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Abstract— Objective: This study aims to develop and validate a 

novel framework, iPhantom, for automated creation of patient-

specific phantoms or “digital-twins (DT)” using patient medical 

images. The framework is applied to assess radiation dose to 

radiosensitive organs in CT imaging of individual patients. Method: 

From patient CT images, iPhantom segments selected anchor 

organs (e.g. liver, bones, pancreas) using a learning-based model 

developed for multi-organ CT segmentation. Organs challenging to 

segment (e.g. intestines) are incorporated from a matched phantom 

template, using a diffeomorphic registration model developed for 

multi-organ phantom-voxels. The resulting full-patient phantoms 

are used to assess organ doses during routine CT exams. Result: 

iPhantom was validated on both the XCAT (n=50) and an 

independent clinical (n=10) dataset with similar accuracy. 

iPhantom precisely predicted all organ locations with good 

accuracy of Dice Similarity Coefficients (DSC) >0.6 for anchor 

organs and DSC of 0.3-0.9 for all other organs. iPhantom showed 

<10% dose errors for the majority of organs, which was notably 

superior to the state-of-the-art baseline method (20-35% dose 

errors). Conclusion: iPhantom enables automated and accurate 

creation of patient-specific phantoms and, for the first time, 
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provides sufficient and automated patient-specific dose estimates 

for CT dosimetry. Significance: The new framework brings the 

creation and application of CHPs to the level of individual CHPs 

through automation, achieving a wider and precise organ 

localization, paving the way for clinical monitoring, and 

personalized optimization, and large-scale research. 

 
Index Terms— computational phantoms, organ dose, CT, 

segmentation, deformable registration 

I. INTRODUCTION 

OMPUTATIONAL human phantoms (CHPs) are 

mathematical representations of the human anatomy in a 

digital format. CHPs and their applications have co-evolved in 

the last six decades [1, 2]. CHP development is driven by 

important and growing applications, which include 

retrospective, prospective, or real-time radiation dosimetry, 

individual cancer risk estimation, diagnostic and interventional 

radiology studies, monitoring for environmental radiation 

exposure, assessment of medical imaging protocols, design 

and verification of shielding protection, and virtual clinical 

trials for regulatory submissions[1-10]. For these applications, 

it is essential to have CHPs that realistically reflect individual 

patients (i.e., patient-specific) as well as the population at 

large (i.e., population-specific) to echo anatomical variations 

of real clinical cases and scenarios.   

 Toward that aim, recent development of CHPs has focused 

on realistically representing given individuals for patient-

specific investigations or assembling many anatomically 

variable phantoms at large scale for population-based studies. 

The phantoms are primarily developed by manually 

segmenting a limited number of patient cases. However, 

segmentation is a time-consuming process that can take many 

months to complete per phantom depending on the level of 

detail required. Furthermore, the work involves inter- and 

intra-operator variability that incorporates a certain degree of 

subjectivity in the process. Even addressing these limitations, 

the current automatic segmentation techniques based on tissue 

texture patterns and/or manually-labeled training resources are 

still limited to only a handful of organs with high-contrast [7, 

10-12]. They are generally incapable of differentiating small 

organs or adjacent organs with similar textures or gray scale. 

Thus, segmentation alone is inadequate to reflect the extensive 
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range of organs essential for representing the human body. 

This necessitates a combination of segmentation and 

deformation to create CHPs. 

To facilitate the development of CHPs, deformable 

techniques have been used to augment existing phantoms to 

model additional anatomically variable models [1, 2]. 

Populations of new models can be created by deforming given 

template phantoms to match variations observed in patient 

data.  However, these methods are still highly constrained by 

the segmentation process. Overall, the current methods cannot 

be applied to create large sets of CHPs or to create digital 

representations, so-called digital twins, of clinical cases. 

In this study, we develop a framework, iPhantom, to 

address the challenging problem of automatically and 

accurately creating CHPs in a patient-specific manner toward 

large scale CHP development and clinical patient-specific 

implementation. The work draws upon a validated non-

automatic pipeline that developed the widely used XCAT 

phantoms [13-15]. Specifically, the work addresses two major 

obstacles to generate phantoms directly from patient medical 

images. The first obstacle is to extract patient specific 

information. We developed a machine learning model 

segmenting the key, so-called anchor, organs automatically 

from medical images. Second, a complete CHP requires all 

major organs, including the low contrast ones. We adapted a 

deformation morphing technique developed for the multi-

organ registration problem in phantom space to embed 

unsegmented structures from an anatomical template. The 

template was obtained using a parameterized matching method 

to draw upon the complete human models from the XCAT 

phantom library. We systematically validate the framework in 

terms of phantom geometry and its application for organ 

radiation dosimetry. This specific application is motivated by 

the strong need to assess radiation dose and its associated risk 

to the patient during an exam in a patient-specific manner. 

Organ dose has been regarded as the most relevant metric to 

characterize patient risk. However, clinical quantification of 

this metric has been hindered due to the limitation in creating 

accurate CHPs. 

In this paper we detail a process to create CHPs from 

patient images automatically. The preliminary concept was 

first introduced at the 2018 SPIE Medical Imaging conference 

[16]. The present manuscript significantly extends that 

concept into a framework with each individual component 

specifically developed for the purpose of creating patient-

specific CHPs. The framework is further applied to the task of 

patient-specific organ dose estimation by incorporating a 

recently released GPU-based Monte Carlo simulation package 

for CT scans with both fixed and modulated tube current. We 

demonstrate the clinical utility of the framework by applying it 

to unseen clinical patient images to create a new set of patient-

specific phantoms and quantitatively validate the results.  

The rest of the paper is organized as follows. We introduce 

the iPhantom pipeline and analysis in Section II. Then, we 

describe its application to radiation dosimetry in CT in 

Sections III. The validation experiments and results are 

reported in Sections IV and V. Finally, we present conclusions 

and discussions in Section VI. 

II. IPHANTOM FRAMEWORK  

The proposed framework aims at creating patient-specific 

phantoms directly from patient-medical images in a fully 

automated pipeline. The framework first automatically 

segments a selected set of organs and structures. These organs 

are those rendered in high contrast in CT, which can be 

delineated or segmented with high fidelity. The segmentation 

of the remaining organs, however, may suffer from a great 

degree of uncertainty. Thus, the framework fuses the initial 

segmentation results with an anatomical template that will be 

used to fill in the missing structures in the newly made 

phantoms. This component is necessary since the body 

 
Fig. 1.  Flow-chart of the iPhantom framework. 
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consists of many organs (34 organs investigated in this study), 

large and small, with different morphology and textures; 

reliably segmenting all of them automatically (even manually) 

is very challenging. For this work, we used for templates the 

XCAT phantom library of 60 highly detailed adult models, 

developed in our laboratory and widely used for many 

applications [13, 14] 

Figure 1 summarizes the steps of the iPhantom framework. 

