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Abstract

With the rise of machine learning, inference on deep

neural networks (DNNs) has become a core building

block on the critical path for many cloud applications.

Applications today rely on isolated ad-hoc deployments

that force users to compromise on consistent latency,

elasticity, or cost-e�ciency, depending on workload char-

acteristics. We propose to elevate DNN inference to be

a �rst class cloud primitive provided by a shared multi-

tenant system, akin to cloud storage, and cloud databases.

A shared system enables cost-e�cient operation with

consistent performance across the full spectrum of work-

loads. We argue that DNN inference is an ideal candidate

for a multi-tenant system because of its narrow and well-

de�ned interface and predictable resource requirements.

1 Motivation
Deep neural networks (DNNs) excel at a wide range of

machine learning tasks including computer vision, natu-

ral language processing, speech detection, and more. The

success of DNNs has correspondingly led to the rapid

growth of systems and platforms for deep learning (DL).

Today, a rich ecosystem of platforms, libraries, and run-

times make it easy to develop, train, and deploy DNNs.

In a cloud and datacenter setting, machine learning

workloads have thus grown in prominence. Broadly

speaking, we can divide DL workloads into training work-

loads and inference workloads. Training is a compute-

intensive batch task that constructs a DNN using large

quantities of data; training bears similarity to other batch

tasks like data analytics jobs and faces similar challenges.

In contrast, inference is a low-latency, online task that gen-

erates predictions on-demand using a trained DNN; infer-

ence bears similarity to online applications like databases,

web services, and microservices, and is often just one

piece of a broader end-to-end application. DNNs are typ-

ically hosted separately from application logic and ac-

cessed via remote procedure call (RPC).

In this work we consider inference workloads exclu-

sively. Although inference has not gone unnoticed in

prior work, existing cloud infrastructure for inference

workloads still has several limitations. These limitations

are not fundamental, and we believe there are signi�-

cant opportunities to better serve inference workloads.

Throughout this paper we focus on deep neural networks

(DNNs) as they are the main driver of today’s machine

learning trends. However, many of our observations gen-

eralize beyond DNNs.

1.1 A Brief Primer on DNNs
For our purposes it su�ces to think of a DNN as a

stateless, deterministic, black-box function. For exam-

ple resnet18, a DNN for image classi�cation, takes as

input a 224 × 224 × 3 RGB image, performs ~2 billion

�ops, and outputs a 1000-dimension vector of class prob-

abilities [22].

Internally, DNNs are straightforward, comprising a se-

quence of statically-de�ned layers. Each layer is a math-

ematical function that transforms the outputs from the

previous layer to produce inputs for the next layer. For ex-

ample, a fully-connected layer multiplies the output tensor

of the previous layer with a tensor of hard-coded values

(these were ‘learned’ during training). DNN depths vary

from a few layers to a few hundred layers, and typically

draw from a catalogue of several dozen layer types.

Evaluating a DNN thereby entails performing the op-

eration of each layer in turn, transforming the original

input into the output. DNNs can be evaluated on CPUs,

GPUs, or special-purpose accelerators like TPUs [28].

GPUs and TPUs see signi�cant speedups from paral-

lelism; for example, for resnet18 with TVM [16] we mea-

sure 190.80ms median inference latency on a single-core

CPU, compared to 0.97ms on a Tesla V100 GPU.

1.2 Deploying a DNN for inference
The conventional approach to deploying a DNN is to pro-

vision a container or virtual machine (VM), and within
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the container or VM, host the model on a model server.

Model servers are analogous to webservers, and no-

table examples include TensorFlow Serving [34], Apache

MXNet Model Server [30], and Clipper [17].

Aside from dedicated VMs,
1

cloud customers can alter-

natively use a hosted system to serve their model, such

as Google ML Engine [5] and Microsoft Azure ML [3].

These systems expose a higher-level interface for users

– upload your model, and receive an endpoint to which

you can send inference requests. Managed systems ease

deployment complexity, as users do not have to manually

provision speci�c resources or interact with underlying

VMs. Internally, these systems also serve models using

VMs. The main appeal of hosted solutions is to avoid

capacity planning – these systems will automatically

provision additional VMs if the workload increases, and

alternatively tear down VMs if they are unused. Inter-

nal systems at companies such as Facebook, Google, and

Uber take a similar approach [21, 23, 24, 34].

The common strand among these approaches is isolation

at the VM level. Some model servers support deploying

more than one model at a time, but this is statically con-

figured on start-up, with pre-allocated resources [34]. All

frameworks support models with custom user-code layers.

