
ar
X

iv
:2

00
3.

11
45

0v
2

 [
cs

.D
S]

 9
 J

ul
 2

02
0

Tight Algorithms for the Submodular Multiple Knapsack Problem

Xiaoming Sun ∗ Jialin Zhang ∗ Zhijie Zhang ∗

July 10, 2020

Abstract

Submodular function maximization has been a central topic in the theoretical computer
science community over the last decade. Plenty of well-performing approximation algorithms
have been designed for the maximization of monotone/non-monotone submodular functions over
a variety of constraints. In this paper, we consider the submodular multiple knapsack problem
(SMKP), which is the submodular version of the well-studied multiple knapsack problem (MKP).
Roughly speaking, the problem asks to maximize a monotone submodular function over multiple
bins (knapsacks). Recently, Fairstein et al. [8] presented a tight (1 − 1/e − ǫ)-approximation
randomized algorithm for SMKP. Their algorithm is based on the continuous greedy technique
which inherently involves randomness. However, the deterministic algorithm of this problem has
not been understood very well previously. In this paper, we present deterministic algorithms
with improved approximation ratios for SMKP.

We first consider the case when the number of bins is a constant. Previously a randomized
approximation algorithm obtained approximation ratio (1 − 1/e − ǫ) based on the involved
continuous greedy technique. Here we provide a simple combinatorial deterministic algorithm
with ratio (1− 1/e) by directly applying the greedy technique. We then generalize the result to
arbitrary number of bins. When the capacity of bins are identical, we design a combinatorial
and deterministic algorithm which can achieve the tight approximation ratio (1 − 1/e− ǫ). In
the general case, we provide a (1/2 − ǫ)-approximation algorithm which is also combinatorial
and deterministic. We finally show a 1−1/e− ǫ randomized algorithm for the general case, thus
achieving the result as in Fairstein et al. [8].

∗CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy

of Sciences. University of Chinese Academy of Sciences. {sunxiaoming, zhangjialin, zhangzhijie}@ict.ac.cn.

1

http://arxiv.org/abs/2003.11450v2

1 Introduction

The multiple knapsack problem (MKP) is defined as follows. We are given a set N of n items and
a set of m bins (knapsacks) such that the j-th bin has a capacity Bj and an item u ∈ N has a size
c(u) and a profit p(u). The task is to select a subset of items such that the sum of their profits
is maximized and they can be packed into those m bins without exceeding the capacities. It is
well-known that the problem admits a PTAS but has no FPTAS assuming P 6= NP [15, 5, 14].

In this paper, we consider the submodular generalization of the above problem, called the
submodular multiple knapsack problem (SMKP). Instead of specifying a profit for each item, the
profit of each subset of items is described by a monotone submodular function f defined over all
subsets of N . The task is again to select a subset of items which maximizes the value of f and can
be packed into those m bins without exceeding the capacities. The objective function f : 2N → R

is called submodular if f(S + u)− f(S) ≥ f(T + u)− f(T) for any S ⊆ T and u 6∈ T , which means
the marginal value diminishes when the set becomes larger.

By introducing a monotone submodular objective function, SMKP falls into the field of submod-
ular function maximization, which captures many fundamental problems in combinatorial optimiza-
tion, such as maximum coverage problem, maximum cut problem, submodular welfare, influence
maximization, etc. The research of submodular maximization lasts for more than forty years. As
early as in 1978, a simple greedy algorithm was proposed which yields a (1 − 1/e)-approximation
for the problem of maximizing a monotone submodular function subject to a cardinality constraint
|S| ≤ k [20], and a 1/2 approximation for the problem of maximizing a monotone submodular func-
tion subject to a matroid constraint [12]. On the other hand, even for the cardinality constraint,
submodular maximization problems can not be approximated within a ratio better than 1 − 1/e
[19]. Since then, it remains a central open question in this field whether or not the problem of
maximizing a monotone submodular function admits a (1− 1/e)-approximation when subject to a
matroid constraint. Until 2008, a groundbreaking work [22] answers this question affirmatively by
proposing the so-called continuous greedy technique. Since then, a plenty of tight or well-performed
approximation algorithms have been devised to maximize (monotone or non-monotone) submodu-
lar functions over a variety of constraints [2, 3, 4, 6, 10, 11, 13, 17, 18, 23]. In submodular multiple
knapsack problem, this technique also shows great power. Recently, Fairstein et al. [8] presented a
tight (1−1/e−ǫ)-approximation randomized algorithm for SMKP in general case. Their algorithm
combines the continuous greedy technique and approximation schemes for packing problems.

However, although the continuous greedy technique achieves great success in submodular max-
imization problem under various constraints, this technique inherently involves randomness, thus
it is quite difficult to imply any deterministic algorithms. This makes a huge gap between the
performance guarantees of the best known deterministic algorithms and randomized algorithms
for several problems. For example, for the monotone submodular maximization under matroid
constrain, we have tight 1− 1/e randomized algorithm while by far the best deterministic ratio is
0.5008; for the non-monotone submodular maximization, the gap between randomized algorithm
and deterministic algorithm is 0.385 versus 1/e under cardinality constraint and 0.385 versus 1/4−ǫ
under matroid constraint.

This gap also exists in the submodular multiple knapsack problem. While the almost optimal
randomized algorithm has been proposed for this problem, we know very little about the per-
formance of deterministic algorithms. By generalizing the algorithms for the multiple knapsack
problem in [5], it is easy to obtain a 0.468 deterministic algorithm for the identical-size case where

the capacity of bins are identical, and a 1−1/e
2−1/e ≈ 0.387 deterministic algorithm for the general case.

In this paper, we show how to completely close the gap for the identical-size case and we also
significantly reduce the gap for the general case.

2

1.1 Our Results

In this work, we present several deterministic approximation algorithms with improved ratio for
SMKP. We provide 1) a tight (1 − 1/e)-approximation algorithm in the constant case where the
number of bins m is a constant; 2) an almost-tight (1 − 1/e − ǫ)-approximation algorithm in the
identical-size case where all the bins have the same capacity Bj ≡ B; 3) a (1/2− ǫ)-approximation
algorithm in the general case. For the general case, one of the key ingredient is that we propose a
(1/2− ǫ)-approximation algorithm for the bounded-size case where the ratio between the maximum
capacity and the minimum capacity of the bins is bounded by a constant. We can also boost the
approximation ratio to (1− 1/e− ǫ) with the help of standard continuous greedy technique in the
general case, which gives a different almost-tight randomized approximation algorithm compared
to the work of Fairstein et al. [8]. The following table summarizes our results in this paper and
lists the best known results previously as comparison.

Case Previous result Our result

Constant bins 1− 1/e − ǫ [16] 1− 1/e
(randomized, continuous greedy) (deterministic)

0.468 (folklore) 1− 1/e − ǫ
Identical-size (deterministic) (deterministic)

1− 1/e− ǫ [8]
(randomized, continuous greedy)

0.387 (folklore) 1/2 − ǫ
General (deterministic) (deterministic)

1− 1/e− ǫ [8] 1− 1/e − ǫ
(randomized, continuous greedy) (randomized, continuous greedy)

The main contribution in this paper is the tight (1 − 1/e − ǫ)-approximation algorithm in the
identical-size case and the 1/2 approximation algorithm in the general case. Both algorithms are
deterministic and based on the greedy technique with several new insights in the analysis. We
hope our new deterministic algorithms can inspire the design of deterministic algorithm for other
constraints in the area, especially multiple linear constraint and the matroid constraint.

1.2 Technique Overview

All the algorithms in this paper are built on the greedy algorithm presented in Section 2.1. Roughly
speaking, in each step, the greedy algorithm will select the element with the largest ratio of the
marginal value to the size, and pack it into the bin if the bin is not full. Note that, the last selected
element might violate the capacity constraint. We call this element a reserved element. Though
the greedy algorithm might return an infeasible set, called G, the performance of this set is quite
well. It is easy to check in the standard knapsack problem where the objective function f is a linear
function, we have f(G) ≥ f(OPT). Even in the submodular knapsack problem, the solution G
returned by the greedy algorithm also enjoys a good approximation. Formally, for any set T ⊆ N ,

f(G) ≥
(

1− e−c(G)/c(T)
)

f(T).

Here c(G) =
∑

u∈G c(u) is the size of G. By plugging T = OPT into this inequality and combining
the fact that c(G) ≥ total capacity ≥ c(OPT), we obtain an infeasible solution G which admits
(1 − 1/e)-approximation. The algorithms in this paper are all about how one manages to round

3

the greedy solution into a feasible one by dealing with the reserved elements carefully, such that
the rounded solution will not lose too much in the approximation ratio.

One widely used technique to handle this problem is the enumeration technique. By enumerating
all possible partial solutions, we are able to pack large-valued elements in OPT . Then we can fill the
bins by greedily picking small-valued elements, rendering the reserved elements to be small-valued.
Since the reserved element is small-valued, we can directly discard this element. This idea provides
us a simple polynomial time approximation algorithm when the number of bins is constant.

Theorem 1. There is a deterministic combinatorial algorithm for SMKP which admits a (1−1/e)-
approximation and runs in O((mn)em+4) time, specially when the number of bins m is a constant,

the algorithm runs in polynomial time.

Remark. When the number of bins m is a constant, the randomized algorithm for the m-knapsack
constraint [16] already achieves a (1− 1/e− ǫ)-approximation for SMKP. However, such algorithm
adopts the continuous greedy technique and requires an involved rounding procedure.

1.2.1 Identical-size Case

When applying such idea to arbitrary m, the obstacle is that the enumeration step requires expo-
nential time. This is because the “constant-bins” algorithm takes all the bins into consideration
simultaneously. A natural idea to resolve it is to pack bins one at a time. Let Sj denote the
elements packed in the j-th bin and Tj denote the elements packed in the first j bins by an
algorithm. To run a greedy algorithm for SMKP is similarly to run a greedy algorithm on an
exponential size submodular maximization problem (see the reductions in Section ??). As a result,
to achieve a (1−1/e)-approximation, we find it suffices to find the feasible sets (S1, S2, · · · , Sm and

f(Sj | Tj−1) ≥
Bj

c(OPT)f(OPT | Tj−1) where OPT is the optimal solution of the SMKP instance,
Bj is the capacity of the j-th bin, and Tj denote the elements packed in the first j bins. We find
it is possible if we allowed Sj to be the infeasible set returned by the greedy algorithm. Take the
first bin as the example, if S1 is infeasible set returned by the greedy algorithm, we have

f(S1) ≥
(

1− e−B1/c(OPT)
)

f(OPT).

The ratio 1−e−B1/c(OPT) is approximately B1/c(OPT) when B1/c(OPT) is small enough. For the
identical-size case, this is exactly the case when m is large. Note, in the general case, this might
not be true since it is possible that some bins have large capacity while there are numerous bins
with very small capacity.

Our task is again to handle the reserved elements carefully. One thus may expect the enumer-
ation technique still works here. However, this is not the case. The reason is simple: once the
bin has packed some elements before the greedy process, the remaining capacity of the bin would
become smaller, and therefore no longer a desired fraction of c(OPT).

In order to tackle such difficulty, the first key idea we use is to enumerate large-sized elements
rather than large-valued ones, and to greedily pick small-sized elements rather than small-valued
ones. There are several advantages to classify elements according to their sizes instead of values.
Firstly, the value function is submodular while the size function is linear. Thus we do not need to
handle the difficulties coming from the change of marginal values. Such division is more stable and
will not change in the whole process. Secondly, dividing elements according to their sizes allows
us to manipulate them in a more flexible way, e.g. small-sized elements can be transferred among
bins. Thirdly, in the analysis of greedy subroutine, we have f(S) ≥

(

1− e−c(S)/c(T)
)

f(T). Since

4

the ratio mainly depends on the ratio between capacities, the based-on-size division is also useful
in the analysis.

There are two major difficulties in the size-based-division. Firstly, since the reserved elements
are small-sized, not small-valued, they may have large value and we cannot directly discard them.
We introduce reserved bins to solve this problem. Suppose small-sized elements have size smaller
than ǫB where B is the capacity of one bin, then all reserved elements of m bins can be packed into
ǫm bins. We thus use ǫm bins to pack those reserved elements, and it is easy to show the loss of
approximation ratio is at most ǫ. The second difficulty lies in the combination of enumeration and
greedy algorithm. If the remaining capacity of the bin is not large enough, the greedy algorithm
cannot guarantee good approximation. In the following, we will explain how to overcome such
difficulty in the identical-size case.