First, anchor organs within a given set of patient CT data are 

automatically segmented, using a learning-based segmentation 

model developed to segment key organs, to define an initial 

target (Figure 1. A.). This person-specific definition of anchor 

organs is used to guide the fill-in of non-anchor organs.  An 

XCAT phantom template that best matches the partially 

segmented target is then selected using parameters chosen to 

reflect anatomical similarities (Figure 1. B.). Finally, a 

mapping between the template XCAT model and the patient 

target was calculated using a registration model adapted for 

the multi-organ scenario of the phantom space. The mapping 

is used to transport the non-anchor organs from the template 

space to define them within the new patient model (Figure 1. 

C.). In this study, we developed both linear (affine) and non-

linear (diffeomorphic) mapping methods. 

A. Automated segmentation of anchor organs 

 Accurate anchor-organ segmentation is critical to the 

automated creation of individualized phantoms, setting the 

stage for the subsequent steps. The specific set of anchor 

organs were determined based on state-of-the-art multi-organ 

segmentation of CT images of the chest-abdominal-pelvis 

region [11, 12] and our available labeled training images. 

Twenty-two organs and structures were selected: thyroid, lung 

(L/R), heart, liver, spleen, kidney (L/R), gallbladder, ribs 

(L/R), bladder, spine, clavicles, sternum, scapular, stomach, 

pancreas, pelvis, femur, arm, and body. The body represents 

all organs and tissues not individually segmented but included 

within the body contour.  

3D convolutional neural networks were developed using a 

Unet architecture is similar to that described by Çiçek et al. 

[17]  and detailed in the Appendix Section I.A. In designing 

the training objective, or the loss function, we considered 

multiple classes (organs) as well as the difference in organ 

volume, i.e., the number of voxels in an organ. For example, 

the ratio in volume between the lung and thyroid can be up to 

three orders of magnitude. To overcome the inter-class 

imbalance problem, we made use of the combined dice loss 

and cross-entropy loss functions similar to Taghanaki et al. 

[18]. The dice loss has been used for multi-organ 

segmentation, even though it may lead to failure to converge 

for small organs due to the vanishing gradient. The cross-

entropy loss regularizes the objective function [18].  

Specifically, we used the following loss function 

where 𝑤1 and w2 are weighting coefficients for the dice and 

cross entropy loss, respectively; 𝑝𝑙
𝑖  and 𝑟𝑙

𝑖 are the 

segmentation probability and binary indicator, respectively, 

for voxel 𝑖 and class 𝑙. In this study, we chose 𝑤1 = 1 and 

w2 =
1

L
, where L is the total number of classes. 

 For training the network, we utilized and refined the 

manually segmented CT data upon which the XCAT library of 

phantoms were based. In practice, the GPUs we used had 

limited memory resources. To account for this, we cropped the 

training images to 128x128x128. Within this input size 

constraint, to balance sufficient global content for training and 

resolution for creating phantoms, the images were down-

sampled to a longitudinal resolution of 5 mm and an in-plane 

resolution of 2.5 mm. The inputs were at the size that 

contained the majority volume of the patient trunk. In the 

training, CT images were randomly sampled with each 

structure centered, following Pawlowski et al., to ensure all 

the structures were trained [12]. For inference, the whole CT 

images, rather than cropped segments, were used as inputs to 

speed up prediction and eliminate prediction window 

boundary artifact.  Once developed, the segmentation method 

was validated as described in Section IV.A.  

B. Parameterized template matching 

After segmentation, a parameterized matching strategy was 

developed to identify a template phantom that best matches 

the patient determined by the segmented anchor anatomy. It 

was assumed that if the anchor layout is similar between a 

patient and a phantom, the rest of the organs will show a 

higher likelihood of similarity. This similarity also results in 

the transformation computation being less expensive. Thus, 

we find phantom i that minimizes the distance to the patient 

defined by parameters Θ𝑖 = {𝜃1,𝑖, 𝜃2,𝑖, … 𝜃𝑘,𝑖} derived from the 

anchor organs as 

𝑖 = 𝑎𝑟𝑔 min
𝑖
‖Θ𝑖 − Θ0‖2, 

subject to 𝑖 ∈ 𝐺, 
(2) 

where Θ𝑖  and Θ0 are anatomical parameters for phantom i and 

the target patient, respectively, and 𝐺 is the set of phantoms 

satisfying a constraint (e.g., age range, gender).  

In previous work, the trunk height has been shown to be a 

good indicator of organ distribution [19]. Likewise, the trunk 

diameter has been shown to be related to the thickness of 

tissue outside the skeleton [20]. Therefore, in this initial 

implementation, we defined 𝜃1,𝑖 as the phantom trunk height, 

and 𝜃2,𝑖 as the phantom trunk effective diameter defined as 

𝜃2 = 2√
V

hπ
, where V and ℎ are the segmented trunk contour 

volume and height, respectively. The matched phantom was 

then chosen iteratively from 𝐺 using (2). 

C. Registration and embedding of non-anchor organs 

 With a matching template phantom, the final step was to 

calculate a mapping from the template space to the target 

patient space. A mapping may be described as the product 

composition of an affine mapping for initial global alignment 

and a non-rigid, non-linear diffeomorphic mapping. The affine 

mapping has only shifting, scaling and sheering parameters 

and can be determined fast. The affine-transformed template is 

then used for the diffeomorphic registration to the target. The 

diffeomorphic transformation enables large deformation 

calculations while preserving the topology. We developed and 

𝐿𝑜𝑠𝑠 = 𝑤1 (1 −
1

𝐿
∑ (

2∑ 𝑝𝑙
𝑖𝑟𝑙
𝑖

𝑖

∑ 𝑝𝑙
𝑖+𝑟𝑙

𝑖
𝑖

)𝑙 ) −𝑤2∑ 𝑟𝑙
𝑖𝑙𝑜𝑔⁡(𝑝𝑙

𝑖𝑟𝑙
𝑖)𝑙 , (1) 
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evaluated mapping calculations with both 1) affine alone and 

2) combined affine with diffeomorphic mapping (labeled as 

diffeomorphic mapping). 

