arXiv:2008.05986v2 [physics.comp-ph] 11 Feb 2021

Prediction of magnetization dynamics in a reduced dimensional
feature space setting utilizing a low-rank kernel method

Lukas Exl *'4, Norbert J. Mauser!*, Sebastian Schaffer'*, Thomas Schrefl>*, and
Dieter Suess®*

1Wolfgang Pauli Institute c/o Faculty of Mathematics, University of Vienna, Austria.
2Christian Doppler Laboratory for Magnet design through physics informed machine learning,
Department of Integrated Sensor Systems, Danube University Krems, Austria
3Faculty of Physics, University of Vienna, Austria
4University of Vienna Research Platform MMM Mathematics - Magnetism - Materials, University of
Vienna, Austria

December 22, 2024

Abstract. We establish a machine learning model for the prediction of the magnetization
dynamics as function of the external field described by the Landau-Lifschitz-Gilbert equation,
the partial differential equation of motion in micromagnetism. The model allows for fast and
accurate determination of the response to an external field which is illustrated by a thin-film
standard problem. The data-driven method internally reduces the dimensionality of the prob-
lem by means of nonlinear model reduction for unsupervised learning. This not only makes
accurate prediction of the time steps possible, but also decisively reduces complexity in the
learning process where magnetization states from simulated micromagnetic dynamics associ-
ated with different external fields are used as input data. We use a truncated representation
of kernel principal components to describe the states between time predictions. The method is
capable of handling large training sample sets owing to a low-rank approximation of the kernel
matrix and an associated low-rank extension of kernel principal component analysis and kernel
ridge regression. The approach entirely shifts computations into a reduced dimensional setting
breaking down the problem dimension from the thousands to the tens.

Keywords. nonlinear model order reduction, low-rank kernel principal component analysis,
Nystroem approximation, low-rank kernel approximation, machine learning, micromagnetics

Mathematics Subject Classification. 62P35, 68T05, 65Z05

*lukas.exl@Qunivie.ac.at

1 Introduction

Computational micromagnetics is a broad scientific field with useful technological applications
such as permanent magnets [15] or magnetic sensors [26]. The dynamics of the magnetization in
a magnetic material influenced by internal and external fields is mathematically described by the
Landau-Lifschitz-Gilbert (LLG) equation, a time-dependent partial differential equation (PDE).
The numerical challenge involves many time-consuming computations of solutions to a Poisson
equation in whole space [2, 12] for evaluating derivatives in the course of the time-stepping
scheme [20, 24]. In contrast, electronic circuit design and real time process control need models
that provide the sensor response quickly. A way to provide such demands for applications is
offered by diverse reduced order models (ROMs) in micromagnetism. So far most ROMs were
(multi)linear, e.g., tensor methods [11] and model reduction based on spectral decomposition
[6] such as via a subset of the eigenbasis of the discretized self-adjoint effective field operator
[8]. While these are keen ideas, they are clearly limited due to the inherent linearity of the
reduced models. Recently, the authors introduced data-driven nonlinear model order reduction
(nl-MOR) to effectively predict the magnetization LLG-dynamics subject to the external field
based on simulated data [17, 14]. Fast response to an external field can be obtained from
such data-driven PDE machine learning (ML) models combined with unsupervised nonlinear
model reduction. Another inspiration of the proposed machine learning scheme in [14] was to
construct a time-stepping predictor on the basis of a non-black-box nonlinear dimensionality
reduction approach such as kernel principal component analysis (kPCA) [23] for the better
understanding of the underlying approximations. In this context, the key idea is to use a
data set of simulated magnetization trajectories to learn a time-stepping model scheme that is
capable of predicting the dynamics step by step for a new unseen external field without having to
solve the LLG equation numerically, and hence with practically negligible computational effort.
The challenging part is the combination of the learning process with reduced dimensionality
of the feature space, which is initially proportional to the size of the discretization space used
in the data generation, thus, several orders of magnitude too large for regression. A nonlinear
kernel version of principal component analysis for the feature space dimensionality reduction was
successfully established in [14], where each time-step was learned on the basis of magnetization
states represented via truncated kernel principal components. In the forthcoming presentation
one novel extension of the idea in [14] will be the simultaneous learning of all steps via an entire
dimension-reduced feature space integration scheme. Besides, the second improvement concerns
the feasibility of the kernel learning scheme by the introduction of low-rank approximation to
the kernel matrix, which allows the use of larger learning data. The reason for its importance
is the fact that the learning process gets gradually infeasible as data size increases, as such, a
common problem in data-driven methods but especially the case for kernel methods in machine
learning [16]. Thus, while the original approach already leads to an exceptional reduction in
feature dimension and fast learning thanks to the nonlinear kernel, the novel approach performs
training and predictions entirely in reduced coordinates and is capable of exploiting information
from large training data sample sets owing to the low-rank kernel principal component analysis
(low-rank kPCA).

The paper is structured as follows. First we give a brief overview of the ML approach for
learning maps between feature spaces with reduced dimensionality. The section starts with
an introduction to kernels and kernelized principal component analysis. Following this, we
introduce the low-rank approximations of the kernel methods including kPCA, kernel ridge
regression (kRR) and the crucial pre-image computation. The low-rank method is validated
by means of an example from the scikit library [21]. In the end of the method section 2 we
give the general procedure for learning maps between feature space elements with truncated

components. Section 3 covers the application to micromagnetics including decription of data
(structure) as well as several numerical validations based on a standard problem [19].

2 Learning feature space maps with reduced dimensionality

In the following we give a brief description of kernels and feature spaces as reproducing kernel
Hilbert spaces (RKHS). A more comprehensive discussion on the core definitions of general kernel
methods can be found for instance in the review [16]. Central to our approach is kernel principal
component analysis (kPCA) as a means for unsupervised learning and model reduction. We will
extend kPCA to its low-rank variant to be able to handle large data sets effectively in learning
feature space maps. Moreover, we establish a low-rank kernel ridge regression (low-rank kRR)
for large training data and effective pre-image computation.

2.1 Kernel principal component analysis

The definition of a kernel function is given as follows.

Definition 1 (Positive definite kernel function). Let X be a nonempty set. A symmetric function
k: X xX — R is a positive definite kernel on X if for all m € N any choice of inputs
x = {x1,...,2m} S X gives rise to a positive definite gram matriz K[x] € R™*™ defined as
Kij = k(xs,25), 4,5 = 1,...,m. To distinguish an involved second subset’y = {y1,...,ye} < X
we define the matriz K[x,y] € R™* via its entries Kij = k(zi,y),i=1,....m, j=1,..., L

We will refer to positive definite kernels as kernels. An important class of kernels are the
Gaussian kernels also known as (Gaussian) radial basis functions (RBF).

Definition 2 (RBF). Let X be a dot product space. The radial basis function (RBF') kernel
between two vectors x,y € X is defined as

k(z,y) = o z=yl* (1)

For the choice v = 1/0? the kernel k is also known as the Gaussian kernel of variance o>.