For the identical-size case, the basic framework of the algorithm is as follows. For each bin,
we adapt the enumeration step by only enumerating all feasible solutions of large-sized elements.
Then we fill the remaining part of the bin for each enumerated set by packing only small-sized
elements greedily. Finally, the set of the maximum value is returned, and the reserved element will
be actually packed into reserved bins.

Take the first bin as an example. Let OPTl and OPTs be the set of large-sized and small-sized
elements in OPT , respectively. Let S1,l and S1,s be the set returned by the enumeration step and

the greedy step, respectively. To prove f(S1) ≥ B1
c(OPT)f(OPT) = f(OPT)

m , the idea is to show

that f(S1,l) ≥
f(OPTl)

m and f(S1,s|S1,l) ≥
f(OPTs|S1,l)

m , respectively. The first inequality is easy to

achieve by the enumeration process, while the second one is satisfied if we have c(S1,s) ≥
c(OPTs)

m .
Equivalently, we hope the algorithm can find a suitable set S1,l such that

c(S1,l) ≤
c(OPTl)

m
and f(S1,l) ≥

f(OPTl)

m
.

However, this is obviously a far-fetched condition for S1,l. If we can only find S1,l with large size
and large value, we cannot guarantee anything. But, one key observation is that if we find a set
of large-size elements S1,l with large size and large value/size ratio, we can still achieve our goal.

More formally, under mild precondition, we can prove f(S1) ≥
f(OPT)

m once the following condition
holds for S1,l:

c(S1,l) ≥
c(OPTl)

m
and

f(S1,l)

c(S1,l)
≥

f(OPTl)

c(OPTl)
.

To summarize, we find two distinct sufficient conditions for finding a good S1. Unfortunately,
there exists a counter-example where there does not exist any set satisfying either conditions, even
if we only require that they are satisfied approximately. Let OPTl = (OPTl,1, · · · , OPTl,m) be its
partition into the m identical bins. One can imagine that the elements in OPTl might be packed
into the bins by OPT in an unbalanced manner. That is, some of OPTl,i have very large values as
well as very large sizes, while others have small values as well as small sizes. In order to circumvent
this difficulty, we introduce the average argument which shows that there must exists constant
number of the sets OPTl,i whose combinations approximately satisfy one of the two conditions.
More formally, we show there exists a set S = OPTl,i1 ∪ OPTl,i2 ∪ · · · ∪ OPTl,is where s is a
constant, satisfying one of the following two conditions approximately:

c(S)

s
≤

c(OPTl)

m
and

f(S)

s
≥

f(OPTl)

m
.

c(S)

s
≥

c(OPTl)

m
and

f(S)

c(S)
≥

f(OPTl)

c(OPTl)
.

5

This is the most intricate part in the proof. But the intuition is simple. Although the optimal
solution might pack the large-size elements unbalanced among m bins, there exists a suitable way
to group them which will eliminate imbalance quickly. We also change the algorithm according to
this idea. In each step, we will consider constant number of bins instead of a single bin, enumerate
all feasible solutions of large-sized elements and greedily fill the remaining part of bins with small-
sized elements. Combining all these techniques, we have the following result for the identical-size
case of SMKP.

Theorem 2. For the identical-size case of SMKP, there is a polynomial time deterministic algo-

rithm which yields a (1− 1/e −O(ǫ))-approximation.

1.2.2 General Case

Next, we manage to generalize the above result to the general case. There are two major difficulties
in the generalization. Firstly, in the identical-size case, the key idea is to show that for the single bin
or constant number of bins, the algorithm can proportionally reach the value of optimal solution,
that is, f(Sj | Tj−1) ≥

Bj

c(OPT)f(OPT | Tj−1). However, when the capacities of bins are not
identical, the capacity itself will introduce imbalance, and it is impossible to guarantee such global
criteria. One extreme example is that there exists some element who can be packed into a large
bin while exceeds the capacity of another small bin. If this element has large value, the optimal
solution is intrinsic unbalanced and it is quite difficult to guarantee both the small bin and large
bin reach the value of optimal solution proportionally. Secondly, when the capacities are not the
same, it is difficult to define what is small-sized element, since if we set the criteria of small-sized
element according to the capacity of the smallest bin, we may need exponential time to enumerate
large-sized elements in the largest bin.

To resolve the first difficult, we will abandon the global criteria, and consider a more local
criteria f(Sj | Tj−1) ≥ f(OPTj | Tj−1). This idea actually comes from the analysis for the classical
greedy algorithm under a matroid constraint [12], and based on it, we can show the algorithm
admits 1/2-approximation ratio. To resolve the second obstacle, we will first restrict ourselves to
the bounded-size case in which the capacity Bj ∈ [B, γB], where B is the capacity of the smallest
bin and γ ≥ 1 is a constant. In the bounded-size case, we can safely define the small-sized elements
according to B. We then generalize our result to the general case.

Bounded-size Case:

The algorithm framework for bounded-size case is quite similar as the identical-size case, but the
analysis uses different ideas. The algorithm packs bins one at a time. For each bin, the algorithm
enumerates large-sized elements, greedily picks small-sized elements, returns the set with largest
value and packs the reserved element into the reserved bins. The fact that γ is a constant ensures
that the algorithm is polynomial.

For the analysis, same as the identical-sized case, we need a small part of bins as reserved bins.
We also draw a small part of bins as patched bins, and let m′ be the number of remaining bins.
We then compare our algorithm with the optimal solution OPT with m′ bins and this will cause a
small loss to the approximation ratio. We show how to cleverly partition OPT such that it is easier
to compare OPTj with Sj returned by our algorithm. The intuition is that the small-sized elements
in OPT can be “arbitrarily” re-partitioned according to our requirements. After re-partition, we
cannot guarantee the optimal solution can be packed into m′ bins. But since the elements involving
in the re-partition are all small-sized elements, we can use small number of bins to pack them. This
is the function of patched bins. We will pack all elements in the optimal solution which cannot be
packed into m′ bins into the patched bins. In the algorithm, we also run greedy algorithm over
small-sized elements in the corresponding patched bins. To conclude, we have the following result.

6

Theorem 3. For the bounded-size case of SMKP, there is a polynomial time deterministic algorithm

which yields a (12 − 2ǫ)-approximation.

General Case:

Finally, we try to solve the general case based on our result for bounded-size case. The key point
is the criteria used in the analysis of bounded-size case is local, that is, f(Sj | Tj−1) ≥ f(OPTj |
Tj−1), thus it is possible to stack up the bins in a hierarchical way. The natural idea is to divide the
bins into several groups according to their capacities: [B, γB], [γB, γ2B], [γ2B, γ3B], · · · where B
is the capacity of smallest bin. Within one group, one can call the subroutine of bounded-size case,
and can still obtain the local guarantee. However, the main obstacle is that the local guarantee
is satisfied only if the number of bins in the group is large enough. If some group contains only
small number of bins, although we can use the algorithm of constant bins to obtain (1 − 1/e)-
approximation ratio within this group, the local guarantee will be no longer satisfied, and we can
only expect to have the result f(Sj | Tj−1) ≥ (1 − 1/e)f(OPTj | Tj−1). Here j should mean some
group of bins, but in the extreme case, when the group contains only one bin, it is coincidence with
one bin. This makes the analysis fail to obtain the final 1/2-ratio.

There are two key ideas which help us circumvent this problem. Firstly, suppose the capacity of
largest bin lies in [γk−1B, γkB], then consider a group with constant number of bins whose capacity
lies in [γi−1B, γiB]. If i ≪ k, we can directly discard such group since the total capacity of this
group is too small compared to the largest bin. Note, we cannot discard such group if it contains
large number of bins, since the total capacity cannot be ignored. Thus, what we need to care is the
groups with small number of bins but each bin has large capacity. We put all such groups together,
and there are in total constant number of bins. Unfortunately, although the ratio of maximum
capacity and minimum capacity of those bins are bounded (γc for some constant c), the number of
bins might not be large enough and we cannot run our algorithm of bounded-size case. We do not
know how to guarantee local criteria f(Sj | Tj−1) ≥ f(OPTj | Tj−1) for those bins. Instead, we
use another way to bound the performance of those bins. We show if we simultaneous enumerate
large-sized elements for all those bins, and then fill in the remaining space with greedy algorithm
over small-sized elements, we can guarantee f(Sj | Tj) ≥ f(OPTj | Tj). This is enough for the final
1/2-ratio. The disadvantage is that simultaneous enumeration is necessary since if we only handle
those bins one by one and return the set of elements with maximum marginal value for each bin, we
cannot guarantee this requirement. The lucky thing is that we only need to take care of constant
number of bins in this part, thus the simultaneous enumeration is feasible.

Combining all these ideas, we finally generalize the results of bounded-size case to general case.

Theorem 4. For SMKP, there is a polynomial time deterministic algorithm which yields a (12−2ǫ)-
approximation.

Finally, by applying the standard continuous greedy technique, we can boost our approximation
ratio to (1−1/e−O(ǫ))-approximation. The similar technique of boosting is also used in xxx. The
resulting randomized algorithm enjoys almost tight approximation ratio. This gives us a different
randomized algorithm compared to the work of Fairstein et al. [8].

Theorem 5. For SMKP, there is a polynomial time randomized algorithm which yields a (1 −
1/e−O(ǫ))-approximation.

1.3 Related Work

The multiple knapsack problem has been fully studied previously. Kellerer [15] proposed the first
PTAS for the identical-size case of the problem. Soon after, Chekuri and Khanna [5] proposed

7

a PTAS for the general case. The result was later improved to an EPTAS by Jansen [14]. On
the other hand, it is easy to see that the problem does not admit an FPTAS even for the case
of m = 2 bins unless P = NP, by reducing the partition problem to it. For the problem of
maximizing a monotone submodular function subject to a knapsack constraint, a tight (1 − 1/e)
algorithm was known which runs in O(n5) time [15, 21]. Later, a fast algorithm was proposed
in [1] which achieves a (1 − 1/e − ǫ)-approximation and runs in n2(log n/ǫ)O(1/ǫ8) time. This was
recently improved in [7] by a new algorithm which runs in (1/ǫ)O(1/ǫ4)n log2 n time. For the problem
of maximizing a monotone submodular function subject to the m-knapsack constraint, there is a
tight 1 − 1/e − ǫ algorithm [16] when the number of knapsacks m is a constant. The problem is
NP-hard to approximate within an n1−ǫ factor when m is a part of input, since it contains the
Independent-set problem as a special case.

For the submodular multiple knapsack problem considered in this paper, in his Ph. D thesis
[9], Feldman proposed a polynomial time (1/9− o(1))-approximation algorithm and a pseudo poly-
nomial time 1/4 approximation algorithm for the problem. For the identical-size case where the
capacity of bins are identical, he improved the results to a polynomial time ((e−1)/(3e−1)−o(1))-
approximation algorithm and a pseudo polynomial time (1− 1/e− o(1))-approximation algorithm.
Recently, Fairstein et al. [8] presented a tight (1 − 1/e − ǫ)-approximation randomized algorithm
for SMKP in general case. Their algorithm combines the continuous greedy technique and approx-
imation schemes for packing problems.

Among them, the most relevant constraint to this work is the m-knapsack constraint, also called
multiple linear constraints in the literatures.

The m-knapsack constraint assumes that there are m knapsacks and the j-th knapsack has
budget Bj. In contrast to our problem, the constraint assumes that each picked element u ∈ N
incurs a cost cj(u) in the j-th knapsack for all j ∈ [m] := {1, · · · ,m}. a set of elements is feasible if
it is feasible in each knapsack. In some sense, under them-knapsack constraint, each picked element
is packed into all knapsacks simultaneously; while in our model, under the capacity constraint, each
picked element is packed into only one knapsack (we call it bin instead of knapsack in the paper).
The m-knapsack constraint is closely related to the capacity constraint in our problem. Firstly, the
submodular maximization problem subject to the 1-knapsack constraint (often known as a knapsack
constraint) generalizes the classical knapsack problem, and is exactly SMKP with a single bin as
input. Secondly, SMKP can actually be reduced to the submodular maximization problem subject
to the m-knapsack constraint. The reduction is as follows. For an instance of SMKP, an item
u ∈ N can be divided into m items u1, · · · , um and for j ∈ [m], and uj incurs a cost c(uj) in the
j-th bin and a zero cost in other bins. The function value of a set of new items is equal to the
value of the set of the original items from which they are generated. And now we have obtained
a submodular maximization instance subject to the m-knapsack constraint. Actually, SMKP is
strictly simpler than the submodular maximization problem subject to the m-knapsack constraint.
The latter problem is NP-hard to approximate within an n1−ǫ factor when m is a part of input,
while it is not difficult to find a constant approximation algorithm for SMKP for arbitrary m (see
the following subsection for details).

