*Equal contribution 1Google Research, Brain Team, Mountain
View, California, USA 2Center for Astrophysics |Harvard & Smith-
sonian, Cambridge, MA, USA. Correspondence to: Zachary Nado
<znado@google.com>, Justin Gilmer <gilmer@google.com>,
Christopher Shallue <cshallue@cfa.harvard.edu>, Rohan Anil
<rohananil@google.com>, George Dahl <gdahl@google.com>.

Preprint.

larger datasets, and by exploring new ideas more rapidly.

As the capacity for data parallelism continues to increase,
practitioners can take their existing, well-tuned training
configurations and re-train with larger batch sizes, hoping
to achieve the same performance in less training time (e.g.
Ying et al., 2018). On an idealized data-parallel system
with negligible overhead from increasing the batch size,
they might hope to achieve perfect scaling, a proportional
reduction in training time as the batch size increases.

However, achieving perfect scaling is not always straightfor-
ward. Changing the batch size changes the training dynam-
ics, requiring the training hyperparameters (e.g. learning
rate) to be carefully re-tuned in order to maintain the same
level of validation performance.1 In addition, smaller batch
sizes provide implicit regularization from gradient noise that
may need to be replaced by other forms of regularization
when the batch size is increased. Finally, even with perfect
tuning, increasing the batch size eventually produces dimin-
ishing returns. After a critical batch size, the number of
training steps cannot be decreased in proportion to the batch
size – the number of epochs must increase to match the vali-
dation performance of the smaller batch size. See Shallue
et al. 2019 for a survey of the effects of data parallelism on
neural network training. Once these effects are taken into
account, there is no strong evidence that increasing the batch
size degrades the maximum achievable performance on any
workload. At the same time, the ever-increasing capacity for
data parallelism presents opportunities for new regulariza-
tion techniques that can replace the gradient noise of smaller
batch sizes and new optimization algorithms that can ex-
tend perfect scaling to larger batch sizes by using more
sophisticated gradient information (Zhang et al., 2019).

You et al. (2017) proposed the LARS optimization algo-
rithm in the hope of speeding up neural network training by
exploiting larger batch sizes. LARS is a variant of stochas-
tic gradient descent (SGD) with momentum (Polyak, 1964)
that applies layer-wise normalization before applying each
gradient update. Although it is difficult to draw strong con-

1Although there are heuristics for adjusting the learning rate
as the batch size changes, these heuristics inevitably break down
sufficiently far from the initial batch size and it is also not clear how
to apply them to other training hyperparameters (e.g. momentum).

ar
X

iv
:2

10
2.

06
35

6v
2 

 [
cs

.L
G

] 
 1

6 
Fe

b 
20

21



A Large Batch Optimizer Reality Check

clusions from the results presented in the LARS paper, the
MLPerf2 Training benchmark3 adopted LARS as one of two
allowed algorithms in the closed division for ResNet-50 on
ImageNet and it became the de facto standard algorithm for
that benchmark task. With MLPerf entrants competing to
find the fastest-training hyperparameters for LARS, the first
place submissions in the two most recent MLPerf Training
competitions used LARS to achieve record training speeds
with batch sizes of 32,678 and 65,536, respectively. No
publications or competitive submissions to MLPerf have at-
tempted to match these results with a standard optimizer (e.g.
Momentum or Adam). However, MLPerf entrants do not
have a strong incentive (nor are necessarily permitted by the
rules) to explore other algorithms because MLPerf Training
is a systems benchmark that requires algorithmic equiva-
lence between submissions to make fair comparisons. Thus,
it has remained an open question whether LARS was neces-
sary to achieve these training speeds instead of a traditional,
generic optimizer. Moreover, since the main justification for
LARS is its excellent performance on ResNet-50 at large
batch sizes, more work is needed to quantify any benefit of
LARS over standard algorithms at any batch size.

You et al. (2019) later proposed the LAMB optimizer to
speed up pre-training for BERT (Devlin et al., 2018) us-
ing larger batch sizes after concluding that LARS was not
effective across workloads. LAMB is a variant of Adam
(Kingma & Ba, 2014) that adds a similar layer-wise nor-
malization step to LARS. You et al. (2019) used LAMB
for BERT pre-training with batch sizes up to 65,536 and
claimed that Adam cannot match the performance of LAMB
beyond batch size 16,384.

In this paper, we demonstrate that standard optimizers, with-
out any layer-wise normalization techniques, can match or
improve upon the large batch size results used to justify
LARS and LAMB. In Section 2, we show that Nesterov
momentum (Nesterov, 1983) matches the performance of
LARS on the ResNet-50 benchmark with batch size 32,768.
We are the first to match this result with a standard optimizer.
In Section 3, contradicting the claims in You et al. (2019),
we show that Adam obtains better BERT pre-training re-
sults than LAMB at the largest batch sizes, resulting in
better downstream performance metrics after fine-tuning.
In addition, we establish a new state-of-the-art for BERT
pretraining speed, reaching an F1 score of 90.46 in 7,818
steps using Adam at batch size 65,536 (we report training
speed in steps because our focus is algorithmic efficiency,
but since we compare LARS and LAMB to simpler opti-
mizers, fewer training steps corresponds to faster wall-time
in an optimized implementation – our BERT result with
Adam also improves upon the wall-time record of LAMB

2MLPerf is a trademark of MLCommons.org.
3https://mlperf.org/training-overview

reported in You et al. 2019). Taken together, our results es-
tablish stronger training speed baselines for these tasks and
batch sizes, which we hope will assist future work aiming
to accelerate training using larger batch sizes.

In addition to the contributions mentioned above, we demon-
strate several key effects that are often overlooked by studies
aiming to establish the superiority of new optimization algo-
rithms. We show that future work must carefully disentangle
regularization and optimization effects when comparing a
new optimizer to baselines. We also report several under-
documented details used to generate the best LARS and
LAMB results, a reminder that future comparisons should
document any novel tricks and include them in baselines. Fi-
nally, our results add to existing evidence in the literature on
the difficulty of performing independently rigorous hyper-
parameter tuning for optimizers and baselines. In particular,
we show that the optimal shape of the learning rate schedule
is optimizer-dependent (in addition to the scale), and that
differences in the schedule can dominate optimizer compar-
isons at smaller step budgets and become less important at
larger step budgets.

1.1. Related work

Shallue et al. (2019) and Zhang et al. (2019) explored the
effects of data parallelism on neural network training for
different optimizers, finding no evidence that larger batch
sizes degrade performance and demonstrating that different
optimizers can achieve perfect scaling up to different critical
batch sizes. You et al. (2017; 2019) developed the LARS
and LAMB optimizers in the hope of speeding up training
by achieving perfect scaling beyond standard optimizers.
Many other recent papers have proposed new optimization
algorithms for generic batch sizes or larger batch sizes (see
Schmidt et al., 2020). Choi et al. (2019) and Schmidt et al.
(2020) demonstrated the difficulties with fairly comparing
optimizers, showing that the hyperparameter tuning proto-
col is a key determinant of optimizer rankings. The MLPerf
Training benchmark (Mattson et al., 2019) provides a com-
petitive ranking of neural network training systems, but does
not shed much light on the relative performance of optimiz-
ers because entrants are limited in the algorithms they can
use and the hyperparameters they can tune. We are unaware
of any prior studies aiming to establish stronger baselines
for standard optimizers at the batch sizes considered in this
paper. Optimizer baselines are typically provided by the
authors of new algorithms, who have limited incentives to
spend significant effort and computational resources produc-
ing the strongest possible baselines.