Kernels represent a way to express similarity measures and can be used to extend linear
structural analysis for data like the (linear) PCA to nonlinear analogues. Mathematically, a
possibly infinite dimensional Hilbert space Fi can be constructed, called the feature space of X
associated with the kernel k, where the inner product is defined by the kernel k. A (nonlinear)
map ¢ : X — Fi "embeds” the data in the feature space, i.e., ¢x(X) = Fi. F is a RKHS and
mathematically well understood, e.g., see [22] for the theoretical background. It is important
to note that the inner product in F; of two mapped data points can be computed without
knowledge of the map ¢y as

or(x) - or(y) = k(z,y), (2)

which is known as the kernel trick in the machine learning community. Intuitively, a mapped
data point can be seen as a new vector ¢y () = (p1(z), pa(),...)T where the nonlinear functions
p; define the coordinates of ¢y (z) in the higher dimensional feature space. One can now try to
learn structure via the mapped inputs by extending linear algorithms for unsupervised learning,
like the PCA, to operate on the feature space. This is known as kernelization where the
kernelized version of the linear PCA is known as the kernel principal component analysis (kPCA)
[23]. The algorithm of kPCA is given next.

Definition 3 (kPCA). Given inputs x = {z1,...,Zm} S X and a kernel k : X x X — R the
kernel PCA generates kernel principal azes v{9) = \% vy agj)qﬁk(xi), j=1,2,...,m, where

Aj
the coefficient vectors a9 e R™, j = 1,...,m result from the eigenvalue problem
Gal) =)\ja(j), (3)

where the centered gram matric G = K[x] — 1,,K[x] — K[x]1,, + 1,, K[x]1,, € R™*™ with
(1)ij = 1/m is used. The eigenvalue problem (3) is solved for nonzero eigenvalues. The j-th
kernel principal component of a data point x € X can be extracted by the projection

pi(@) = (o) 09 = —— 37 k(i))

VA4

For the purpose of nonlinear dimensionality reduction only a few kernel principal components
pj(x) are extracted.
The problem of finding pre-images of kPCA components is mathematically challenging. If
Gaussian kernels are used, this can be done by the use of fixed point iterations, while a general
purpose method, which proves to be practically reliable, is to learn the pre-images during the
process of establishing the kPCA model through the training data [4]. We will describe our
approach to pre-image computation within our low-rank framework in the forthcoming section.

2.2 Low-rank kernel principal component analysis

For large sample size m we seek a low-rank approximation of the Gram matrix as a Nystroem
approximation of the kernel matrix arising from the training data split into » < m randomly
selected basis samples and the m — r remaining samples [30].

In the case where the kernel matrix has rank r < m we get an explicit form of the low-rank
decomposition.

Lemma 1 (Low-rank approximation of the kernel matrix). Given samples x = {x1,...,2m} S
X we assume to be able to pick a subset of 1 < m samples x, € x such that K[xy] € R™" has
full rank r. Let us further denote the set of remaining m — r samples with X,,—, and assume
the relabeled initial sample set x = {X,,Xm—r} such that the associated kernel matriz gets block
form

KT?” KZL—T?‘
KI = (o fe),)

Kmfr,mfr

where K, , := K[x,] e R™", Ky 1= K[Xp—r,X,| € RM=1)%" gnd Kp—rm—r = K[Xpm—y]| €
Rm=1)x(m=") " Then there holds

K[x] = @, @, (6)
with
O, =P, [x] = (KT%Q) = Ky K22 e RT (7)
e Koy Kt e '
Proof. We first observe that
T
vl = (07, s Ti,) ®

Since K[x] has rank r, we have the eigenvalue decomposition K[x] = UAUT with U € R™*"
and the diagonal matrix A € R™*" built from the r nonzero eigenvalue of K[x]. Using the block
notation U = (UL, UL _,)T we get

9)

T T
K[x] = UAUT = (UrAU, UrAUp,_y > .

Un—rAUL Uy AUL
Note that Ul U, = I and hence

Koo K K = (U e AUD(UATUT)(URAUY,) = Uy AU = Kp—rn—r, - (10)

m—r,r

which shows K[x] = ®,®!. Finally, the identity in Eqn. (7) simply follows from K%? =
K, K2 0

Note that the computation of ® only needs O(mr + 72) kernel evaluations and additional
cost of O(r?) for the root K, 22 plus a cost of O(mr?) for the matrix multiplication.
We further remark that for some kernels such as Gaussian RBF the above rank r assumption
will only hold approximately for sufficiently large 7.

From Lemma 1 Eqn. (7) we see that when mapping an individual data sample y € X under
®,. : X — R" the corresponding feature vector is given as

(I)T(y) = (k(y,m),...,k(y,:cr)) KETl/Qﬂ (11)

which holds true for y ¢ x, as it represents the respective row in K, , K, 7«1 / 2, but also for y € x,
1/2

due to the identity KT%Z = K, ,K;,'~. We summarize this remark for later reference.
Corollary 2. Under the assumptions of Lemma 1 the matriz of feature vectors of data samples
y ={y1,...,ye} is given as

o, [y] = Ky, x,] K, /2, (12)

with K[y, x,] = (k(yi,a:j)i,j) e RE*T,

In the course of the kPCA algorithm one has to solve d eigenvalue problems of the form
Gal) = m/\ja(j), j=1,...,d which now take the particular form

3,070 = N;al) 5 =1,...d, (13)
with &, = &, — 1,,®, and O, = O, [x] = K, K> € R™T with K[x] ~ ®,[x]®,[x]T being
the low-rank approximation of the kernel matrix. An eigenvalue problem of the form (13) can
be efficiently solved for nonzero eigenvalues.

Lemma 3 (Low-rank eigenvalue problem). The eigenpairs (v, \) with X\ # 0 of ®,.®1 e C™*™
with ®, € C™ " are given by (®,w,\) with ®T dw = \w. Particularly, there holds for |w|z = 1
that |vlla = AY2, i.e., v = A™V2 ®,w has unit length.

Proof. Suppose ®1'®,w = Aw with A # 0. Then we have ®, 01 (®dw) = \(®,w) with ®,w # 0,
since otherwise multiplication with ®! yields ®!®,w = 0 and thus, A = 0, contradicting the

assumption A # 0 in the first place. Hence, (®,w,)) is an eigenpair of ®,.®. Moreover,
|®w|3 = wl (L ®w) = MwTw = . O

The remarkable consequence of Lemma 3 is a significant reduction in complexity when
solving the eigenvalue problems in the kPCA with low-rank kernel matrix approximation in the
case 1 « m. Specifically, the computational complexity is reduced from O(m?) to O(r?) for each
of the d eigenvalue problems. We now have the tools to define a low-rank version of the kPCA.