From different types of deformable registration models and 

methods that exist today [21], we adapted the Advanced 

Normalization Tools (ANTs), underlain by the symmetric 

normalization (SyN) method, recognized for its reliable 

accuracy and wide use for medical research [22, 23]. We 

modified the transformation calculation parameters from its 

common utility in brain image registration to calculate the 

mapping from the template to the target. The mapping was 

applied to the non-anchor organs located in the template to 

‘fill-in” these organs in the target. 

The registration calculation adapted the SyN method and 

we adjusted parameters including similarity metrics and their 

associated parameters, a gradient step, and Gaussian 

smoothing for velocity and deformation field. The parameters 

were searched by conducting a large set of experiments over 

possible parameters to identify those with the sufficient 

registration accuracy. The similarity metrics between the 

phantoms were calculated in both intensity-based and label-

based spaces. Intensity-based metrics are advantageous for 

regions with more drastic changes (e.g. soft tissue and bone 

boundaries) while label-based metrics provide additional 

anatomical similarity knowledge. For intensity-based phantom 

input, we generated synthesized CT images from the template 

and target voxel phantoms by assigning organ intensities (HU 

values) derived from the averaged organ voxels of the XCAT 

patient CT images. For label-based phantom input, the 

template and target voxel phantoms were formatted with 

corresponding unique IDs assigned to the segmented 

structures. For organs with two separate regions on both left 

and right sides of the body (e.g., lungs), unique labels were 

assigned for each side. For the affine transform, we used the 

intensity-based mutual information metric. For the deformable 

transform, we used the combined intensity-based cross-

correlation and label-based point-set expectation metrics. The 

two metrics were weighted and summed (0.1/0.9). For cross-

correlation, we specified a neighborhood of 27 voxels for an 

efficient sliding window-based local cross-correlation 

calculation. The point set expectation calculates the weighted 

sum of distances of a voxel in one image to a set of voxels in 

the other image [24]. The weighting was determined by the 

distance in a normal function within a neighborhood of 20 

voxels.  

III. THE APPLICATION TO PATIENT-SPECIFIC ORGAN 

DOSIMETRY   

The phantoms created using the framework are portable to 

applications in many domains. In this study, we applied and 

validated the framework in the classic and actively researched 

area of patient-specific organ dosimetry in computed 

tomography. Computed tomography has been widely used for 

diagnosis of major diseases; however, its potential harmful 

radiation effect has been a concern for healthcare providers 

and patients. Patient-specific organ dose has been regarded as 

the most relevant metric to quantify radiation exposure and the 

associated risk. However, it has not been widely utilized 

clinically due to the challenge of automatically creating 

patient-specific phantoms necessary to estimate credible organ 

doses. We attempted to address this limitation. 

For this validation, we utilized a  CT organ dose estimation 

module [25] developed in our laboratory. As input, the patient-

specific phantoms were converted into voxelized dosimetry 

phantoms by assigning materials to each organ and structure. 

The CT technical parameters are specified in Section IV D, 

including vendor and CT geometry, bowtie, spectrum, and 

tube current profile. The absorbed dose was obtained using a 

validated real-time Monte Carlo (MC) tool, developed using 

the MC-GPU framework [26], to simulate photon transport 

across the voxelized dosimetry phantoms.  

In general, organ dose estimation requires different levels of 

accuracy in terms of the phantom geometry for fixed and 

modulated tube current. It has been demonstrated that the 

organ dose estimation under fixed tube current is reasonably 

accurate as long as the patient is matched to a phantom with 

similar size, as the radiation field under fixed tube current is 

relatively uniform [20]. Organ dose estimation under the more 

prevalently used TCM requires the organs localized more 

closely to the patient, as the radiation field is more 

heterogeneous. We evaluated organ dose estimation accuracies 

under both fixed and modulated tube current. 

 
Fig. 2. Validation scheme for the XCAT experiments with a) the 

segmentation component, b) registration component, and c) the baseline 

organ dose error estimation. Oval represents data, parallelogram represents 
operation, rectangular represents pre-computed functions. Superscripts seg, 

reg, mat represent studies for segmentation, registration, and matching 

respectively. Subscripts 0 represents reference, and i represents the ith 

phantom.  The symbols are listed in Table 1.  
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IV. VALIDATION 

 We systematically validated the iPhantom framework 

using the XCAT phantoms and the CT data upon which they 

were based (XCAT datasets) in a cross-validation approach. 

We further applied the framework to clinical CT images to 

evaluate the framework’s generalizability in creating new 

patient-specific phantoms. 

 For the XCAT datasets, we validated the segmentation 

stage and data fusion stage (matching and registration) 

individually. The XCAT datasets were not directly used to 

validate the full pipeline because the XCAT geometries have 

been generalized and altered to adapt to many applications 

(e.g., respiratory and cardiac motion simulations) and thus are 

no longer fully aligned to their original CT images. We took 

advantage of the XCAT datasets consisting of an extensive 

range of organs within a population to validate individual 

components of the iPhantom framework.  We used the 

manually segmented CT data upon which the XCAT library of 

phantoms were based to validate the anchor organ 

segmentation accuracy. We further adopted the voxelized 

XCAT phantoms to assess the registration calculation and 

non-anchor organ embedding of the framework. A schematic 

of the validation strategy for the segmentation validation, 

registration validation, and a baseline dose error estimation is 

shown in Figure 2. 

A. Segmentation validation 

We used fifty chest-abdomen-pelvis CT datasets that were 

part of the XCAT modeling. We further refined and checked 

their original manual segmentation under supervision of a 

radiologist (23 years of experience). The image data show 

clinical anatomical variations with no abnormalities (20/30 F 

/M; age range: 18 - 78 y.o.; trunk effective diameter range: 24 

- 39 cm). The twenty-two organs and structures listed in 

Section II.A were segmented in the data. 

A five-fold cross-validation was performed to train and 

validate the segmentation models. Each testing CT dataset was 

automatically segmented using the trained model of each fold 

and compared to its corresponding expert manual 

segmentation in terms of geometrical accuracy and estimated 

dose (metrics described in Section IV.D.). In each fold, the 

training, validation, and test set were divided as 30, 10, and 10 

of the cases, respectively. The model was implemented by 

Keras with a Tensorflow backend with Adam optimizer. For 

training, we used 24,000 iterations with a learning rate of 10e-

3 and 10e-4 for the first and second half of iterations, 

respectively. Training took about 20 hours, and the prediction 

of one patient took about 1-20 seconds using a Titan RTX 

GPU with 24 GB memory. 