https://mlperf.org/training-overview


A Large Batch Optimizer Reality Check

2. Matching LARS on ImageNet
The MLPerf training benchmark for ResNet-50 v1.5 on Ima-
geNet (Mattson et al., 2019) aims to reach 75.9% validation
accuracy in the shortest possible wall-clock time. In the
closed division of the competition, entrants must choose be-
tween two optimizers, SGD with momentum or LARS, and
are only allowed to tune a specified subset of the optimiza-
tion hyperparameters, with the remaining hyperparameter
values set by the competition rules.4 The winning entries
in the two most recent competitions used LARS with batch
size 32,768 for 72 training epochs5 and LARS with batch
size 65,536 for 88 training epochs,6 respectively. Kumar
et al. (2019) later improved the training time for batch size
32,768 by reaching the target accuracy in 64 epochs. These
are currently the fastest published results on the ResNet-50
benchmark. However, it has been unclear whether LARS
was necessary to achieve these training speeds since no re-
cent published results or competitive MLPerf submissions
have used another optimizer. In this section, we describe
how we matched the 64 epoch, 32,768 batch size result of
LARS using standard Nesterov momentum.7

A fair benchmark of training algorithms or hardware sys-
tems must account for stochasticity in individual training
runs. In the MLPerf competition, the benchmark metric is
the mean wall-clock time of 5 trials after the fastest and
slowest trials are excluded. Only 4 out of the 5 trials need to
reach the target accuracy and there is no explicit limit on the
number of times an entrant can try a different set of 5 trials.
Since our goal is to compare algorithms, rather than systems,
we aim to match the LARS result in terms of training steps
instead (but since Nesterov momentum is computationally
simpler than LARS, this would also correspond to faster
wall-clock time on an optimized system). Specifically, we
measure the median validation accuracy over 50 training
runs with a fixed budget of 2,512 training steps8 at a batch
size of 32,768. When we ran the published LARS training
pipeline,9 LARS achieved a median accuracy of 75.97%
and reached the target in 35 out of 50 trials. We consider
the LARS result to be matched by another optimizer if the
median over 50 trials exceeds the target of 75.9%.

4https://git.io/JtknD
5https://mlperf.org/training-results-0-6
6https://mlperf.org/training-results-0-7
7The 88 epoch, 65,536 batch size result is faster in terms of

wall-clock time but requires more training epochs, indicating that
it is beyond LARS’s perfect scaling regime. Although LARS
obtains diminishing returns when increasing the batch size from
32,768 to 65,536, future work could investigate whether Nesterov
momentum drops off more or less rapidly than LARS.

8Corresponding to 64 training epochs in Kumar et al. (2019).
9https://git.io/JtsLQ

2.1. Nesterov momentum at batch size 32k

This section describes how we used the standard Nesterov
momentum optimizer to train the ResNet-50 v1.5 on Ima-
geNet to 75.9% validation accuracy in 2,512 update steps at
a batch size of 32,768, matching the best published LARS
result at this batch size. Although we implemented our own
training program, the only logical changes we made to the
published LARS pipeline were to the optimizer and the opti-
mization hyperparameters. Our model implementation and
data pre-processing pipeline were identical to those required
under the MLPerf closed division rules (see Appendix A).

We present two Nesterov momentum hyperparameter con-
figurations that achieve comparable performance to LARS.
Configuration A achieved a median accuracy of 75.97%
(the same as LARS) and reached the target accuracy in 34
out of 50 trials. Configuration B is a modified version of
Configuration A designed to make as few changes as pos-
sible to the LARS hyperparameters; it achieved a median
accuracy of 75.92% and reached the target in 29 out of 50
trials. See Appendix C.1 for the complete hyperparameter
configurations.

To achieve these results, we tuned the hyperparameters of
the training pipeline from scratch using Nesterov momen-
tum. We ran a series of experiments, each of which searched
over a hand-designed hyperparameter search space using
quasi-random search (Bousquet et al., 2017). Between each
experiment, we modified the previous search space and/or
tweaked the training program to include optimization tricks
and non-default hyperparameter values we discovered in
the state-of-the-art LARS pipeline. The full sequence of
experiments we ran, including the number of trials, hyper-
parameters tuned, and search space ranges, are provided in
Appendix C.4. Once we had matched the LARS result with
Configuration A, we tried setting each hyperparameter to
its value in the LARS pipeline in order to find the minimal
set of changes that still achieved the target result, producing
Configuration B. The remainder of this section describes the
hyperparameters we tuned and the techniques we applied
on the journey to these results.

2.1.1. NESTEROV MOMENTUM OPTIMIZER

Nesterov momentum is a variant of classical or “heavy-ball”
momentum defined by the update rule

vt+1 = µvt +∇`(θt),
θt+1 = θt − ηt (µvt+1 +∇`(θt)) ,

where v0 = 0, θt is the vector of model parameters after t
steps,∇`(θt) is the gradient of the loss function `(θ) aver-
aged over a batch of training examples, µ is the momentum,
and ηt is the learning rate for step t. We prefer Nesterov
momentum over classical momentum because it tolerates
larger values of its momentum parameter (Sutskever et al.,

https://git.io/JtknD
https://mlperf.org/training-results-0-6
https://mlperf.org/training-results-0-7
https://git.io/JtsLQ


A Large Batch Optimizer Reality Check

2013) and sometimes outperforms classical momentum, al-
though the two algorithms perform similarly on many tasks
(Shallue et al., 2019; Choi et al., 2019). We tuned the Nes-
terov momentum µ in Configurations A and B. We discuss
the learning rate schedule {ηt} separately in Section 2.1.4.

2.1.2. BATCH NORMALIZATION

The ResNet-50 v1.5 model uses batch normalization (Ioffe
& Szegedy, 2015), defined as

BN(x(l)) =

(
x(l) − mean(x(l))√

var(x(l)) + ε

)
× γ(l) + β(l),

where x(l) is a vector of pre-normalization outputs from
layer l, mean(·) and var(·) denote the element-wise sam-
ple mean and variance across the batch of training exam-
ples,10 and γ(l) and β(l) are trainable model parameters.

Batch normalization introduces the following tuneable hy-
perparameters: ε, the small constant added to the sample
variance; the initial values of γ(l) and β(l); and ρ, which gov-
erns the exponential moving averages of the scaling factors
used in evaluation. The LARS pipeline uses ε = 10−5 and
ρ = 0.9. It sets the initial value of β(l) to 0.0 everywhere,
but the initial value of γ(l) depends on the layer: it sets γ(l)

to 0.0 in the final batch normalization layer of each residual
block, and to 1.0 everywhere else. In Configuration A, we
tuned ε, ρ, and γ0, the initial value of γ(l) in the final batch
normalization layer of each residual block. In Configuration
B, we used the same values as LARS for ε and ρ, but we
found that choosing γ0 between 0.0 and 1.0 was important
for matching the LARS result with Nesterov momentum.

2.1.3. REGULARIZATION

In Configuration A, we tuned both the L2 regularization co-
efficient λ and label smoothing coefficient τ (Szegedy et al.,
2016). The LARS pipeline uses λ = 10−4 and τ = 0.1.
Crucially, the LARS pipeline does not apply L2 regulariza-
tion to the bias variables of the ResNet model nor the batch
normalization parameters γ(l) and β(l) (indeed, the pub-
lished LARS pipeline does not even apply LARS to these
parameters – it uses Heavy-ball momentum). This detail is
extremely important for both LARS and Nesterov momen-
tum to achieve the fastest training speed. Configuration B
used the same λ and τ as Configuration A.

10In a distributed training environment the mean and variance
are commonly computed over a subset of the full batch. The LARS
pipeline uses a “virtual batch size” of 64, which we also use to
avoid changing the training objective (Hoffer et al., 2017).