1.4 Organization

We first present a formal description of the submodular multiple knapsack problem (SMKP) and
some notations in Section 2. The greedy algorithm and a tight (1 − 1/e) algorithm for SMKP
assuming the number of bins m is a constant are both presented in this section. The 1 − 1/e − ǫ
deterministic algorithms for the identical case and the 1/2 − ǫ deterministic algorithm for the
bounded case are presented in Section 3 and Section 4, respectively. Algorithms from these two

8

sections assume that the number of bins m is “large”. The tight randomized algorithm for the
general case will be presented in the full version of the paper. Finally, we conclude the paper in
Section 5.

2 Preliminaries

Let f : 2N → R be a set function. f is monotone if f(S) ≤ f(T) for any S ⊆ T . f is submodular

if f(S + u) − f(S) ≥ f(T + u) − f(T) for any S ⊆ T and u 6∈ T . Here S + u is a shorthand for
S ∪ {u}. Throughout this paper, we also use f(u | S) and f(T | S) to denote the marginal values
f(S + u)− f(S) and f(S ∪ T)− f(S), respectively. We assume that f is accessed by a value oracle
that returns f(S) given a set S ⊆ N .

An instance of the submodular multiple knapsack problem (SMKP) is defined as follows. We are
given a ground set N of n elements and m bins (knapsacks). For j ∈ [m] := {1, · · · ,m}, the j-th
bin has a positive capacity Bj. Each element u ∈ N has a positive size c(u), and the size of a set
S ⊆ N is c(S) =

∑

u∈S c(u). In addition, there is a non-negative objective function f : 2N → R≥0

defined over all subsets of N . In this paper, the objective function f is assumed to be monotone

and submodular. A set S ⊆ N is feasible if there exists an ordered partition (S1, · · · , Sm) of S such
that c(Sj) ≤ Bj for each j ∈ [m]. In other words, S is feasible if there is a way to pack it into those
m bins. The way how S is packed does not change the value of f(S). The goal is to find a feasible
set S (as well as the way it is packed) which maximizes the value of objective function f .

Notations. Throughout the paper, when we refer to a set S ⊆ N , we assume that some of its
partition (S1, · · · , Sm) is implicitly given. The partition may be generated from an algorithm, or
be specified explicitly if necessary. Depending on the context, sometimes the partition might not
be a feasible solution for the problem, that is, c(Sj) ≤ Bj might not hold for some j ∈ [m]. We
use |S| to denote the number of elements in S and b(S) = |{j ∈ [m] | Sj 6= ∅}| to denote the
number of bins used in its partition (S1, · · · , Sm). The term b(S) actually depends on the partition
(S1, · · · , Sm) of S, but we slightly abuse the notation here for ease of presentation.

2.1 The Greedy Algorithm

The greedy algorithm is shown as Algorithm 1. It returns a (possibly infeasible) set with a (1−1/e)
approximation ratio. All the algorithms in this paper are built based on it. It selects elements to
be packed in a greedy manner, according to the ratios of elements’ current marginal values to their
sizes. It packs the selected elements into bins as long as there is a bin whose capacity has not been
fully used. As a result, Algorithm 1 might not return a feasible solution. However, it is easy to
see that each bin packs at most one additional element. That is, if c(Sj) > Bj for some j ∈ [m]
and u is the last element added into Sj, then c(Sj \ {u}) < Bj and hence Sj \ {u} is feasible in the
j-th bin. For convenience, we say Algorithm 1 returns an almost feasible solution. For each bin,
the last element that violates the capacity constraint is called a reserved element. The following
lemma lower bounds the quality of the almost feasible set returned by Algorithm 1.

Lemma 1. Let S be the set returned by Algorithm 1. For any set T ⊆ N , we have

f(S) ≥

(

1− e
− c(S)

c(T)

)

· f(T).

Proof. We assume that c(S) ≥
∑m

j=1Bj , since otherwise all elements in N have been packed into
S and therefore the lemma holds trivially. Assume that S = {u1, u2, · · · , ul}, and for i ∈ [l],

9

Algorithm 1: Greedy

Input: ground set N , objective function f , size function c, number of bins m, capacities
(B1, · · · , Bm).

Output: An almost feasible set (and the way it is packed).
1 Let S = ∅ and S = (S1, · · · , Sm) be its partition into m bins.
2 while N \ S 6= ∅ and there exists j ∈ [m] such that c(Sj) < Bj do

3 u∗ = argmaxu∈N\S f(u | S)/c(u).

4 S = S + u∗ and Sj = Sj + u∗.

5 end

6 return S = (S1, · · · , Sm).

Si = {u1, u2, · · · ui} denotes the first i elements picked by the algorithm. Then, by the greedy rule,

f(ui | S
i−1)

c(ui)
≥

f(t | Si−1)

c(t)
,∀ t ∈ T\Si−1.

This gives us
f(Si)− f(Si−1)

c(ui)
≥

f(T\Si−1 | Si−1)

c(T\Si−1)
≥

f(T)− f(Si−1)

c(T)
.

The first inequality holds since f is submodular. The second inequality holds since f is monotone
and c(T\Si−1) ≤ c(T).

We also assume that f(T) > f(Sl), since otherwise the lemma already holds. Under this
assumption, it must holds that c(ui) < c(T), since otherwise the inequality

f(Si)− f(Si−1)

c(ui)
≥

f(T)− f(Si−1)

c(T)

implies that f(T) ≤ f(Si) ≤ f(Sl). A contradiction!
By rearranging the last inequality, we have

f(T)− f(Si) ≤

(

1−
c(ui)

c(T)

)

(f(T)− f(Si−1)).

The recurrence gives us

f(T)− f(Si) ≤
i
∏

j=1

(

1−
c(uj)

c(T)

)

· f(T) ≤
i
∏

j=1

e
−

c(uj)

c(T) · f(T) = e
−

c(Si)
c(T) · f(T).

The second inequality holds due to ex ≥ 1 + x. Hence we have

f(Si) ≥

(

1− e
− c(Si)

c(T)

)

· f(T).

The lemma follows immediately from it.

Let OPT be an optimal solution. The above lemma immediately leads to the following corollary.

Corollary 1. The set S returned by Algorithm 1 satisfies f(S) ≥ (1− 1/e)f(OPT).

Proof. If set S returned by Algorithm 1 satisfies c(S) ≥
∑m

j=1Bj , then we have c(S) ≥ c(OPT),
and Lemma 1 immediately leads to the corollary. If set S returned by Algorithm 1 satisfies c(S) <
∑m

j=1Bj, this means S = N . The corollary also holds.

10

Algorithm 2: Constant Number of Bins

Input: ground set N , objective function f , size function c, number of bins m (constant),
capacities (B1, · · · , Bm), threshold δ.

Output: A feasible solution (and the way it is packed).
1 E = Constant-bins-by-value(N , f , c, m, (B1, · · · , Bm), δ).
2 return S = argmaxSE∈E f(SE) (and the way it is packed).
3

4 Procedure Constant-bins-by-value(N , f , c, m, (B1, · · · , Bm), δ):
5 Enumerate all feasible solutions E = (E1, · · · , Em) such that |E| ≤ ⌈1/δ⌉.
6 foreach feasible solution E = (E1, · · · , Em) do
7 Let D = {u ∈ N \ E | f(u | E) > δf(E)}.
8 G′

E = Greedy(N \ (E ∪D), f(· | E), c(·),m, (B1 − c(E1), · · · , Bm − c(Em))).
9 Let RE ⊆ G′

E consist of the reserved elements in G′
E and GE = G′

E \RE .
10 Let SE = E ∪GE (which is feasible).

11 end

12 return {SE | feasible E that is enumerated}

2.2 Constant Number of Bins

As a warm-up, we present a (1 − 1/e) deterministic algorithm for SMKP, assuming the number
of bins m is a constant. This ensures that in the remaining part of the paper, we only need to
consider SMKP instances with “large” number of bins.

We already know the greedy algorithm in Section 2.1 returns a set with a (1−1/e) approximation
ratio; but this set might be infeasible, with a reserved element in each bin. If the values of these
reserved elements are small, we are able to discard them directly without losing too much. However,
the greedy algorithm itself cannot guarantee this property. In light of this, Algorithm 2 manages
to first pack large-value elements in some optimal solution by the enumeration technique, and then
pack elements of small value by the greedy algorithm. In doing so, it ensures that the values of the
reserved elements are small and therefore can be safely discarded.

Theorem 6. If we set δ = 1/em, Algorithm 2 achieves a (1 − 1/e)-approximation and runs in

O((mn)em+4) time. When m is a constant, it runs in polynomial time.

Proof. Denote by OPT the optimal solution. Assume w.l.o.g. that |OPT | > ⌈1/δ⌉, since otherwise
OPT will be enumerated in the enumeration step. We order elements in OPT greedily according
to their marginal values, i.e. o1 = argmaxo∈OPT f(o), o2 = argmaxo∈OPT\{o1} f(o | o1), etc. In the
enumeration step, the solution E = (E1, · · · , Em) must be visited such that E contains exactly the
first ⌈1/δ⌉ elements in OPT and these elements are packed in the same way as in OPT . In the
following analysis, we focus on this solution and show that SE = E∪GE achieves the desired ratio.
Since the algorithm returns the solution with the maximum value, this completes the proof.

We claim that f(o | E) ≤ δf(E) for any o ∈ OPT \ E. Let OPTi be the first i elements in
OPT . Then for j ≤ i and any o 6∈ OPTi, f(oj | OPTj−1) ≥ f(o | OPTj−1) ≥ f(o | OPTi).
Summing up from j = 1 to i, we have f(OPTi) ≥ i · f(o | OPTi). By plugging i = ⌈1/δ⌉,
f(E) ≥ ⌈1/δ⌉f(o | E) ≥ 1/δf(o | E).

The above claim implies that D ∩ (OPT \ E) = ∅. As a result, elements in OPT \ E will not
be excluded from the execution of the greedy algorithm. Besides, since elements in E are packed
in the same way as in OPT , OPT \ E is a feasible (indeed optimal) solution while invoking the
greedy algorithm with capacities (B1 − c(E1), · · · , Bm − c(Em)).

11

By Corollary 1, the set G′
E returned by Greedy satisfies

f(G′
E | E) ≥ (1− 1/e)f(OPT \E | E).

Since GE is obtained from G′
E by discarding at most m reserved elements in RE , by the submod-

ularity of f ,

f(GE | E) ≥ f(G′
E | E)− f(RE | E)

≥ (1− 1/e)f(OPT \ E | E)−
∑

u∈RE

f(u | E)

≥ (1− 1/e)f(OPT) − (1− 1/e)f(E) − δmf(E).

Hence we have

f(E ∪GE) ≥ (1− 1/e)f(OPT) + (1/e− δm)f(E) ≥ (1− 1/e)f(OPT).

The last inequality holds since 1/δ ≥ em.
Finally, since there are O((mn)1/δ+2) feasible solutions E = (E1, · · · , Em) with |E| ≤ ⌈1/δ⌉,

and Greedy costs O(n2) queries, Algorithm 2 uses O((mn)em+4) queries. Since m is a constant,
Algorithm 2 runs in polynomial time.

3 The Identical Case

In this section, we present a tight deterministic algorithm for the identical case of SMKP where
all bins have the same capacity Bj ≡ B. The main algorithm is depicted as Algorithm 3. Given
a constant ǫ > 0 as input, it requires that the number of bins m ≥ 4/ǫ8 and achieves a 1 − 1/e −
O(ǫ) approximation. When m < 4/ǫ8, one can run Algorithm 2 to achieve a tight (1 − 1/e)-
approximation. Combining these two results, we resolve the identical case completely.