B.  Registration validation 

To validate the registration accuracy, we performed two 

experiments: 1) a leave-one-phantom-out, and 2) a leave-one-

organ-out.  The leave-one-phantom-out approach was used to 

assess the ability of the framework in predicting the organs for 

unknown targets. The leave-one-organ-out approach was used 

to evaluate the accuracy of predictions with different anchor 

organs left out. The anchor organs from the XCAT phantoms 

were created based on segmentation, while the non-anchor 

organs were derived from a previously developed, not-

segmentation-based registration approach. The leave-one-

organ organ validation attempted to evaluate the accuracy with 

segmentation-based ground truth. 

Furthermore, to evaluate the isolated effect of 

diffeomorphic deformation, we assessed the two registration 

methods, one using only an affine transformation and one with 

the combined affine and diffeomorphic transformation 

(labeled as diffeomorphic deformation in the results). 

For this validation, we voxelized 50 XCAT phantoms from 

the existing library to obtain anchor and non-anchor organ 

phantom voxels (organ types specified in each experiment). 

To simulate the prior segmentation step, the target phantom 

was set to resemble the "segmented" image by setting each of 

the anchor organs to unique integer IDs with the rest of the 

structures set to a body ID. The matched XCAT was set up in 

the same manner to create a corresponding template image. 

Given these images, the framework was used to calculate the 

transform from the template to the target. The transformation 

was applied to the template with full anatomy to predict the 

remaining anatomy of the target, compared to the original 

target phantom, using the metrics as outlined in Section IV. D. 

The procedure for each target phantom is detailed in Fig 2b. 

For computational efficiency in terms of the registration as 

well as the dosimetry calculations, in all registration 

experiments, the XCAT phantoms were voxelized at an 

isotropic resolution of 3.45 mm. 

1) Leave-one-phantom-out experiment 

For this experiment, the anchor organ types were those 

specified in Section II A. The non-anchor organs included all 

other radiosensitive structures: thymus, larynx pharynx, 

trachea bronchi, esophagus, breasts, large intestine, adrenals, 

small intestine, ovaries, testes, uterus, and vagina.  

In the leave-one-phantom-out experiment, each of 50 

XCAT phantoms was used as a target while the remaining 49 

were used as the template library. Each target XCAT was 

matched to a template from the remaining 49 using the 

methods described in II.B. 

2) Leave-one-organ-out experiment 

Within each of the 50 leave-one-phantom-out experiments, 

we performed multiple leave-one-organ-out experiments. In 

each leave-one-organ-out experiment, one segmented organ 

was left out and the rest of the organs were used as the anchor 

organs. The left-out organ was filled in using the iPhantom 

registration module and assessed for accuracy using metrics 

described in Section IV. D. 

C. Application to new CT data 

The iPhantom framework was tested using new CT datasets, 

not previously used in the XCAT phantom creation. This 

HIPPA compliant study included ten randomly selected 

patients who underwent Chest-abdomen-pelvis CT scans from 

our institution from January 2017 to May 2017. Ten chest-

abdomen-pelvic CT images were included in this experiment 

(4F/6M; age range: 35-83 y.o.; trunk effective diameter range: 

24 - 44 cm).  For each patient, the anchor organs used in the 



 6 

1st experiment were manually delineated by a radiologist with 

23 years of experience. This annotation was used as the 

evaluation reference. The iPhantom framework was applied to 

these clinical images to generate patient-specific phantoms 

and to evaluate the framework accuracy.  

Furthermore, using the CT images and the manual 

annotations as reference, we evaluated the framework 

accuracy for segmentation and registration components using 

the metrics described in the Section IV. D. In detail, the 

trained segmentation model by the XCAT dataset (Section IV. 

A.) was applied to these new CT images to predict organ 

labels. The predicted and reference segmentation were 

compared by both geometry and organ dose using the same 

scheme as in Fig. 2a. The registration model was evaluated 

using the leave-one-organ-out approach. We used both the 

manual (reference) and the predicted segmentation as the 

initial target to evaluate the isolated registration error and the 

overall segmentation and registration error, respectively. The 

initial target phantom was then matched to an XCAT and had 

the left-out organ filled in using the proposed registration 

module. The template phantom libraries consisted of all the 50 

XCAT phantoms with all anchor organs as used in section 

IV.B. 1). The filled-in organs were compared with its manual 

delineation using the scheme shown in Fig. 2b. For organ dose 

estimation, we extracted the actual tube current modulation 

profile from the CT image DICOM headers to mimic the scans 

more realistically. 

D. Validation metrics 

For each study, comparisons of the predicted anatomy 

versus the known truth anatomies were made in terms of the 

geometrical accuracy of the organs and structures as well as 

estimated CT radiation dose. Geometrical accuracy of the 

predicted anatomy as compared to the known truth was 

measured by the dice similarity coefficients (DSC).   

 We measured the dose differences between the phantoms 

generated from each test set and its reference using the organ 

dose module. Without loss of generalizability, the organ doses 

were estimated using a typical clinical protocol. This 

simulation included a Light Speed VCT scanner (GE 

Healthcare) with explicitly modeled gantry geometry, bowtie, 

and spectrum. A chest-abdominal-pelvis protocol was 

performed with the scan converging 1 cm above the lung and 

1cm below the pelvis. The CT techniques were 120 kV, pitch 

of 1.375, and collimation of 40 mm for simulated scans with 

both modulated and fixed tube current. The tube current 

modulation profile was synthesized as a function of patient 

attenuation at each projection angle, scanner-specific 

geometry, bowtie type, and kV using the method described by 

Li et al [27]. In this study, we used the ‘strong’ TCM 

configuration (i.e., 𝛼 = 1 in Li et al. [27]) to simulate a 

scenario with the most heterogeneous radiation field providing 

an upper bound in organ dose discrepancy.    

 The organ dose differences between the dose from the 𝑖𝑡ℎ 

reference phantom (𝐷0,𝑖) and that from the phantom generated 

from the test set (𝐷𝑖) were compared by absolute relative error 

(ARE) as 

𝜀𝑖 =
|𝐷𝑖 − 𝐷0,𝑖|

𝐷0,𝑖
100%, (3) 

with the mean of 𝜀𝑖  calculated across all the tests (MAE). 