Nesterov LARS

pwarmup 2 1

ηpeak 7.05 29.0

ηfinal 6× 10−6 10−4

1− µ 0.02397 0.071

λ 5.8× 10−5 10−4

τ 0.15 0.10

γ0 0.4138 0.0

Table 1. The hyperparameters of Configuration B that differ from
state-of-the-art LARS at batch size 32,768 (Kumar et al., 2019).

0 500 1000 1500 2000 2500
Step

0

MAX

Re
la

tiv
e 

St
ep

 S
ize

LARS
Nesterov

Figure 1. The learning rate schedules of LARS and Nesterov mo-
mentum Configuration B. Aside from re-scaling, the only differ-
ence is setting the warmup polynomial power to 2 instead of 1.

2.1.4. LEARNING RATE SCHEDULE

The LARS pipeline uses a piecewise polynomial schedule

ηt =

ηinit + (ηpeak − ηinit)
(

t
twarmup

)pwarmup

, t ≤ twarmup

ηfinal + (ηpeak − ηfinal)
(

T−t
T−twarmup

)pdecay

t > twarmup,

with ηinit = 0.0, ηpeak = 29.0, ηfinal = 10−4, pwarmup = 1,
pdecay = 2, and twarmup = 706 steps. In Configuration A,
we re-tuned all of these hyperparameters with Nesterov
momentum. In Configuration B, we set ηinit, pdecay, and
twarmup to the same values as LARS, changing only pwarmup
from 1 to 2 and re-scaling ηpeak and ηfinal.

2.1.5. COMPARING NESTEROV MOMENTUM AND LARS

Table 1 shows the hyperparameter values for Configuration
B that differ from the state-of-the-art LARS pipeline. Aside
from re-tuning the momentum, learning rate scale, and reg-
ularization hyperparameters (whose optimal values are all
expected to change with the optimizer), the only changes
are setting pwarmup to 2 instead of 1 and re-tuning γ0.

Figure 1 shows the LARS learning rate schedule compared
to the Nesterov momentum schedule. Even though these



A Large Batch Optimizer Reality Check

pwarmup Nesterov LARS

1 75.79% 75.97%

2 75.92% 75.69%

Table 2. The best warmup schedule differs for Nesterov momen-
tum and LARS. Values are medians over 50 training runs after
setting pwarmup without retuning other hyperparameters.

Optimizer Train Acc Test Acc

Nesterov 78.97% 75.93%

LARS 78.07% 75.97%

Table 3. Median train and test accuracies over 50 training runs for
Nesterov momentum Configuration B and LARS.

schedules are similar, we found that each optimizer had a
different optimal value of the warmup polynomial power.
As Table 2 shows, Nesterov momentum performs better
with pwarmup = 2 instead of 1, while the opposite is true
with LARS. As discussed in Agarwal et al. (2020), opti-
mizers can induce implicit step size schedules that strongly
influence their training dynamics and solution quality, and it
appears from Table 2 that the implicit step sizes of Nesterov
momentum and LARS may evolve differently, causing the
shapes of their optimal learning rate schedules to differ.

Although the main concern of a practitioner is validation
performance, the primary task of an optimization algorithm
is to minimize training loss. Table 3 shows that Nesterov
momentum achieves higher training accuracy than LARS,
despite similar validation performance. Thus, it may be
more appropriate to consider the layerwise normalization
of LARS to be a regularization technique, rather than an
optimization technique.

Spending even more effort tuning LARS or Nesterov mo-
mentum would likely further improve the current state-of-
the-art for that optimizer. Meaningful optimizer compar-
isons are only possible with independent and equally inten-
sive tuning efforts, and we do not claim that either optimizer
outperforms the other on this benchmark. That said, if the
main evidence for LARS’s utility as a “large-batch opti-
mizer” is its performance on this particular benchmark, then
more evidence is needed to quantify any benefit it has over
traditional, generic optimizers like Nesterov momentum.

2.2. Lessons learned

In hindsight, it was only necessary to make a few changes
to the LARS pipeline to match its performance at batch size
32,768 with Nesterov momentum. However, Table 1 does
not accurately represent the effort required when attempting
to match a highly tuned training-speed benchmark.

Firstly, as described in Sections 2.1.2 and 2.1.3, the strong
results of LARS depend partly on a few subtle optimization
tricks and non-default values of uncommonly-tuned hyper-
parameters. Fortunately, in this case we could discover
these tricks by examining the open-source code required
for MLPerf submissions, but machine learning research
papers do not always report these important details. Re-
searchers can easily waste a lot of experiments and produce
misleading results before getting all of these details right.
We demonstrate the importance of adding these tricks to our
Nesterov momentum pipeline in Appendix B; without these
tricks (or some new tricks), we likely would not have been
able to match the LARS performance.

Secondly, the learning rate schedule really matters when
trying to maximize performance with a relatively small step
budget. Both LARS and Nesterov momentum are sensitive
to small deviations from the optimized learning rate sched-
ules in Figure 1, and neither schedule works as well for the
other optimizer. Although relatively minor changes were
sufficient to match LARS with Nesterov momentum, there
is no way to know a priori how the optimal schedule will
look for a new optimizer (Wu et al., 2018). Even in toy
settings where the optimal learning rate schedule can be
derived, it does not fit into commonly used schedule fam-
ilies and depends strongly on the optimizer (Zhang et al.,
2019). Indeed, this problem applies to the other optimiza-
tion hyperparameters as well: it is extremely difficult to
know which are worth considering ahead of time. Finally,
even when we narrowed down our hyperparemeter search
spaces around the optimal point, the volume of our search
spaces corresponding to near-peak performance was small,
likely due to the small step budget (Shallue et al., 2019). We
investigate how these effects change with a less stringent
step budget in Section 4.

3. Stronger BERT pretraining speed baselines
You et al. (2019) developed the LAMB optimizer in the
hope of speeding up training for BERT-Large (Bidirectional
Encoder Representations from Transformers, Devlin et al.,
2018). BERT training consists of two phases. The “pre-
training” phase has two objectives: (1) predicting masked
tokens based on the rest of the sequence (a masked language
model), and (2) predicting whether two given sentences
follow one from another. Finally, the “fine-tuning” phase
refines the model for a downstream task of interest. BERT
pretraining takes a considerable amount of time (up to 3 days
on 16 Cloud TPU-v3 chips (Jouppi et al., 2017)), whereas
the fine-tuning phase is typically much faster. Model quality
is typically assessed on the downstream metrics, not on pre-
training loss, making BERT training a somewhat awkward
benchmark for optimization research.

You et al. (2019) used LAMB for BERT pretraining with



A Large Batch Optimizer Reality Check

Batch size Step budget LAMB Adam
32k 15,625 91.48 91.58

65k/32k 8,599 90.58 91.04
65k 7,818 – 90.46

Table 4. Using Adam for pretraining exceeds the reported perfor-
mance of LAMB in You et al. (2019) in terms of F1 score on the
downstream SQuaD v1.1 task.

batch sizes up to 65,536 and claimed that LAMB outper-
forms Adam batch size 16,384 and beyond. The LAMB
optimizer has since appeared in several NLP toolkits, in-
cluding as Microsoft DeepSpeed and NVIDIA Multi-node
BERT training, and as a benchmark task in MLPerf v0.7.11

As shown in Table 4, we trained Adam baselines that achieve
better results than both the LAMB and Adam results re-
ported in You et al. (2019). Our new Adam baselines obtain
better F1 scores on the development set of the SQuaD v1.1
task in the same number of training steps as LAMB for
both batch size 32,768 and the hybrid 65,536-then-32,768
batch size training regime in You et al. (2019). We also ran
Adam at batch size 65,536 to reach nearly the same F1 score
as the hybrid batch size LAMB result, but in much fewer
training steps. We believe 7,818 steps is a new state-of-the-
art for BERT pretraining speed (in our experiments, it also
improves upon the 76-minute record claimed in You et al.,
2019). Additionally, at batch size 32,768 our Adam baseline
got a better pretraining loss of 1.277 compared to LAMB’s
1.342.