In Algorithm 3, the first (1 − ǫ)m bins are called working bins. In contrast, the last ǫm bins
are called reserved bins. It mainly uses working bins to pack elements. A bin is called empty if
no elements have been packed in this bin. Whenever there remains at least 4/ǫ7 empty working
bins, Algorithm 3 attempts to pack 4/ǫ7 empty working bins simultaneously with the remaining
elements by invoking Algorithm 4.

Algorithm 4 divides elements into two classes according to their sizes. Given input ǫ, an element
u ∈ N is large if c(u) > ǫB and small otherwise. Let Nl = {u ∈ N | c(u) > ǫB} be the set of
large elements in N and Ns = N \ Nl be the set of small elements. From a high-level viewpoint,
Algorithm 4 first enumerates all feasible ways of packing only the large elements. Then, for each
enumerated solution, small elements are added into it by invoking the greedy algorithm. Finally,
the one with the maximum “average value” will be returned (b(SE) in line 8 of Algorithm 4 denotes
the number of bins used to pack SE , see Section 2).

Note that although Algorithm 3 invokes Algorithm 4 with 4/ǫ7 bins, the set S returned by
Algorithm 4 might use fewer than 4/ǫ7 bins. This is because if an enumerated solution E =
(E1, · · · , Em) only uses m′ bins, Algorithm 4 will only add small elements to those m′ non-empty
bins. The only exception is that when E = ∅ (or equivalently m′ = 0), Algorithm 4 will use a single
bin to pack small elements.

The set S returned by Algorithm 4 might be infeasible. Due to the greedy algorithm, S might
contain a reserved element in each of the bins it uses. Nonetheless, we still let Algorithm 4 returns
it and tackle the reserved elements in Algorithm 3. At this point, the reserved bins come to rescue.

12

Algorithm 3: The Identical Case

Input: constant ǫ > 0, ground set N , objective function f , size function c, number of bins
m (≥ 4/ǫ8), capacity B.

Output: A feasible set (and the way it is packed).
1 Divide bins into two classes: the first (1− ǫ)m bins are called working bins, and the last ǫm

bins are called reserved bins.
2 Let T denote the packed elements so far and initialize it as T = ∅.
3 while there remains at least 4/ǫ7 empty working bins do

4 S = Constant-bins-by-size(ǫ,N \ T, f(· | T), c(·), 4/ǫ7 , B).
5 Pack reserved elements in S into reserved bins.
6 T = T ∪ S.

7 end

8 return T (and the way it is packed).

Algorithm 4: Constant-bins-by-size

Input: constant ǫ > 0, ground set N , objective function f , size function c, number of bins
m (constant), capacity B.

Output: An almost feasible set (and the way it is packed).
1 Let Nl = {u ∈ N | c(u) > ǫB} be the set of large elements and Ns = N\Nl be the set of

small elements.
2 Enumerate all feasible solutions E = (E1, · · · , Em) such that E ⊆ Nl.
3 foreach feasible solution E = (E1, · · · , Em) do
4 Reorder Ej ’s to ensure that there is an integer m′ ≤ m such that

E1 6= ∅, · · · , Em′ 6= ∅, Em′+1 = ∅, · · · , Em = ∅.
5 Let m′ = max{m′, 1}.
6 Use the first m′ bins to pack small elements and let GE =

Greedy(Ns, f(· | E), c(·),m′, (B − c(E1), · · · , B − c(Em′))). Then SE = E ∪GE is an
almost feasible solution.

7 end

8 return S = argmaxE f(SE)/b(SE) (and the way it is packed).

Observe that all reserved elements must be small elements. Thus the ǫm empty reserved bins can
pack at least m reserved elements. On the other hand, there are only (1− ǫ)m working bins; each
of them contains at most one reserved element. Consequently, all reserved elements can be packed
into the reserved bins without exceeding the capacities, thus, line 5 of Algorithm 3 can always be
executed.

We remark that though Algorithm 2 and Algorithm 4 are very similar, there are some differences
between them. First, in the enumeration step, Algorithm 2 enumerates feasible solutions containing
constant number of elements, while Algorithm 4 enumerates feasible solutions of large elements.
Second, in the greedy step, Algorithm 2 directly discards the reserved elements, while Algorithm 4
retains the reserved elements and may return an infeasible solution.

We now introduce some notations for sake of analysis. Assume that the while loop in Algorithm
3 has been executed r ≤ (1− ǫ)m times. For j ∈ [r], denote by Sj the set returned by Algorithm 4
in the j-th iteration of the loop and by Tj the packed elements after the j-th iteration of the loop.
Then, Tj = Tj−1 ∪ Sj. Recall that b(Sj) is the number of bins used to pack Sj by Algorithm 4.
But here b(Sj) does not count the number of reserved bins used to pack the reserved elements in

13

Sj. Let OPT be the optimal solution. The following lemma bounds the marginal value of Sj with
respect to Tj−1 in terms of the marginal value of OPT .

Lemma 2. For 1 ≤ j ≤ r, we have

f(Sj | Tj−1) ≥
(1− 2ǫ)b(Sj)

m
f(OPT \ Tj−1 | Tj−1).

The proof of Lemma 2 is delayed to Section 3.1. Roughly speaking, it means that the marginal
value of Sj with respect to Tj−1 is approximately a b(S)/m fraction of the margin value of OPT .
It directly implies the desired approximation ratio:

Theorem 7. Algorithm 3 achieves a (1−1/e−O(ǫ)) approximation ratio and runs in O(mn2
(

4n
ǫ7

)1/ǫ
)

time.

Proof. By Lemma 2 and the monotonicity of f , we have

f(Tj)− f(Tj−1) ≥
(1− 2ǫ)b(Sj)

m
(f(OPT)− f(Tj−1)).

By rearranging the above inequality, we obtain

(

1−
(1− 2ǫ)b(Sj)

m

)

(f(OPT)− f(Tj−1)) ≥ f(OPT)− f(Tj).

This gives us

f(OPT)− f(Tj) ≤

j
∏

i=1

(

1−
(1− 2ǫ)b(Sj)

m

)

f(OPT)

≤

j
∏

i=1

e−
(1−2ǫ)b(Sj)

m f(OPT)

≤ e−
1−2ǫ
m

∑j
i=1 b(Sj)f(OPT).

On the other hand, by the ending condition of the while loop,

r
∑

i=1

b(Si) ≥ (1− ǫ)m− 4/ǫ7 ≥ (1− 2ǫ)m.

The last inequality holds since m ≥ 4/ǫ8. Combining the above inequalities, we have

f(OPT)− f(Tr) ≤ e−(1−2ǫ)2f(OPT),

which implies that

f(Tr) ≥ (1 − e−(1−2ǫ)2)f(OPT) = (1− e−1 −O(ǫ))f(OPT).

The running time follows by observing that the algorithm runs in at mostm rounds, the enumeration

step costs O(
(

4n
ǫ7

)1/ǫ
) time and the greedy algorithm needs O(n2) time.

14

3.1 Proof of Lemma 2

This section is dedicated to prove Lemma 2. For simplicity, we show that the lemma holds for
the first iteration of the while loop in Algorithm 3. A similar argument holds for all subsequent
iterations of the loop, in which it suffices to replace a set S by S\Tj−1 and the function value f(·)
by f(· | Tj−1) in the j-th iteration of the loop. Let OPTl = {u ∈ OPT | c(u) > ǫB} be the set
of large elements in OPT and OPTs = OPT\OPTl be the set of small elements in OPT . We
prove Lemma 2 by a case analysis, based on the densities of the large and small elements in OPT
(Lemma 3 and Lemma 5).

Lemma 3. If
f(OPTs)
c(OPTs)

≥ f(OPT)
c(OPT) holds, then f(S1) ≥

(1−2ǫ)b(S1)
m f(OPT).

Proof. We show by a case analysis that the lemma already holds even if Algorithm 4 takes one bin
as input. That is, there is a set S such that c(S) ≤ B and f(S) ≥ 1−2ǫ

m f(OPT). Since Algorithm
4 returns a set SE which maximizes f(SE)/b(SE), the lemma follows immediately.

Case 1 (c(OPTs) is “large”: c(OPTs) ≥ ǫmB). Consider the case where E = ∅ in the
enumeration step of Algorithm 4. Recall that in this case the algorithm uses a single bin to pack
small elements. It is easy to see that c(G∅) ≥ B, since c(OPTs) ≥ ǫmB ≥ B. By Lemma 1,

f(G∅) ≥
(

1− e−B/c(OPTs)
)

· f(OPTs)

≥

(

B

c(OPTs)
−

B2

2 · c(OPTs)2

)

· f(OPTs)

≥

(

c(OPT)

m · c(OPTs)
−

1

2ǫ2m2

)

· f(OPTs)

≥

(

1

m
−

1

2ǫ2m2

)

· f(OPT)

≥
1− ǫ

m
f(OPT).

The second inequality holds since 1 − e−x ≥ x − x2/2 for x ≥ 0. The third inequality holds since
c(OPT) ≤ mB and c(OPTs) ≥ ǫmB. The forth inequality holds due to the condition of the lemma
and the monotonicity of f . The last inequality holds as long as m ≥ 1/(2ǫ3). Thus, in this case
the lemma holds.

Case 2 (f(OPTs) is “large”: f(OPTs) ≥ (1−e−B/c(OPTs))−1 · f(OPT)
m). If c(G∅) < B, this means

all small elements are added into c(G∅) < B. Hence, f(G∅) ≥ f(OPTs) ≥ (1 − e−B/c(OPTs))−1 ·
f(OPT)

m ≥ f(OPT)
m . If c(G∅) ≥ B, by Lemma 1,

f(G∅) ≥
(

1− e−B/c(OPTs)
)

· f(OPTs) ≥ f(OPT)/m.

Thus, in this case the lemma holds.
Case 3 (Both c(OPTs) and f(OPTs) are “small”). In this case, we assume that c(OPTs) < ǫmB

and f(OPTs) <
(

1− e−B/c(OPTs)
)−1

· f(OPT)
m . We show that OPTs only contributes a negligible

value in OPT :

f(OPTs) < (1− e−1/ǫm)−1 ·
f(OPT)

m

≤

(

1

ǫm
−

1

2ǫ2m2

)−1 f(OPT)

m

15

≤

(

1

2ǫm

)−1 f(OPT)

m

= 2ǫf(OPT).

The first inequality holds since (1− e−B/x)−1 is monotone increasing. The second inequality holds
since 1 − e−x ≥ x − x2/2 for x ≥ 0. The third inequality holds as long as m ≥ 1/ǫ. Hence by the
submodularity of f ,

f(OPTl) ≥ f(OPT)− f(OPTs) ≥ (1− 2ǫ) · f(OPT).

Let E∗ = argmax{f(E) | E ⊆ Nl and c(E) ≤ B}. In the enumeration step of Algorithm 4, the
feasible solution where a single bin is used to pack E∗ will be enumerated, and it holds that

f(E∗ ∪GE∗) ≥ f(E∗) ≥
1

m
f(OPTl) ≥

1− 2ǫ

m
· f(OPT).

Thus, in this case the lemma holds.

If the condition of Lemma 3 does not hold, by the submodularity of f , it must hold that
f(OPTl)
c(OPTl)

≥ f(OPT)
c(OPT) . If we can show that f(S1) ≥ (1−2ǫ)b(S1)

m f(OPT) under this condition, then
Lemma 2 is proved. It turns out that this case is much more complicated than the previous case.
To resolve it, the first key step of our analysis is to show that Lemma 2 holds under a more special
case, as the following lemma suggests.

Lemma 4. If
f(OPTl)
c(OPTl)

≥ f(OPT)
c(OPT) holds, and additionally in the enumeration step in Algorithm 4

there is a feasible solution E ⊆ OPTl which satisfies

c(E)

b(E)
≥

c(OPTl)

m
and

f(E)

c(E)
≥

f(OPTl)

c(OPTl)
,

then f(S1) ≥
(1−ǫ)b(S1)

m f(OPT).