Definition 4 (Low-rank kPCA). Given inputs x = {x1,...,2m} S X, a kernel k : X x
X — R and a low-rank approzimation of G = K[x] — 1, K[x] — K[x]|1, + 1, K[x]|1,, €
R™*™ py &0 = (&, — 1,8,)(®, — 1,,®,)T from a choice of a subset X, < X according
to Lemma 1. The low-rank version of the kernel PCA generates r < m kernel principal azes
o) = ﬁ Sy ozl(])‘ir(xi), j =1,2,...,r, where the coefficient vectors a9 € R™ result from

the eigenvalue problem
3,870 = \;al), (14)

which is solved for nonzero eigenvalues using Lemma 3. We choose d < r kernel principal
components, where the j-th component of a data point x € X can be extracted by the projection

_) 1 & _
pj(x) = Bp(z) 0V = W;a?’@r(mi)@r(m). (15)

For the projections onto kernel principal axes holds the following relation.

Corollary 4. Given data points y = {yi,...,ye} S X their j-th kernel principal components
are collectively calculated by

J

i) i) = (i o & [x]) B[] = LO%[y]", G=1d (16)

where ®.[.] stands for ®.[.] centered w.r.t. the training data. Moreover we defined the vectors
LU = xlﬁa(j)Ti)r e R" for j = 1,...,d. According to Corollary 2 the projections (16) are

]
exact under the assumption of Lemma 1 that K, , has full rank r.

Note that L0 = dTal0)/, /A; can be directly extracted from the algorithm of the low-rank

eigenvalue problem (14) owing to w in Lemma 3 and the fact that
(87®,)(@7al)) = X (3T o). (17)

. N T T
Hence, the low-rank kPCA needs to store a matrix of unit eigenvectors L = [L0)™ |...|L®] e
R™4, Only K[y,x,] € R™" is newly computed for projections onto the kernel principal axes
in the course of the computation of ®,[y].

2.3 Low-rank kernel ridge regression and pre-image computation

Once the kPCA model is established from the training set x = {x1,...,z,} € X, one can
compute the projections onto the principal axes of new data points y = {y1,...,y,} € X via
(16). Denote these projections with Pyoi(y;) € Fi, @ = 1,...,¢. We will also be interested in
finding an approximate pre-image z; € X from P;¢(y;) by solving the pre-image problems

2 = argmin | éy(y) — Padr(yi)I?, i =1,..., L. (18)
This can be done by learning a pre-image map I' : F — X that approximates

e.g., by establishing a kRR-model in a supervised learning approach using the training set x
and its kPCA projections Py¢p(z;), i = 1,...,m [4]. We define the kRR problem [25, 28] for
determining the linear map W representing approximately I' : F, — X in the form

1 m
min g 2 e = W 0 (Ra@ @) + S IWIE, (20)

with a > 0 the regularization parameter. Let us denote the kPCA projections of x and y with
Py®,[x] € R™*? and Py®,[y] € R*9, respectively. The (dual) solution to (20) takes the form

WT = g (Pa®,[x))7 - (K[P4®,[x]] + o) "
where X = [z1] - |z,,]T € R™*N and N = dim(X) assumed to be finite here. The map ¢
is assumed to act on the rows of Py®,[x] with ¢y (P;®,.[x]) being of size m x dim(F%). W in
(21) is of size dim(Fy) x dim(X). The kRR predictions for the pre-images of the projections
Pi®,[y] € R are given as

Z = ¢p(Py®,[y]) - WT = K[P;®,[y], Ps®,[x]] Be RN, B = (K[P;®,[x]] + al) !X e R™*V.
(22)

X, (21)

By utilizing the low-rank kernel approach from the previous Sec. 2.2 the result for the pre-image
prediction gets

A

Z = o,[y] (9,[x]"B) e R™N, B = (&, [x] &,[x]" + al) X e R™N, (23)

where the low-rank approximations K[P;®,[x]] ~ ®,[x]®.[x]T and K[P;®,[y], P;s®,[x]] ~
®,[y] @,[x]T are used with ®,[x] € R™*", 'm > r, computed by Lemma 1 and ®,[y] € R by
Cor. 2. Note that only the matrix ®,[x]7 B € R"™*" has to be stored. The inverse in (23) can

be expressed via the Sherman-Morrison-Woodbury (SMW) formula, i.e.,
(@,[x] @, [x]" + al) ™' = a ' — a2, [x] (I + 10, [x]T®,[x]) 7 @, [x]", (24)

which only requires to solve linear systems of size r x r instead of m x m. Alternatively, one can
use the "push-through identity”, i.e., A(BA + al)~! = (AB + al)~!A for appropriately sized
matrices A and B (simple proof by multiplication with the respective inverses on the right and
left hand side) to arrive from (23) at

Z = &,[y] (®,[x]T @,[x] + al)"1®,[x]T X e RN, (25)

In the course of the later prediction of micromagnetic time-evolution we will also use this
low-rank version of kRR to estimate the time-stepping maps in feature space. In general,
if we want to model a dependency of input data x = {z1,...,z,} € X and output data
X ={Z1,...,Zm} €Y by a linear map W : F, — Y, the related kRR problem is

1 m
min g 2 16— W - i@l + SIWI% a>o. (26)

The (dual) solution of (26) is
W =g ()" (9(X) - ()" +al) T X = g(X)" - (K[x] + al) ' X, (27)

where the data x and % are assembled into arrays X and X of shape m x dim(X) and m x dim(Y),
respectively, and ¢y, is assumed to act on the rows of X with ¢5(X) being of size m x dim(Fy).
WT in (27) is of size dim(F) x dim(Y). The low-rank version is established in an analougue
way as above, reducing the solution operator W to size dim(Y) x r.

2.4 Numerical validation of the low-rank kPCA

We summarize the low-rank kPCA and pre-image procedure in algorithm 1. This generates the
unit norm eigenvectors L), j = 1,....d for the prediction of new data according to (16) as
well as the operator for the pre-image map ®,[x]7 B in (23).

Algorithm 1 Low-rank kPCA and pre-image

Data: Training data x = {x,,X;,—} € X, kernel &(.,.), d <r, a > 0.

Result: Projection eigenvector matrix L € R"™*¢ from Cor. 4, truncated kernel PC’s P;®,.[x],
Operator for pre-image map ®,[x]”B in (23).

Low-rank kPCA:

e Calculate @, in (7).
e Solve low-rank eigenvalue problem (14) for d < r eigenvectors of unit length.
Low-rank pre-image map:

e Calculate K[P;®,[x]] ~ ®,[x] ®,[x]T.

e Calculate ®,.[x]7B in (23) using the SMW formula (24) or (25).