We used the same experimental setup as You et al. (2019),
including two pretraining phases with max sequence lengths
of 128 and then 512. In order to match You et al. (2019),
we reported the F1 score on the downstream SQuaD v1.1
task as the target metric, although this metric introduces
potential confounds: optimization efficiency should be mea-
sured on the training task using training and held-out data
sets. Fortunately, in this case better pretraining performance
correlated a with higher F1 score after fine-tuning. See
Appendix A.2 for additional experiment details. We tuned
Adam hyperparameters independently for each pretraining
phase, specifically learning rate η, β1, β2, the polynomial
power for the learning rate warmup pwarmup, and weight
decay λ, using quasi-random search (Bousquet et al., 2017).
See Appendix C.2 for the search spaces.

In addition to hyperparmeter tuning, our improved Adam
results at these batch sizes are also likely due to two imple-
mentation differences. First, the Adam implementation in
You et al. (2019) comes from the BERT open source code
base, in which Adam is missing the standard bias correc-

11We do not consider the MLPerf task in this paper since it is a
warm-start, partial training task.

tion.12 The Adam bias correction acts as an additional step
size warm-up, thereby potentially improving the stability
in the initial steps of training. Second, the BERT learning
rate schedule had a discontinuity at the start of the decay
phase due to the learning rate decay being incorrectly ap-
plied during warm-up 13 (see Figure 2 in Appendix A). This
peculiarity is part of the official BERT release and is present
in 3000+ copies of the BERT Training code on GitHub.

4. Investigating a less stringent step budget
Part of what makes comparing optimizers so difficult is
that the hyperparameter tuning tends to dominate the com-
parisons (Choi et al., 2019). Moreover, tuning becomes
especially difficult when we demand a fixed epoch budget
even when dramatically increasing the batch size (Shallue
et al., 2019). Fixing the epoch budget as the batch size
increases is equivalent to demanding perfect scaling (i.e.
that the number of training steps decreases by the same fac-
tor that the batch size is increased). We can view the role
of hyperparameter tuning for large batch training as resist-
ing the inevitable end of perfect scaling. For example, it
might be possible to extend perfect scaling using delicately
tuned learning rate schedules, but comparing optimizers
under these conditions can make the learning rate schedule
dominate the comparison by favoring some algorithms over
others. Therefore, in order to better understand the behavior
of LARS and LAMB compared to Nesterov Momentum
and Adam, we ran additional ResNet-50 experiments with a
more generous 6,000 step budget (vs 2,512 in Section 2) and
a more simplistic cosine learning rate schedule. At batch
size 32,768, this budget should let us reach better validation
accuracy than the MLPerf target of 75.9%.

Although not mentioned in You et al. (2017), the state-of-the-
art MLPerf pipeline for “LARS” actually uses both LARS
and Heavy-ball Momentum, with Momentum applied to
the batch normalization and ResNet bias parameters and
LARS applied to the other parameters. You et al. (2019)
does not mention whether LAMB was only applied to some
parameters and not others. If layerwise normalization can
be harmful for some model parameters, this is critical in-
formation for practitioners using LARS or LAMB, since
it might not be obvious which optimizer to apply to which
parameters. To investigate this, we trained both pure LARS
and LAMB configurations, as well as configurations that
did not apply layerwise normalization to the batch normal-
ization and ResNet bias parameters. Moreover, LAMB’s
underlying Adam implementation defaults to ε = 10−6,
rather than the typical 10−7 or 10−8. In some cases, ε can
be a critical hyperparameter for Adam (Choi et al., 2019),

12https://git.io/JtY8d
13See https://git.io/JtnQW and https://git.io/

JtnQ8.

https://git.io/JtY8d
https://git.io/JtnQW
https://git.io/JtnQ8
https://git.io/JtnQ8


A Large Batch Optimizer Reality Check

Weights

Optimizer

Bias/BN

Optimizer
Accuracy

Nesterov Nesterov 76.7 %

LARS Momentum 76.9 %

LARS LARS 76.9 %

Adam (ε = 10−8) Adam (ε = 10−8) 76.2 %

Adam (ε = 10−6) Adam (ε = 10−6) 76.4 %

LAMB LAMB 27.3 %

LAMB Adam (ε = 10−8) 76.3 %

LAMB Adam (ε = 10−6) 76.3 %

Table 5. Validation accuracy of ResNet-50 on ImageNet trained
for 6,000 steps instead of 2,512. The second column is the opti-
mizer that was applied to the batch normalization and ResNet bias
variables. We report the median over 5 random seeds of the best hy-
perparameter setting in a refined search space. See Appendix C.3
for more details.

so we included Adam configurations with both ε = 10−6

and ε = 10−8.

Table 5 shows the validation accuracy of these different
configurations after training for 6,000 steps with batch size
32,768. In every case, we used a simple cosine decay learn-
ing rate schedule and tuned the initial learning rate and
weight decay using quasi-random search. We used momen-
tum parameters of 0.98 for Nesterov momentum and 0.929
for LARS, respectively, based on the tuned values from
Section 2. We used default hyperparameters for Adam and
LAMB except where specified. We set all other hyperpa-
rameters to the same values as the state-of-the-art LARS
pipeline, except we set γ0 = 1.0. See Appendix C.3 for
more details. As expected, highly tuned learning rate sched-
ules and optimizer hyperparameters are no longer necessary
with a less stringent step budget. Multiple optimizer con-
figurations in Table 5 exceed the MLPerf target accuracy
of 75.9% at batch size 32,768 with minimal tuning. Train-
ing with larger batch sizes is not fundamentally unstable:
stringent step budgets make hyperparameter tuning trickier.

In Table 5, “pure LAMB” performs extremely poorly:
LAMB only obtains reasonable results when it is not used
on the batch normalization and ResNet bias parameters, sug-
gesting that layerwise normalization can indeed be harmful
on some parameters. “Pure LARS” and Nesterov momen-
tum perform roughly the same at this step budget, but the
MLPerf LARS pipeline, which is tuned for a more strin-
gent step budget, does not use LARS on all parameters, at
least suggesting that the optimal choice could be budget-
dependent.

Many new optimizers for neural networks, including LAMB,

are introduced alongside claims that the new optimizer does
not require any—or at least not very much—tuning. Unfor-
tunately, these claims require a lot of work to support, since
they require trying the optimizer on new problems without
using those problems during the development of the algo-
rithm. Although our experiments here are not sufficient to
determine which optimizers are easiest to tune, experiments
like these that operate outside the regime of highly tuned
learning rate schedules can serve as a starting point. In this
experiment, LARS and LAMB do not appear to have an
advantage in how easy they are to tune even on a dataset and
model that were used in the development of both of those
algorithms. LAMB is a variant of Adam and performs about
the same as Adam with the same value of ε; LARS is more
analogous to Momentum and indeed Nesterov momentum
and LARS have similar performance.