E. Baseline method 

We assessed organ dose errors using an alternative baseline 

method to provide a dose accuracy reference. In many state-

of-the-art approaches in automatically estimating organ doses, 

the patient anatomy is represented by a matched 

computational phantom without further post-processing (e.g., 

registration) [19, 28]. Thus, for this baseline comparison, we 

matched each phantom (reference) to another phantom 

(predicted anatomy) in a leave-one-phantom-out validation 

approach across the 50 XCAT phantoms. The matched 

phantom was selected using the proposed parametrized 

matching method (Section II.B). Instead of using affine or 

diffeomorphic registration to align the phantoms to the initial 

target, the matched phantom was aligned to the patient using 

anatomical landmarks (top of the lung and bottom of pelvis).   

We reported organ dose differences between each reference 

phantom and its matched phantom. This method reasonably 

represented the state-of-the-art in that 1) the XCAT phantom 

population is relatively large within the literature, and 2) the 

matching includes two decisive parameters (i.e., height and 

width) that influence organ dose.  

V. RESULTS 

In this section, we present the validation results. We first 

show geometry and organ dose estimation accuracy of the 

segmentation and data fusion stages, respectively, using the 

 
Fig. 3.  Gemometry valiation results of the segmentation component using XCAT datasets in a five-fold cross validaiton on the test set. a) Example 

segmentation results overlaid onto the patient CT data for patient with medican cross-organ average DSC. B) Box plot summarizing the DSC results calculated 

from the reference and predicted segmentations from each test case. 
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XCAT dataset. We further provide overall dose error 

surrogates combining segmentation and registration dose 

errors and compare them with the baseline dose errors. 

Finally, we show the clinical data validation results. The 

supplemental tables and figures for the XCAT and clinical 

datasets were presented in Appendix section I.B. and I.C., 

respectively.  

A. Geometry validation 

Segmentation. Fig. 3 shows the results of segmentation 

validation using the XCAT dataset. The results show a 

sufficient segmentation performance, especially in clear 

discrimination of organ material types as soft-tissue, bone, and 

lung, which are essential for accurate dose calculation. 

Specifically, large structures (e.g., lung and body) show an 

average DSC greater than 0.98. Large soft tissue organs (liver, 

spleen, kidneys) show an average DSC greater than 0.9. Soft 

tissue organs with relatively irregular shape (pancreas, 

bladder) or smaller size (thyroid, gallbladder) show an average 

DSC of 0.6-0.8. Bones show an average DSC > 0.85. 

Registration leave-one-phantom-out. Fig. 4 shows the 

results of registration validation using the leave-one-phantom-

out approach. For most anchor organs, affine transformation 

and diffeomorphic deformation resulted in a DSC of 0.2-0.6 

and 0.8-0.9, respectively. For filled in organs, affine shows a 

reasonable DSC of 0.2-0.8 and the diffeomorphic deformation 

improves the results to 0.3-0.9. Indicated by the positive DSC, 

both affine and diffeomorphic transformations sufficiently fill 

in the organs. The improved performance of diffeomorphic 

deformation is due to the fact that the affine transformation is 

linear with a limited degree of freedom. The diffeomorphic 

transformation is non-linear and more flexible, resulting in 

better anchor organ alignment. 

This superior anchor organ framework results in a more 

accurate prediction of unsegmented organs. This effect can be 

further observed in that for non-anchor organs bordered by 

anchor organs in multiple directions, such as the trachea-

bronchi, thymus, esophagus, and adrenals, the gain from the 

diffeomorphic deformation is higher. On the contrary, for non-

anchor organs with limited constraints, such as the breast and 

larynx-pharynx, the DSCs were moderately improved from 

deformation. 

Registration leave-one-organ-out. Fig. 5 shows the results 

of registration validation using the leave-one-organ-out 

approach for an example case.  Quantitative results (Appendix 

Fig. A1) show a similar trend that both affine (DSC of 0.2-0.8 

for both anchor and non-anchor organs) and diffeomorphic 

(DSC of 0.8-0.9 for anchor organs and DSC of 0.4-0.9 for 

non-anchor organs) transformation are sufficiently able to fill 

in organs, with superior performance from the diffeomorphic 

deformation. The affine transformation results are not 

substantially affected by whether the organ or its neighboring 

organs are anchors or left-out. This demonstrates that this non-

linear transformation is mainly optimized for whole-body 

features rather than those from local context. The 

diffeomorphic deformation shows high transformation 

accuracy for most anchor organs. This considerable 

improvement is minimally affected regardless of which organ 

is left out, demonstrating the flexibility of this nonlinear 

method. 

B. Dosimetry validation 

 Fig. 6 shows representative simulated dose maps from a 

 
Fig. 4.  Results of the registration component validation using the leave-one-

phantom out approach with the XCAT dataset. a) Rendering of a reference, 

the matched, and the matched model with affine and diffeomorphic 
transformations. b, c) Box plot of dice similarity coefficients (DSC) between 

the reference and matched with transformation for b) anchor organs and c) 

non-anchor organs for all XCAT phantoms. The results show that the 

diffeomorphic transformation improves the prediction for the filled in organs. 

 
Fig. 5.  Registration geometry-based validation of the XCAT dataset using 

the leave-one-organ-out approach. Rendering of an example case (same case 
as in Fig. 4) where the lungs (top), kidneys (middle), and pelvis (bottom) are 

left out respectively and filled in using affine transformation and 

diffeomorphic deformation.   
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reference and the test set case from a segmentation validation 

experiment as well as a separate registration leave-one-

phantom-out validation. For segmentation validation, the dose 

maps are similar between the reference and the test set 

phantoms, except for slight discrepancies between bone 

boundary regions, demonstrating general agreement in CT 

material segmentation between the iPhantom framework and 

the reference. For the registration validation, the dose maps of 

the phantom from the test set are similar to those of the 

reference, with the one generated with diffeomorphic 

deformation exhibiting better results than the affine method 

alone. 

 Fig. 7 shows the mean absolute relative error between 

reference phantoms and their corresponding predicted 

anatomy from the iPhantom framework averaged across the 50 

XCAT patients. For the segmentation validations (Fig. 7a), in 

general, anchor organs with DSC > 0.85 (lung, heart, liver, 

spleen, kidneys and bones) show a MAE of 0.5-1.5% for both 

fixed and modulated tube current scans. Organs challenging to 

segment (stomach, pancreas, bladder, gallbladder) show an 

average error of 1.5-4.5% and 2.5-5% for fixed and modulated 

scans, respectively. The MAE for thyroid is 12% for both 

fixed and modulated tube current. The dose errors from 

segmentation are generally small.   