The low-rank kPCA was implemented as an extension in the scikit learn Python software
[21]. We validate the low-rank version of kPCA and the pre-image solution via a test example
from the scikit learn documentation, which uses both m = 1000 training data and test data
drawn from concentric circles with noise, see Fig. 1. We resolve three kernel principal com-
ponents. Two noise levels ¢ = 0.02 and 0.07 are used, where in both cases fast (exponential)
convergence for increasing rank r can be observed, see Fig. 2 which shows the mean squared
error of the pre-images of the predictions compared with the original data with varying rank r
used in the low-rank kPCA. The Figs. 3 and 4 show the pre-images for increasing rank in the
two noise cases, respectively. Table 1 shows the training and prediction times for varying m
and r and compares the low-rank kPCA components with those obtained from the dense (con-
ventional) kPCA in terms of the mean squared error. We used a Intel(R) Core(TM) i7-4770K
CPU 3.50GHz. It also shows the scaling of the dense kPCA with the sample size m.

2.5 Learning maps between feature space elements with truncated compo-
nents

We denote X as the input set and Y as the output set. A general learning problem is to estimate
a map between inputs x € X and outputs y € Y. The underlying mathematical task is that of
estimating a map from an Hilbert space V by minimizing the risk functional

f*eargming(f) := L . L(y, f(z)) dp(z,y),

fev

on the measure space (DC XY, Xxxy, p) but with unknown joint probability distribution p. If we
have available inputs 2 € X and outputs y € Y from a given training set (z1, y1), (x2,92), ..., (Tm, Ym) €
X x Y, we can try to empirically solve the problem in a model class or hypothesis class like e.g.
H = {f(;;a) : « feasible parameter}. In [14] we defined L as the distance in output feature
space using a radial basis function as kernel £ : Y x Y — R on the output set. This gives a

m = 1000, € =0.02 (top),e = 0.07 (bottom)

1.0 A 1.0 4
0.5
0.5 - 0.5 4
: l
~ i e o 4
< 0.0 9 0.0 1 x 0.0
o
—0.5 1 —0.5 1
-1.0 A —0:5 -1.0 A
-1 0 1 0.0 0.5 -1 0 1
X1 1st PC X1
1.0 1
0.5 A
0.5 A
6]
o N
3 0.0 x 0.0 A
o~
—0.5 A
_05 .
—1.0 A
T T T T T
0.0 0.5 -1 0 1
1st PC X1

Figure 1: The original data set (left column), the kPCA transformed samples (middle column)
and the pre-images (right column). Noise level € = 0.02 (top) and £ = 0.07 (bottom). Number
of training samples m = 1000. Rank r = 120 is used.

£=0.02,m=1000 £=0.07,m=1000
10—1 .
-2 |
10 10—2 4
10—3 4
1074+
& 0 1074 4
= =
1076 | 10-5 4
10—6 _
10—8 4
10—7 -
0 50 100 0 50 100
r r

Figure 2: Mean squared error (MSE) for varying rank r in the case of noise level ¢ = 0.02 and
e = 0.07.

r=25 r=50

Figure 3: Pre-images for increasing rank r and € = 0.02.

r=25 r=50

Figure 4: Pre-images for increasing rank r and ¢ = 0.07.

10

Table 1: Cpu times in seconds for training and prediction of low-rank kPCA for varying samples
m and rank r. Numbers in brackets refer to computing times of the respective dense kPCA
version. The last column shows the mean squared error of the computed three kernel principal
components compared to the results obtained from the conventional kPCA.

m r training time prediction time mse
8000 100 0.075 (2.813) 0.053 (1.696) 0.132
4000 100 0.043 (0.791) 0.028 (0.440) 0.132
2000 100 0.037 (0.246) 0.014 (0.153) 0.092
1000 100 0.010 (0.069) 0.004 (0.047) 0.081
500 100 0.018 (0.030) 0.003 (0.013) 0.041
1000 800 0.307 0.056 1.14e-18
1000 400 0.119 0.027 1.10e-18
1000 200 0.039 0.021 5.76e-16
1000 100 0.010 0.004 0.081
1000 50 0.013 0.002 0.055

RKHS JF, with associated map ¢y : Y — Fp and £(y,y’) = du(y) - ¢e(y’) and a loss expression
L(y, f(z)) = ||¢e(y) — qﬁg(f(x))\@[, which can be expressed entirely through the kernel ¢ using
the kernel trick. For the purpose of finding the minimizer f*, only few kernel principal com-
ponents of the representation of feature vectors are used and a ridge regression is used in [14].
Generally, the problem of estimating the map f can be decomposed in subtasks using the idea
of kernel dependency estimation (KDE) [29], where f is the composition of three maps, i.e.,

f=a¢po frodr, (28)

where ¢ : X — F is the feature map for inputs associated with a kernel k, fg : F — Fy the
map between input and output feature spaces and qbz : Fp — Y an approximate inverse onto
Y which is the pre-image map, where here we will use the computational low-rank approach of
section 2.3. See Fig. 5 for an illustration of the involved mappings. The process could be even

f

X —
(I)kl

Tk

Figure 5: Illustration of the mappings in (28).

P,| tof
e

s T,

established by circumventing the kPCA as described in [7]. To make up for the lack of a learned
pre-image available from kPCA, such an approach would have to use a fixed point iteration
for the pre-image map, which is possible as long as RBF kernels are used. However, a learned
pre-image map is faster and more reliable. Furthermore this approach would not allow for a
time-stepping procedure which entirely operates in feature space with reduced dimensionality. In
the following method we rather estimate a map with (low-rank) kernel-ridge regression between

11

truncated kPCA coordinate representations of elements in the actually infinite dimensional
feature space. That is, we estimate a map between input and output representatives of the
form (pl(x),pg(a:),...,pd(x)) and (pl(y),pg(y), .. ,pd(y)), respectively, where we consider a
truncated number of d € N kernel principal components. We use kRR analogues to section 2.3,
where the matrix to be stored is of shape r x d. The same kernel for the input and output space
embedding is used, that is, F = Fy. This new approach drastically improves the quality of the
prediction alongside with computational efficiency from the low-rank framework of section 2.2
and 2.3. Our learning approach works entirely in feature space, that is, all time steps are learned
within the reduced dimensional setting and the pre-image is used after the final time step, see
Fig. 6, which illustrates the feature space integration scheme.

X 4

") fs 1}

Fp — - —> T

Figure 6: Hlustration of the mappings involved in the feature space integration procedure.