5. Discussion
Our results show that standard, generic optimizers suffice
for achieving strong results across batch sizes. Therefore,
any research program to create new optimizers for training
at larger batch sizes must start from the fact that Momentum,
Adam, and likely other standard methods work fine at batch
sizes as large as those considered in this paper. The LARS
and LAMB update rules have no more to do with the batch
size (or “large” batches) than the Momentum or Adam up-
date rules. Whether layer-wise normalization can be useful
for optimization or regularization remains an open ques-
tion. However, if LARS and LAMB have any advantage
over standard techniques, it is not that they work dramati-
cally better on the tasks and batch sizes in You et al. (2017;
2019). It should not surprise us that standard techniques
continue to work as we increase the batch size – increasing
the batch size should make optimization easier, not harder,
as the stochastic estimate of the full batch gradient becomes
more accurate.14 This is not to suggest that there is nothing
interesting about studying neural network optimization at
larger batch sizes. For example, as gradient noise decreases,
there may be opportunities to harness curvature informa-
tion and extend the region of perfect scaling (Zhang et al.,
2019). However, there is currently no evidence that LARS
and LAMB scale better than Momentum and Adam.

Our primary concern in this paper has been matching the
state of the art—and establishing new baselines—for train-
ing speed measurements of the sort used to justify new tech-
niques and algorithms for training with larger batch sizes.
In contrast, many practitioners are more concerned with
obtaining the best possible validation error with a somewhat
flexible training time budget. Part of the reason why match-

14Of course, if the number of epochs is kept fixed as the batch
size increases then performance may degrade due to using fewer
updates.



A Large Batch Optimizer Reality Check

ing LARS at batch size 32,768 was non-trivial is because
getting state of the art training speed requires several tricks
and implementation details that are not often discussed. It
was not obvious to us a priori which ones would prove
crucial. These details do not involve changes to the opti-
mizer, but they interact with the optimizer in a regime where
all hyperparameters need to be well tuned to stay compet-
itive, making it necessary to re-tune everything for a new
optimizer.

In neural network optimization research, training loss is
rarely discussed in detail and evaluation centers on valida-
tion/test performance since that is what practitioners care
most about. However, although we shouldn’t only consider
training loss, it is counter-intuitive and counter-productive
to elide a careful investigation of the actual objective of the
optimizer. If a new optimizer achieves better test perfor-
mance, but shows no speedup on training loss, then perhaps
it is not a better optimizer so much as an indirect regular-
izer.15 Indeed, in our experiments we found that Nesterov
momentum achieves noticeably better training accuracy on
ResNet-50 than the LARS configuration we used, despite
reaching roughly the same validation accuracy. Properly
disentangling possible regularization benefits from optimiza-
tion speed-ups is crucial if we are to understand neural net-
work training, especially at larger batch sizes where we
lose some of the regularization effect of gradient noise. Hy-
pothetically, if the primary benefit of a training procedure
is regularization, then it would be better to compare the
method with other regularization baselines than other opti-
mizers.

Ultimately, we only care about batch size to the extent that
higher degrees of data parallelism lead to faster training.
Training with a larger batch size is a means, not the end goal.
New optimizers—whether designed for generic batch sizes
or larger batch sizes—have the potential to dramatically
improve algorithmic efficiency across multiple workloads,
but our results show that standard optimizers can match
the performance of newer alternatives on the workloads we
considered. Indeed, despite the legion of new update rule
variants being proposed in the literature, standard Adam
and Momentum remain the workhorses of practitioners and
researchers alike, while independent empirical comparisons
consistently find no clear winner when optimizers are com-
pared across a variety of workloads (Schmidt et al., 2020).
Meanwhile, as Choi et al. (2019) and our results underscore,
comparisons between optimizers crucially depend on the ef-
fort spent tuning hyperparameters for each optimizer. Given
these facts, we should regard with extreme caution studies
claiming to show the superiority of one particular optimizer
over others. Part of the issue stems from current incentives

15Deep learning folk wisdom is that “any method to make train-
ing less effective can serve as a regularizer,” whether it is a bug in
gradients or a clever algorithm.

in the research community; we overvalue the novelty of new
methods and undervalue establishing strong baselines to
measure progress against. This is particularly problematic
in the study of optimizers, where the learning rate schedule
is arguably more important than the choice of the optimizer
update rule itself! As our results show, the best learning rate
schedule is tightly coupled with the optimizer, meaning that
tuning the learning rate schedule for a new optimizer will
generally favor the new optimizer over a baseline unless
the schedule of the baseline is afforded the same tuning
effort. Unfortunately, these kinds of subtleties are extremely
difficult to account for and must be kept in mind when
interpreting empirical comparisons of new optimizers to
self-reported baselines.

6. Conclusion
In this work, we demonstrated that standard optimizers,
without any layer-wise normalization techniques, can match
or exceed the large batch size results used to justify LARS
and LAMB. Our results did not require specialized “large
batch optimizers” or any new techniques whatsoever, only
hyperparameter tuning and replicating all of the essential
implementation details.

Future work attempting to argue that a new algorithm is
useful by comparing to baseline methods or results, includ-
ing those established in this paper, faces a key challenge
in showing that the gains are due to the new method and
not merely due to better tuning or changes to the training
pipeline (e.g. regularization tricks). Although gains from
tuning will eventually saturate, we can, in principle, always
invest more effort in tuning and potentially get better results
for any optimizer. However, our goal should be developing
optimizers that work better across many different workloads
when taking into account the amount of additional tuning
they require.

Moving forward, if we are to reliably make progress we need
to rethink how we compare and evaluate new optimizers
for neural network training. Given how sensitive optimizer
performance is to the hyperparameter tuning protocol and
how difficult it is to quantify hyperparameter tuning effort,
we can’t expect experiments with self-reported baselines
to always lead to fair comparisons. Ideally, new training
methods would be evaluated in a standardized competitive
benchmark, where submitters of new optimizers do not have
full knowledge of the evaluation workloads. Some efforts
in this direction have started, for instance the MLCommons
Algorithmic Efficiency Working Group16, but more work
needs to be done to produce incentives for the community
to publish well-tuned baselines and to reward researchers
that conduct the most rigorous empirical comparisons.

16https://mlcommons.org/en/groups/
research-algorithms/

https://mlcommons.org/en/groups/research-algorithms/
https://mlcommons.org/en/groups/research-algorithms/


A Large Batch Optimizer Reality Check

Acknowledgements
We would like to thank Roy Frostig for helpful discussions
and valuable feedback on the manuscript. We would also
like to thank James Bradbury for encouraging us to start this
project and for help with the JAX MLPerf code. Finally,
we would like to thank Dehao Chen and Tao Wang for their
assistance with BERT training using TensorFlow and for
helpful discussions.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Agarwal, N., Anil, R., Hazan, E., Koren, T., and Zhang, C.
Disentangling adaptive gradient methods from learning
rates. arXiv preprint arXiv:2002.11803, 2020.

Bousquet, O., Gelly, S., Kurach, K., Teytaud, O., and Vin-
cent, D. Critical hyper-parameters: No random, no
cry. arXiv, 2017. URL https://arxiv.org/abs/
1706.03200.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J.,
and Dahl, G. E. On empirical comparisons of optimiz-
ers for deep learning. arXiv preprint arXiv:1910.05446,
2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Hoffer, E., Hubara, I., and Soudry, D. Train longer,
generalize better: closing the generalization gap in
large batch training of neural networks. arXiv preprint
arXiv:1705.08741, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, pp. 1–12,
2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kumar, S., Bitorff, V., Chen, D., Chou, C., Hechtman, B.,
Lee, H., Kumar, N., Mattson, P., Wang, S., Wang, T., et al.
Scale mlperf-0.6 models on google tpu-v3 pods. arXiv
preprint arXiv:1909.09756, 2019.