1.3 Expectations vs. Reality
All existing approaches to deploying DNNs use VMs for

isolation. However, we argue that VMs are ine�cient,

undesirable, and fundamentally mismatched with the

expectations and requirements of inference workloads.

Inference workloads are online workloads and are often

part of broader latency-sensitive end-to-end applications.

The exact number of inference requests per second will

vary unpredictably over time, often at �ne time scales;

meanwhile, the workload may have tail latency targets

on the order of milliseconds, such as 7ms at Google [28],

10ms at Uber [23], and 25ms at Zendesk [15].

Reality: idle resources and over-provisioning With

this in mind, the basic approach of statically provisioning

VMs has clear drawbacks. First and foremost, users must

either (i) over-provision to satisfy the estimated peak

demand, thus leaving resources idle much of the time; or

(ii) accept increased latency and even denial of service if

demand increases. Moreover, some workloads may never
have su�cient demand to warrant an entire VM, and

may even undergo long periods of idleness. Statically-

provisioned VMs are wasteful, as users must nonetheless

provision and pay for the excess capacity. The problem

is further compounded when using expensive hardware

accelerators like GPUs and TPUs, which only make sense

for workloads that can sustain thousands of requests per

second [28]. Lastly, mapping workload requirements to

1
In the rest of the paper we use VMs to refer to both containers and

VMs for brevity.

concrete resources is non-trivial. In a recent Amazon blog

post, authors describe how “developers are often stumped
when the time comes to pick an instance type and size.
Indeed, for larger models, the inference latency of CPUs
may not meet the needs of online applications, while the
cost of a full-�edged GPU may not be justi�ed.” [36]

Reality: scaling in coarse-grained increments
Statically-provisioned VMs are further mismatched for

workloads with tight latency requirements. To satisfy these

latency requirements, it may be necessary to use hardware

accelerators like GPUs and TPUs. Hardware accelerators

can provide several orders of magnitude speedup for

inference workloads; for example, for resnet18 we measure

190.80ms median inference latency on one-core Google

Cloud VM, compared to 0.97ms on a Tesla v100. However,

hardware acceleration is both more expensive and more

coarse-grained than CPU-only VMs. Concretely, the

throughput of resnet18 on one CPU core is 5.24 inferences

per second (inf/s), at a cost of 3.48c/hr ($1.84 per million

inferences). Conversely the throughput of resnet18 on a

GPU is 1031 inf/s.
2

GPUs are therefore more cost-effective

at $2.55/hr ($0.69 per million inferences).However, there

is clearly a tradeoff: though GPUs have the potential for

better latency and throughput, CPUs are scalable in much

finer increments. Each generation of GPU and CPU offers

a different point on this scale.

Reality: slow auto-scaling Beyond static resources,

cloud providers also o�er managed solutions, such as

Google ML Engine, and Microsoft Azure ML, outlined

in §1.2. These solutions will scale provisioned resources

in response to �uctuations in the workload. To do so,

customers must specify latency targets or throughput

thresholds, which trigger the system to automatically

spin up new VMs or tear down VMs as workloads change.

However, VMs are inherently slow to spin up, and as such,

auto-scaling can only adapt to workload �uctuations over

long time periods. For example, Amazon SageMaker [4]

makes scaling decisions in 5-minute increments by de-

fault. Google Cloud ML’s documentation re�ects this

limitation: “If your tra�c regularly has steep spikes, and if
reliably low latency is important to your application, you
may want to consider manual scaling.” [5].

Reality: high cold-start latency As a complement to

auto-scaling, managed solutions also enable VMs to be

torn down completely if workloads undergo long peri-

ods of idleness. This avoids paying for resources that

will not be used, albeit over long time scales. However,

when a workload picks up again, the resources must be

re-provisioned. This task, sometimes referred to as cold-
start, can take many seconds. For example, researchers

evaluating the feasibility of DNNs in serverless applica-

2
With batching and batch-interleaving we can increase throughput up to

4083 inf/s at the cost of elevated 62.1ms median latency.
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tions measured cold-start times of up to 12 seconds for

100MB models [26]. This increased latency is clearly at

odds with the needs of online workloads, and in particu-

lar, any workload that may be infrequent or sporadic.