Proof. The first condition c(E)
b(E) ≥

c(OPTl)
m for the enumerated set E corresponds to the case where

on average the algorithm uses more space to pack large elements than OPT does. Although this
ensures that the algorithm collects an enough value from large elements, it may make the algorithm
collect an insufficient value from small elements, since there is no enough space for small elements.
The key observation is that under the second condition f(E)

c(E) ≥ f(OPTl)
c(OPTl)

, one can use the redundant
value collected from large elements to cover the deficit incurred when packing small elements. We
now give a formal proof of this lemma.

Assume that c(E)
b(E) ≥ c(OPT)

m . By the conditions of the lemma, f(E)
c(E) ≥ f(OPT)

c(OPT) . Thus, f(E) ≥
b(E)
c(E)f(OPT) and the lemma follows. In the remaining part of the proof, we assume c(E)

b(E) <
c(OPT)

m .

Next, we construct a set E′ which is a surrogate of OPTl and satisfies c(E′)/m = c(E)/b(E).
Initially, E′ = OPTl. Let OPTs = {u1, u2, · · · } be sorted in reverse greedy order, i.e. u1 =
argminu∈OPTs f(u | OPTl)/c(u), u2 = argminu∈OPTs\{u1} f(u | OPTl ∪ {u1})/c(u), etc. Then,
add elements in OPTs into E′ in this order until there is a uk such that c(E′)/m ≤ c(E)/b(E) and

c(E′+uk)/m > c(E)/b(E). Such a uk must exist since c(OPTl)
m ≤ c(E)

b(E) <
c(OPT)

m by our assumption.

At this point, we split uk into two elements u′k and u′′k such that 1) c(u′k) = mc(E)/b(E) − c(E′)
and c(u′′k) = c(u) − c(u′k); 2) for any S ⊆ N\{uk}, f(u

′
k | S) = pf(uk | S) and f(u′′k | S) = f(uk |

S) − f(u′k | S), where p = c(u′k)/c(uk). It is easy to verify that f is still monotone submodular.
Finally, add u′k into E′. The construction of E′ is finished.

16

We now show that f(E)
b(E) ≥ f(E′)

m . Since elements in OPTs are added into E′ in reverse greedy
order, we have

f(E′ \OPTl | OPTl)

c(E′ \OPTl)
≤

f(OPTs | OPTl)

c(OPTs)
.

On the other hand, by the condition of the lemma,

f(OPTs | OPTl)

c(OPTs)
≤

f(OPT)

c(OPT)
≤

f(OPTl)

c(OPTl)
.

The above two inequalities together imply that

f(E′)− f(OPTl)

c(E′ \OPTl)
≤

f(OPTl)

c(OPTl)
.

Since c(E′ \ OPTl) = c(E′) − c(OPTl) due to OPTl ⊆ E′, the last inequality is equivalent to
f(E′)
c(E′) ≤ f(OPTl)

c(OPTl)
. Since f(E)

c(E) ≥ f(OPTl)
c(OPTl)

by the condition of the lemma, we have f(E)
c(E) ≥ f(E′)

c(E′) .

Together with the fact that c(E)
b(E) =

c(E′)
m , we have f(E)

b(E) ≥ f(E′)
m .

On the other hand, let E′′ = (OPTs\E
′)− uk + u′′k. Clearly, f(E

′ ∪ E′′) = f(OPTl ∪OPTs) =
f(OPT) and c(E′ ∪ E′′) = c(OPTl ∪ OPTs) = c(OPT). We assume that the set GE returned
by the greedy algorithm satisfies that c(GE) ≥ b(E) · B − c(E), since otherwise all the remaining
small elements will be packed into GE and it follows that f(GE | E) ≥ f(E′′ | E). Under this
assumption, we have

c(GE)

b(E)
≥ B −

c(E)

b(E)
= B −

c(E′)

m
≥

c(OPT)− c(E′)

m
=

c(E′′)

m
.

By Lemma 1,

f(GE | E) ≥ (1− e−c(GE)/c(E′′)) · f(E′′ | E)

≥ (1− e−b(E)/m) · f(E′′ | E)

≥

(

b(E)

m
−

b(E)2

2m2

)

· f(E′′ | E)

≥
(1− ǫ)b(E)

m
· f(E′′ | E).

The third inequality holds since 1− e−x ≥ x− x2/2 for x ≥ 0. The last inequality holds as long as
b(E) ≤ 2ǫm, which is ensured by the facts that b(E) ≤ 4/ǫ7 and m ≥ 4/ǫ8. Finally, by the above
argument,

f(E ∪GE) = f(E) + f(GE | E)

≥
b(E)

m
f(E′) +

(1− ǫ)b(E)

m
f(E′′ | E)

≥
b(E)

m
f(E′) +

(1− ǫ)b(E)

m
f(E′′ | E′)

≥
(1− ǫ)b(E)

m
f(E′ ∪ E′′)

=
(1− ǫ)b(E)

m
f(OPT).

This completes the proof.

17

In the enumeration step of Algorithm 4, if there is a feasible solution E ⊆ OPTl satisfying

c(E)

b(E)
≤

c(OPTl)

m
and

f(E)

b(E)
≥

f(OPTl)

m
,

then Lemma 2 holds. Intuitively, this is because the solution E collects a sufficiently large value in
OPTl and there remains enough space to pack small elements using the greedy algorithm. Together
with Lemma 4, we find two distinct sufficient conditions for E ⊆ OPTl in the enumeration step
which lead to the proof of Lemma 2. The difficulty lies in how one can prove the existence of such a
feasible solution E which satisfies one of the two sufficient conditions. We remark that if Algorithm
4 has only one bin as input, there are instances where no feasible subsets of OPTl satisfy either
conditions.

The second key step of our analysis is to prove a technical lemma by an averaging argument,
which shows that the desired feasible solution must exist when Algorithm 4 takes multiple bins
as input at a time. Indeed, constant bins suffice for the lemma to work. The technical lemma is
presented in Section 3.2. Based on it, the final result is proved below in Lemma 5.

Lemma 5. If
f(OPTl)
c(OPTl)

≥ f(OPT)
c(OPT) holds, then f(S1) ≥

(1−2ǫ)b(S1)
m f(OPT).

Proof. For technical reasons, we first show that we can assume w.l.o.g. that c(OPTs) ≥ ǫmB and
c(OPTl) ≥ ǫmB, which means that both large and small elements occupy a non-negligible fraction
in OPT .

Consider the case c(OPTs) ≤ ǫmB. We can assume w.l.o.g. that c(OPT) ≥ 1
2mB, since

we can assume that a half size of each bin is used to pack elements. Under this assumption,
c(OPTs) ≤ 2ǫ · c(OPT). Due to the condition of this lemma and the submodularity of f ,

f(OPTs | OPTl)

c(OPTs)
≤

f(OPT)

c(OPT)
≤

f(OPTl)

c(OPTl)
.

The above inequalities imply that f(OPTs | OPTl) ≤ 2ǫf(OPT). Thus,

f(OPTl) = f(OPT)− f(OPTs | OPTl) ≥ (1− 2ǫ)f(OPT).

Let E∗ = argmax{f(E) | E ⊆ Nl and c(E) ≤ B}. In the enumeration step of Algorithm 4, the
feasible solution where a single bin is used to pack E∗ will be enumerated, and it holds that

f(E∗ ∪GE∗) ≥ f(E∗) ≥
1

m
f(OPTl) ≥

1− 2ǫ

m
· f(OPT).

Thus the lemma holds in this case.
Consider the case c(OPTl) ≤ ǫmB. Consider the set E = {ul}, where ul ∈ OPTl satisfies

f(ul)/c(ul) ≥ f(OPTl)/c(OPTl). It holds that c(OPTl)/m ≤ ǫB ≤ c(E) ≤ B and E can be packed
into a single bin. Consequently, E satisfies the conditions of Lemma 4, which implies the lemma.

In the remaining part of the proof, we assume that c(OPTs) ≥ ǫmB and c(OPTl) ≥ ǫmB.
Assume that in OPT , OPTl is partitioned into (OPTl,1, OPTl,2, · · · , OPTl,m) with c(OPTl,j) ≤ B.
We apply the procedure defined in Section 3.2 with OPTl = (OPTl,1, OPTl,2, · · · , OPTl,m) as the

initial partition for t =
⌈

2 log 1/ǫ2

log 3/2

⌉

rounds. By Corollary 2, there is a set E ⊆ OPTl which is the

union of at most 2t+1 subsets in the partition (OPTl,1, OPTl,2, · · · , OPTl,m) and satisfies one of the
following two conditions.

1. c(E)
b(E) ≤

c(OPTl)
m + ǫ2B and f(E)

b(E) ≥ f(OPTl)
m .

18

2. c(E)
b(E) ≥

c(OPTl)
m − ǫ2B and f(E)

c(E) ≥ f(OPTl)
c(OPTl)

.

Since E is the union of at most 2t+1 subsets in the form of OPTl,j, if E is packed as in OPTl, the
number of bins b(E) used by it satisfies b(E) ≤ 2t+1 ≤ 4/ǫ7, by the value of t. As a result, in the
enumeration step, the set E as well as the way it is packed in OPTl will be enumerated. Below
we complete the proof by showing that the lemma holds whenever the set E satisfies either of the
above two conditions

Case 1: c(E)
b(E) ≤ c(OPTl)

m + ǫ2B and f(E)
b(E) ≥ f(OPTl)

m . Recall that c(E) + c(GE) ≤ b(E) · B and

c(OPTl) + c(OPTs) ≤ mB. We have

c(GE)

b(E)
≥ B −

c(E)

b(E)

≥ B −
c(OPTl)

m
− ǫ2B

≥
c(OPTs)

m
−

ǫc(OPTs)

m

=
(1− ǫ)c(OPTs)

m
.

The last inequality holds since we have assumed that c(OPTs) ≥ ǫmB. By Lemma 1,

f(GE | E) ≥ (1− e−c(GE)/c(OPTs))f(OPTs | E)

≥ (1− e−(1−ǫ)b(E)/m)f(OPTs | E)

≥ (1− e−(1−ǫ)b(E)/m)f(OPTs | OPTl)

≥

(

(1− ǫ)b(E)

m
−

(1− ǫ)2b(E)2

2m2

)

(f(OPT)− f(OPTl))

≥
(1− 2ǫ)b(E)

m
(f(OPT)− f(OPTl)).

The second to last inequality holds since 1− e−x ≥ x− x2/2. The last inequality holds as long as
b(E) ≤ 2ǫm

(1−ǫ)2
, which follows from the facts that b(E) ≤ 4/ǫ7 and m ≥ 4/ǫ8. Finally,

f(E ∪GE) = f(E) + f(GE | E)

≥
b(E)

m
f(OPTl) +

(1− 2ǫ)b(E)

m
(f(OPT)− f(OPTl))

≥
(1− 2ǫ)b(E)

m
f(OPT).

The lemma still holds in this case.
Case 2: c(E)

b(E) ≥ c(OPTl)
m − ǫ2B and f(E)

c(E) ≥ f(OPTl)
c(OPTl)

. If c(E)
b(E) ≥ c(OPTl)

m , then the conditions of

Lemma 4 holds and therefore the lemma follows. Hence we assume that c(E)
b(E) ≤ c(OPTl)

m and it
follows that

c(GE)

b(E)
≥

c(OPTs)

m
.

By Lemma 1,

f(GE | E) ≥ (1− e−c(GE)/c(OPTs)) · f(OPTs | E)

≥ (1− e−b(E)/m)f(OPTs | OPTl)

19

≥
(1− ǫ)b(E)

m
(f(OPT)− f(OPTl)).

The last inequality holds since 1− e−x ≥ x− x2/2, b(E) ≤ 4/ǫ7 and m ≥ 4/ǫ8.
On the other hand, by the condition of this case,

f(E) ≥
c(E)

c(OPTl)
f(OPTl)

≥

(

b(E)

m
−

ǫ2Bb(E)

c(OPTl)

)

f(OPTl)

≥

(

b(E)

m
−

ǫb(E)

m

)

f(OPT)

=
(1− ǫ)b(E)

m
f(OPTl).

The last inequality holds since we have assumed that c(OPTl) ≥ ǫmB. Finally,

f(E ∪GE) = f(E) + f(GE | E)

≥
(1− ǫ)b(E)

m
f(OPTl) +

(1− ǫ)b(E)

m
(f(OPT)− f(OPTl))

≥
(1− ǫ)b(E)

m
f(OPT).