3 Prediction of magnetization dynamics

The mathematical description of magnetization dynamics in a magnetic body © < R? is through
the Landau-Lifschitz-Gilbert (LLG) equation [18]. In micromagnetism we consider the magne-
tization as a vector field M (x,t) = Mym(z,t), [m(z,t)| = 1 depending on the position x €
and the time ¢ € R. The LLG equation is given in explicit form as

oM Y0

ao
at :_1+Q2MXH_WMX(MXH)7 (29)

where 7 is the gyromagnetic ratio, a the damping constant and H the effective field, which is
the sum of nonlocal and local fields such as the stray field and the exchange field, respectively,
and the external field h € R?® with length h. The stray field arises from the magnetostatic
Maxwell equations, that is the whole space Poisson equation for the scalar potential ug

Aug=V-M in R (30)

with H; = —Vug. The exchange term is a continuous micro-model of Heisenberg exchange,
that results in H., = Mg—]\f/‘[sAM, where pg is the vacuum permeability, M the saturation mag-
netization and A the exchange constant. Equation (29) is a time-dependent partial differential
equation in 3 spatial dimensions supplemented with an initial condition M (z,t = 0) = M, and
(free) Neumann boundary conditions. For further details on micromagnetism the interested
reader is referred to the literature [5, 3, 18]. Typically, equation (29) is numerically treated by
a semi-discrete approach [27, 10, 9, 13], where spatial discretization by collocation using finite
differences or finite elements leads to a rather large system of ordinary differential equations.
Clearly, the evaluation of the right hand side of the system is very expensive mostly due to the
stray field, hence, effective methods are of high interest. Our proposed data-driven approach
yields a predictor model for the magnetization dynamics without any need for field evaluations
after a data generation and training phase has been established as a pre-computation.

12

3.1 Data structure for the time stepping learning method

Following [14] we generate data associated with the NIST uMAG Standard problem #4 [1].
The geometry is a magnetic thin film of size 500 x 125 x 3 nm? with material parameters of
permalloy: A = 1.3 x 1071 J/m, My = 8.0 x 10> A/m, a = 0.02. The initial state is an
equilibrium s-state, obtained after applying and slowly reducing a saturating field along the
diagonal direction [1,1,1] to zero. Then two scenarios of different external fields are studied:
field 1 of magnitude 25mT is applied with an angle of 170° c.c.w. from the positive x axis, field
2 of magnitude 36mT is applied with an angle of 190° c.c.w. from the positive x axis. For data
generation we use a spatial discretization of 100 x 25 x 1 and apply finite differences [20] to
obtain a system of ODEs that is then solved with a projected Runge-Kutta method of second
order with constant step size of 40fs.

We denote the number of discretization cells with V. For the purpose of collecting training data
samples we use numerically obtained approximations for n € N different external field values.
Following the splitting of training data in [14] the external field is either in the range of the
field 1

Hepiq o |Hegt]| =: h € [20,30]mT, argHepe 1 =: ¢ € [160°, 180°] (31)
or in the range of the field 2
Heyto 0 [|Hear 2| =: h € [30,40]mT, arg Hegy o =: ¢ € [180°,200°]. (32)

We use n = 300 for each data set, which, however, will be effectively reduced to a rank r < n
by the later low-rank approach. For s = 100 time steps we assemble the data into a 3-tensor
D, respectively D, defined slice-wise by

D e RETVXmSN Dy 2y = [my(t)|my () |m, ()] e RSN i =0,... s, (33)
and
D e RGN+ - D - 2y = [h(t;) jmy (t)|my, (8)|m, ()] e R™GNF2) 5 =0, s, (34)

where my(t;) € R™N ¢ = z,y, z denotes the magnetization component grid vector at time t;
for each of the n field values and h(t;) € R"*2 consists of the external field samples at time ;
with h and ¢ component each. Fig. 7 illustrates the data tensor D, which equals D extended
by the external field values.

li 2+ 3N

Figure 7: Data tensor D.

13

Selection of basis vectors for the low-rank procedure (compare with x, in section 2) is
accomplished by choosing r field values and collecting the corresponding discrete magnetization
trajectories for all s+ 1 time points for each chosen field value. This results in a reduced sample
size of (s + 1)r < (s + 1)n = m.

In the course of the time-stepping learning via low-rank kPCA the data tensor is used with
reduced dimensionality. Note that we have d < r(s+1) < n(s+1) = m. We denote the reduced
dimensional data tensor resulting from the low-rank kPCA approach with Dy e R(st1)xnxd,
Fig. 8 shows the compressed (resp. truncated) data tensor Dg, where the large grid size 3N
is reduced to d and the field is appended, compare with the original data tensor from Fig. 7.
Additionally we illustrate in Fig. 9 the tensor required in storage to project new data onto the
kernel principal components, as well as, involved in the kRR to fit the time stepping maps.

Truncated Data Tensor

ti 24+d
I N
T N
T N
T
n
h(t;)| Pi®[x(t:)]
<<_
s+1

Figure 8: Illustration of the truncated low-rank kPCA data tensor Dy-.

kPCA Low Rank kPCA
storage requirement storage requirement
d
d
n
r
<<
N s+ 1N
N

s+ 1N

Figure 9: Ilustration of the storage requirements in the low-rank kPCA and the low-rank
kRR for the time stepping model (right), compared with full-rank kPCA (left). Storage of the
compressed tensor is only O((s + 1)dr).

Time stepping maps are now learned by taking reduced dimensional kPCA input and output
data tensor to fit a kKRR model. In its simplest form one can use a one step scheme mapping
from t — t + At by taking input data Dgfo) e R¥*"*d defined via the slices Dg(i,:,:), i =
0,...,s—1, and output data @g) e R¥*™*4 defined via the slices D(4,:,:), i = 1,..., s, which
corresponds to data shifted by one time step At. However, inspired by [17], we found enhanced
stability by introducing time stepping with multi-steps, e.g., choosing v steps in a scheme

14

{t,t + At,...,t + (v — 1)At} — t + vAt. For that purpose we choose a time stepping number
v(< s) € N and take the following training input and output sets:

input: {@g?), e ®£;72)’ @gjil)}, output: {Dg/)}, (35)
where @g/_j) e RE—v)xnx(d+2) 5 e (1 p} are defined via the slices Dg(i,:,:), 7 = v —
j...,s—jand @g’) e RE—)xnxd yia dlices Dy (i,:,:), i = v,...,s.

Besides the storage requirements for the tensor in Fig. 9 the low-rank approaches need to
store the realizations of the feature map @, [x] which are of size n(s+1) xr(s+1), since m = n(s+
1) and the rank r from Sec. 2.2 is a multiple of the number of time points s+1. Essentially, overall
computational costs and storage requirements improve due to the smaller kernel matrix for the
low-rank compared to dense versions. In detail, computation of the low-rank approximation
to the kernel matrix for the magnetization data costs n(s + 1)%r + r%(s + 1)? kernel function
evaluations, a cost of O (r353) for the root and O(n53r2) for the matrix multiplication. Storage
of ®,[x] amounts to n(s + 1)?r. Learning effort for the kPCA is dominated by the computation
of the co-variance matrix ®,[x]” ®,[x] and the eigenvalue decomposition, scaling O(s*r?n) and
O(r3s3), respectively. The kPCA projection and its storage is cheap, both scaling only O(dsr).
Storage for the pre-image projection ®,[x]7 B is r(s + 1) x 3N, where the training phase costs
O(s3r3 + 837“271) + (‘)(rnsQN) Computational cost for one pre-image computation is O(TSN)
For the feature space integration we need to fit n(s —v) samples and targets with v(d+2) and d
components, respectively, using low-rank kRR. The parameter v enters linearly into the scaling
for the computation of the kernel matrix in the low-rank approximation. The training phase
computation for kRR needs O(S3T3 + s3r2n) + O(rnsgd) operations and storage amounts here
to r(s + 1)d. Computational cost for one time-step is O(rsd).