Reality: mismatched pricing abstractions Although

managed solutions o�er a high-level abstraction for infer-

ence workloads – “give us your model, then send us your

inference requests” – this abstraction is not re�ected in

the pricing models of these systems. Both the underlying

implementations of these managed solutions, and subse-

quent pricing models, are based on total VM time, includ-
ing idle time, instead of per inference or total compute

time, as is common in, e.g. serverless computing envi-

ronments [9]. Consequently, the costs of idle resources

due to over-provisioning are re�ected back on the user.

Given the long time scales over which these systems

make decisions – e.g. waiting 10 minutes before tearing

down a Cloud ML container [6] – this adds signi�cant

�nancial cost to users. This represents a fundamental

tradeo� that is inherent to using VMs as the unit of pro-

visioned resource: paying for unused, idle resources vs.

incurring high cold-start latency.

1.4 Summary of Requirements
Based on these challenges, we summarize the following

desirable properties for inference workloads:

Latency Inference workloads need stable average and

tail latency, regardless of workload volume. Infrequent or

sporadic workloads should not su�er from high cold-start

latency.

Elasticity Online workloads are inherently unpre-

dictable, and may rapidly transition from low-volume to

high-volume. Workload �uctuations should be handled

transparently.

Cost-E�ective Users should not have to signi�cantly

over-provision resources. Moreover, costs should be con-

sistent regardless of the workload volume, i.e. users

should be charged based on the work done.

2 Multi-Tenant Systems
VMs and containers are a poor �t for inference work-

loads. Our proposed alternative is to share the under-

lying resources across tenants, by executing inference

workloads within a shared, multi-tenant system. In shared

systems, the system operator provisions resources for

the system as a whole, and runs long-lived system pro-

cesses that receive and execute requests from di�er-

ent tenants concurrently. By sharing resources, �uctu-

ations in demand can be amortized across tenants, and

we avoid over-provisioning and wasting resources. By

sharing processes, workload spikes can be absorbed by

re-distributing load, and workloads with long periods of

inactivity do not incur cold-start latency. And lastly, since

cloud providers maintain control over the system and its

resources, they can more closely align the pricing and

system abstractions (e.g., by charging on a per-request

basis). Today, multi-tenant systems already provide a va-

riety of core datacenter services, such as storage [13, 19],

databases [1,14], queueing [2], and co-ordination [12,25].

Multi-tenant systems are only justi�able for core data-
center functionality, where there is a common need for

the functionality across many tenants and workloads.

We believe that DNN inference is su�ciently important

and prevalent to justify a specialized multi-tenant sys-

tem. A shared system can signi�cantly improve elasticity

and cost-e�ectiveness. However, in designing a multi-

tenant system for inference workloads, we must juggle

our original goals with three additional challenges:

Abstractions Tenants no longer interact with compute

resources directly. Instead, shared systems expose high-

level abstractions and interfaces. These abstractions must
generalize across many workloads and tenants.

Security Shared systems execute requests of di�erent

tenants within the same, shared processes. Thus, users

are no longer separated by rigid OS or hypervisor bound-

aries. Nonetheless, we must still ensure security between

di�erent tenant workloads.

Performance Isolation The system must prevent per-

formance interference between di�erent tenants. Per-

formance isolation is arguably the most di�cult chal-

lenge for multi-tenant systems today, and remains an

active area of research for multi-tenant systems in gen-

eral [11, 31–33, 37].

In the remainder of this paper, we outline how a multi-

tenant system for DNN inference can address these chal-

lenges, while also satisfying our original motivating re-

quirements.

3 Design of a Shared Inference System
Our proposed system architecture bears similarity to

many other shared systems [1, 14, 19]. High-level meta-

operations are handled by a logically centralized con-

troller. Meanwhile, DNN hosting and inference are han-

dled by worker processes, spread across many machines.

Users first upload a DNN to the system and then start

sending inference requests. Internally, the system dis-

tributes the DNN to one or more workers. Then, inference

requests are routed to the workers that host the DNN.

Workers host DNNs for many tenants simultaneously, and

receive incoming requests. If a DNN is in high-demand, it

is replicated across many workers. Replication achieves

both fault tolerance, and elasticity. In our design, we focus

particular attention on how workers multiplex inference

requests across potentially many models.
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3.1 Inference Runtime
Since the focus of our system is inference, a pre-requisite

is for users to have trained their DNN using an existing

deep learning framework such as TensorFlow [10]. How-

ever, today’s DL frameworks are designed to handle the

entire model lifecycle, from training to deployment, and

crucially, the framework also provides the runtime for

model execution. In a multi-tenant system it is infeasible

to allow users to upload an arbitrary runtime for exe-

cuting their model, as this would require heavyweight

isolation techniques to guarantee security, and it would

limit opportunities for optimization. Instead, our system

contains an internal model execution runtime and does

not require user-code for performing inference.