The lemma still holds in this case.

3.2 A Technical Lemma

Below we define an auxiliary procedure to assist the analysis of Lemma 2. Note that the procedure
itself will never be executed in the algorithm.

The procedure starts with a feasible set X0 which enjoys a partition X0 = (X0
1 ,X

0
2 , · · · ,X

0
m0

)
with m0 subsets and satisfies c(X0

j) ≤ B for all j ∈ [m0]. Then it runs t rounds in order to obtain

a new partition of X0 with desired properties. Assume that at the beginning of the k-th round,
the partition of X0 has been updated to Xk−1 = (Xk−1

1 ,Xk−1
2 , · · · ,Xk−1

mk−1
), where each Xk−1

j is a

union of bk−1
j subsets in X0. The procedure proceeds by applying the so-called Couple operation

to construct a new partition Xk = (Xk
1 ,X

k
2 , · · · ,X

k
mk

) as follows.

1. Reorder the subsets in Xk−1 according to their average size such that

c(Xk−1
1)

bk−1
1

≤
c(Xk−1

2)

bk−1
2

≤ · · · ≤
c(Xk−1

mk−1
)

bk−1
mk−1

.

2. Ifmk−1 is odd, let ck−1 =

∣

∣

∣

∣

{

Xk−1
j :

c(Xk−1
j)

bk−1
j

≥ c(X0)
m0

}∣

∣

∣

∣

and dk−1 =

∣

∣

∣

∣

{

Xk−1
j :

c(Xk−1
j)

bk−1
j

< c(X0)
m0

}∣

∣

∣

∣

.

If ck−1 < dk−1, replace X
k−1
2 by Xk−1

1 ∪Xk−1
2 , which contains bk−1

1 + bk−1
2 subsets in X0. Let

Xj = Xj+1 for j ∈ [mk−1−1] and finally let mk−1 = mk−1−1. If ck−1 > dk−1, replace the last
two sets Xk−1

mk−1−1 and Xk−1
mk−1

in Xk−1 by Xk−1
mk−1−1 ∪Xk−1

mk−1
, which contains bk−1

mk−1−1 + bk−1
mk−1

subsets in X0, and let mk−1 = mk−1 − 1.

3. Let Xk
1 = Xk−1

1 ∪Xk−1
mk−1

,Xk
2 = Xk−1

2 ∪Xk−1
mk−1−1, · · · ,X

k
mk

= Xk−1
mk−1

2

∪Xk−1
mk−1

2
+1

.

20

Clearly, mk = ⌊mk−1

2 ⌋. Let uk = maxj
c(Xk

j)

bkj
− c(X0)

m0
and lk = c(X0)

m0
− minj

c(Xk
j)

bkj
. Since

∑mk

j=1 b
k
j = m0 and

∑mk

j=1 c(X
k
j) = c(X0) for any 0 ≤ k ≤ t, by a simple averaging argument, it

holds that uk, lk ≥ 0. The following lemma proves several properties about the above procedure.

Lemma 6. The above procedure has the following properties.

1. For any 0 ≤ k ≤ t and j ∈ [mk], 2
k ≤ bkj < 2k+1.

2. Both uk and lk are monotone non-increasing in k.

3. If in Xk−1, ck−1 ≤ dk−1, then uk ≤ 2
3uk−1.

4. If in Xk−1, ck−1 ≥ dk−1, then lk ≤ 2
3 lk−1.

Proof. 1) Since b0j = 1 for any j ∈ [m0], property 1 holds trivially in the base case where k = 0.

Assume that property 1 holds for k − 1. For any j ∈ [mk], by the construction of Xk
j , there

are either two indexes j1 and j2 such that Xk
j = Xk−1

j1
∪Xk−1

j2
, or three indexes j1, j2, j3 such

that Xk
j = Xk−1

j1
∪Xk−1

j2
∪Xk−1

j3
. In either case, bkj ≥ 2k−1 + 2k−1 = 2k.

Next, we prove that bkj < 2k+1. We first prove by induction that m0 − 2kmk < 2k for
0 ≤ k ≤ t. The claim holds trivially for k = 0. Assume it holds for k − 1. If mk−1 is even,
m0 − 2kmk = m0 − 2k−1mk−1 < 2k−1 < 2k. If mk−1 is odd, m0 − 2kmk = m0 − 2k

mk−1−1
2 =

m0 − 2k−1mk−1 + 2k−1 < 2k. Thus the claim holds. Let bkj = 2k + akj for any j ∈ [mk]. Then

m0 =
∑

j∈[mk]
bkj = 2kmk +

∑

j∈[mk]
aj. Thus

∑

j∈[mk]
aj = m0 − 2kmk < 2k, which implies

bkj < 2k+1 immediately.

2) For any j ∈ [mk], by the construction of Xk
j , there are either two indexes j1 and j2 such that

Xk
j = Xk−1

j1
∪Xk−1

j2
, or three indexes j1, j2, j3 such that Xk

j = Xk−1
j1

∪Xk−1
j2

∪Xk−1
j3

. In the
former case, we have

c(Xk
j)

bkj
=

c(Xk−1
j1

) + c(Xk−1
j2

)

bk−1
j1

+ bk−1
j2

≤ max
j

c(Xk−1
j)

bk−1
j

.

The same argument holds for the latter case. Thus we have maxj
c(Xk

j)

bkj
≤ maxj

c(Xk−1
j)

bk−1
j

and

therefore uk ≤ uk−1. The same holds for lk by a similar argument.

3) When ck−1 ≤ dk−1, a set Xk−1
j1

with
c(Xk−1

j1
)

bk−1
j1

≥ c(X0)
m0

will not merge with another set in step

2 and will be coupled with another (possibly updated) set Xk−1
j2

with
c(Xk−1

j2
)

bk−1
j2

< c(X0)
m0

in step

3 to obtain a new set Xk
j . And we have

c(Xk
j)

bkj
−

c(X0)

m0

=
c(Xk−1

j1
) + c(Xk−1

j2
)

bk−1
j1

+ bk−1
j2

−
c(X0)

m0

=
bk−1
j1

bk−1
j1

+ bk−1
j2

(

c(Xk−1
j1

)

bk−1
j1

−
c(X0)

m0

)

+
bk−1
j2

bk−1
j1

+ bk−1
j2

(

c(Xk−1
j2

)

bk−1
j2

−
c(X0)

m0

)

21

≤
bk−1
j1

bk−1
j1

+ bk−1
j2

(

c(Xk−1
j1

)

bk−1
j1

−
c(X0)

m0

)

≤
2

3
uk−1.

The last inequality holds since bk−1
j1

< 2bk−1
j2

, due to bk−1
j1

< 2k and bj2 ≥ 2k−1.

4) This is true by a similar argument as in case 3).

Given a monotone submodular function f defined on X0, we have the following corollary.

Corollary 2. Assume that t =
⌈

2 log 1/ǫ
log 3/2

⌉

, then in Xt there is a set Xt
j which contains at most 2t+1

subsets in X0 and satisfies one of the following two conditions.

1.
c(Xt

j)

btj
≤ c(X0)

m0
+ ǫB and

f(Xt
j)

btj
≥ f(X0)

m0
.

2.
c(Xt

j)

btj
≥ c(X0)

m0
− ǫB and

f(Xt
j)

c(Xt
j)

≥ f(X0)
c(X0)

.

Proof. By Lemma 6, any Xt
j contains btj < 2t+1 subsets in X0. If the procedure runs t rounds,

then either property 3 or property 4 in Lemma 6 holds for at least t/2 rounds. If property 3 holds
for t/2 rounds, since uk is non-increasing, ut ≤ (23)

t/2u0 ≤ (23)
t/2B ≤ ǫB. Hence all Xt

j satisfy
c(Xt

j)

btj
≤ c(X0)

m0
+ ǫB, and the one with the largest f(Xt

j)/b
t
j satisfies

f(Xt
j)

btj
≥ f(X0)

m0
simultaneously.

Thus condition 1 in this corollary holds. If property 4 in Lemma 6 holds for t/2 rounds, by a similar

argument, all Xt
j satisfy

c(Xt
j)

btj
≥ c(X0)

m0
− ǫB, and the one with the largest f(Xt

j)/c(X
t
j) satisfies

f(Xt
j)

c(Xt
j)

≥ f(X0)
c(X0) simultaneously. Thus condition 2 in this corollary holds.

4 The General Case: 1/2 Ratio

In this section, we present a 1/2 deterministic algorithm for the general case of SMKP. A set of bins
{B1, B2, · · · , Bk} is γ-bounded (or simply bounded) if maxBj/minBj ≤ γ, where γ is a constant.
An instance of SMKP belongs to the bounded case if its bins {B1, B2, · · · , Bm} is γ-bounded for
some constant γ. We first present a 1/2 deterministic algorithm for the bounded case in Section
4.1. Then, we generalize this result to the general case in Section 4.2.

4.1 A 1/2 Deterministic Algorithm for the Bounded Case

In this section, we consider the bounded case of SMKP where the ratio between the maximum
capacity and the minimum capacity of the bins is bounded by a constant γ ≥ 1. Equivalently,
we assume all capacities Bj ∈ [B, γB], where B is the size of the smallest bin. We present a
deterministic algorithm with a (1 − 5ǫ)/2-approximation guarantee. The algorithm requires that
the number of bins m ≥ γ ln(1/ǫ)/(2ǫ2). When this is not the case, we can use Algorithm 2 to
obtain a tight (1− 1/e)-approximation.

Algorithm 5 first divides bins into three classes as follows. It sorts bins in an decreasing order
by their capacities. Let m′ = m − γ ln(1/ǫ)/(2ǫ) − 3ǫm. The first m′ bins are working bins, the
following γ ln(1/ǫ)/(2ǫ) are patched bins, and the last 3ǫm bins are reserved bins. Algorithm 5

22

Algorithm 5: The Bounded Case, 1/2-Ratio (Bounded)

Input: constant ǫ ∈ (0, 1), ground set N , objective function f , size function c, the number
of bins m, capacities (B1, · · · , Bm) with B1 = B and Bj ∈ [B, γB].

Output: A feasible set (and the way it is packed).
1 Reorder bins such that B1 ≥ B2 ≥ · · · ≥ Bm. Let m′ = m− γ ln(1/ǫ)/(2ǫ) − 3ǫm. Divide

bins into three classes: the first m′ bins are working bins, the following γ ln(1/ǫ)/(2ǫ) are
patched bins, and the last 3ǫm bins are reserved bins.

2 T0 = ∅.
3 for j = 1 to m′ do

4 Sj = Constant-bins-by-size(ǫ,N\Tj−1, f(· | Tj−1), c(·), 1, Bj + ǫB).
5 Pack the elements in Sj that violate the capacity Bj into reserved bins.
6 Tj = Tj−1 ∪ Sj.

7 end

8 Sm′+1 = Greedy(Ns\Tm′ , f(· | Tm′), c(·), 2γǫ ln(1/ǫ), (Bm′+1, · · · , Bm′+2γǫ ln(1/ǫ))).

9 Pack the reserved elements in Sm′+1 into reserved bins.
10 Tm′+1 = Tm′ ∪ Sm′+1.
11 return Tm′+1 (and the way it is packed).

mainly uses working bins and patched bins to pack elements. It packs working bins one at a time
by invoking Algorithm 4 (Constant-bins-by-size) with a single bin as input. But note that
instead of taking the capacity Bj in the j-th iteration of the loop, Algorithm 4 takes Bj + ǫB as
input for technical reasons. After all working bins are packed, it uses patched bins to pack small

elements that have not been packed so far by invoking the greedy algorithm.
Algorithm 5 requires the notions of large elements and small elements as in the identical case.

We directly adopt these notions in the bounded case. That is, given input ǫ, an element u ∈ N is
large if c(u) > ǫB and small otherwise. Again, Nl = {u ∈ N | c(u) > ǫB} denotes the set of large
elements in N and Ns = N\Nl denotes the set of small elements. Finally, for j ∈ [m′], there are
other elements than the reserved element in Sj that violate the capacity Bj, since we replace Bj

by Bj + ǫB during the execution of Algorithm 4. However, it is easy to verify that these elements
(including the reserved element) have a total size of at most 3ǫB. Since there are 3ǫm reserved
bins, by a similar argument as in the identical case, all the elements that violate the capacities can
be packed into the reserved bins during the execution of Algorithm 5.

