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 ABSTRACT 
 Successful  collaboration  involves  sharing  information. 
 However,  parties  may  disagree  on  how  the  information  they 
 need  to  share  should  be  used.  We  argue  that  many  of  these 
 concerns  reduce  to  ‘the  copy  problem’:  once  a  bit  of 
 information  is  copied  and  shared,  the  sender  can  no  longer 
 control  how  the  recipient  uses  it.  From  the  perspective  of 
 each  collaborator,  this  presents  a  dilemma  that  can  inhibit 
 collaboration.  The  copy  problem  is  often  amplified  by  three 
 related  problems  which  we  term  the  bundling,  edit,  and 
 recursive  enforcement  problems.  We  find  that  while  the 
 copy  problem  is  not  solvable,  aspects  of  these  amplifying 
 problems  have  been  addressed  in  a  variety  of  disconnected 
 fields.  We  observe  that  combining  these  efforts  could 
 improve  the  governability  of  information  flows  and  thereby 
 incentivise  collaboration.  We  propose  a  five-part 
 framework  which  groups  these  efforts  into  specific 
 capabilities  and  offers  a  foundation  for  their  integration  into 
 an  overarching  vision  we  call  “structured  transparency”. 
 We  conclude  by  surveying  an  array  of  use-cases  that 
 illustrate  the  structured  transparency  principles  and  their 
 related capabilities. 

 1   Introduction 
 Collaboration  requires  sharing  information  amongst 
 participants.  This  gives  rise  to  the  central  problem  of 
 information  governance,  which  we  call  the  copy  problem  : 
 after  replicating  and  sharing  a  bit  of  information,  the  sender 
 can  no  longer  control  how  the  recipient  might  use  it.  The 
 copy  problem  creates  a  challenging  trade-off  for  would-be 
 collaborators  because  each  participant  must  make  an 
 educated  guess  about  the  likelihood  and  impact  of  others’ 
 misuse  of  the  shared  data.  Assuming  rationality,  each 
 participant  weighs  the  expected  cost  of  this  process  against 
 the  expected  benefit  of  the  collaboration.  If  the  latter 
 outweighs  the  former  for  all  parties,  then  the  collaboration 
 proceeds.  However,  if  a  would-be  collaborator  expects 
 costs  to  exceed  rewards,  they  may  limit  or  block  the 
 collaboration.  Relevant  risks  and  costs  informing  this 
 assessment  can  include  privacy,  security,  legal,  IP, 

 competitive,  public  relations,  and  other  similar 
 considerations. 

 The  first  contribution  of  this  paper  is  to  lay  out  the  copy 
 problem,  which  poses  serious  issues  because  it  cannot 
 presently  be  solved  (information  cannot  be  controlled  once 
 shared)  and  because  it  scales  quadratically  in  the  size  of  a 
 collaboration  (  n  parties  must  satisfy  n(n-1)  data-sharing 
 relationships  to  proceed)  1  .  Since  this  dilemma  applies 
 anywhere  information  would  be  shared  in  a  collaboration,  it 
 has a broad impact. 

 The  second  contribution  of  this  paper  is  to  argue  that  three 
 additional  issues,  which  we  term  the  bundling,  edit,  and 
 recursive  enforcement  problems,  exacerbate  the  copy 
 problem.  In  many  cases,  these  challenges  can  be  solved, 
 reducing  the  impact  of  the  copy  problem.  However,  we 
 observe  that  progress  on  these  issues  is  fragmented  across 
 many  disciplines,  such  as  machine  learning,  cryptography, 
 distributed  systems,  database  theory,  statistics,  probability, 
 political science, and legal studies. 

 As  the  third  contribution,  this  work  re-frames  these 
 related-but-disconnected  approaches  as  a  shared  aspiration 
 for  structured  transparency  (e.g.,  the  ability  for  actors  to 
 reduce  collaboration  risks  and  costs  by  defining  and 
 enforcing  precise  flows  of  information)  and  organises 
 techniques  under  a  five-part  framework.  This  helps  point 
 out  which  approaches  offer  identical  capabilities  and  which 
 are  complementary  to  one  another.  We  hope  that  this 
 framework  will  serve  as  a  foundation  for  integrating 
 solutions  to  the  edit,  bundling,  and  recursive  enforcement 

 1  One  analog  means  to  satisfy  n(n-1)  relationships  might  be  to 
 select  a  subset  of  the  parties  to  be  trusted  to  craft  an  information 
 flow  on  behalf  of  the  others.  If  just  one  party  is  selected  they  are 
 the “trusted third party”, if several they are a committee. 
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 problems,  and,  in  turn,  dull  the  effect  of  the  copy  problem 
 and decrease the informational cost of collaborations. 

 The  fourth  contribution  of  this  work  describes  technical 
 approaches  for  structured  transparency,  especially  a  set  of 
 techniques  known  as  privacy  enhancing  technologies 
 (PETs).  We  find  that,  when  viewed  through  the  lens  of 
 structured  transparency,  PETs  offer  enhancements  far 
 beyond  that  of  privacy,  addressing  the  edit,  bundling,  and 
 recursive  enforcement  problems  more  generally  —  with 
 relevance  for  many  of  the  factors  that  weigh  on 
 collaboration  decisions  (security,  legal,  IP,  competition, 
 public  relations,  etc.).  Finally,  we  illustrate  the 
 contributions  of  PETs  within  the  structured  transparency 
 principles via a set of real-world use cases. 

 2   The Copy Problem and Ideal 
 Information Flows 
 We  begin  our  framing  of  the  copy  problem  by  considering  a 
 framework  proposed  by  Nissenbam  in  her  seminal  work 
 “Privacy  in  Context”  [54].  In  this  work,  she  proposes  that 
 privacy  is  chiefly  concerned  with  “information  flows  in 
 context”,  such  that  compromising  privacy  is  not  as  simple 
 as  a  specific  category  of  data  (sensitive  vs  non-sensitive 
 data)  or  a  specific  set  of  actors  (governments  surveilling 
 citizens,  etc.).  Nissenbaum  argues  that  privacy  is  about 
 holistically  understanding  how  multiple  parties  are 
 participating  in  a  flow  of  information  and  the  degree  to 
 which  that  collaboration  is  acceptable  according  to  an 
 appropriate moral framework. 

 We  generalise  this  idea  of  an  information  flow  in  context 
 slightly,  broadening  it  to  include  other  concerns  (beyond 
 privacy)  that  might  lead  to  informational  risks  and  costs 
 relating  to:  intellectual  property,  security,  legal  restrictions, 
 competitive  dynamics,  safety,  etc.  However,  the 
 fundamental  framing  of  an  information  flow  in  context 
 remains the same. 