3.2 Numerical experiments

The data generation and cross-validation were performed using the Vienna Scientific Cluster
(VSC). We used the Python machine learning package scikit learn [21] which we extended
by the low-rank kPCA variant with pre-image computation and low-rank kRR introduced in
section 2 above. We divide the numerical experiments into two categories. First we focus on
the important validation of model and method specific hyper-parameters such as the kernel
defining v > 0, the time stepping number v € N and the number of kernel principal components
d € N. Afterwards we apply the low-rank method to the micromagnetic benchmark and study
the dependence on the rank r € N. As described in the previous section we take n = 300.

Cross-validation of the hyper-parameters.
We determine the hyper-parameters v, and d via grid search. For that purpose we measure
the mean error norms in the magnetization between the prediction and the simulation of 1ns
for the standard problem in both ranges of field 1 and 2. This shows that a (default) value of
v = 1/N is quite optimal. Furthermore, the regularization parameters in the kRR were chosen
to be between 0.001 and 0.01 and yxrr = 1 performed sufficiently well. Fig. 10 and Fig. 11
show for varying d and v the mean error norms in the magnetization between all the predictions
and simulations of 1ns for the standard problem in the range of field 1 and 2 (compare with
(31) and (32)), respectively, obtained from a 10-fold cross-validation with random split strategy
and 10% test size. Here we used a rather large rank r = 40.

Next we show the prediction in dependence of the number of kernel principal components
d. Fig. 12 compares the predictions of the mean magnetization dynamics with the computer
simulations for d = 5,10 and 20 in the range of field 1, and Fig. 13 for d = 10,20 and 40

15

10

15

< 20 0.006 0.005 0.005

25 0.005 0.005 0.004

30 0.005 0.004 0.004

1 2 3 4 5

Figure 10: Cross validation table. Mean error norm in the magnetization for the prediction of
H.,; 1-data for varying number of kernel principal components d and step parameter v.

0.034 0.032 0.032

0.028 0.028 0.027

0.025 0.024 0.025

0.023 0.022 0.024

0.023 0.023 0.024

Figure 11: Cross validation table. Mean error norm in the magnetization for the prediction of
H., 2>-data for varying number of kernel principal components d and step parameter v.

16

Table 2: Cpu times in seconds for training and prediction of the whole dynamics of 1ns in the
field 2 case for the low-rank variant for varying rank r compared to the dense algorithm. The
last column shows the mean squared error (mse) of the magnetic states at the final time point
relative to the ground truth (only the final pre-image is computed). The number of field values
is n = 300, and the number of components is d = 40. We give data for time-stepping number
v=3and v =5.

Algorithm training time prediction time mse

v=3 dense 1184.56 4.64 0.031
low-rank (r = 10) 18.98 0.37 0.182
low-rank (r = 20) 39.21 0.97 0.092
low-rank (r = 30) 68.98 1.73 0.061
low-rank (r = 40) 110.45 2.64 0.041

v=2>5 dense 1180.13 5.38 0.024
low-rank (r = 10) 18.95 0.46 0.161
low-rank (r = 20) 40.16 1.13 0.069
low-rank (r = 30) 71.41 2.02 0.037
low-rank (r = 40) 115.50 2.91 0.031

in the range of field 2. We note that predictions of the trajectories take only a few seconds
of computation time. Fig. 14 and Fig. 15 illustrate snapshots of the predicted magnetization
states in the two ranges depending on d.

Low-rank variant.

We validate the performance of the low-rank version of our proposed procedure. The previous
validation indicates a choice of v = 1/N and e.g. d = 20 and v = 3 as sufficient in the field 1
case, respectively d = 40 and v = 5 in the field 2 case. Fig. 16 shows the Frobenius error norm
of the low-rank approximation of the kernel matrix for increasing rank 7.

Next we show mean magnetization plots and magnetization snap shots for increasing rank
r. Fig. 17 and Fig. 18 show the mean magnetization for increasing r in the field 1 resp. the
field 2 case. Fig. 19 and Fig. 20 show associated magnetization snap shots.

The test cases on the NIST standard problem show the expected improvements in the
predictions of mean magnetization curves and magnetization states for increasing number of
kernel principal components, time stepping number as well as rank. However, for the less
smooth manifold in the field 2 range [14] a clearly larger number of kernel principal components
and rank is needed.

Computational costs.

We compare the low-rank algorithm vs. the dense algorithm (no low-rank approximation), both
in terms of training and prediction times as required for the magnetization plots in the field
2 case as well as in terms of accuracy as given by the mean squared error at the final time
point at 1ns relative to the ground truth. Only the final pre-image is computed. As before,
we use d = 40 and n = 300 and vary the rank r and the time-stepping number v. We used a
Intel(R) Core(TM) i7-4770K CPU 3.50GHz. Tab. 2 shows the respective results, where one can
recognize a clear advantage in effort of the low-rank variant for the training and the prediction
at comparable accuracy.

17

Mean magnetization for |H| =25.0mT and ¢ =170.0°

1.00 R — Mx true
0.75 4 My, true
= Mg, true
0.50 1 X My pred
0.25 4 X My, pred
X mz,pred X
g 0.00
—0.25 A
—0.50 A
—0.75 A
10041 X T TR R e e e
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]
1.00 P = My, true
0.75 A1 Mmy, true
= Mg, true
0.50 1 '\‘ X My pred
0.25 1 ‘ X My, pred
A " N X Mz pred
£ 0.0 R e
v L e ¥ e
—0.25 A
—0.50 A
—0.75 A
~1.00 - ‘
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]
1.00
P d=20 = My, true
0.75 4 My, true
— Mgz, true
0.50 1 X My pred

0.25 1

” X My, pred

A R g > X mz,pred 4

€ 0.00 sz "5 g 3 o 5 A
-0.25 \

0.0 0.2 0.4 0.6 0.8 1.0
time [ns]

Figure 12: Predictions versus computed results for mean magnetization in the field 1 case for
varying number of kernel principal components d = 5,10 and 20. The parameters were chosen
as follows: kernel parameter v = 1/N and time-stepping v = 3. A rank of r = 30 was used.