Analysis. For j ∈ [m′], denote by Sj the set returned by Algorithm 4 in the j-th iteration of the
for loop and by Tj the packed elements after the j-th iteration of the loop. Then, Tj = Tj−1 ∪ Sj .
Let Sm′+1 be the set returned by the greedy algorithm and Tm′+1 = T ′

m ∪ Sm′+1. Assume that X
is a feasible set over working bins, which means there is a partition (X ′

1,X
′
2, · · · ,X

′
m′) such that

c(X ′
j) ≤ Bj for j ∈ [m′]. If we can show that the marginal value of Sj with respect to Tj−1 is

at least the marginal value of X ′
j , then Tm′ is a 1/2 approximation of X. However, this is not

always possible. To circumvent this difficulty, we show that we can re-partition X into m′ + 1
parts (X1, · · · ,Xm′ ,Xm′+1) to obtain the desired property. This is achieved by transferring small
elements in X among the bins. The extra Xm′+1 contains small elements that are not packed into
the working bins, which will be bounded by Sm′+1. This is why we need the patched bins. Finally,
note that (X1, · · · ,Xm′ ,Xm′+1) may not be a feasible partition over working bins and patched bins.
A formal statement of this idea is formulated as Lemma 7

23

Lemma 7. For a feasible set X over working bins, there is a partition (X1, · · · ,Xm′ ,Xm′+1) of X
such that for j ∈ [m′ + 1],

f(Sj | Tj−1) ≥ (1− ǫ)f(Xj | Tj−1).

Proof. SinceX is feasible over working bins, there is a partition (X ′
1, · · · ,X

′
m′) such that c(X ′

j) ≤ Bj

for j ∈ [m′]. We now construct the partition (X1, · · · ,Xm′ ,Xm′+1) from it. Let Xl and Xs be the
set of large elements and small elements in X, respectively. For j ∈ [m′+1], let Xl,j = Xj ∩Xl and
Xs,j = Xj ∩Xs, respectively. For each element in Xl, we pack it exactly the same as (X ′

1, · · · ,X
′
m′)

does. Thus, for j ∈ [m′], Xl,j contains the same set of large elements as in (X ′
1, · · · ,X

′
m′), and

Xl,m′+1 = ∅. To construct Xs,j’s, intuitively, we will shuffle elements in Xs and pack them in
the order of increasing marginal value. Assume that we have constructed Xs,1, · · · ,Xs,j−1, and
hence X1, · · · ,Xj−1 have been constructed. Define X̃j = Xs \ (X1 ∪ · · · ∪Xj−1) that contains the
remaining small elements we need to pack. We then pack elements in X̃j into the j-th bin in the
order of increasing marginal values with respect to Xl,j ∪ Tj−1 until the bin is full. Specifically,
Let X̃j = {x1, x2, · · · } be sorted in reverse greedy order such that x1 = argminx∈X̃j

f(x | Xl,j ∪

Tj−1)/c(x), x2 = argminx∈X̃j\{x1}
f(x | {x1} ∪Xl,j ∪ Tj−1)/c(x), etc. Let k be the first index such

that c({x1, · · · , xk}) ≥ Bj − c(Xl,j). Then, define Xs,j = {x1, · · · , xk}. Since each working bin
is fully used in the construction of Xs,j, we could have packed all elements in Xs into working
bins by repeating the above procedure. But we will stop when we find c(X̃j) ≤ γB/(2ǫ) for
some j ∈ [m′]. Let J be the index of such bin. We put all the elements in X̃J into Xm′+1 and
finish our construction. To summarize, by the above construction, for any 1 ≤ j < J , we have
Xj = Xl,j ∪Xs,j, Bj ≤ c(Xj) ≤ Bj + ǫB since the last small element in the j-th bin violates the
capacity, and c(X̃j) > γB/(2ǫ). For any J ≤ j ≤ m′, we have Xj = Xl,j containing only large
elements. For j = m′+1, Xm′+1 = X̃J = Xs\(X1∪· · ·∪XJ−1) where c(Xm′+1) = c(X̃J) ≤ γB/(2ǫ).

We now show that f(Sj | Tj−1) ≥ (1 − ǫ)f(Xj | Tj−1) for j < J . Recall that Xl,j contains
the large elements packed in the j-th working bins by (X ′

1, · · · ,X
′
m′). Thus, when Algorithm 4

is invoked, Xl,j\Tj−1 will be enumerated in the enumeration step. Let Gj be the set returned by
the greedy algorithm which begins with Xl,j \ Tj−1. Since Algorithm 4 is invoked with parameter
Bj + ǫB instead of Bj , and Gj contains one reserved element that violates the capacity, we have
c(Gj) ≥ Bj−c(Xl,j \Tj−1)+ǫB. On the other hand, c(Xs,j) ≤ Bj−c(Xl,j)+ǫB by the construction
of Xs,j. Thus, c(Gj) ≥ c(Xs,j).

By Lemma 1, we have

f(Gj | (Xl,j \ Tj−1) ∪ Tj−1)

= f(Gj | Xl,j ∪ Tj−1)

≥ (1− e−c(Gj)/c(X̃j\Tj−1))f(X̃j \ Tj−1 | Xl,j ∪ Tj−1)

≥ (1− e−c(Gj)/c(X̃j))f(X̃j | Xl,j ∪ Tj−1)

≥

(

c(Gj)

c(X̃j)
−

c(Gj)
2

2c(X̃j)2

)

f(X̃j | Xl,j ∪ Tj−1)

≥
(1− ǫ)c(Gj)

c(X̃j)
f(X̃j | Xl,j ∪ Tj−1).

The second inequality holds since 1 − e−x is non-decreasing. The third inequality holds since
1 − e−x ≥ x − x2/2 for x ≥ 0. The last inequality holds as long as c(Gj) ≤ 2ǫ · c(X̃j), which is
guaranteed by the fact that c(X̃j) > γB/(2ǫ) and c(Gj) ≤ γB.

24

On the other hand, Since elements in X̃j are added into Xs,j in reverse greedy order,

f(X̃j | Xl,j ∪ Tj−1)

c(X̃j)
≥

f(Xs,j | Xl,j ∪ Tj−1)

c(Xs,j)
.

Combining the above inequalities, we have

f(Gj | Xl,j ∪ Tj−1) ≥
(1− ǫ)c(Gj)

c(Xs,j)
f(Xs,j | Xl,j ∪ Tj−1) ≥ (1− ǫ)f(Xs,j | Xl,j ∪ Tj−1).

By adding f(Xl,j | Tj−1) on both sides of the last inequality, we obtain

f(Sj | Tj−1) ≥ f(Xl,j ∪Gj | Tj−1) ≥ (1− ǫ)f(Xj | Tj−1).

Next, we show that f(Sj | Tj−1) ≥ f(Xj | Tj−1) for J ≤ j ≤ m′. Since Xj = Xl,j and Xl,j \Tj−1

will be enumerated in the enumeration step, we have

f(Sj | Tj−1) ≥ f(Xl,j \ Tj−1 | Tj−1) = f(Xl,j | Tj−1) = f(Xj | Tj−1).

Finally, we show that f(Sm′+1 | Tm′) ≥ (1− ǫ)f(Xm′+1 | Tm′). Recall that Sm′+1 is obtained by
running the greedy algorithm with Ns\Tm′ and patched bins as input. Since there are γ ln(1/ǫ)/(2ǫ)
patched bins and the capacity of each bin is at least B, the total capacity of patched bins is at least
γB ln(1/ǫ)/(2ǫ). Assume that c(Sm′+1) ≥ γB ln(1/ǫ)/(2ǫ), since otherwise Sm′+1 = Ns \ Tm′ ⊇
Xs\Tm′ and the lemma holds trivially. On the other hand, c(Xm′+1) ≤ γB/(2ǫ) by its construction.
As a result, c(Sm′+1)/c(Xm′+1) ≥ ln(1/ǫ). By Lemma 1, we have

f(Sm′+1 | Tm′)

≥ (1− e−c(Sm′+1)/c(Xm′+1\Tm′))f(Xm′+1 \ Tm′ | Tm′)

≥ (1− e−c(Sm′+1)/c(Xm′+1))f(Xm′+1 | Tm′)

≥ (1− e− ln(1/ǫ))f(Xm′+1 | Tm′)

= (1− ǫ)f(Xm′+1 | Tm′).

The second and third inequalities hold since 1− e−x is non-decreasing.

Lemma 7 will be used in the analysis of the 1/2 algorithm for the general case of SMKP. For
now, we use it to show that Algorithm 5 achieves a 1/2 approximation ratio in the bounded case.

Theorem 8. Algorithm 5 achieves a (1−5ǫ)/2 approximation ratio and runs in O(mnγ/ǫ+3) time.

Since γ is a constant, it runs in polynomial time.

Proof. Let OPT be an optimal solution of a bounded case SMKP instance and X∗ be an optimal
solution when one can only pack elements into working bins. Recall that there are 3ǫm reserved
bins. Since m ≥ γ ln(1/ǫ)/(2ǫ2), the number of patched bins is γ ln(1/ǫ)/(2ǫ) ≤ ǫm. Hence, by the
construction, the working bins consist of at least (1− 4ǫ)m bins with the largest capacities. Thus,
f(X∗) ≥ (1− 4ǫ)f(OPT).

By Lemma 7, there is a partition (X∗
1 , · · · ,X

∗
m′ ,X∗

m′+1) of X
∗ such that for j ∈ [m′ + 1],

f(Sj | Tj−1) ≥ (1− ǫ)f(X∗
j | Tj−1) ≥ (1− ǫ)f(X∗

j | Tm′+1).

The last inequality is due to the submodularity of f . Summing up thesem′+1 inequalities and again
by submodularity, we have f(Tm′+1) ≥ (1− ǫ)f(X∗ | Tm′+1) and therefore f(Tm′+1) ≥

1−ǫ
2 f(X∗).

25

Thus, it holds that

f(Tm′+1) ≥
1− ǫ

2
f(X∗) ≥

1− 5ǫ

2
f(OPT).

For complexity, Algorithm 5 needs to pack at most m working bins. For each working bin, there
are O(nγ/ǫ+1) possible solutions in the enumeration step. Each enumerated solution is augmented
by the O(n2) greedy algorithm. Thus the total running time is bounded by O(mnγ/ǫ+3).

4.2 A 1/2 Deterministic Algorithm for the General Case

In this section, we present a 1/2 deterministic algorithm for the general case. From a high-level
viewpoint, we manage to “reduce” a general-case instance to a bounded-case instance. For this
purpose, Algorithm 6 will divide bins into groups and apply Algorithm 5 to each group of bins in
sequence. For Algorithm 5 to work, we require that 1) each group of bins are bounded, and 2)
each group contains enough bins. As lemma 8 shows, we can actually find a partition which almost
satisfies our requirement by discarding some bins. But there may be a group in this partition which
is not bounded. Fortunately, this group contains only constant number of bins, and we will pack
this group by Constant-bins-by-value.

Lemma 8. For any ǫ > 0, let γ = ln(1/ǫ)/(2ǫ2). There is a subset C ⊆ {B1, B2, · · · , Bm} such

that C can be divided into groups P1, · · · , Pk, Pk+1 for some k with the following properties:

1. For j ∈ [k], Pj are γ-bounded, and the number of bins in Pj satisfies |Pj | ≥ γ2.

2. Pk+1 may not be bounded, but the number of bins in Pk+1 satisfies |Pk+1| < 5γ2.

3. Let OPT be an optimal solution over bins {B1, · · · , Bm} and OPT ∗ be an optimal solution

over bins C. Then, f(OPT ∗) ≥ (1− ǫ)f(OPT).

Proof. Assume that B1 ≤ B2 ≤ · · · ≤ Bm. We first divide bins into groups P ′
1, · · · , P

′
k′ , P

′
k′+1, where

group Pi contains bins with their capacities lying in the interval [γi−1B1, γ
iB1), and Bm ∈ Pk′+1.