 Building  on  this  premise,  we  introduce  the  concept  of  an 
 ideal  information  flow  ,  which  is  a  flow  of  information  that 
 maximises  fulfilment  of  informational  exchange  necessary 
 for  a  collaboration  while  minimising  the  possibility  of  any 
 problematic  retention  or  use  of  said  information  thereafter  2  . 
 An  information  flow  conforms  to  this  ideal  under  the 
 assumption  that  there  are  no  constraints  on  the  degree  of 
 specificity  an  information  flow  could  entail.  For  example, 
 for  a  patient  going  to  a  doctor,  the  ideal  information  flow 
 may  allow  a  patient  to  receive  a  treatment  with  a  high 

 2  Given  the  multi-objective  nature  of  satisfying  the  desires 
 of  multiple  collaborating  parties,  this  can  be  thought  of  as  a 
 theoretical  Pareto-optimal  point  which  the  multi-objective 
 pareto frontier desires to achieve. 

 degree  of  confidence  on  validity  of  that  recommendation 
 while  never  revealing  any  information  about  their  medical 
 status  in  the  process.  This  theoretical  aim  is  “ideal”  in  that 
 it  answers  the  principal  question  of  a  doctor-patient 
 interaction  (“How  do  I  get  healthy?”)  without  answering 
 any  other  questions.  The  doctor  could  presumably  bill  for 
 their  services,  the  patient  would  recover,  and  no-one  would 
 learn  any  other  information.  As  a  nuance,  in  a  truly  ideal 
 information  flow,  the  patient  wouldn’t  even  be  able  to 
 reverse-engineer  information  about  the  doctor  or  their 
 practice  from  the  diagnosis  they  received.  The  information 
 flow  would  deliver  purely  and  exclusively  the  desired 
 answer and nothing more, either directly or indirectly. 

 The  purpose  of  the  structured  transparency  framework  is  to 
 frame  a  set  of  tools  which  enable  progress  towards  this 
 ideal  relative  to  analog  or  legacy  approaches  to 
 collaboration.  A  flow  that  does  not  achieve  this  ideal 
 conveys  non-essential  information  that  we  refer  to  as 
 “collateral  information  leakage”.  As  such,  another  way  of 
 describing  the  aim  of  structured  transparency  is  to  facilitate 
 a  collaboration’s  necessary  or  useful  information  flows 
 without  collateral  information  leakage  between 
 collaborators. 

 Common informational risks and costs 

 While  a  full  survey  of  collaborations  mitigated  by  the  copy 
 problem  is  out  of  scope,  we  briefly  survey  several  notable 
 themes.  Such  issues,  highlighted  via  a  selection  of  profiles 
 below,  illustrate  the  expansive  issue  of  collaborators  who 
 cannot  work  out  their  disagreements  about  how  their 
 information should be used. 

 Consider  an  actor  who  sells  information  for  a  profit.  Each 
 customer  obtains  the  ability  to  sell  that  information  further, 
 thereby  becoming  a  potential  competitor.  As  a  result,  often 
 the  most  profitable  way  to  leverage  data  is  to  simply  exploit 
 it  for  internal  use,  and  not  share  it  at  all.  For  example,  a 
 healthcare  firm  might  train  AI  models  to  detect  disease 
 using  only  their  own  data  but  decline  to  contribute  to  the  AI 
 models  of  other  similar  hospitals  in  their  area.  However, 
 this  leaves  significant  societal  utility  on  the  table, 
 especially  given  the  valuable  insights  that  datasets  can 
 produce when combined. 

 An  analogous  market  failure  occurs  within  academia, 
 wherein  academics  have  a  strong  incentive  to  avoid  sharing 
 research  data  until  they  have  fully  exploited  its  research 
 opportunities.  The  cost  is  slower  scientific  progress,  as 
 researchers  are  limited  to  data  available  at  their  own 
 academic  institution  instead  of  being  able  to  leverage 
 research  data  across  up  to  (perhaps)  thousands  of  other 
 institutions.  This  has  practical  as  well  as  academic  costs:  by 
 inhibiting  advances  in  domains  such  as  medicine  and 
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 climate  science,  barriers  to  information  sharing  can  leave 
 society  at  large  worse  off.  Particularly  within  fields  such  as 
 healthcare, the market failure is profound to consider. 

 Complicating factors 

 A  complicating  factor  in  such  collaborations  can  be  a 
 power  imbalance  between  would-be  collaborators.  A 
 regulator  collaborating  with  a  market  participant  to  audit 
 their  operations  may  not  offer  the  market  participant  an 
 option  to  not  collaborate.  In  this  case,  no  matter  how  high 
 the  perceived  costs  of  collaboration  could  be  to  the  market 
 participant,  those  costs  must  be  paid.  Similarly,  an 
 individual  collaborating  with  a  digital  service  provider  (by 
 using  their  online  service)  to  socialise  with  their  friends 
 might  not  wish  to  reveal  their  personal  interactions  to  a 
 for-profit  company,  yet  the  online  service  might  not  choose 
 to offer this option. 

 Information Flow Taxonomy 

 Before  describing  the  tenets  of  structured  transparency,  we 
 outline  three  broad  categories  of  information  flows  in 
 ascending  order  of  complexity.  These  categories  provide 
 examples  of  the  diverse  situations  where  structured 
 transparency  can  be  applied  and  serve  as  useful  archetypes 
 that we will refer to throughout the paper. 

 Messaging  flows  seek  to  transfer  bits  of  information  from 
 one  party  to  another  such  that  they  can  be  trusted  by  the 
 receiver  (verified)  and  do  not  reveal  other  bits  to  the 
 receiver.  Such  transfers  can  face  challenges  in  practice,  but 
 existing  social  institutions  possess  useful  techniques  for 
 enabling  trustworthy  messaging  flows.  In  the  analog  world, 
 a  sealed  envelope  enables  the  postal  service  to  deliver  a 
 message  without  inspecting  its  contents.  In  the  digital 
 world,  encrypted  messaging  platforms  like  Signal  and 
 WhatsApp perform a similar function. 

 Service  provider  flows  are  messaging  flows  that  involve 
 computing  on  the  message  during  transit.  An  intermediary 
 (service  provider)  receives  bits  in  an  information  flow,  uses 
 them  for  computation,  and  then  forwards  the  result  to  the 
 next  party  in  the  information  flow.  Using  legacy 
 approaches,  the  service  provider  is  a  trusted  third-party 
 who  must  be  able  to  view  all  of  the  inputs  to  the 
 computation  in  order  to  generate  the  correct  output. 
 Consider,  for  example,  situations  –  analog  or  digital  –  in 
 which  a  service  requires  personalization,  such  as  a  doctor’s 
 visit:  a  patient  gives  information  to  a  doctor,  the  doctor  uses 
 that  information  to  choose  a  diagnosis  and  treatment, 
 providing  this  information  to  the  patient.  Similarly,  a  film 
 recommendation  service  receives  information  from  a  user 
 relevant  to  film  preferences,  infers  what  new  films  they 
 might  enjoy,  and  then  provides  a  ranked  list  to  the  user. 

 Customised  services  like  these  almost  always  require 
 sharing personal data, which creates “keep a copy” risks. 

 Finally,  aggregation  flows  are  service  provider  flows  in 
 which  the  service  provider  receives  and  combines  messages 
 from  multiple  parties.  Aggregation  flows  contain  all  the 
 challenges  of  service-provider  flows  with  the  additional 
 requirement  that  the  aggregating  entity  itself  intends  to 
 produce  a  message  from  some  aggregation,  rather  than 
 simply  processing  and  forwarding  information.  This  could 
 be  a  high-level  trend,  such  as  the  number  of  COVID  cases 
 per  day,  or  a  needle-in-a-haystack  problem  that  involves 
 pinpointing  a  specific  fact  or  individual  within  a  large 
 group. 

