arXiv:1712.01807v1 [cs.CL] 5 Dec 2017

IMPROVING THE PERFORMANCE OF ONLINE NEURAL TRANSDUCER MODELS

Tara N. Sainath, Chung-Cheng Chiu, Rohit Prabhavalkar, Anjuli Kannan,
Yonghui Wu, Patrick Nguyen, Zhifeng Chen

Google, Inc., USA

{t sainath, chungchengc, prabhavalkar,anjuli, yonghui, drpng, zhi fengc}@google .com

ABSTRACT

Having a sequence-to-sequence model which can operate in an online
fashion is important for streaming applications such as Voice Search.
Neural transducer is a streaming sequence-to-sequence model, but
has shown a significant degradation in performance compared to non-
streaming models such as Listen, Attend and Spell (LAS). In this
paper, we present various improvements to NT. Specifically, we look
at increasing the window over which NT computes attention, mainly
by looking backwards in time so the model still remains online. In
addition, we explore initializing a NT model from a LAS-trained
model so that it is guided with a better alignment. Finally, we explore
including stronger language models such as using wordpiece models,
and applying an external LM during the beam search. On a Voice
Search task, we find with these improvements we can get NT to match
the performance of LAS.

1. INTRODUCTION

Sequence-to-sequence models have become popular in the automatic
speech recognition (ASR) community [1} [2} 3} 4], as they allow
for one neural network to jointly learn an acoutic, pronunciation
and language model, greatly simplifying the ASR pipeline. In this
paper, we focus on attention-based sequence-to-sequence models, as
our previous study [5]] showed these models performed better than
alternatives such as Connectionist Temporal Classification (CTC) [6]
and Recurrent Neural Network Transducer (RNN-T) [7].

Attention-based models consist of three modules. First, an en-
coder, represented by a multi-layer recurrent neural network (RNN),
models the acoustics. Second, a decoder, which consists of multiple
RNN layers, predicts the output sub-word unit sequence. Finally, an
attention layer selects frames in the encoder representation that the
decoder should attend to when predicting each sub-word unit.

Attention-based models, such as Listen, Attend and Spell (LAS)
have typically been explored in “full-sequence” mode, meaning at-
tention is computed by seeing the entire input sequence [2,4]]. Thus,
during inference, the model can produce the first output token only
after all input speech frames have been consumed. While such a
mode of operation might be suitable for many applications, these
models cannot be used for “streaming” speech recognition, such as
voice search, where the output text should be generated as soon as
possible after words are spoken [8]].

Recently, neural transducer (NT) [3] was proposed as a limited-
sequence streaming attention-based model, which consumes a fixed
number of input frames (a chunk), and outputs a variable number
of labels before it consumes the next chunk. While the model is
attractive for streaming applications, in previous work NT showed
a large degradation over other online sequence-to-sequence models

such as RNN-T [9] and full-sequence unidirectional attention-based
models [3} 4], particularly as the chunk-size was decreased [4].

In the present work, we study various improvments to the stream-
ing NT modeﬂ— both in terms of model structure, as well as in the
training procedure — that are aimed at improving its performance to be
as close as possible to the non-streaming full-sequence unidirectional
LAS model, which serves as an upper-bound of sorts. Specifically,
we allow attention in NT to be computed looking back many previous
chunks, as this does not introduce additional latency. Further, we
find that allowing the model to look-ahead by 5 frames is extremely
beneficial. Finally, we allow NT to be initialized from a pre-trained
LAS model, which we find is a more effective strategy than having
the model learn from scratch.

Our NT experiments are conducted on a 12,500 hour Voice Search
task. We find that with look-back and look-ahead, NT is more than
20% relative worse than LAS in terms of word error rate (WER).
However, we find that by pretraining with LAS, we can get NT with
a chunk size of 10 (450ms latency) to match the performance of LAS,
but a chunk size of 5 (300ms latency) still degrages by 3% relative.

Our analysis of the NT model indicates that many of the errors
made compared to LAS are language modeling (LM) errors. Thus, we
explore various ideas to incorporate a stronger language model (LM)
into NT, to allow us to reduce the chunk size. This includes exploring
incorporating an LM from the encoder side via multi-head attention,
training the NT model with word pieces [10] to get a stronger LM
into the decoder [11] and also explicitly incorporating an external LM
via shallow fusion [[12]]. We find that our best performing NT system
with a chunk size of 5 (300 ms latency) only degrades performance
by 1% relative to an unidirectional LAS system.