18

Mean magnetization for |[H| =36.0mT and ¢ = 190.0°

1.00 d=10 = My, true
0.75 1 " My, true
= My, true

0.50 A My, pred
My, pred

0.25 A

My, pred

—0.251
—0.50 1
—-0.751
—1.00 1
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]
1.00
[d=20 — Mx, true
0.75 1 = My, true
= Mz, true
0.50 A X My, pred
0.25 A X My, pred
£ o004 el
v g
—-0.251
—-0.50 1
—-0.751
-1004—— — LT RN
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]
1.00
[d=40 = My, true
0.75 A — My, true
= My, true
0.50 A1 X My, pred
0.25 1 X My, pred
2 000 PV, T) T R O IR X Mz pred
—0.251
—0.50 1
—-0.751
—-1.00 1
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]

Figure 13: Predictions versus computed results for mean magnetization in the field 2 case for
varying number of kernel principal components d = 10,20 and 40. The parameters were chosen
as follows: kernel parameter v = 1/N and time-stepping v = 5. A rank of r = 40 was used.

19

t=0.2ns t=0.4ns

o T TN

F S
)y Ly -
b gy

t = 0.8ns

; QS -
d=20 “ i
it

’ |
E P — ;
v P
4 i

Figure 14: Snap shots of computed (Comp) and predicted magnetization states in the field 1
case for varying number of kernel principal components d = 3,5,10 and 20. The parameters
were chosen as follows: kernel parameter v = 1/N and time-stepping v = 3. A rank of r = 30
was used.

t=0.2ns

comp lﬂm uﬂh

Figure 15: Snap shots of computed (Comp) and predicted magnetization states in the field 2
case for varying number of kernel principal components d = 5,10,20 and 40. The parameters
were chosen as follows: kernel parameter v = 1/N and time-stepping v = 5. A rank of r = 40
was used.

20

1076 4 —— Field 1 data
Field 2 data
1077 4
g
=
= 10784
o
§
Y
|
§ 1074
X
10-10 4
0 5 10 15 20 25 30 35 40

r

Figure 16: Low-rank kernel matrix approximation for increasing rank r for the data sets corre-
sponding to field 1 and 2, respectively.

Conclusion

We presented a low-rank version of kernel principal component analysis (low-rank kPCA) which
utilizes a Nystroem approximation to the kernel matrix. The low-rank kPCA is capable of man-
aging larger sets of training data. The key computational tasks in the low-rank kPCA, such as
eigenvalue problems, projection onto kernel principal axes and the pre-image computation, are
effectively treated by exploiting the low-rank structure of the Gram matrix. The low-rank kPCA
was implemented as an extension in the scikit learn Python software [21]. We give a stand-alone
validation example of the low-rank kPCA in the fashion of the scikit learn documentation. Train-
ing and prediction in the low-rank variant is shown to be significantly more effective than in the
dense case. Following [14] we then apply the new method to establish a mashine learning model
to predict the micromagnetic dynamics described by the Landau-Lifschitz-Gilbert equation, the
fundamental partial differential equation in mircomagnetics. Magnetization states from simu-
lated micromagnetic dynamics associated with different external fields are used as training data
to learn a dimension-reduced representation in feature space and a time-stepping map between
the reduced spaces. The time-stepping prediction is based on learning maps between truncated
representations of sample magnetization trajectories obtained by nonlinear model reduction via
low-rank kPCA. Compared to the original proposed scheme in [14] the novel learning approach
works entirely with reduced dimensional representations and the pre-image is only taken after
the final time-step. The time stepping maps are established by a low-rank version of kernel ridge
regression (low-rank kRR). Enhanced stability is observed when introducing multi-steps in the
training process similar to [17]. We systematize this approach by incorporating a time-stepping
number as hyper-parameter which we optimally determine via cross-validation, together with
the number of kernel principal components. The test cases on the NIST standard problem show
the expected improvements in the predictions of mean magnetization curves and magnetization
states for increasing number of kernel principal components, time stepping number as well as
rank. In principle, the proposed procedure allows to determine an ”effective rank” during the
low-rank approximation of the kernel matrix via the information obtained from the singular
values. However, the selection of the basis vectors could be systematized by procedures such
as matching pursuit, possible future work but not yet treated in the present paper. Future

21

Mean magnetization for |H| = 25.0mT and ¢ =170.0°

1.00 My, true
0.75 A My, true
Mz, true
0.50 A My, pred
0.25 A my,pred
£ 0.00 V2.
\
—0.25 1 X%
X
—0.50 1 X
~0.75 1 ¥as
X
—1.00 1 <
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]
1.
00 15 r=5 — Mx, true
0.75 2 = My, true
— Mgz true
0.50 1 X My pred
0.25 A X my,pred
A N X Mz, pred
£ 0.00 fossge L ,W'é
\)
—0.25 1
—0.50 1
—0.75 1
~1.00 - SAITRISE o ¢ 00 BRI,
0.0 0.2 0.4 0.6 0.8 1.0
time [ns]
1.
00 g r=10 — My, true
0.75 A = My, true
— Mgz true
0.50 1 < /*_ X My pred
0.25 A X my,pred
i R &4 X mz,pred 4
€ 0.00 sssse J XK
Wi 7l * s
—0.25 1 3
—0.50 1
-0.75 y
—1.00 1
0.0 0.2 0.4 0.6 0.8 1.0

time [ns]

Figure 17: Predictions versus computed results for mean magnetization in the field 1 case for
varying rank r = 2,5 and 10. The parameters were chosen as follows: kernel parameter y = 1/N
and time-stepping v = 3. A number of d = 20 components was used.

22

Mean magnetization for |H| = 36.0mT and ¢ =190.0°

1.00
[r=10 — Mx, true
0.75 A My, true
= Mg, true

my, pred

My, pred

My, pred

0.0 0.2 0.4 0.6 0.8 1.0
time [ns]

1.00

— Mx, true

0.75 1 My, true

= Mgz true

0.50 1 X My pred
0.25 A X My, pred
X

2 AR g TP) > Mz, pred

<m>

—0.25 1

—0.50 1

—0.75 1

—1.00 A1

0.0 0.2 0.4 0.6 0.8 1.0
time [ns]

1.00
0.75 -
0.50 -

0.25 1

0.0 0.2 0.4 0.6 0.8 1.0
time [ns]

Figure 18: Predictions versus computed results for mean magnetization in the field 2 case for
varying rank r = 10,20 and 40. The parameters were chosen as follows: kernel parameter
v = 1/N and time-stepping v = 5. A number of d = 40 components was used.

23

t = 0.4ns

L o Y
V" A
) i §
) oy A
b gy

t = 0.8ns

L
L)
i
i

Figure 19: Snap shots of computed (Comp) and predicted magnetization states in the field
1 case for varying rank r = 2,5,10 and 20. The parameters were chosen as follows: kernel
parameter v = 1/N and time-stepping v = 3. A number of d = 20 components was used.

Figure 20: Snap shots of computed (Comp) and predicted magnetization states in the field
2 case for varying rank r = 5,10,20 and 40. The parameters were chosen as follows: kernel
parameter v = 1/N and time-stepping v = 5. A rank of r = 40 was used.

24

work shall also include application to other parameter-dependent differential systems such as
nonlinear Schrodinger dynamics.