 3   The Components of Structured 
 Transparency 
 Providing  effective  structured  transparency  requires 
 fulfilling  five  main  criteria:  input  privacy,  output  privacy, 
 input  verification,  output  verification,  and  flow  governance. 
 Not  every  situation  requires  that  all  be  explicitly  addressed, 
 but  most  copy-problem-related  obstacles  to  collaboration 
 can  be  reduced  to  some  combination  of  these  issues.  Below, 
 we  describe  each  of  these  from  the  perspective  of  someone 
 participating in an information flow. 

 Input  privacy  refers  to  the  ability  to  process  information 
 that  is  hidden  from  you  or,  symmetrically,  to  allow  others 
 to  process  your  information  without  revealing  it  to  them  3  4  . 
 Consider  the  sealed  envelope  again:  this  allows  information 
 (the  contents  of  a  letter)  to  be  processed  (transmitted)  by  a 
 mail  service  without  that  intermediary  gaining  access  to  it. 
 The envelope provides input privacy. 

 Output  privacy  allows  you  to  receive/read  the  output  of  an 
 information  flow  without  being  able  to  infer  further 
 information  about  the  input  or,  symmetrically,  to  contribute 
 to  the  input  of  an  information  flow  without  worrying  that 
 the  subsequent  output  could  be  reverse  engineered  to  learn 
 about your input  [12,42]  . 

 While  the  aim  of  output  privacy  is  similar  to  that  of  input 
 privacy  (both  relate  to  protecting  providers  of  inputs  to  an 
 information  flow),  they  are  not  the  same.  Input  privacy  is 
 concerned  with  facilitating  the  flow  of  information  without 

 4  We  also  consider  “semi-input  privacy”  to  be  when  a  group 
 of  parties  compute  a  flow  together  where  only  some 
 successfully  hide  their  inputs  to  the  flow  (such  as  vanilla 
 federated learning, as we will see) 

 3  More  formally,  input  privacy  is  satisfied  when  multiple 
 data-holding  parties  can  provide  inputs  to  one  or  more 
 computing  parties,  who  can  provide  computation  without 
 having  the  ability  to  know  the  values  of  the  respective 
 inputs, intermediate variables, or outputs. 
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 leaking  collateral  data,  whereas  output  privacy  is  concerned 
 with  preventing  the  output  of  the  flow  from  being  reverse 
 engineered  to  reveal  additional  information  about  the  input. 
 Input  privacy  is  concerned  with  preventing  parties 
 participating  in  computation  from  learning  anything  about 
 each  other’s  inputs  5  ,  whereas  output  privacy  is  concerned 
 with  preventing  the  recipient  from  inferring  the  inputs. 
 Returning  to  the  sealed  letter  example,  output  privacy  in 
 this  context  would  guarantee  that  the  letter  recipient  could 
 not  deduce  sensitive  information  that  the  author  did  not 
 want to include in the message  6  . 

 At  first  glance,  satisfying  input  and  output  privacy  may 
 appear  sufficient  to  enforce  any  information  flow. 
 However,  most  use  cases  require  balancing  these  criteria 
 with  the  informational  burdens  necessary  for  recipients  to 
 trust  the  bits  they  receive.  Privacy,  in  other  words,  exists  in 
 mild tension with verification. 

 This  tension  arises  because  often  actors  use  internal 
 consistency  to  determine  whether  an  information  flow  is 
 valid.  Consider  a  barkeep  viewing  a  driver’s  licence  to 
 check  whether  someone  is  of  drinking  age.  They  are 
 consuming  an  information  flow  that  began  with  a  birth 
 certificate,  continued  through  to  a  regional  transportation 
 authority,  and  terminated  in  the  contents  of  a  driver’s 
 licence.  A  barkeep  determines  whether  a  licence  is  valid 
 based  on  all  of  the  attributes  of  the  licence  appearing 
 coherent  and  consistent  with  the  issuer’s  standards.  If,  for 
 example,  the  owner  of  that  driver’s  licence  used  scissors  to 
 cut  out  the  name  and  home  address  on  their  driver’s  licence 
 (to  preserve  privacy),  the  document  would  no  longer  be 
 valid  and  the  barkeep  may  deny  them  alcohol.  This  is  true 
 even  if  the  licence  still  contained  a  photo  and  birthdate.  As 
 such,  verification  is  often  a  source  of  collateral  information 
 leakage, which other techniques can help to alleviate. 

 Input  verification  allows  you  to  verify  that  information 
 you  receive  from  an  information  flow  is  sourced  from 
 entities  you  trust,  or,  symmetrically,  it  allows  you  to  send 
 information  such  that  the  output  can  be  verifiably 
 associated  to  you.  When  you  sign  a  document,  you  make  a 
 mark  which  (in  theory)  only  you  can  make  –  a  signal  to 
 readers  of  the  document  that  you  approved  the  information 
 contained  therein.  Novel  input  verification  techniques 
 empower  a  signer  to  verify  specific  attributes  of  an  input  to 
 an  information  flow,  such  as  that  it  came  from  a  trusted 
 source  or  that  it  happened  within  a  specific  date  range  [44]. 
 Often  this  is  framed  as  a  “certificate”,  “verification”,  or 

 6  For  example,  an  anonymous  author  may  wish  to  send  a 
 message  without  inadvertently  revealing  too  many  facts 
 such  that  the  identity  of  the  sender  can  be  inferred  by  the 
 recipient using context clues. 
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 “attestation”,  wherein  an  input  party  has  signed  that  a 
 specific  fact  being  conveyed  is  something  they  believe  to 
 be  true.  (Note  that  this  in  no  way  guarantees  a  statement  to 
 actually be true, merely that a party claims it to be so.) 

 Output  verification  allows  you  to  verify  attributes  of  any 
 information  processing  (computation)  within  an 
 information  flow.  In  analog  systems  that  contain  little  to  no 
 computation,  the  difference  between  input  and  output 
 verification  can  be  nuanced  or  nonexistent.  Process 
 auditing  by  an  external  party,  however,  is  an  example  of 
 output  verification.  If  a  letter  goes  missing,  one  might  audit 
 tracking  records.  Likewise,  a  tax  auditor  might  verify  that 
 the  flow  of  information  (in  this  case,  funds)  from  a 
 company’s  account  to  their  employees'  accounts  obeys 
 relevant tax codes. 

 Finally,  flow  governance  is  satisfied  if  each  party  with 
 concern/standing  over  how  information  should  be  used  has 
 guarantees  that  the  information  flow  will  adhere  to  their 
 intended  uses.  This  is  important  because  even  if  a  flow 
 satisfies  the  necessary  criteria  of  input  and  output  privacy 
 and  input  and  output  verification,  questions  still  remain 
 concerning  who  holds  the  authority  to  modify  the  flow  [55]. 
 In  real-world  scenarios,  a  wide  variety  of  governance 
 mechanisms  exist  for  this  purpose  (escrow  and 
 executorship  stand  out  as  widely-used  legal  devices). 
 Within  the  physical  world,  multi-key  safety-deposit  boxes 
 for holding secure documents accomplish similar goals. 