Mattson, P., Cheng, C., Coleman, C., Diamos, G., Micikevi-
cius, P., Patterson, D., Tang, H., Wei, G.-Y., Bailis, P., Bit-
torf, V., Brooks, D., Chen, D., Dutta, D., Gupta, U., Hazel-
wood, K., Hock, A., Huang, X., Ike, A., Jia, B., Kang,
D., Kanter, D., Kumar, N., Liao, J., Ma, G., Narayanan,
D., Oguntebi, T., Pekhimenko, G., Pentecost, L., Reddi,
V. J., Robie, T., John, T. S., Tabaru, T., Wu, C.-J., Xu, L.,
Yamazaki, M., Young, C., and Zaharia, M. MLPerf train-
ing benchmark. arXiv preprint arXiv:1910.01500, 2019.
URL https://arxiv.org/abs/1910.01500.

Nesterov, Y. E. A method for solving the convex program-
ming problem with convergence rate O(1/kˆ2). In Dokl.
akad. nauk Sssr, volume 269, pp. 543–547, 1983.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

Schmidt, R. M., Schneider, F., and Hennig, P. Descending
through a crowded valley–benchmarking deep learning
optimizers. arXiv preprint arXiv:2007.01547, 2020.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On
the importance of initialization and momentum in deep
learning. In ICML, 2013.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Wang, Y. E., Wei, G.-Y., and Brooks, D. Benchmarking tpu,
gpu, and cpu platforms for deep learning. arXiv preprint
arXiv:1907.10701, 2019.

Wu, Y., Ren, M., Liao, R., and Grosse, R. Understanding
short-horizon bias in stochastic meta-optimization. arXiv
preprint arXiv:1803.02021, 2018.

https://www.tensorflow.org/
https://arxiv.org/abs/1706.03200
https://arxiv.org/abs/1706.03200
http://github.com/google/jax
https://arxiv.org/abs/1910.01500


A Large Batch Optimizer Reality Check

Ying, C., Kumar, S., Chen, D., Wang, T., and Cheng, Y. Im-
age classification at supercomputer scale. arXiv preprint
arXiv:1811.06992, 2018.

You, Y., Gitman, I., and Ginsburg, B. Large batch
training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-J.
Large batch optimization for deep learning: Training bert
in 76 minutes. In International Conference on Learning
Representations, 2019.

Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl,
G., Shallue, C., and Grosse, R. B. Which algorithmic
choices matter at which batch sizes? insights from a noisy
quadratic model. In Advances in Neural Information
Processing Systems, pp. 8196–8207, 2019.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books
and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings
of the 2015 IEEE International Conference on Com-
puter Vision (ICCV), ICCV ’15, pp. 19–27, USA, 2015.
IEEE Computer Society. ISBN 9781467383912. doi:
10.1109/ICCV.2015.11. URL https://doi.org/
10.1109/ICCV.2015.11.

https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11


A Large Batch Optimizer Reality Check

A. Additional experiment details
A.1. ResNet-50 training benchmark

All experiments were run on Google TPUs (Jouppi et al.,
2017). The ResNet-50 experiments used Jax (Bradbury
et al., 2018) using the Flax library, with code to be re-
leased soon. The BERT experiments were run using Ten-
sorFlow (Abadi et al., 2015) version 1.15. We used the
standard train/validation split from the previous literature
and MLPerf competition.

For ImageNet, we used the following sequence of Tensor-
Flow functions for pre-processing:17

t f . image . s a m p l e d i s t o r t e d b o u n d i n g b o x
t f . image . d e c o d e a n d c r o p j p e g
t f . image . r e s i z e
t f . image . r a n d o m f l i p l e f t r i g h t
t f . image . c o n v e r t i m a g e d t y p e

A.2. BERT pre-training

We used the same experimental setup as the official BERT
codebase18 and the standard train/test split from the previous
literature. This matches the experimental setup of You et al.
(2019).

We trained the two pretraining objectives on the combined
Wikipedia and Books corpus (Zhu et al., 2015) datasets
(2.5B and 800M words, respectively). We used sequence
lengths of 128 and 512, respectively, for the pretraining
tasks. We ran the fine-tuning phase on the SQuaD v1.1
question answering task. In order to match You et al. (2019),
we report the F1-score on the dev set as the target metric. We
followed the fine-tuning protocol described in the LAMB
optimizer setup and did not perform any additional tuning
for fine-tuning.

We tuned Adam hyperparameters using quasi-random
search (Bousquet et al., 2017) in a simple search space.
Hyperparameters included learning rate η, β1, β2, the poly-
nomial power for the learning rate warmup pwarmup, and
weight decay λ. We fixed the ε in Adam to 10−11 for all
BERT experiments. See Appendix C.2 for the search spaces.
We selected the best trial using the masked language model
accuracy over 10k examples from the training set. The num-
ber of training steps for each of the phases, as well as the
warmup steps are identical to You et al. (2019) and are listed
in Appendix C.2. Each phase of pretraining used completely
independent Adam hyperparameters. We found the final hy-
perparameters within 30 trials of random search for each of
the phases, except for the second phase of 65,536 batch size
which used 130 trials.

17Full code available at https://git.io/JtgtE
18https://github.com/google-research/bert

0 2000 4000 6000 8000 10000
Step

0

MAX

Re
la

tiv
e 

St
ep

 S
ize

BERT

Figure 2. An illustration of the sudden drop in the BERT learning
rate schedule in the official codebase.

32k
65k-32k 65k

90.25
90.50
90.75
91.00
91.25
91.50

F1
 sc

or
e

Figure 3. 6 finetuning runs starting from the same pretraining
checkpoint to show the stability of our results, at each of the
32,768, mixed 65,536-32,768, and 65,536 batch size settings.

B. Nesterov ablations
To explore the sensitivity of our best Nesterov momentum
configuration (Configuration A), we ablated several ele-
ments of the experiment pipeline, one at a time, and tested
their impact on performance. Figure 4 shows the results of
these experiments. “Base” refers to Nesterov momentum
Configuration A (Table 6). “ResNet version” is the same
point as “Base” but with ResNet version 1.0 instead of ver-
sion 1.5. “BN init” is the same point as “Base” but with
γ0 = 1.0 instead of 0.4138. “Virtual BN” is the same point
as “Base” but with a virtual batch size of 256 instead of 64,
which is the largest that fits in a single TPUv3 core. “BN &
LR tuning” is Configuration B (Table 6), the same point as
“Base” but with pdecay, twarmup, η0, ρ, ε set to their values
in the LARS pipeline. Finally, “L2 variables” is the same
point as “Base” but where the L2 regularization is applied
to all variables. The only ablation whose median over 50
seeds continues to beat the target 75.9% accuracy (noted
by the dotted red line) is “BN & LR tuning”, with the rest
having between 0.1%-0.3% drops in median accuracy.

C. Hyperparameter tuning
C.1. Nesterov momentum training speed on ResNet-50

We considered two configurations of Nesterov hyperparam-
eters: Configuration A, where we tuned a wide set of hyper-

https://git.io/JtgtE
https://github.com/google-research/bert


A Large Batch Optimizer Reality Check

Base

ResNet version
BN init

Virtual BN

BN & LR tuning
L2 variables

0.754

0.756

0.758

0.760

0.762

Ac
cu

ra
cy

Figure 4. Distributions over 50 training runs for each ablation study
around our best Nesterov momentum configuration (Configuration
A). The dotted red line is at the target accuracy of 75.9%, and
the boxes show the min, max, and quartiles of the distribution of
accuracies over the 50 training runs.

Configuration A Configuration B LARS

twarmup 638 706 706

pwarmup 2.497 2.0 1.0

pdecay 1.955 2.0 2.0

ρ 0.94 0.9 0.9

ε 4× 10−6 10−5 10−5

ηpeak 7.05 7.05 29.0

ηfinal 6× 10−6 6× 10−6 10−4

1− µ 0.02397 0.02397 0.071

λ 5.8× 10−5 5.8× 10−5 10−4

τ 0.15 0.15 0.10

γ0 0.4138 0.4138 0.0

Table 6. Nesterov momentum Configurations A and B.

parameters in the experiment pipeline, and Configuration
B, where we reverted the less impactful hyperparameters
to the same values as the LARS baseline (or in the case
of pwarmup, a simpler value). We included Configuration B
in order to demonstrate the minimal set of changes to the
baseline necessary to still reach the target accuracy. The
hyperparameter values for these configurations can be found
in Table 6.