2. ORIGINAL NEURAL TRANSDUCER ALGORITHM

In this section, we describe the basic NT model introduced in
Jaitly et al. [3]. which is shown in Figure[I] Given an input se-
quence of frame-level features (e.g., log-mel-filterbank energies),
x = {x1,22,...,2xr}, and an output sequence of sub-word units
(e.g., graphemes, or phonemes) y = {y1,¥2,...yn}, attention
models assume that the probability distribution of each sub-word unit
is conditioned on the previous history of sub-word unit predictions,
Y<i, and the input signal. Full-sequence attention models, such as
LAS [2] compute the probability of the output prediction y; for each
step ¢ given the entire input acoustic sequence x, making it unsuitable
for streaming recognition applications. The Neural Transducer (NT)
model [3] is a limited-sequence attention model that addresses this
issue by limiting attention to fixed-size blocks of the encoder space.

!In this work, we consider streaming to mean the system has a maximum
allowable delay of 300ms, which is considered reasonable [8].

Ym—1 Ym Ym+1 Ym+2

T e J:J”_lT
!

Ym43

m,:m—?T

! !
Poas F" Ttz }_" Pt %’
! i

F- Sm+2 }—- Sm+3 k’

! 1

[
(-

!

Sm—1

.‘ /,,;T,, ‘.

Sm+1

_+
%

L1~

'
\

. \
Ym-2 Ym-1 | Ym+1 o Ums2
L] / .
N attention. e '
. e
. / <Cm X
' { (451 A '
f \ 2) '
. \ —» - Kp = '
N T
| hp_nw "4 Bt [—w B2 |- l-;—;u how st |—a
f L,,,‘,,,,l '
bt f ‘ !
. i
Th-1W o T w Tow T

<
»
<+ -

Fig. 1: Neural Transducer Attention Model.

Given the input sequence, x, of length 7', and a block size of
length W, the input sequence is divided equally into blocks of length
B =[], except for the last block which might contain fewer than
B frames. The NT model examines each block in turn, starting with
the left-most block (i.e., the earliest frames). In this model, attention
is only computed over the frames in each block. Within a block, the
NT model produces a sequence of k outputs, yi, . . . , Yi+k; it is found
to be useful to limit the maximum number of outputs that can be pro-
duced within a block to M symbols, so that 0 < k& < M. Once it has
produced all of the required labels within a block, the model outputs
an <epsilon> symbol, which signifies the end of block processing.
The model then proceeds to compute attention over the next block,
and so on, until all blocks have been processed. The <epsilon>
symbol is analogous to the blank symbol in connectionist temporal
classification (CTC) [6]. In particular, we note that a block must
output a minimum of one symbol (<epsilon>), before proceeding
to the next block.

The model computes P(y1,... (s+B)|X1...T), which outputs a se-
quence which is length B longer than the LAS model since the model
must produce an <epsilon> at every block. Within each block
b € B, the model computes the following probability in Equation|[T]
where y., = <epsilon> is the symbol at the end of each block. In
other words, the prediction y; at the current step, ¢, is based on the
previous predictions yi...e (1)’ similar to LAS, but in this case using
acoustic evidence only up to the current block, x;.. pw:

P(y(eb,lJrl)...eb‘lebW,yl.‘.eb,l) =
€b
H P(yilx1..ow, Y1e;_yy) (D
i:E(b71)+1

Like LAS, NT also consists of a listener, an attender and a
speller to define a probability distribution over the next sub-word unit
conditioned on the acoustics and the sequence of previous predictions.
The listener module of the NT computes an encoding vector in the
current block only:

h_ywii..ew = Listen(X—nywi1..0w))

which is implemented as a unidirectional RNN.

The goal of the attender and speller is to take the output of the
listener (i.e., h) and produce a probability distribution over sub-word
units. The attention and speller modules operate similar to LAS, but
only work on the partial output, h; .. sw, of the encoder up until the

current block. We refer the reader to [4] for more details about the
attention and speller.

3. IMPROVING PERFORMANCE OF BASIC NEURAL
TRANSDUCER ALGORITHM

In this section, we describe various improvements to the basic algo-
rithm and model described in the previous section.

3.1. Training grapheme-based models using Word Alignments

Training with NT requires knowing which sub-word units occur in
each chunk, and thus an alignment is needed. Our previous work with
NT [4] used context-independent phonemes, for which an alignment
was available. In this work, we train our model with graphemes,
which does not have an alignment. However, we have a word level
alignment and we use this information to emit all graphemes in the
chunk corresponding to when a word has finished.