 To  recap  these  characteristics  in  the  context  of  sending  a 
 letter,  we  can  describe  input  privacy  as  the  protective 
 envelope  that  prevents  unauthorised  access,  while  output 
 privacy  involves  withholding  sensitive  personal 
 information  from  the  letter.  Input  verification  can  be 
 likened  to  the  signature  on  the  letter,  while  output 
 verification  corresponds  to  a  wax  seal  that  assures  the 
 recipient  that  the  letter  has  not  been  tampered  with.  Finally, 
 flow  governance  corresponds  to  shipping  the  letter  in  a 
 secure  safe  with  a  combination  lock,  where  only  a  set  of 
 governing  parties  (such  as  the  sender  or  receiver)  knows 
 the  correct  combination  to  the  safe.  From  a  structured 
 transparency  perspective,  when  an  information  flow 
 possesses  all  of  these  guarantees  to  a  sufficient  degree,  we 
 consider  the  flow  to  be  a  well  formed  information  flow 
 — capable  of  delivering  a  specific,  known  set  of  bits  from  a 
 set  of  input  parties  to  a  specific  set  of  output  parties  with 
 verification and without collateral information leakage. 

 4   Copy Problem Amplifications as 
 Limitations to Structured Transparency 
 Satisfying  all  the  criteria  of  structured  transparency  can 
 prove  difficult  in  practice.  As  mentioned,  for  example, 
 input  and  output  verification  can  come  at  the  cost  of  input 
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 and  output  privacy.  The  central  issue  is  the  copy  problem, 
 alongside  three  related  problems  which  amplify  it:  the 
 bundling  problem,  the  edit  problem,  and  the  recursive 
 oversight problem. 

 The  copy  problem  lies  at  the  root  of  many  structured 
 transparency  challenges.  When  a  bit  of  information  is 
 shared,  the  recipient  gains  control  over  its  use,  and  they  are 
 generally  not  constrained  by  any  technical  limitations  that 
 would  prevent  them  from  misusing  it  (although  institutional 
 rules  and  norms  may  act  as  constraints,  and  legal  or  social 
 repercussions  may  exist  after  the  fact).  As  a  result,  when 
 deciding  whether  to  share  information,  data  owners  often 
 face  a  trade-off  that  pits  the  benefits  of  sharing  with  the 
 risks of misuse. 

 The  bundling  problem  amplifies  the  copy  problem.  It  is 
 often  difficult  to  share  a  bit  of  information  without  also 
 needing  to  reveal  additional  bits  because  either  the 
 conventional  encoding  will  not  allow  individual  bits  to  be 
 shared  or  a  bit  cannot  be  trusted/verified  without  the 
 context  of  other  relevant  bits.  Take,  for  instance,  the  use  of 
 a  surveillance  video:  many  pieces  of  irrelevant  (and 
 potentially  invasive)  information  are  shared  to 
 contextualise  the  critical  piece(s)  of  information  (e.g. 
 whether  a  suspect  was  in  a  particular  location).  Another 
 example  is  a  driver’s  licence,  which  reveals  all  of  the 
 details  on  the  card  in  order  to  verify  a  single  piece  of 
 information,  namely  whether  the  individual  is  old  enough 
 to  enter  a  given  venue.  Put  another  way,  while  cutting  out 
 one’s  birthday  from  a  licence  would  effectively  hide  the 
 other  information  on  the  card,  it  would  not  suffice  to  enter 
 an age-restricted establishment. 

 The  edit  problem  also  amplifies  consequences  of  the  copy 
 problem.  If  an  entity  that  stores  a  piece  of  information 
 makes  an  edit  before  transmitting  it  to  another  party,  the 
 recipient  has  no  way  of  knowing  that  the  information  was 
 altered.  This  is  similar  to  the  phenomenon  observed  in  the 
 children's  game  of  telephone.  Relatedly,  a  bank  balance  is 
 stored  by  the  bank  itself  (as  a  trusted  third-party),  rather 
 than  by  the  account  holder  who  might  be  inclined  to  make 
 edits to it. 

 The  use  of  third-party  oversight  institutions  can  solve 
 issues  caused  by  the  copy,  bundling,  and  edit  problems.  In 
 doing  so,  however,  this  solution  presents  a  fourth  issue:  the 
 recursive  oversight  problem  .  When  one  party  oversees 
 the  use  of  information,  it  creates  another,  even  more 
 knowledgeable  entity  that  could  potentially  misuse  the 
 information.  This  raises  the  question  of  “who  watches  the 
 watchers?”  –  in  other  words,  how  can  we  ensure  that  the 
 oversight institution itself is trustworthy and accountable? 

 In  practice,  these  three  hurdles  amplify  the  copy  problem 
 and  further  constrain  the  ability  for  collaborators  to  satisfy 
 the  guarantees  of  structured  transparency  in  a  wide  variety 
 of  contexts.  This  results  in  reduced  collaborations  and  a 
 higher  degree  of  perceived  cost  for  collaborators  who  do 
 proceed.  Without  new  capabilities  that  could  enable  more 
 precise  information  flows,  collaborators  will  continue  to  be 
 constrained by trade-offs related to the copy problem. 

 4   Technical Tools for Structured 
 Transparency 
 Fortunately,  many  information  flows  constrained  by  the 
 edit,  bundling,  and  recursive  enforcement  problems  can  be 
 addressed  elegantly  in  the  digital  domain.  And  while  the 
 copy  problem  may  never  truly  be  solved  (and  arguably 
 should  not  be  [11]  ),  combining  relevant  technical  tools  with 
 social  and  legal  measures  can  effectively  reduce  the 
 potential  harm  it  poses  — in  some  cases  fully  achieving  the 
 ideal information flow. 

 Such  technical  tools  can  be  loosely  grouped  in  relation  to 
 the  five  sub-problems  of  structured  transparency  outlined  in 
 Section 3. 

 Technical Input Privacy 

 All  proposed  within  the  last  half-century,  technical  input 
 privacy  tools  come  primarily  from  the  field  of 
 cryptography:  public-key  cryptography,  end-to-end 
 encryption,  secure  multi-party  computation,  homomorphic 
 encryption,  functional  encryption,  garbled-circuits, 
 oblivious  RAM,  federated  learning,  on-device  analysis,  and 
 secure  enclaves  are  several  popular  (and  overlapping) 
 techniques  capable  of  providing  varying  degrees  of  input 
 privacy  [2,3,6,8,14–16,21,23,24,34,40–42]  .  Some  of  these 
 techniques  can  theoretically  facilitate  any  arbitrary 
 computation  (also  known  as  ‘Turing-complete 
 computation’)  while  keeping  the  computation’s  inputs 
 secret  from  all  parties  involved  7  .  These  methods  differ  in 
 terms  of  performance,  cost,  trust  model,  type  of 
 computation  they  are  most  suited  for,  etc.  For  example, 
 homomorphic  encryption  (HE)  often  requires  heavy 
 computation  even  for  relatively  simple  information  flows, 
 while  secure  multi-party  computation  requires  less 
 computation  than  HE  but  greater  message  volume  between 
 the  various  parties  in  the  flow  (increased  network 
 overhead)  [42]  .  Perhaps  the  most  performant  input  privacy 
 technique  occurs  via  secure  enclaves,  which  require  the  use 
 of  specialised  hardware.  Of  particular  note  are  GPU 
 enclaves,  which  offer  near-equal  performance  to 

 7  We  consider  techniques  which  only  keep  some  parties’ 
 inputs  hidden  from  other  participants  to  be  “semi-input 
 privacy” 

 5 

https://www.zotero.org/google-docs/?ggpFR3
https://www.zotero.org/google-docs/?Zkt2J6
https://www.zotero.org/google-docs/?NJi9dF


 top-of-the-line  GPUs  and  are  expected  to  be  generally 
 available  in  the  cloud  in  the  near  future  8  .  Input  privacy 
 techniques  still  lack  general-purpose  software  necessary  for 
 widespread  use,  but  this  is  an  active  and  quickly-maturing 
 area of software engineering [56]. 