C.2. Adam on BERT

The search space used to tune Adam on BERT for all phases
of the pipeline can be found in Table 7, which yielded our
best Adam results on BERT in Table 8.

C.3. Less stringent step budget on ResNet-50

All trials used a cosine decay learning rate schedule and
tuned the initial learning rate η and L2 regularization or

Hyperparameter Range Scaling

p {1, 2} Discrete

η [10−5, 1.0] Log

1− β1 [10−2, 0.5] Log

1− β2 [10−2, 0.5] Log

λ [10−3, 10] Log

Table 7. The search space used to tune Adam on BERT for all
phases of the pipeline. λ refers to weight decay and p refers to
the polynomial power in the learning rate schedule for both the
warmup and decay phases.

weight decay parameter19 λ according to Table 9. We used
50 or more trials to search in the “Initial Range” and then
25 trials to search in the refined “Final Range.” Finally, we
ran the best point from the latter for 5 random seeds. When
LARS or LAMB were used alongside a different optimizer
for the batch normalization and ResNet-50 bias parameters,
we set λ = 0 on the batch normalization and ResNet-50
bias parameters. When LAMB was used all parameters, the
majority of trials diverged during training – it took 67 trials
to get 25 trials that did not NaN during training. Our trial
budgets refer to the number of feasible trials, i.e. trials that
do not diverge during training.

C.4. Nesterov ResNet50 search space chronology

Below we list the sequence of search spaces we used to ar-
rive at our final values in Table 6. Given that the final results
reported in papers are rarely found in a single iteration of
experiments, we believe that it is important to document the
full journey to arriving at our results.

Note that although we tuned a wide range of hyperparame-
ters to match the LARS result with Nesterov momentum, we
later realized that many of these hyperparameters could be
reverted to the values from the LARS pipeline (see Table 6).
We started tuning with a training budget of 2,815 steps,
which is the number of steps in the MLPerf 0.6 submission.
We sometimes would decrease this to 2,658 steps to test
how decreasing the training budget would affect tuning per-
formance, before eventually moving to the 2,512 steps used
to generate the results in the main text.

19As suggested in You et al. (2019), we used L2 regulariza-
tion for LARS and weight decay for LAMB. For consistency, we
used L2 regularization for Nesterov momentum (which is more
analogous to LARS) and weight decay for Adam (which is more
analogous to LAMB).



A Large Batch Optimizer Reality Check

Batch size Phase Seq len Warmup Train Learning β1 β2 λ p
steps steps rate

32,768 1 128 3,125 14,063 5.9415× 10−4 0.934271 0.989295 0.31466 1
32,768 2 512 781 1,562 2.8464× 10−4 0.963567 0.952647 0.31466 1
65,536 1 128 2,000 7,037 1.3653× 10−3 0.952378 0.86471 0.19891 2
32,768 2 512 781 1,562 2.8464× 10−4 0.952647 0.963567 0.19891 2
65,536 2 512 390 781 6.1951× 10−5 0.65322 0.82451 0.19891 2

Table 8. Best hyperparameters from tuning Adam on BERT-Large pretraining. λ refers to weight decay and p refers to the polynomial
power in the learning rate schedule for both the warmup and decay phases. All trials used ε = 10−11.

Weights Optimizer Bias/BN Optimizer Name Initial Range Final Range Best

Nesterov Nesterov η np.logspace(-.5, .5, 10) [0.8, 3] 1.173

Nesterov Nesterov λ np.logspace(-4, -3, 10) [3× 10−4, 10−3] 3.026× 10−4

LARS
Heavy-ball

momentum
η np.logspace(0, 2, 10) [10, 40] 14.49

LARS
Heavy-ball

momentum
λ np.logspace(-5, -2, 10) [5× 10−5, 2× 10−4] 1.708× 10−4

LARS LARS η [1, 30] [10, 30] 14.18

LARS LARS λ [10−4, 10−1] [5× 10−5, 5× 10−4] 5.278× 10−5

Adam (ε = 10−8) Adam (ε = 10−8) η [10−3, 1] [4× 10−3, 2× 10−2] 0.004596

Adam (ε = 10−8) Adam (ε = 10−8) λ [10−2, 4] [2× 10−1, 1] 0.6182

Adam (ε = 10−6) Adam (ε = 10−6) η np.logspace(-3, 0, 10) [3× 10−3, 10−2] 3.332× 10−3

Adam (ε = 10−6) Adam (ε = 10−6) λ np.logspace(-2, 0.5, 6) [0.5, 2] 1.055

LAMB LAMB η np.logspace(-4, 0, 30) [4× 10−3, 5× 10−2] 0.01134

LAMB LAMB λ np.logspace(-5, -2, 4) [1× 10−2, 0.1] 0.02657

LAMB Adam (ε = 10−8) η [10−3, 1] [10−2, 8× 10−2] 0.02569

LAMB Adam (ε = 10−8) λ [10−2, 4] [1, 8] 2.500

LAMB Adam (ε = 10−6) η np.logspace(-3, 0, 10) [10−2, 8× 10−2] 0.03378

LAMB Adam (ε = 10−6) λ np.logspace(-2, 0.5, 6) [1, 8] 4.197

Table 9. Search spaces used for the 6,000 step, cosine learning rate schedule experiments. All hyperparameters were tuned on a logarithmic
scale, except for those which define a discrete sequence of points to evaluate such as “np.logspace”.



A Large Batch Optimizer Reality Check

Range Scaling

η0 [10−3, 50.0] Log

ηdecay factor {10−4, 10−3, 10−2, 10−1} Discrete

1− µ [10−3, 1.0] Log

λ [10−5, 10−1] Log

τ [10−2, 2× 10−1] Linear

Table 10. First search space of the Nesterov tuning journey. The
search spaces were mostly by informed guesses by the authors. λ
refers to weight decay, which is applied to all variables. Tuned
for 251 trials. Trained for 2,815 steps (“72 epochs” as defined by
MLPerf epoch calculations). We used a linear learning rate decay
schedule that decays for all training steps, starting from η0 and
ending at η0 × ηdecay factor . Virtual batch size 128.

Range Scaling

η0 [10−3, 50.0] Log

ηdecay factor {10−4, 10−3, 10−2, 10−1} Discrete

1− µ [10−3, 1.0] Log

λ [10−5, 10−1] Log

τ [10−2, 2× 10−1] Linear

Table 11. Same as Table 10 but trained for 2,658 steps (“68 epochs”
as defined by MLPerf epoch calculations) for 50 trials.

Range Scaling

η0 [10−1, 20.0] Log

ηdecay factor {10−5, 10−4, 10−3} Discrete

tdecay [2392, 2.658] Linear

1− µ [10−3, 1.0] Log

λ [10−5, 2× 10−1] Log

τ [10−2, 2× 10−1] Linear

Table 12. λ refers to weight decay, which is now not applied to the
bias and batch normalization variables. 50 trials. Trained for 2,658
steps. Linear learning rate decay schedule that decays for tdecay

steps, starting from η0 and ending at η0 × ηdecay factor . Virtual
batch size 128.