However, using a custom runtime means users must

submit models in a format understood by the runtime.

Recent e�orts in the machine learning community to ad-

dress framework inter-operability have led to the devel-

opment of the Open Neural Network eXchange (ONNX)

model format [7]. The ONNX model format is simply a

high-level description of the structure and parameters

of a trained DNN, without framework-speci�c code or

runtime optimizations.

The downside of this abstraction is that it restricts

users to a pre-de�ned set of supported layer types. While

existing DL frameworks allow users to implement cus-

tom layer types, user extensions are not feasible in a

multi-tenant system. We do not believe that this is a

signi�cant limitation for our system targeting common-

case workloads. For example, 95% of production DNNs

at Google use standard layers; moreover, Google’s pro-

duction hardware accelerator, the TPU, only supports

standard layers [28]. Thus, supporting prototype layers

is unnecessary until they reach mainstream adoption, at

which point they can be included in our set of supported

layer types. In general this restriction is reasonable and

multi-tenant systems often disallow custom user code;

for example, multi-tenant databases typically do not sup-

port SQL’s user-de�ned functions [1, 13].

3.2 Performance Isolation
In shared systems, performance isolation is important for

ensuring aggressive tenants or unpredictable workloads

do not cause starvation, reduced throughput, or high la-

tency for others. However, comprehensive performance

isolation is a challenge, even for existing systems today.

Di�culties arise because isolation must be implemented

at the application level, where we lack the ability to pre-

empt requests while they are executing. A common ap-

proach is to predict resource requirements, measure ac-

tual consumption, and use coarse-grained feedback loops

to provide guarantees like fairness over time [32, 35]. Of-

ten this is implemented as a fair queue scheduler at the

request admission point [33].

However, unlike workloads from other domains, DNN

inference has highly predictable resource consumption

patterns. In other multi-tenant systems, performance

isolation is di�cult primarily because resource require-

ments are unpredictable and vary widely from request

to request [33], and once a request is admitted it runs to

completion. DNN inference does not face this challenge,

because inference is a fundamentally predictable com-

putation. This stems from the structure of DNNs (§1.1)

– they are a �xed sequence of mathematical operations.

A priori, we can quantify the exact number of �ops re-

quired by each layer of the DNN. Moreover, DNNs are

predictable as they do not contain control �ow elements.
3

DNNs that accept variable-sized or batched inputs also

vary deterministically based on input size.

We can exploit this predictability to do a much bet-

ter job of scheduling, whether at request admission, or

at �ner granularity within the system. Instead of mod-

eling costs up front, we propose a more pragmatic ap-

proach based on measurement. In our experiments with

TVM [16] we measure 99th percentile latencies not ex-

ceeding 15% of the mean for a range of o�-the-shelf

DNNs [8] and workload mixes.

Predictable computations enable systems to react to

workload �uctuations much more quickly, and enable

higher quality scheduling decisions. For example, instead

of heuristic-based best e�ort scheduling, an admission

scheduler can con�dently optimize an objective across

all pending requests, such as minimizing average latency.

Overall, predictable DNN inference presents an opportu-

nity both to improve upon existing resource management

techniques, and to explore new approaches entirely.

3.3 E�ciency and Optimizations
A key characteristic of a multi-tenant system is to alter-

nate service between di�erent tenants. In the worst case,

each request may require loading and executing a di�er-

ent model that is not currently loaded. This introduces

additional resource costs, such as the need to copy the

model from a remote machine or from cold storage. Sim-

ilarly, if we use hardware accelerators, then models need

to be copied from host memory to device memory. Over-

all, the total inference latency will depend on a combina-

tion of execution latency (CPU, GPU, or other accelerator)

and transfer latency (PCIe, disk, and/or network). As men-

tioned in §3.2, execution latency is predictable; but so too

is transfer latency, since the memory footprint of a DNN

is �xed. For example, resnet18 allocates approximately

78MB device memory for DNN weights; we measure

~7ms increased latency when copying weights prior to

each inference, consistent with 12GB/s PCIe bandwidth.