Let k′′ = k′ − 4. A group P ′
i is large if the number of bins in it is at least γ2; otherwise it is

small. For small groups P ′
i with index i ≤ k′′, we directly discard them. For small groups P ′

i

with index k′′ < i ≤ k′ + 1 = k′′ + 5, we merge them into one group. The large groups remain
unchanged. In this way, we construct groups P1, · · · , Pk, Pk+1, where P1, · · · , Pk are exactly the
large groups in P ′

1, · · · , P
′
k′ , P

′
k′+1 and Pk+1 is the group merged from small groups P ′

i with index
k′′ < i ≤ k′ + 1 = k′′ + 5.

By construction, |Pj | ≥ γ2 for j ∈ [k] and |Pk+1| < 5γ2. Finally, note that Bm will never be
discarded and the total capacity of the discarded bins is at most

γ2
k′′
∑

i=1

γiB1 =
γ3(γk

′′

− 1)

γ − 1
B1 ≤ γk

′′+3B1 ≤ ǫγk
′′+4B1 ≤ ǫBm.

Thus, f(OPT ∗) ≥ (1− ǫ)f(OPT).

To analyze Algorithm 6, we first give an alternative analysis for Constant-bins-by-value in
Lemma 9. This will give us a similar inequality as in Lemma 7. Recall that we use E to denote an
enumerated feasible solution and G′

E the set returned by the greedy algorithm which begins with
E. Note that G′

E contains the reserved elements.

Lemma 9. Assume we run the procedure Constant-bins-by-value in Algorithm 2 with param-

eters f(·), m bins and δ = 1/(2m). For any X ⊆ N , there is a set E in the enumeration step such

that f(G′
E | E) ≥ f(X | E ∪G′

E).

26

Algorithm 6: The General Case, 1/2-Ratio

Input: constant ǫ ∈ (0, 1), ground set N , objective function f , size function c, the number
of bins m, capacities (B1, · · · , Bm).

Output: A feasible set (and the way it is packed).
1 Divide bins into groups P1 · · · , Pk, Pk+1 as in Lemma 8.
2 Initialize T = ∅.
3 for i = 1 to k do

4 S = Bounded(ǫ,N \ T, f(· | T), c(·), |Pi|, Pi).
5 T = T ∪ S.

6 end

7 E = Constant-bins-by-value(N \ T, f(· | T), c(·), |Pk+1|, Pk+1, 1/(2|Pk+1|)).
8 return argmaxS∈E f(T ∪ S) (and the way it is packed).

Proof. Assume w.l.o.g. that |X| ≥ 2m, since otherwise X will be enumerated in the enumeration
step and E = X satisfies the inequality. We order elements inX greedily according to their marginal
values, i.e. x1 = argmaxx∈X f(x), x2 = argmaxx∈X\{x1} f(x | x1), etc. In the enumeration step,
the solution E = (E1, · · · , Em) must be visited such that E contains exactly the first m elements
in X and these elements are packed in the same way as in X. In the following analysis, we show
that E and G′

E satisfies the desired inequality.
By a similar argument as in Theorem 6, X \ E is a feasible (indeed optimal) solution while

the greedy algorithm begins with the (partial) solution E = (E1, · · · , Em). If c(G′
E) < c(X \ E),

this means the greedy algorithm packs all elements in N \ E and therefore X \ E ⊆ G′
E . Then,

f(G′
E | E) ≥ f(X \ E | E) = f(X | E) ≥ f(X | E ∪ G′

E). Thus, in the following we assume that
c(G′

E) ≥ c(X \E). Assume that G′
E = {u1, u2, · · · , ul}, and for i ∈ [l], Gi = {u1, u2, · · · ui} denotes

the first i elements picked by the greedy algorithm. By the greedy rule, for any x ∈ X \ E,

f(ui | E ∪Gi−1)

c(ui)
≥

f(x | E ∪Gi−1)

c(x)
.

By submodularity,

f(ui | E ∪Gi−1)

c(ui)
≥

f(X \E | E ∪Gi−1)

c(X \E)
≥

f(X \ E | E ∪G′
E)

c(X \ E)
.

This gives us

f(G′
E | E) ≥ c(G′

E) ·
f(X | E ∪G′

E)

c(X \ E)
≥ f(X | E ∪G′

E).

We now show that Algorithm 6 is a 1/2 approximation algorithm.

Theorem 9. Algorithm 6 achieves a (1− 6ǫ)/2 approximation ratio and runs in xxx time.

Proof. Define C and P1, · · · , Pk, Pk+1 as in Lemma 8. By construction, for i ∈ [k], Pi is γ-bounded
and there are at least γ2 = γ ln(1/ǫ)/(2ǫ2) bins in Pi. Thus, it is legal to use Algorithm 5
(Bounded) to pack bins in Pi. And Algorithm 5 defines working bins and patched bins in each Pi.

Let OPT be an optimal solution of the original instance. Let OPT ∗ be an optimal solution
when one can only use bins in P1, · · · , Pk, Pk+1 to pack elements. Let X∗ be an optimal solution
when one can only use working bins in P1, · · · , Pk and bins in Pk+1 to pack elements. By Lemma

27

8, f(OPT ∗) ≥ (1 − ǫ)f(OPT). Besides, since each Pi contains at least (1 − 4ǫ)|Pi| working bins
with the largest capacities, we have f(X∗) ≥ (1− 4ǫ)f(OPT ∗).

Assume there are l working bins and patched bins in total in P1, P2, · · · , Pk and they are sorted
in the order they are processed. For j ∈ [l], let Sj be the set of elements packed into the j-th
(working or patched) bin by the algorithm and Tj be the set of elements packed into the first j
bins. Then, Tj = Tj−1 ∪ Sj.

By the definition of X∗, there is a partition (X∗
P1
, · · · ,X∗

Pk
,X∗

Pk+1
) such that X∗

Pi
is a feasible

solution over working bins in Pi for i ∈ [k], and X∗
Pk+1

is a feasible solution over bins in Pk+1.
Therefore, for each X∗

Pi
, we can re-partition it into working bins and patched bins in Pi as in

Lemma 7 and finally obtain a partition (X∗
1 , · · · ,X

∗
l ,X

∗
l+1) of X

∗, where X∗
l+1 is exactly the same

as X∗
Pk+1

. Besides, by Lemma 7, for j ∈ [l],

f(Sj | Tj−1) ≥ (1− ǫ)f(X∗
j | Tj−1).

Now we consider the bins in Pk+1. For each E in the enumeration step of Constant-bins-by-

value, let G′
E be the set returned by the greedy algorithm which begins with Tl ∪ E. Let RE be

the reserved elements in G′
E . Define T ′

E = Tl ∪E ∪G′
E and TE = T ′

E \RE . By Lemma 9, there is a
set E such that f(G′

E | Tl ∪E) ≥ f(X | Tl ∪E ∪G′
E). Adding f(E | Tl) into both sides, we obtain

f(E∪G′
E | Tl) ≥ f(X | Tl∪E∪G′

E)+f(E | Tl). By submodularity, f(Sj | Tj−1) ≥ (1−ǫ)f(X∗
j | T ′

E)
for j ∈ [l]. Summing up these l + 1 inequalities, again by submodularity,

f(T ′
E) ≥ (1− ǫ)f(X∗ | T ′

E) + f(E | Tl).

Therefore,

f(T ′
E) ≥

1− ǫ

2
f(X∗) +

f(E | Tl)

2
.

Since we enumerate all feasible E with |E| ≤ 2|Pk+1|, by a similar argument as in Theorem 6,
f(u | Tl ∪ E) ≤ f(E | Tl)/(2|Pk+1|) for any u ∈ RE . Hence, by submodularity,

f(TE) = f(T ′
E)− f(RE | TE)

≥
1− ǫ

2
f(X∗) +

f(E | Tl)

2
− f(RE | Tl ∪E)

≥
1− ǫ

2
f(X∗) +

f(E | Tl)

2
−
∑

u∈RE

f(u | Tl ∪ E)

≥
1− ǫ

2
f(X∗) +

f(E | Tl)

2
− |Pk+1|

f(E | Tl)

2|Pk+1|

=
1− ǫ

2
f(X∗).

Let Sl+1 = argmaxS∈E f(Tl ∪ S) and Tl+1 = Tl ∪ Sl+1. We have

f(Tl+1) ≥ f(TE) ≥
1− ǫ

2
f(X∗) ≥

(1− ǫ)2(1− 4ǫ)

2
f(OPT) ≥

1− 6ǫ

2
f(OPT).

5 Conclusion

In this paper, we present a 1 − 1/e − ǫ deterministic algorithm for the identical case of SMKP
and a 1/2 − ǫ deterministic algorithm for the general case. We further show there is a 1− 1/e − ǫ
randomized algorithm for the general case.

28

There remains some interesting open problems. For the identical case, our algorithm packs
a constant number of bins in each iteration, leading to the high complexity of the algorithm. It
is interesting to investigate whether the algorithm has the same performance when it packs bins
one at a time. For the general case, though there is a tight 1 − 1/e − ǫ randomized algorithm,
the deterministic algorithm can only achieve a 1/2 ratio. It is appealing to find deterministic
algorithms which can break the 1/2 barrier and finally achieve the optimal 1− 1/e approximation
ratio. Finally, SMKP is closely related to submodular maximization under m-knapsack constraint.
The result of [8] is based on reducing SMKP to a special case of the latter problem. Besides, most
of our algorithms for SMKP are deterministic. Thus, we believe our results may inspire the design
of deterministic algorithms for submodular maximization under m-knapsack constraint.

References

[1] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1497–1514, 2014.

[2] Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 392–403, 2016.

[3] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In 53rd Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,

2012, pages 649–658, 2012.

[4] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
1433–1452, 2014.

[5] Chandra Chekuri and Sanjeev Khanna. A PTAS for the multiple knapsack problem. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January

9-11, 2000, San Francisco, CA, USA., pages 213–222, 2000.

[6] Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In IEEE

57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,

Hyatt Regency, New Brunswick, New Jersey, USA, pages 248–257, 2016.

[7] Alina Ene and Huy L. Nguyen. A nearly-linear time algorithm for submodular maximization
with a knapsack constraint. In 46th International Colloquium on Automata, Languages, and

Programming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages 53:1–53:12, 2019.

[8] Yaron Fairstein, Ariel Kulik, Joseph Naor, Danny Raz, and Hadas Shachnai. A (1-

e-1-ǫ)-approximation for the monotone submodular multiple knapsack problem. CoRR,
abs/2004.12224, 2020.

[9] Moran Feldman. Maximization problems with submodular objective functions. Technion-Israel
Institute of Technology, Faculty of Computer Science, 2013.

29

[10] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for
submodular maximization. In IEEE 52nd Annual Symposium on Foundations of Computer

Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 570–579, 2011.

[11] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization
subject to a matroid constraint. In 53rd Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 659–668, 2012.

[12] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. An analysis of approxima-
tions for maximizing submodular set functions - II. In Polyhedral combinatorics, pages 73–87.
Springer, 1978.

[13] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1098–1116, 2011.

[14] Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2009, New York, NY, USA, January 4-6, 2009, pages 665–674, 2009.

[15] Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack problem. In
Randomization, Approximation, and Combinatorial Algorithms and Techniques, RANDOM-

APPROX’99, Berkeley, CA, USA, August 8-11, 1999, Proceedings, pages 51–62, 1999.

[16] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions subject
to multiple linear constraints. In Proceedings of the Twentieth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 545–554,
2009.

[17] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In Proceedings of the 41st

Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May

31 - June 2, 2009, pages 323–332, 2009.

[18] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple ma-
troids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010.

[19] George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the maxi-
mum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978.

[20] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxi-
mations for maximizing submodular set functions - I. Math. Program., 14(1):265–294, 1978.

[21] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, 2004.

[22] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,

British Columbia, Canada, May 17-20, 2008, pages 67–74, 2008.

[23] Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings of the 43rd ACM

30

Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
783–792, 2011.

31

	1 Introduction
	1.1 Our Results
	1.2 Technique Overview
	1.2.1 Identical-size Case
	1.2.2 General Case

	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 The Greedy Algorithm
	2.2 Constant Number of Bins

	3 The Identical Case
	3.1 Proof of Lemma 2
	3.2 A Technical Lemma

	4 The General Case: 1/2 Ratio
	4.1 A 1/2 Deterministic Algorithm for the Bounded Case
	4.2 A 1/2 Deterministic Algorithm for the General Case

	5 Conclusion