 The  most  important  implication  of  technical  tools  for  input 
 privacy  is  that  they  can,  theoretically,  perform  a  task 
 seemingly  impossible  in  the  analog  world:  achieve  service 
 provider  information  flows  without  a  trusted  third-party 
 [42]  .  In  other  words,  technical  input  privacy  tools  could 
 allow  service  providers  to  process  data  without  being  able 
 to  see  it  or  use  it  for  other  purposes  outside  of  the  governed 
 information  flow.  This  means  that  claims  along  the  lines  of 
 “we  need  a  copy  of  the  data  in  order  to  provide  a  service 
 that  takes  it  as  input”  will  lose  legitimacy  as  technical  input 
 privacy tools mature. 

 Aggregation  flows  also  stand  to  benefit  from  input  privacy 
 tools.  Under  the  right  configuration,  the  aggregator  will 
 learn  only  an  output  intended  for  them,  and  will  be  unable 
 to  observe  the  computation  inputs,  or  any  outputs  not 
 allowed by those governing the flow. 

 Technical Output Privacy 

 Early  forms  of  non-technical  output  privacy  focused  on 
 redacting  sensitive  data-points  or  threatening  reprisal  via 
 legal  or  other  means  against  those  who  reverse  engineer 
 inputs.  For  highly  bundled  data,  redaction  can  prove  very 
 challenging,  and  even  when  one  can  redact  information 
 easily  (such  as  removing  names  and  addresses  from  a 
 database),  the  advent  of  big  data  has  demonstrated  that 
 ‘anonymized’  data  can  sometimes  be  de-anonymized  if 
 enough latent signal is available  [25,27,28,31,32,36,37]  . 

 However,  technical  output  privacy  tools  (chiefly, 
 differential  privacy  and  related  techniques)  can  provide 
 strict  upper  bounds  on  the  likelihood  that  a  data  point  could 
 be  reverse-engineered  to  convey  information  about  a 
 specific  party  in  the  input  data  [12,13]  .  This  capability  is 
 useful  in  many  settings,  but  it  has  particular  significance  in 
 aggregator  flows  where  the  actor  processing  the 
 information  is  performing  statistical  analysis;  with 
 differential  privacy,  aggregator  flows  can  reveal  high-level 
 insights  without  ever  disclosing  individuals’  data  in  detail. 
 This  holds  promise  for  preserving  privacy  in  the  context  of 
 scientific  inquiry,  official  statistics,  and  particular  use  cases 
 of  surveillance  (such  as  public-health  surveillance  used  to 
 track the progression of COVID-19). 

 8  https://www.nvidia.com/en-us/data-center/solutions/ 
 confidential-computing/ 

 If  one  splits  a  set  of  bits  into  sections,  differential  privacy 
 provides  a  limit  on  the  likelihood  that  a  statistician  who 
 subsequently  aggregates  these  bits  could  learn  information 
 about  any  specific  section  of  bits.  For  instance,  when 
 applied  at  the  level  of  individuals,  these  techniques  protect 
 privacy  by  preventing  one  from  learning  information  about 
 any  particular  person.  However,  if  data  was  split  by 
 company,  nation,  or  other  attribute  for  which  linkability 
 would  like  to  be  prevented,  differential  privacy  is  a  useful 
 tool  in  these  settings  as  well.  For  example,  if  documents 
 were  grouped  by  the  author’s  employer,  and  then  an 
 aggregate  statistic  was  computed  across  documents, 
 differential  privacy  could  be  used  to  prevent  one  from 
 knowing information specific to an employer. 

 Technical Input Verification 

 Within  the  context  of  message  flows,  some  input 
 verification  techniques  such  as  cryptographic  signatures  are 
 robust,  performant  and  proven  at  scale,  but  advanced 
 techniques  (like  zero-knowledge  proofs)  are  still  relatively 
 nascent  owing  to  a  lack  of  awareness  and  early-stage 
 tooling  among  the  PET  community  [56-57].  Most  input 
 verification  techniques  use  some  combination  of  public-key 
 infrastructure  (Trust-over-IP/SSI,  Key  Transparency,  etc.), 
 cryptographic  signatures,  input  privacy  techniques  with 
 active  security,  and/or  zero-knowledge  proofs  [14,17,22]  . 
 These  methods  can  allow  an  actor  to  verify  a  specific 
 attribute  such  that  the  information  flow  output  contains 
 cryptographic proof of this verification. 

 For  example,  consider  the  driver’s  licence  example 
 mentioned  above:  normally,  somebody  inspecting  a  driver’s 
 licence  views  the  card  in  its  entirety.  Technical  input 
 verification  tools  do  not  suffer  from  this  constraint  [35]  , 
 since  they  can  verify  and  reveal  individual  attributes  within 
 an  information  flow.  This  allows  for  high  levels  of  both 
 input  privacy  and  input  verification,  effectively  eliminating 
 one  of  the  trade-offs  inherent  in  achieving  structured 
 transparency in analog settings. 

 As  with  input  privacy,  however,  the  greatest  promise  of 
 input  verification  techniques  lies  in  the  ability  to  verify  the 
 inputs  to  arbitrary  computations.  A  simple  example  of  this 
 is  verified  voting,  wherein  an  election  authority  can  publish 
 the  final  vote  with  cryptographic  evidence  guaranteeing  to 
 each  voter  that  their  vote  was  included  in  the  final  tally 
 without  violating  the  privacy  of  a  secret  ballot  [58]. 
 Because  technical  input  verification  techniques  make  it 
 possible  to  verify  properties  of  specific  inputs  selectively,  it 
 enables  systems  which,  in  practice,  can  be  both  more 
 private and more strongly verified than analog equivalents. 
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 Technical Output Verification 

 The  key  limitation  of  output  verification  tools  in  many 
 analog  contexts  is  that  the  verifier  must  examine  the  data  in 
 order  to  perform  the  verification.  For  example,  a  tax  auditor 
 must  inspect  cash  flows  in  detail  in  order  to  determine 
 whether  fraud  has  occurred,  and  a  financial  regulator  must 
 have  access  to  credit  score  inputs  and  outputs  in  order  to 
 ascertain  whether  loans  have  been  distributed  fairly.  This  in 
 turn  relates  to  the  recursive  oversight  problem:  effective 
 oversight  requires  granting  access  that  opens  the  door  to 
 more potential misuse. 

 However,  when  combined  with  the  aforementioned  input 
 privacy  techniques,  technical  tools  for  output  verification 
 can  address  this  challenge.  An  external  auditor  could  verify 
 properties  of  an  information  flow  without  learning  anything 
 beyond  the  output  of  targeted  tests  (e.g.  searching  for 
 patterns  reflective  of  fraud)  while  also  ensuring  that  the 
 tests  ran  correctly.  Such  capabilities  could  increase  the 
 precision,  scale,  and  security  of  auditing  institutions, 
 potentially  facilitating  new  types  of  checks  and  balances 
 and  fairer  distributions  of  power.  In  addition,  output 
 verification  relates  to  ongoing  research  for  auditing  or 
 evaluating  models  for  fairness,  bias,  or  emerging  dangerous 
 capabilities  [5,9,26,30,33,39]  . 