The filled-in organs introduce dose errors not only to the 

filled-in organs, but also to the anchor organs, resulting in 

anchor organs with a MAE of 2.5-6.5% by affine 

transformation, and 0.5-2.5% by diffeomorphic deformation 

for both fixed and modulated tube current (Fig. 7b). Both 

affine and diffeomorphic transformation show relatively small 

errors, with errors from diffeomorphic transformation being 

comparable to those from segmentation. 

The overall errors to anchor organs combining segmentation 

(Fig. 7a) and registration (Fig. 7b) are 3-8% for affine 

transformation, and 1.5-5.5% for diffeomorphic deformation 

for both fixed and modulated tube current (Fig. 7c). Except for 

the thyroid, the MAE from the alternative baseline method 

(Section IV. E) are 7-14.5% for fixed tube current (Appendix 

Fig. A2a), and 23 – 33.5% for modulated tube current (Fig. 

7c). The results demonstrate the sufficient and superior 

performance of the proposed approach for anchor organs. 

Fig. 7d show dose errors for non-anchor organs. For fixed 

tube current (Appendix Fig. A2b), except for small organs or 

organs not fully constrained by anchors (breasts, larynx-

 
Fig. 6. Dose validation of the XCAT dataset. Dose maps of an example XCAT and the corresponding phantoms from the test set of the a) segmentation 

validation, and b) leave-one-phantom-out registration validation from simulated scans using fixed and modulated (bottom) tube current. 

  

 
Fig. 7.  Absolute relative error (%) of organ doses from phantoms from the 

test set and the reference averaged across the 50 XCAT for scans in leave-
one-phantom-out validation. Organ dose errors to anchor organs result from 

a) segmentation of anchor organs, b) registration of non-anchor organs, and 

c) combining segmentation (a) and registration (b) errors or an alternative 

baseline method. d) Organ dose errors to embedded organs result from 

registration. The results on c) and d) are based on tube current modulated 

(TCM) scans, with the results from fixed tube current shown in the appendix. 
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pharynx, and testes), the affine method shows comparable 

results to the alternative baseline method (MAE: affine 3-18%, 

match 3-19%), with the MAE reduced to 1.5-7.0% with 

diffeomorphic deformation. Breasts, larynx-pharynx, and 

testes show relatively large errors with substantially superior 

results from diffeomorphic deformation (MAE: match 15-

61%, affine 18-67%, deform 14-32%).  

For modulated tube current (Fig. 7d), compared to their 

corresponding MAE under fixed tube current, phantoms 

created by transformation show a slightly higher MAE while 

those by the alternative baseline method showed a 

substantially larger MAE (match 22-33.5%, affine 3-16%, 

deform 1-10%, except for the breasts, larynx-pharynx, and 

testes) for most organs. Results show that, except for limited 

types of organs, phantoms developed with the proposed 

transformations offer a high dose accuracy for the most 

embedded organs, substantially superior compared to those 

with the match-alone (alternative baseline) method, especially 

under modulated tube current.  

For the alternative baseline method, the dose errors are 

drastically higher for scans with modulated tube current 

compared to the scans with fixed tube current. However, for 

phantoms created by registration (affine and diffeomorphic), 

the dose errors are only slightly higher for scans with 

modulated tube current compared to those with fixed tube 

current. For fixed tube current, by using phantoms with similar 

size, the organ dose errors are generally guaranteed within 

20%, as widely demonstrated by the literature [19, 28]. 

However, the radiation field under modulated tube current is 

more heterogeneous, so it requires more precise organ location 

to obtain accurate dose values. Both affine and diffeomorphic 

transformation align the matched phantoms to the patients 

resulting in more accurate anatomical representation.  

In the leave-one-organ-out validation, the MAE for filled-in 

organs, except for the thyroid, are 0-11% for affine, and 0-8% 

for diffeomorphic transformation for both modulated and fixed 

tube current (Appendix Fig. A3). The MAE is similar between 

scans with fixed and modulated tube current (<2%). Large 

filled-in organs and structures (lungs and bones) cause small 

dose errors on certain neighboring anchor organs (MAE: 

affine 0.5-4%, deform 0-2%). For example, when the lungs are 

left out and filled-in by diffeomorphic deformation, the lungs 

show a MAE of 1.4%, and the anchor organs show a MAE of 

1.76% for the heart, 1.02% for the stomach, and 1.33% for the 

thyroid under tube current modulated scans. Other filled-in 

organs cause less substantial dose errors to the anchor organs 

with MAE <0.2% for both affine and deformation, for both 

fixed and modulated tube current.  In general, the filled-in 

organs show sufficient dose values and a slight effect on the 

dose to anchor organs. 

C. Application to new clinical CT data 

Fig. 8 shows renderings of the new phantoms created by 

applying the proposed framework to the clinical CT datasets. 

The renderings show that the segmentation and registration 

perform reasonably to build completed models. The 

quantitative results show similar trends as those from 

validation using the XCAT dataset (figures and tables in the 

appendix).  

Compared to the XCAT dataset results, for organs easy to 

segment, the DSCs are 0.01 – 0.04 less for lungs, heart, liver, 

spleen, kidneys, body, and 0.02 – 0.1 less for bones. For 

organs with larger segmentation uncertainties (stomach, 

pancreas, bladder, gallbladder, and thyroid), the DSCs are -0.1 

– 0.12 different compared to the XCAT validation (Appendix 

Table A6 and Fig. A4a). These differences are reasonable 

considering the annotation labels of the XCAT are created 

from different observers, and that the XCAT phantoms are 

largely based on normal patients, but the clinical patients were 

mostly abnormal. The differences in imaging techniques may 

also result in segmentation discrepancies. 

The organ dose errors are comparable to the results from the 

XCAT dataset with simulations using tube current modulation, 

with a MEA of 0.5-1.5% for organs easier to segment, and a 

MEA of 1.5-5.5% for organs challenging to segment with 

detailed tables and figures shown in appendix (Appendix Fig. 

A4b and Table A7).  

The DSC between phantoms from the test set and the 

reference in the leave-one-organ-out validation for the clinical 

dataset compared to the XCAT (Appendix Fig. A5a) is 0 – 0.2 

less on the average DSC (except for gallbladder, arms, and 

scapulars) for both affine and diffeomorphic transformation. 

The inferior results in the clinical dataset compared to the 

XCAT dataset may result from some large patients in the 

clinical dataset (effective diameter range: 24-44 cm for 

clinical patients versus 24-39 cm for the 50 XCAT patients). 