3.2. Extending Attention Range

In the original NT paper, attention was computed by only looking
at encoder features in the current block b, as shown in Equation
However, as shown in [4], making the attention window longer
allows NT to approach the performance of LAS, but at the cost of
removing the online nature of the task. However, we can still maintain
a streaming, online system by computing attention by looking back
over k previously blocks. This is particularly important because we
emit graphemes at word boundaries. Furthermore, similar to our
streaming systems [[13]], we allow a lookahead of 150 ms (5 30-ms
frames) between the input frames and the output prediction. With
these changes, the listener is now shown by Equation[3]

h_ywi1..ew = Listen(Xp—kyw+1...6w+5) (3)

3.3. Pre-training with LAS

Attention-based models learn an alignment (represented via an atten-
tion vector), jointly with the acoustic model (encoder) and language
model (decoder). One hypothesis we have for NT lagging behind
LAS is that during training, the attention mechanism is limited in the
window over which it can compute attention. This problem is exacer-
bated by the fact that we emit graphemes only at word boundaries.

However, we can see from attention plots in LAS [2] that once
the attention mechanism is learned, it appears to be fairly monotonic.
Since NT and LAS are parameterized exactly the same (except for
an extra <epsilon> output target), we can train a LAS model with
this extra target (which is ignored as it does not appear in the LAS
target sequence) and used it to initialize NT. Our intuition is that since
LAS learns a good attention mechanism that is relatively monotonic,
it can be used to initialize NT and NT will not take a large hit in
accuracy compared to LAS.

3.4. Incorporating a Stronger Language Model

As we make the chunk-size smaller, looking at the errors it appears
that most of the errors are due to language modeling errors. Therefore,
we explore if we can incorporate a stronger LM into the decoding
and/or training process.

3.4.1. Wordpiece Models

To increase the memory and linguistic span of the decoder, we emit
wordpieces instead of graphemes [14]. In this approach, words a
broken up, deterministically, into sub-word units, called wordpieces.
For instance, the phrase “Jet makers feud” can be broken up into (“_J”
, “et”, “_makers”, “_fe”, “ud”) some words may be broken down into
sub-units while common words (“makers”) are modeled as a single
unit. Wordpieces are position-dependent, so we mark the beginning
of each word with a special marker “_". The wordpiece inventory is
trained to maximize the likelihood of the training text. Wordpieces
achieve a balance between the flexibility of characters and efficiency
of words.

Sequence-to-sequence models that predict wordpieces have been
successful in both machine translation [14]] and speech [111[15]. Since
these models are trained to predict wordpieces, rather than graphemes,
a much stronger decoder LM is used. We hypothesize that by predict-
ing wordpieces, we can reduce chunk size as well with NT.

3.4.2. Incorporating external LM

Language models have been successfully incorporated into sequence-
to-sequence models to guide the beam search to output a more likely
set of candidates [[16,|17]. In this work, we explore if incorporating
an external LM into the beam search can aid NT. Following a similar
approach to [16, [18]], we look at doing a log-linear interpolation
between the LAS model and an FST-based LM trained to go from
graphemes to words at each step of the beam search, also known as
shallow fusion [17]]. In this equation p(y|x) is the score from the
LAS model, which is combined with a score coming from an external
LM pr s (x) weighted by an LM weight A, and a coverage term
to promote longer transcripts [16] and weighted by 7.

y* = argmin — log p(y|x) — Alog pram (x) — ncoverage (4)
y

4. EXPERIMENTAL DETAILS

Our experiments are conducted on a ~12,500 hour training set con-
sisting of 15 million English utterances. The training utterances are
anonymized and hand-transcribed, and are representative of Google’s
voice search traffic. This data set is created by artificially corrupting
clean utterances using a room simulator, adding varying degrees of
noise and reverberation such that the overall SNR is between 0dB
and 30dB, with an average SNR of 12dB [19]. The noise sources are
from YouTube and daily life noisy environmental recordings. We re-
port results on a set of ~14,800 anonymized, hand-transcribed Voice
Search utterances extracted from Google traffic.

All experiments use 80-dimensional log-mel features, computed
with a 25-ms window and shifted every 10ms. Similar to [[13}20], at
the current frame, ¢, these features are stacked with 2 frames to the
left and downsampled to a 30ms frame rate. The encoder network
architecture consists of 5 unidirectional long short-term memory [21]
(LSTM) layers, with the size specified in the results section. Additive
attention is used for all experiments [22]. The decoder network is a
2 layer LSTM with 1,024 hidden units per layer. All networks are
trained to predict 74 graphemes unless otherwise noted.