 Technical Flow Governance 

 As  noted  above,  traditional  analog  methods  of  information 
 flow  governance  rely  heavily  on  legal  and  physical 
 measures.  However,  technical  tools  for  flow  governance 
 offer  distinct  advantages  in  terms  of  scalability  and 
 efficiency  over  their  analog  counterparts  (see  “policy 
 enforcement”  in  [42]  ).  Secure  multi-party  computation 
 (SMPC)  serves  as  an  excellent  example  of  this:  with 
 SMPC,  parties  can  be  selected  to  govern  the  flow  of  any 
 given  information  9  .  Rather  than  relying  solely  on  legal 
 repercussions  for  violations,  SMPC  can  implement  hard 
 cryptographic  limitations  to  prevent  unauthorised 
 behaviour,  establishing  trust  in  the  system.  For  example  in 
 additive  secret  sharing  (a  form  of  SMPC),  a  single  number 
 can  be  divided  into  cryptographic  “shares”  which,  once 
 distributed  amongst  “shareholders”,  empower  each  of  those 
 shareholders  with  veto  power  over  when  and  how  that 
 number  (and  any  subsequent  numbers  it  is  used  to  create) 
 can  be  used  [8].  As  all  digital  computation  occurs  over 
 numbers,  this  is  a  very  powerful  and  general  means  of 
 enforcing  flow  governance.  Secure  enclaves  and  other  input 
 privacy techniques can also offer this ability. 

 9  SMPC  enables  the  selection  of  arbitrary  parties  to  govern 
 the  flow  over  arbitrary  information,  limited  only  by  the 
 compute  and  network  resources  of  the  chosen  information 
 shareholders. 

 Flow  governance  can  also  be  enacted  over  computation 
 [42]  .  Whereas  service  provider  flows  and  aggregation  flows 
 previously  required  a  trusted  third  party  to  observe  all 
 inputs  to  a  computation  in  order  to  create  the  output, 
 technical  flow  governance  systems  such  as  SMPC  have  no 
 such  limitation.  By  performing  computations  over 
 encrypted,  mutually  governed  information,  digital  systems 
 can  enforce  agreed-upon  checks  and  balances  among 
 shareholders,  in  ways  that  are  not  possible  in  physical 
 systems. 

 In Combination: A New Frontier for 
 Structured Transparency 

 Together,  these  tools  can  improve  governance  of 
 information  flows  and  thereby  reduce  the  costs  associated 
 with  sharing  information.  They  also  enable  much  more 
 precisely  structureed  social  and  technical  arrangements 
 than  their  analog  predecessors.  Most  importantly,  they 
 provide  (1)  the  ability  to  unbundle  information  such  that 
 one  needs  to  share  only  the  bits  necessary  for  a 
 collaboration,  (2)  the  ability  to  ensure  (for  example,  by 
 checking  a  hash)  that  data  hasn’t  been  edited,  (3)  a  solution 
 to  the  recursive  enforcement  problem  such  that  weak  actors 
 can  audit  information  about  strong  actors  to  which  they  do 
 not  themselves  have  access  (without  necessarily  becoming 
 strong),  and  (4),  advanced  flow  governance  tools  like 
 SMPC  which  allow  actors  to  share  governance  over  future 
 uses  of  digital  systems  even  and  especially  if  uncertainty 
 about future uses/mis-uses remains. 

 While  technology  alone  cannot  solve  all 
 information-sharing  issues,  these  new  capabilities  can  in 
 combination  complement  legal  and  social  systems  to 
 deliver  holistic  solutions  that  were  previously  impossible. 
 For  example,  consider  a  mobile  app  that  collects  and  stores 
 extensive  personal  information  about  its  users  (location, 
 health  data,  etc.).  Without  modern  structured  transparency 
 tooling,  users  would  have  to  accept  the  risks  of  misuse  as 
 the  price  of  using  the  product  in  order  to  receive  whatever 
 service  it  offers  (directions,  medical  advice,  etc.).  However, 
 with  an  awareness  of  these  techniques,  key  members  of 
 society  could  mandate  that  any  personal  data  remain 
 on-device,  or  that  any  off-device  operations  performed  on 
 such  data  must  follow  structured  transparency  principles. 
 Advocacy  and  activist  groups  could  make  such  requests, 
 and  consumers  could  expect  and  demand  more  of  the 
 services  offered  to  them.  With  knowledge  of  these 
 technologies,  regulators,  ethicists,  and  relevant  governance 
 bodies  —  can  push  for  adherence  to  more  responsible 
 information  flows.  Note  that  knowledge  is  as  important  as 
 capabilities:  Without  knowledge  of  capabilities,  we  cannot 
 know what to expect, or to demand. 
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 5   Illustrations of Structured 
 Transparency 
 To  help  ground  the  framework  of  Structured  Transparency 
 in  the  context  of  real-world  problems,  we  survey  the 
 following real-world use cases. 

 Improved Data Flows for Open Research 

 For  years,  the  open-data  movement  in  research  has 
 expressed  concern  that  the  inability  to  share  data  safely 
 (primarily  due  to  concerns  relating  to  the  copy  problem) 
 hampers  research  progress  [1,7,10,18,29,43]  .  Structured 
 transparency  enables  information  flows  that  can  answer 
 specific  research  questions  while  letting  the  data  owners 
 maintain  control  over  the  only  copy  of  their  research  data. 
 For instance: 

 ●  Technical  input  privacy  techniques  could  enable 
 data  owners  (hospitals,  labs,  statistics  offices, 
 etc.)  to  grant  researchers  the  ability  to  perform 
 specific  computations  over  their  data  without 
 providing  access  for  any  other  operations.  This 
 allows  the  researcher  to  answer  their  research 
 question  (‘what  is  the  mean  weight  of  newborns 
 in  this  city?’,  ‘how  does  my  algorithm  perform 
 on  your  clinical  MRI  dataset?’)  without  the 
 owner  facing  the  perils  of  the  copy  problem 
 [19,20]  . 

 ●  Using  technical  output  privacy  techniques,  data 
 owners  could  prevent  reverse  engineering  of  the 
 computation  output  to  reconstruct  inputs,  such  as 
 a hospital’s patient information. 

 ●  Input  verification  techniques  could  allow  data 
 owners  to  prove  to  researchers  various  attributes 
 of  the  dataset,  such  as  whether  or  not  it  was  used 
 in  another  experiment  (a  potentially  important 
 feature for research reproducibility). 

 ●  Output  verification  may  also  be  required  in 
 situations  that  feature  a  competitive  relationship 
 between  institutions  or  research  groups.  It  could, 
 for  example,  be  used  to  prove  that  a  key 
 statistical  result  was  actually  computed  by  the 
 data  owner  using  the  computations  requested  by 
 the  researcher  (as  opposed  to  stemming  from 
 shortcuts or mistakes). 

 ●  Flow  governance  could  distribute  control  across 
 third  parties  (e.g.  funding  bodies,  stakeholders  in 
 a  collaboration  network,  groups  safeguarding 
 rights  for  vulnerable  populations,  etc.)  to  enable 
 especially  sensitive  information  to  remain 
 available  for  appropriate  research  while 
 minimising risk of misuse. 