For both affine and diffeomorphic transformation, the anchor 

organ transformation calculation is unaffected by the type of 

organs left out, similar to the XCAT validation. For both 

affine and diffeomorphic transformation, the fill-in accuracy is 

not sensitive to whether the anchor organs are generated from 

 
Fig. 8. Clinical validation. Rendering of the CT images, phantoms generated by automated segmentation and registration from the proposed framework. 
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the reference or predicted from the iPhantom framework. This 

demonstrates that the segmentation errors will not generally 

affect the fill-in accuracy compared to the ground truth.  

For dosimetry (Appendix Fig. A5b), the MAE for filled-in 

organs are similar to those of the XCAT, except for the 

thyroid, with 0-11% for affine transformation, and 0-8% for 

diffeomorphic deformation with anchor organs from both the 

reference and the iPhantom prediction. The MAE for anchor 

organs, when obtained using the iPhantom predicted 

segmentation, is similar to the XCAT anchor organ overall 

error: 1.5-8% (except for gallbladder) for affine translation, 

and 1.5-5.0% (except for bladder) for diffeomorphic 

deformation.  

VI. DISCUSSION 

In this study, we developed and validated a framework, 

iPhantom, to automatically generate computational human 

phantoms for individual patients, thus creating a digital “twin” 

for a patient based on his/her image data. We demonstrate that 

the framework provides a good tool for patient-specific organ 

dosimetry in CT. This specific application targets 

individualized or population-based image monitoring and 

protocol optimization. It shows the potential to efficiently 

generates large population of CHPs based on patient data. 

The purpose of this study is to develop an overall 

framework architecture, while each module can be further 

optimized or customized. To improve the segmentation 

component, the number of training dataset, neural networks 

architecture, and algorithms can be enhanced. For the 

registration component, the template library, the registration 

algorithm, and the template matching criteria can also be 

updated based on the users’ preference. Further, based on the 

application and the resources, the choice of anchor organs and 

all organs of interest can be further changed.  

For patient-specific organ dosimetry, we combined the 

framework with a Monte Carlo simulation tool in a fully 

automated approach. State of the art studies providing similar 

ranges of organs usually approximate both anatomies (e.g., 

using match method) and radiation field. One study combined 

match-based anatomy modeling and a convolution-based 

radiation field modeling method, and it reported a dose error 

of about 20-35% [28].  

The accuracy of the proposed framework is substantially 

superior with a MAE less than 10% for most organs even 

under the more challenging modulated tube current situation.  

It generally regarded that organ doses are sufficient with a 

10% error limited by the Monte Caro simulation accuracy. 

Our results further suggest that for dosimetry applications, it is 

beneficial to apply a tiered approach: When computational 

resources are sparse, affine transformation offers reasonable 

accuracy; when computational resources are available, 

diffeomorphic deformation provides superior results; for the 

organs outside the field of view, one may use the alternative 

baseline method.  

This study has several limitations. First, the dataset is 

relatively small. Second, the segmentation accuracy may be 

inferior compared to the state-of-the-art. The XCAT dataset is 

satisfactory for this task with a relatively large number of 

types of organs segmented and corresponding patient-specific 

phantoms. However, the dataset was developed ten years ago. 

Although we improved the quality of manual delineation for 

this study, due to the relatively low CT image quality and a 

large amount of organ annotation tasks (e.g. bones), the 

manual segmentation quality and CT image quality are not 

optimum. Third, the overall errors of the framework were 

approximated by combining separated errors from 

segmentation and deformation. These limitations are pathways 

for future improvements of the iPhantom methodology with 

present demonstrated quality and capability. 

VII. CONCLUSION 

Computational human phantoms (CHPs) are essential for 

personalized clinical investigations and population-based 

simulation studies. However, their utility and generalization 

have been limited by current approaches in creating CHPs 

using manual segmentation. In this study, we proposed a novel 

framework, iPhantom, for automated and accurate creation of 

patient-specific CHPs from patient medical images. We 

showed that the framework precisely localized a wide range of 

organs, including low contrast organs, in CT images. 

Specifically, we presented an integrated framework built on 

fusing patient-specific automated learning-based segmentation 

with anatomical templates through template matching and 

diffeomorphic deformation. This framework was applied to 

patient-specific organ dosimetry, yielding a high accuracy (< 

10% organ dose error) across radiosensitive organs. The 

components of the framework are modular and thus each can 

be further optimized for customized applications. This 

methodology may be useful for other applications, for 

example when dealing with hard-to-segment organs, lack of 

initial training data, and organ-based image quality evaluation. 
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I. SUPPLEMENTARY MATERIALS 

A. Anchor organ segmentation – 3D Unet architecture 

The 3D Unet architecture consists of four encoder blocks 

followed by three decoder blocks. Each encoder block consists 

of two 3x3x3 convolution layers each followed by a leaky 

rectified linear unit (LeakyRelu) [1]. Except for the last encoder 

block, the last layer for each encoder block is 2x2x2 max 

pooling with a stride of 2, with the number of feature maps 

doubled before max pooling. Each decoder block consists of a 

3x3x3 transpose convolution layer with a stride of 2 and a 

concatenating layer that combines feature maps from the output 

of the encoder block with the same resolution. The 

concatenated feature maps are followed by two 3x3x3 

convolution layers each followed with a leaky rectified linear 

unit (LeakyRelu). The padding is used for all convolution 

 
This work was supported in part by the Research Grant through the National 

Institutes of Health under Grant R01EB001838.  

W. Fu and E. Abadi are with the Department of Electrical and Computer 

Engineering, and Carl E. Ravin Advanced Imaging Laboratories, Duke 

University, Durham, NC, 27705 USA (email: wanyi.fu@duke.edu; 
ehsan.abadi@duke.edu). 

S. Sharma is with the Department of Physics and Carl E. Ravin Advanced 

Imaging Laboratories, Duke University, Durham, NC, 27705 USA (email: 

shobhit.sharma@duke.edu). 

A. Illiopoulos and X. Sun are with the Department of Computer Science, 
Duke University, Durham, NC, 27708, USA (email: ailiop@cs.duke.edu; 

xiaobai@cs.duke.edu). 

Q. Wang with the Department of Radiology, the Fourth Clinical Hospital of 

Hebei Medical University, Heibei, 050011, China (email: wq20@hotmail.com) 

J. Y. Lo is with the Departments of Electrical and Computer Engineering, 
Biomedical Engineering, Medical Physics Graduate Program, and Carl E. 