Not all inference requests incur memory transfer over-

3
This does not preclude higher-level control �ow, which is the subject

of recent research [27, 38]
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heads because of caching opportunities at each level. The

typical memory footprint of a DNN is in the tens or hun-

dreds of MBs; in contrast, servers often exceed 1TB of

main memory, current-generation GPUs have up to 32GB

device memory, and current-generation TPUs have 64GB

device memory. Most requests can exploit cached models

instead of reloading from scratch. Consequently, bottle-

necks will vary based on resource requirements of each

DNN and cache hit ratios. For example, for models like

resnet18, a GPU cache hit ratio of 85% or greater would

shift the bottleneck resource from PCIe bandwidth to

GPU execution latency.

In all, this leads to a multi-resource scheduling prob-

lem that, while similar to work in other domains [20, 32],

has some unique constraints: (i) inference requests have

predictable resource requirements; (ii) inference requests

consume resources one-at-a-time; (iii) resources are in-

dependent and asynchronous; (iv) resources have mea-

surable concurrency and throughput; and (v) scheduling

decisions can be interposed before each resource. These

constraints present an opportunity for high quality, �ne-

grained scheduling.

Beyond �ne-grained scheduling decisions, we also

have opportunities for high-quality placement and load-

management decisions. For any request, we can calcu-

late with high con�dence the latency of local execution

including any memory transfers. We can consider alter-

native execution strategies, such as CPU execution vs.

hardware accelerator, and local vs. remote. A worker with

several pending requests can calculate a priori the ex-

pected completion time of each request, including queue-

ing time, and pre-emptively cancel or re-route requests

accordingly.

Of course, the optimizations we have described primar-

ily a�ect models with infrequent or varying workload

patterns, for which multi-tenancy ‘reclaims’ resources

that would otherwise go unused. This does not, however,

come at the expense of degraded performance for heavy

workloads. If a model does have a heavy workload (i.e.,
enough demand to saturate a worker entirely), then we

migrate colocated models elsewhere, giving the heavy

workload essentially exclusive use of the worker. Then,

any hardware [28] or software [18, 29] optimizations are

equally applicable.

4 Discussion
Multi-tenancy has complementary goals to much of the

prior work around DNN inference. Assuming su�cient

workload demand from individual models, multi-tenant

systems can equally bene�t from specially designed ac-

celerators [28], �ne-grained batching techniques [18],

and potential future results in inter-model batching [29].

A multi-tenant system would be particularly well-placed

for exploiting inter-model optimizations, as the system

controls model placement and co-location decisions.

In the research literature, the most similar system to

what we propose is Clipper [17]. Clipper also proposes an

abstraction to serve as a “narrow waist” for model deploy-

ment, albeit di�erent to our proposed abstraction, and

isolates models using containers. Clipper focuses on chal-

lenges and optimizations that lie above their proposed in-

terface – model management, latency-throughput trade-

o�s, and higher-level concerns like prediction accuracy.

By contrast, we consider di�erent challenges and opti-

mizations that lie below our proposed interface. In in-

dustry, the most similar system to what we propose is

TFS
2

[34], Google’s internal model hosting system, which

distributes models to shared worker processes and pro-

vides automatic scaling; however, there is insu�cient

public information for a detailed comparison.

In this paper we did not discuss pre- and post-

processing of DNN inputs and outputs, an important

step for every DNN pipeline. We believe that this step

is better handled by a separate (but possibly co-located

and co-designed) system, that composes much like e.g.
distributed �le systems and databases. Processing steps

have di�erent performance characteristics compared to

DNN inference, and often rely on user code; of course,

this does not preclude entirely the possibility of safe

high-level abstractions. The biggest di�erence between

processing and inference is inter-model commonality.

Pre- and post-processing steps are often similar between

DNNs, and can be batched, even across di�erent model

pipelines [29]. However, DNN inference has fewer op-

portunities for batching across models, as model weights

are unique.

Lastly, DNN inference does not cover all machine learn-

ing workloads. But, by restricting our design to this spe-

ci�c but common workload class, it enables assumptions

around performance, predictability, and clarity, that we

would otherwise lack. Models beyond DNNs have fun-

damentally di�erent performance characteristics, thus

we omit them from consideration. Similarly, we exclude

reinforcement learning, which does not have a distinct

inference phase. Multi-tenant systems for these other

scenarios may also make sense, and we look forward to

seeing future research in this direction.

5 Conclusion

In this paper we proposed that DNN inference should be

a �rst-class cloud primitive, provided by a shared multi-

tenant system. Multi-tenancy enables cost-e�cient oper-

ation with consistent performance across a wide range

of workloads. DNN inference is ideally suited for multi-

tenancy because of its predictable resource requirements,

which help address the important question of perfor-

mance isolation.
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