 In  summary,  stronger,  more  precise,  and  more  automated 
 controls  over  data  sharing  could  make  more  scientific  data 
 available  for  research,  increasing  the  pace  of  scientific 
 research in many empirically-driven fields. 

 Large-Scale Collaboration for Social Good 

 Addressing  many  societal  challenges  will  require 
 large-scale  coordination.  However,  privacy  concerns  can 
 impede  such  arrangements.  To  take  a  specific  example, 
 consider  energy  efficiency:  the  collection  of  detailed  energy 
 usage  data  from  smart  metres  has  immense  potential  both 
 to  reduce  unnecessary  carbon  emissions  and  to  save 
 consumers  money.  This  data,  however,  could  also  be  used 
 to  infer  occupancy  and  activity  patterns  in  great  detail, 
 down to which television channel is being watched  [38]  . 

 Structured  transparency  tools  could  enable  the  use  of 
 insights  from  usage  data  to  optimise  energy  consumption, 
 while  letting  customers  maintain  control  over  the  only  copy 
 of  their  data.  As  with  the  researchers  in  the  example  above, 
 the  metre  company  does  not  need  a  full  copy  of  this  data  in 
 order  to  achieve  their  goals;  they  only  require  the  output  of 
 specific  computations  (statistics,  model  training,  or  model 
 testing). 

 Technical  input  privacy  techniques  could  allow  providers  to 
 perform  their  smart  service  (for  instance,  turning  off  lights 
 when  no-one  is  home)  using  energy  usage  data  without 
 ever  seeing  it  in  its  entirety.  Using  technical  output  privacy 
 techniques,  smart-metre  companies  could  prevent  any 
 reverse  engineering  that  might  infringe  customer  privacy. 
 Flow  governance  could  distribute  control  beyond  the 
 private  companies  to  third  parties  such  as  consumer  interest 
 groups  unlikely  to  collude  against  the  consumer  in  a  data 
 attack  (e.g.  environmental  protection  or  privacy  rights 
 activist  organisations).  In  some  cases,  input  or  output 
 verification  may  be  necessary.  For  example,  an  energy 
 provider  might  have  an  incentive  to  modify  the  data  to  give 
 the  illusion  of  complying  with  a  regulation  or  achieving 
 success  in  an  energy  saving  campaign.  In  this  way,  each 
 aspect  of  the  structured  transparency  framework  has  a 
 plausible  role  in  facilitating  a  well  formed  information 
 flow. 

 Digital Systems of Accountability 

 Further,  we  consider  the  field  of  accountability  holistically. 
 Whether  it  is  a  government  holding  an  individual 
 accountable,  an  individual  holding  a  government 
 accountable,  government-to-government,  government-to- 
 corporation,  or  any  mixture  thereof,  accountability  is 
 almost  universally  limited  by  access  to  information. 
 Corruption  persists  when  it  goes  undetected,  so  why  are 
 there  not  systems  offering  universal  coverage  of  possible 
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 corrupt  practices?  The  answer  is  plain  when  considered 
 pragmatically;  the  relevant  information  would  need  to  be 
 available  for  non-colluding  parties  to  consume.  However  it 
 would  be  extremely  problematic  for  the  email,  text,  and 
 phone  records  of  citizens,  governments,  and  employees  to 
 embrace  this  form  of  radical  transparency.  As  a  result, 
 accountability  and  oversight  is  restrained  and  some 
 unknown  level  of  corruption  persists  across  all  levels  of 
 society. 

 Within  the  context  of  structured  transparency,  “well  formed 
 information  flows”  could  conceivably  provide  for  specific 
 bits  of  information  to  reach  appropriate  oversight  entities 
 without  collateral  information  leakage  — without 
 empowering  oversight  entities  with  information  other  than 
 the  specific  bits  indicating  the  patterns  to  which  they  are 
 responsible  for  observing.  And  as  a  response  to  the  classic 
 “who  watches  the  watchers”  challenge  earlier,  oversight 
 over  these  oversight  entities  could  also  be  facilitated  via 
 specific  flows  of  information,  again  without  this  third  party 
 necessarily  learning  anything  about  the  first  party.  Future 
 work  should  explore  the  implications  of  accountability 
 under a minimised recursive oversight problem. 

 Flow Governance in the AI Lifecycle 

 At  present,  AI  is  experiencing  a  rapid  advancement  in  its 
 capability  and  use.  As  these  systems  take  in  larger  amounts 
 of  information  — much  of  which  cannot  be  manually 
 expected  —  developing  novel  infrastructure  for  governing 
 AI  (and  its  supply  chain  of  data,  compute,  and  talent)  is  an 
 urgent  concern.  As  such,  the  creation,  deployment, 
 governance,  and  oversight  of  AI  models  is  an  area  of 
 special  relevance  to  structured  transparency.  As  AI  systems 
 make  their  way  into  increasingly  influential  roles  within 
 society,  the  number  of  stakeholders  and  diversity  of 
 incentives  increases.  This  both  raises  the  importance  and 
 complicates  governance  of  information  flows.  Structured 
 transparency  principles  have  many  uses  across  the  AI 
 model lifecycle. 

 Creation:  We  begin  by  considering  governance  desires  of 
 actors  in  the  supply  chain  of  an  AI  model.  If  multiple  actors 
 bear  the  cost  of  creation  by  pooling  datasets,  computational 
 resources,  and/or  AI  research  talent  in  the  creation  of  an  AI 
 model,  they  may  wish  to  ensure  that  subsequent  use  of  the 
 jointly  created  asset  is  governed  jointly  (for  example  to 
 distribute  profits  amongst  the  group),  cryptographically 
 preventing  any  specific  actor  from  using  the  model  without 
 the  other  owners’  consent.  A  situation  such  as  this  requires 
 a  full  structured  transparency  pipeline,  such  that  actors 
 retain  control  over  their  own  datasets  in  the  process,  and 
 the  resulting  model  resides  in  a  shared  governance  system 
 such as SMPC or a secure enclave. 

 Pre-deployment  audit:  After  creating  a  model,  the 
 owner(s)  may  take  steps  before  deploying  it,  such  as 
 subjecting  it  to  various  evaluations  (accuracy,  fairness,  bias, 
 robustness,  privacy,  etc.)  [59].  As  these  models  become 
 increasingly  influential  over  outcomes  in  the  real  world 
 (consider  an  AI  model  driving  a  car  or  determining  a  credit 
 rating  for  a  home-buyer),  the  efficacy  of  a  model  will  have 
 increasing importance to users. 

 Audit  Registration:  We  envision  a  public  registry  of 
 model  audits  powered  by  structured  transparency  [51].  An 
 auditor  who  claims  to  have  verified  a  specific  property  can 
 upload  a  signed  hash  of  the  model  alongside  their  claim.  In 
 other  words,  auditors  could  perform  evaluations  and 
 reliably  obtain  a  unique  identifier  of  the  model  (its  hash) 
 using  structured  transparency  techniques  without  ever 
 gaining direct access to model weights. 