Ravin Advanced Imaging Laboratories, Duke University, Durham, NC, 27705 

USA (email: joseph.lo@duke.edu). 

W. P. Segars is with the Departments of Biomedical Engineering, Medical 

Physics Graduate Program and Radiology and the Carl E. Ravin Advanced 
Imaging Laboratories, Duke University, Durham, NC, 27705 USA (e-mail: 

paul.segars@duke.edu). 

E. Samei is with the Carl E. Ravin Advanced Imaging Laboratories, the 

Medical Physics Graduate Program, the Departments of Radiology, Electrical 

and Computer Engineering, Biomedical Engineering, and Physics, Duke 
University, Durham, NC, 27705 USA (email: ehsan.samei@duke.edu). 

layers to preserve the size and information. The last layer is a 

Softmax function, with the number of the output set as the 

number of anchor organs types. 

B. Results of validation using the XCAT phantom dataset 

 In this section, we present supplemental figures and tables 

of iPhantom validation results using the XCAT dataset. The 

geometry validation results are shown in Tables A1-3 and Fig. 

A1 and the dosimetry validation results are shown in Tables 

A4-5 and Fig. A2-3. Tables A1 and A2 show the DSCs between 

the reference anatomy and the predicted using the iPhantom 

framework in the test set averaged across the 50 phantoms for 

the segmentation experiment ( 𝐷𝑆𝐶𝑠𝑒𝑔)  and registration 

leave-one-phantom out experiment (𝐷𝑆𝐶𝑟𝑒𝑔) , respectively.  

Fig A.1. shows the average DSCs between the reference and the 

predicted using the iPhantom framework for each of the 

leave-one-organ out experiment (𝐷𝑆𝐶𝑟𝑒𝑔). The corresponding 

results of Fig A.1. are summarized in Table A3, where the 

anchor organ sub-table shows the average 𝐷𝑆𝐶𝑟𝑒𝑔 of anchor 

organs across all leave-one-organ-out experiments and the 

filled in organ sub-table shows the 𝐷𝑆𝐶𝑠𝑟𝑒𝑔 for filled-in organs 

in each leave-one-organ-out experiment . 

 Table A4 shows the mean absolute errors (MAE %) of 

anchor organ doses between reference phantom and the 

phantom predicted from the alternative baseline method (𝜀𝑚𝑎𝑡), 

the framework using segmentation component (𝜀𝑠𝑒𝑔), and the 

registration component (𝜀𝑟𝑒𝑔 ) in the leave-one-phantom out 

validation. Table A4 also shows the combined errors from the 

segmentation and registration component 

(√(𝜀𝑠𝑒𝑔)2 + (𝜀𝑟𝑒𝑔)2). Table A5 shows the results for filled-in 

organs of the leave-one-phantom-out validation. The results in 

Tables A4-5 are also shown in Fig 8 in the main manuscript and 

Fig. A2 (fixed tube current). Figure A3 shows the dose errors 

from the leave-one-organ out validation experiment. 

C. Results of validation using the clinical dataset 

The results of iPhantom validation using the clinical dataset 

are shown in Tables A6-7 and Fig A4-5. Table A6 and Fig A4a 

show the DSCs of segmentation between the predicted from the 

iPhantom framework and the reference. Table A7 and Fig. A4b 
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shows the organ dose errors from the segmentation component. 

Fig. A5 shows the results of registration component in terms of 

DSCs (Fig. A5a) and MAE (Fig. A5b) between the predicted 

from the proposed framework and the reference, respectively. 

The results include using both reference and predicted 

segmentation as anchors. 

 

  

 
Fig. A1.  Mean and standard deviation of dice similarity coefficients (𝐷𝑆𝐶𝑟𝑒𝑔) between the reference and the predicted anatomy from the framework in the test set 

(left: affine, right: diffeomorphic) across the 50 XCAT patients. Each row represents an experiment with an organ (specified by row name) left out and then filled in. 

The column name indicates the organ of the DSC value. Elements on the diagonal are values for filled-in organs and the rest for anchor organs. For affine 
transformation, the results are not substantially affected by which organs are left-out or whether the organs belong to filled-in or anchor organs. The diffeomorphic 

deformation sufficiently aligns the anchor organs. The diffeomorphic deformation accuracy for filled-in organs is mainly affected by the organ size and the extent of 

contact with the anchor organs.    

  

 
Fig. A2.  Absolute relative error (%) of organ doses from phantoms based on the test set and the reference averaged across the 50 XCAT for scans in 

leave-one-phantom-out validation under fixed tube current. A) Organ dose errors to anchor organs result combining segmentation and registration and an 

alternative matching method. b) Organ dose errors to embedded organs result from registration. 
  



  

 
Fig. A3. Dosimetry validation – XCAT phantom results. Results from the leave-one-organ-out validation where each row represents an experiment with the 

specified organ out and each column represents the organ dose mean absolute errors (MAE %). 
  

 
 

 
 
 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

  



  

 
 

 

 
 

Fig. A4. Clinical validation of the segmentation components. a) Boxplots of DSC between the reference and the segmentation from the framework (𝐷𝑆𝐶𝑖
𝑠𝑒𝑔

) from 

the 10 datasets. b) Organ dose differences between phantoms based on the reference and the segmentation from the framework (𝜀𝑖
𝑠𝑒𝑔

) averaged across the 10 

datasets. Error bars represent ±1 standard deviation.    

 

 

 
 



  

 

 

 
 Fig. A5. a) Clinical validation of the registration components in terms of a) geometry 𝐷𝑆𝐶𝑖

𝑟𝑒𝑔
. The results represent an average value from the 10 clinical datasets. 

The results show the DSC of reference phantoms and the phantoms created using affine transformation (top row) and diffeomorphic deformation (bottoms row) 

based on the reference (left columns) segmentation and automated segmentation (right columns) as anchors. Each row represents an experiment with the specified 

organ left out and then filled in and each column represents the value to the specified organs. 
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Fig. A5.  b) Clinical validation of the registration components in terms of dosimetry 𝜀𝑟𝑒𝑔. The results represent an average value from the 10 clinical datasets. The 
results show the mean absolute dose errors (MAE %) of reference phantoms and the phantoms created using affine transformation (top row) and diffeomorphic 

deformation (bottoms row) based on the reference (left columns) segmentation and automated segmentation (right columns) as anchors. Each row represents an 

experiment with the specified organ left out and then filled in and each column represents the value to the specified organs.  
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