Acknowledgments

We acknowledge financial support by the Austrian Science Foundation (FWF) via the projects
"ROAM” under grant No. P31140-N32 and the SFB ”Complexity in PDEs” under grant No.
F65. We acknowledge the support from the Christian Doppler Laboratory Advanced Magnetic
Sensing and Materials (financed by the Austrian Federal Ministry of Economy, Family and
Youth, the National Foundation for Research, Technology and Development). The authors
acknowledge the Wiener Wissenschafts und Technologie Fonds (WWTF) project No. MA16- 066
(“SEQUEX?”) and the University of Vienna research platform MMM Mathematics - Magnetism
- Materials. The computations were partly achieved by using the Vienna Scientific Cluster
(VSC) via the funded project No. 71140.

References

[1] kMAG micromagnetic modeling activity group. http://www.ctcms.nist.gov/~rdm/
mumag.org.html.

[2] C. Abert, L. Exl, G. Selke, A. Drews, and T. Schrefl. Numerical methods for the stray-field
calculation: A comparison of recently developed algorithms. Journal of Magnetism and
Magnetic Materials, 326:176-185, 2013.

[3] A. Aharoni. Introduction to the Theory of Ferromagnetism, volume 109. Clarendon Press,
2000.

[4] G. H. Bakir, J. Weston, and B. Scholkopf. Learning to find pre-images. Advances in neural
information processing systems, 16(7):449-456, 2004.

[5] W. F. Brown. Micromagnetics. Number 18. Interscience Publishers, 1963.

[6] F.Bruckner, M. d’Aquino, C. Serpico, C. Abert, C. Vogler, and D. Suess. Large scale finite-
element simulation of micromagnetic thermal noise. Journal of Magnetism and Magnetic
Materials, 475:408-414, 2019.

[7] C. Cortes, M. Mohri, and J. Weston. A general regression framework for learning string-
to-string mappings. Predicting Structured Data, 01 2007.

[8] M. d’Aquino, C. Serpico, G. Bertotti, T. Schrefl, and I. Mayergoyz. Spectral micromagnetic
analysis of switching processes. Journal of Applied Physics, 105(7):07D540, 2009. https:
//doi.org/10.1063/1.3074227.

[9] M. d’Aquino, C. Serpico, and G. Miano. Geometrical integration of Landau-Lifshitz—
Gilbert equation based on the mid-point rule. Journal of Computational Physics,
209(2):730-753, 2005.

[10] M. J. Donahue and D. G. Porter. Oommf user’s guide, version 1.0, interagency report nistir
6376. National Institute of Standards and Technology, 1999.

[11] L. Ex]l. Tensor grid methods for micromagnetic simulations. Vienna UT (thesis), 2014.
http://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-73100.

25

http://www.ctcms.nist.gov/~rdm/mumag.org.html
http://www.ctcms.nist.gov/~rdm/mumag.org.html
https://doi.org/10.1063/1.3074227
https://doi.org/10.1063/1.3074227
http://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-73100

[12]

[13]

[22]

[23]

[24]

L. Exl. A magnetostatic energy formula arising from the L?-orthogonal decomposition of
the stray field. Journal of Mathematical Analysis and Applications, 467(1):230-237, 2018.

L. ExI, N. J. Mauser, T. Schrefl, and D. Suess. The extrapolated explicit midpoint scheme
for variable order and step size controlled integration of the Landau—Lifschitz—Gilbert equa-
tion. Journal of Computational Physics, 346:14-24, 2017.

L. Exl, N. J. Mauser, T. Schrefl, and D. Suess. Learning time-stepping by nonlinear
dimensionality reduction to predict magnetization dynamics. Communications in Nonlinear
Science and Numerical Simulation, 84:105205, 2020.

J. Fischbacher, A. Kovacs, M. Gusenbauer, H. Oezelt, L. Exl, S. Bance, and T. Schrefl.
Micromagnetics of rare-earth efficient permanent magnets. Journal of Physics D: Applied
Physics, 51(19):193002, 2018.

T. Hofmann, B. Scholkopf, and A. J. Smola. Kernel methods in machine learning. The
annals of statistics, pages 1171-1220, 2008.

A. Kovacs, J. Fischbacher, H. Oezelt, M. Gusenbauer, L. Exl, F. Bruckner, D. Suess,
and T. Schrefl. Learning magnetization dynamics. Journal of Magnetism and Magnetic
Materials, 491:165548, 2019.

H. Kronmueller. General Micromagnetic Theory. John Wiley & Sons, Ltd, 2007.

R. McMichael. uMAG Standard Problem #4 results.

J. E. Miltat and M. J. Donahue. Numerical micromagnetics: Finite difference methods.
Handbook of magnetism and advanced magnetic materials, 2007.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

S. Saitoh. Theory of reproducing kernels and its applications. Longman Scientific &
Technical, 1988.

B. Scholkopf, A. Smola, and K.-R. Miller. Kernel principal component analysis.
International conference on artificial neural networks, pages 583588, 1997.

T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, and J. Fidler. Numerical Methods
in Micromagnetics (Finite Element Method). John Wiley & Sons, Ltd, 2007. https:
//doi.org/10.1002/9780470022184 . hmm203.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

D. Suess, A. Bachleitner-Hofmann, A. Satz, H. Weitensfelder, C. Vogler, F. Bruckner,
C. Abert, K. Prigl, J. Zimmer, C. Huber, et al. Topologically protected vortex structures
for low-noise magnetic sensors with high linear range. Nature Electronics, 1(6):362, 2018.

D. Suess, V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster, R. Dittrich, and J. Miles.
Time resolved micromagnetics using a preconditioned time integration method. Journal of
Magnetism and Magnetic Materials, 248(2):298-311, 2002.

26

https://doi.org/10.1002/9780470022184.hmm203
https://doi.org/10.1002/9780470022184.hmm203

. Welling. Kernel ridge regression. ax Welling’s Classnotes in Machine Learning,

28] M. Welli K 1 rid i Max Welling’s Cl in Machine L i
pages 1-3, 2013. https://www.ics.uci.edu/~welling/classnotes/papers_class/
Kernel-Ridge.pdf.

[29] J. Weston, O. Chapelle, V. Vapnik, A. Elisseeff, and B. Schélkopf. Kernel dependency
estimation. Advances in neural information processing systems, pages 897-904, 2003.

[30] C. K. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines.
In Advances in neural information processing systems, pages 682—-688, 2001.

27

https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf
https://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

	1 Introduction
	2 Learning feature space maps with reduced dimensionality
	2.1 Kernel principal component analysis
	2.2 Low-rank kernel principal component analysis
	2.3 Low-rank kernel ridge regression and pre-image computation
	2.4 Numerical validation of the low-rank kPCA
	2.5 Learning maps between feature space elements with truncated components

	3 Prediction of magnetization dynamics
	3.1 Data structure for the time stepping learning method
	3.2 Numerical experiments