 Deployment  and  audit  verification:  After  a  model  has 
 been  deployed,  structure  transparency  tools  could  verify  the 
 predictions  it  makes  to  users  against  an  audit  registry.  Input 
 and  output  verification  techniques  can  provably  provide  a 
 prediction  alongside  the  hash  of  the  model  that  created  the 
 prediction  and  the  hash  of  the  inputs  that  were  sent  into  the 
 model.  Thus,  for  example,  someone  using  a  machine 
 translation  AI  would  know  that  the  translation  they 
 received  used  the  text  they  sent  and  transformed  it  with  a 
 specific  model  chosen  from  the  audit  registry,  and  that  the 
 prediction was the output of only these two inputs. 

 Deployment  over  confidential  inputs:  Once  a  model  is 
 deployed,  it  becomes  a  part  of  the  information  flows  of  its 
 users.  If  the  model  is  hosted  by  its  owner,  users  of  the 
 system  may  be  concerned  that  when  they  send  data  to  the 
 model  for  evaluation,  the  model  owner  may  keep  a  copy  of 
 the  data  for  subsequent  use.  Input  and  output  privacy  and 
 verification  can  allow  users  to  facilitate  an  information 
 flow  while  ensuring  that  no  party  sees  the  data  sent  to  the 
 model.  The  same  information  flow  could  also  ensure  that 
 nobody but the user sees the model’s predictions either 

 Deployment  oversight:  While  an  AI  model  may  have  been 
 audited  before  deployment,  the  behaviour  of  an  AI  model  is 
 a  function  of  both  the  model  itself  and  the  data  being  fed 
 through  it.  Often  one  cannot  reliably  assess  a  model’s 
 qualities  until  it  is  running  in  the  context  of  its  real-world 
 setting  [49].  Via  structured  transparency,  an  external 
 auditor  could  evaluate  a  model  in  context  and  produce 
 another claim and hash for the audit registry. 

 One  project  is  already  testing  the  use  of  structured 
 transparency  tools  in  this  setting,  the  Christchurch  Call 
 Initiative  on  Algorithmic  Outcomes  (CCIAO).  Announced 
 by  New  Zealand  Prime  Minister  Jacinda  Ardern  and  French 
 President  Emmanuel  Macron  at  a  side  event  to  the  2022 
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 United  Nations  General  Assembly,  the  CCIAO  is  a  joint 
 project  between  Twitter,  Microsoft,  and  the  US  and  NZ 
 governments  [4]  .  In  the  coming  months,  the  CCIAO  plans 
 to  deploy  a  tool  called  PySyft  to  facilitate  external  civil 
 society  researchers  using  structured  transparency  principles 
 to  audit  deployed  recommender  systems  at  Twitter  and 
 Microsoft.  As  the  Christchurch  Call  is  a  coalition  including 
 many  online  service  providers,  the  CCIAO  has  room  for 
 expansion  to  additional  algorithm  partners  upon  successful 
 completion. 

 This  is  also  highly  related  to  the  recently  proposed 
 framework  of  structured  access  ,  which  proposes 
 constrained  APIs  for  overseeing  deployed  AI  systems  as  an 
 alternative to openly disseminating AI systems[48]. 

 Deployment  co-governance:  Under  circumstances  where 
 society  does  not  trust  the  parties  that  create  an  AI  system  to 
 exercise  unilateral  authority  over  its  operation,  structured 
 transparency  could  allow  co-governance  by  non-colluding 
 actors.  For  example,  an  AI  firm  might  elect  to  share 
 governance  with  an  outside  party  as  an  exercise  in  proving 
 compliance  with  a  norm  or  law.  Under  such  an 
 arrangement,  model  use  might  require  unanimous 
 stakeholder  approval.  This  enables  oversight  that  could 
 prove especially valuable in high-impact use cases [50]. 

 Deployment  outcome  evaluation:  differing  in  certain 
 ways  from  the  direct  evaluation  of  an  AI  model,  perhaps 
 the  most  important  metrics  for  which  structured 
 transparency  is  relevant  are  real  world  harms  caused  by  AI. 
 For  example,  a  jurisdiction  may  wish  to  ensure  that 
 algorithms  do  not  lead  to  unfair  discrimination  in  the  job 
 application  process  or  criminal  justice  system[45,  46,  47]. 
 While  one  method  might  be  to  evaluate  each  model 
 individually  on  a  holdout  test  dataset,  such  a  dataset  might 
 not  fully  capture  the  risks  faced  by  the  model  in  production. 
 The  ground-truth  standard  for  understanding  whether  an  AI 
 model  is  harmful  is  the  degree  to  which  the  deployed 
 system  causes  harm  when  deployed.  However,  data 
 measuring  harms  is  likely  to  sit  across  multiple 
 organisations.  One  can  imagine  a  structured  transparency 
 system  facilitating  a  collaboration  between  organisations 
 that  have  hiring  data  (perhaps  LinkedIn)  and  organisations 
 running  models  these  applicants  interacted  with  during 
 their  journeys.  This  could  facilitate  the  answering  of 
 questions  such  as,  “For  each  marginalised  and 
 non-marginalized  group,  what  is  their  relative  ability  to 
 obtain  a  computer  science  job  in  New  York  City?”.  Such  a 
 question  could  take  into  account  the  end-to-end  outcome 
 for  someone  living  in  New  York  City  as  opposed  to  merely 
 whether  each  individual  algorithm  is  meeting  a  local 
 standard  (e.g.,  allocating  a  certain  number  of  hiring 
 recommendations  to  each  group).  All  the  structured 
 transparency  guarantees  would  be  essential  for  the  creation 

 of  this  type  of  social  system,  and  upon  this  template  the 
 opportunity  for  ensuring  alignment  between  an  AI’s 
 impacts  and  society’s  values  seems  ripe  for  creative 
 exploration. 

 Deployment  prediction  provenance:  Often  it  is  important 
 for  someone  who  receives  a  piece  of  information  to  know 
 whether  it  was  generated  from  an  AI  model.  When  a  model 
 is  deployed,  it  can  retain  a  record  of  all  predictions 
 previously  made  and  empower  outside  users  to  check 
 whether  bits  found  in  the  wild  were  generated  by  a 
 particular  model  at  some  point.  While  short  strings  of  bits 
 may  create  false  positives,  adding  additional  filters 
 narrowing  the  list  of  days,  times,  and  recipients  can  create 
 additional precision around this type of service. 

 7   Conclusion 
 This  paper  attempts  to  anchor  a  conversation  around 
 structured  transparency  and  its  relationship  to 
 collaboration.  We  have  outlined  a  framework  that  describes 
 how  a  set  of  rapidly-developing  technical  tools  can  help 
 design  and  enforce  more  precise  information  flows  than 
 those  currently  in  widespread  use.  These  methods  are  not 
 complete  solutions  in  themselves,  but  by  enabling  selective 
 sharing  and  disclosure  of  information,  they  offer  an 
 opportunity  to  expand  the  Pareto  frontier  of  trade-offs 
 between  use  and  mis-use.  We  have  presented  several 
 examples  illustrating  how  structured  transparency  tools 
 could  enable  collaborators  to  reduce  the  informational  costs 
 and  risks  of  collaboration.  These  tools  sit  at  the  intersection 
 of  a  number  of  active  fields  of  research  and  have  potential 
 applications  for  many  more.  It  is  our  hope  that  this 
 framework  acts  as  a  useful  bridge  between  disciplines,  and 
 we look forward to receiving feedback. 
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