Range Scaling

ηpeak [10−1, 32.0] Log

ηdecay factor {10−5, 10−4, 10−3} Discrete

tdecay [2392, 2.658] Linear

1− µ [10−4, 10−1] Log

λ [10−4, 10−1] Log

τ [5× 10−2, 0.15] Linear

Table 13. λ refers to weight decay, which is not applied to the
bias and batch normalization variables. 50 trials. Trained for
2,658 steps. Linear warmup for 500 steps followed by a quadratic
decay, which decays until step tdecay, and then is constant at the
final learning rate η0 × ηdecay factor . Virtual batch size 128. We
increased the max learning rate based off the larger learning rates
used by LARS. We also ran two additional studies which were
the same except with 250 and 977 warmup steps.

Range Scaling

ηpeak [10−1, 32.0] Log

ηdecay factor [3× 10−5, 3× 10−4] Log

tdecay [2533, 2.815] Linear

1− µ [10−4, 10−1] Log

λ [10−4, 10−1] Log

τ [5× 10−2, 0.15] Linear

Table 14. λ refers to weight decay, which is not applied to the bias
and batch normalization variables. 50 trials. Trained for 2,815
steps. Linear warmup for 500 steps followed by a quadratic decay,
which decays until step tdecay, and then is constant at the final
learning rate η0 × ηdecay factor . Virtual batch size 128.

Range Scaling

ηpeak [10−1, 32.0] Log

ηdecay factor [3× 10−5, 3× 10−4] Log

tdecay [2533, 2.815] Linear

1− µ [5× 10−3, 10−1] Log

λ [10−2, 10−1] Log

τ [5× 10−2, 0.15] Linear

Table 15. λ refers to weight decay, which is not applied to the bias
and batch normalization variables. 50 trials. Trained for 2,815
steps. Linear warmup for 500 steps followed by a quadratic decay,
which decays until step tdecay, and then is constant at the final
learning rate η0 × ηdecay factor . Virtual batch size 128.



A Large Batch Optimizer Reality Check

Range Scaling

ηpeak [10−1, 32.0] Log

ηdecay factor [3× 10−5, 3× 10−4] Log

tdecay [2533, 2.815] Linear

1− µ [5× 10−3, 10−1] Log

λ [10−2, 10−1] Log

τ [5× 10−2, 0.15] Linear

Table 16. The same as Table 15 except with virtual batch size 64.

Range Scaling

ηpeak
{{10α, 2× 10α, ..., 9× 10α}
∀α ∈ {−3, ...2}}+ {100, }

Discrete

ηdecay factor 8.144× 10−5 –

tdecay 2250 –

1− µ 0.02397 –

λ 0.009992 –

τ 0.07786 –

Table 17. λ refers to weight decay, which is not applied to the bias
and batch normalization variables. Trained for 2,815 steps. Virtual
batch size 64. Using the best hyperparameters from Table 16, we
swept over the peak learning rate in a discrete set of ten values
per order of magnitude, each for three random seeds, to find the
max stable learning rate.

Range Scaling

ηpeak 4.118 –

ηdecay factor 8.144× 10−5 –

tdecay 2250 –

1− µ 0.02397 –

λ
{{0.5× 10α, 10α, ...}

∀α ∈ {−3, ...0}}+ {1.0, }
Discrete

τ 0.07786 –

Table 18. λ refers to weight decay, which is not applied to the bias
and batch normalization variables. Trained for 2,815 steps. Virtual
batch size 64. Using the best hyperparameters from Table 16, we
swept over the weight decay in a discrete set of twenty values per
order of magnitude, to test how high the regularization has to be in
this region of hyperparameter space.

Range Scaling

ηpeak 4.118 –

ηdecay factor 8.144× 10−5 –

tdecay 2250 –

1− µ 0.02397 –

λ 0.009992 –

τ 0.07786 –

ρ
{0.0, 0.1, 0.3, 0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 0.995, 0.999}

Discrete

ε
{10−7, 10−6, 10−5, 10−4,

10−3, 10−2, 10−1}
Discrete

Table 19. λ refers to weight decay, which is not applied to the bias
and batch normalization variables. Trained for 2,815 steps. Virtual
batch size 64. Using the best hyperparameters from Table 16, we
swept over batch normalization hyperparameters.

Range Scaling

ηpeak [2.0, 8.0] Log

ηdecay factor [4× 10−5, 1.6× 10−4] Linear

tdecay [2100, 2400] Linear

1− µ [0.012, 0.04] Log

λ [7× 10−3, 7× 10−2] Log

τ [0.04, 0.1] Linear

ρ [0.45, 0.55] Linear

ε [5× 10−6, 5× 10−5] Linear

Table 20. λ refers to weight decay, which is not applied to the bias
and batch normalization variables. 50 trials. Trained for 2,815
steps. Linear warmup for 500 steps followed by a quadratic decay,
which decays until step tdecay, and then is constant at the final
learning rate η0 × ηdecay factor . Virtual batch size 64. Peak learn-
ing rate range was consolidated based off the results of Table 17.
The weight decay range was consolidated based off the results of
Table 18.



A Large Batch Optimizer Reality Check

Range Scaling

twarmup [300, 800] Linear

pwarmup [0.7, 2.0] Linear

pdecay 1.8 –

η0 [0.1, 1.0] Log

ηpeak [5.0, 9.0] Log

ηfinal [10−5, 5× 10−5] Log

1− µ 0.02397 –

λ 5× 10−5 –

τ 0.15 –

γ0 [0.0, 0.6] Linear

ρ 0.94 –

ε 4× 10−6 –

Table 21. Here we switched λ to refer to L2 regularization. We
also began training for 2,512 steps, which is the final “64 epochs”
used in the Nesterov results reported in the main text. Because of
this more stringent step budget, we focused on the learning rate
schedule. tdecay was set to all remaining steps after the warmup
was finished. Tuned for 229 trials. Virtual batch size 64.

Range Scaling

twarmup 638 –

pwarmup [1.5, 3.0] Linear

pdecay [1.5, 2.5] Linear

η0 0.12 –

ηpeak 7.05 –

ηfinal [10−6, 5× 10−4] Log

1− µ 0.02397 –

λ [5× 10−5, 1× 10−3] Log

τ 0.15 –

γ0 [0.4, 1.0] Linear

ρ 0.94 –

ε 4× 10−6 –

Table 22. Here we began focusing more on the shape of the learn-
ing rate schedule, as well as retuning the L2 regularization. λ
refers to L2. Several values were picked from the best trial of
Table 21. Trained for 2,512 steps steps. Tuned for 15 trials. Virtual
batch size 64.

Range Scaling

twarmup 638 –

pwarmup [1.5, 3.0] Linear

pdecay [1.5, 2.5] Linear

η0 0.12 –

ηpeak 7.05 –

ηfinal [10−6, 5× 10−4] Log

1− µ 0.02397 –

λ [1× 10−5, 1× 10−4] Log

τ 0.15 –

γ0 [0.4, 1.0] Linear

ρ 0.94 –

ε 4× 10−6 –

Table 23. Here we focus in more on tuning the L2 regularization.
λ refers to L2. Trained for 2,512 steps steps. Tuned for 37 trials.
Virtual batch size 64.

Range Scaling

twarmup 638 –

pwarmup [1.5, 3.0] Linear

pdecay [1.5, 2.5] Linear

η0 0.12 –

ηpeak 7.05 –

ηfinal [10−6, 5× 10−4] Log

1− µ 0.02397 –

λ [5× 10−5, 6× 10−5] Linear

τ 0.15 –

γ0 [0.4, 1.0] Linear

ρ 0.94 –

ε 4× 10−6 –

Table 24. Again we dial in more on a tighter tuning range for the
L2 regularization. λ refers to L2. Trained for 2,512 steps steps.
Tuned for 37 trials. Virtual batch size 64.