All neural networks are trained with the cross-entropy criterion,
using asynchronous stochastic gradient descent (ASGD) optimiza-
tion [23] with Adam [24] and are trained using TensorFlow [25].

5. RESULTS

5.1. Getting NT To Work Online
5.1.1. Attention Window

Our first set of experiments analyzes the behavior of NT as we vary
the window used to compute attention. For these experiments, we
use an encoder which consists of five layers of 768 uni-directional
LSTM cells and a decoder with two layers of 768 LSTM cells. As
can be seen in Table [T} when we only allow the NT model to compute
attention within a chunk of size 10, performance is roughly 25%
worse in terms of WER compared to the LAS model which differs
only in the window over which attention is computed. Allowing the
model to compute attention over the last 20 chunks in addition to
the current chunk, however, slightly improves performance of the
NT system. Finally, if we allow a 5 frame look-aheadﬂ the results
improve but NT is still roughly 13% relative worse compared to LAS.
Based on the results in Table[T] since the proposed changes improve
performance, all future NT results in the paper use a look-back of 20
chunks and a look-ahead of 5 frames.

System Chunk Size | WER

LAS - 11.7

NT, attention within chunk 10 14.6
NT, look back 10 144

+ look ahead 10 13.2

Table 1: WER for NT, Varying Chunks Looked Over

5.1.2. Initialization from LAS, Single-head attention

Next, we analyze the behavior of NT, for both a chunk size of 5 and
10, when we pretrain with LAS. For these experiments, we compare
two different encoder/decoder sizes. Table 2 shows that when NT
is pre-trained with LAS, at a chunk size of 10 (i.e., 450 ms latency)
we can match the performance of LAS. However, a chunk size of
5 (300ms latency), which is our requirement for allowed streaming
delay, still lags behind LAS by 3% relative for the larger model.

5x768 | 5x1024

System Chunk 5 768 | 2x1024
LAS - 11.7 9.8
NT, scratch 10 13.2 11.1
NT, pretrained 10 114 99
NT, scratch 5 - 14.5
NT, pretrained 5 - 10.1

Table 2: WER for NT, Pretrained from LAS

5.1.3. Initialization from LAS, Multi-head attention

Next, we compare the behavior of LAS vs. NT when the system uses
multi-head attention [26], which has been shown to give state-of-the-
art ASR performance for LAS [27]. The MHA model uses a 5x1400
encoder with 4 attention heads, and a 2x1024 decoder. Table 4] shows
that the performance of NT does not improve from single to multi-
head attention, even though the LAS system does. One hypothesis is
that multi-head attention computes attention from multiple points in

2It is important to note that the 5 frame look-ahead with a chunk size of
10 is not the same as a 15 frame window, as the 5 frame look ahead is with
respect to the end of the chunk boundary, and all other frames used to compute
attention occur before the chunk boundary.

LAS, MHA

NT-Ch5, MHA

NT-Ch5, MHA, WPM

school closing in
parma for tomorrow

what closing in
parma for tomorrow

school closing in
parma for tomorrow

how to multiply two
numbers with decimals

how to multiply two
numbers with this most

how to multiply two
numbers with decimals

how far is it from albuquerque new
mexico to fountain hills arizona

how far is it from albuquerque new
mexico to to fountain hills arizona

how far is it from albuquerque new
mexico to fountain hills arizona

is under the arm warmer or colder
than in mouth temperature

is under the arm warmer or colder
than a mouse temperature

is under the arm warmer or colder
than in mouth temperature

Table 3: Representative errors made by different systems, indicated in red.

the encoder space that come after the current prediction, which are
ignored by streaming models such at NT.

System | Chunk Single Attention - WER | MHA - WER
5x1024,2x1024 5x1400,2x1024
LAS - 9.8 8.0
NT 10 9.9 9.8
NT 5 10.1 10.3

Table 4: WER for NT with MHA

To understand the loss in performance caused by NT compared
to LAS, we analyzed sentences where LAS was correct and NT
incorrect, denoted in the first two columns of Table[Blas “LAS-MHA”
and “NT-Ch5,MHA”. The table shows that a lot of the NT errors are
due to language modeling errors. In the next section, we look at a
few simple ways of incorporating an LM into the system.

5.2. Incorporating the LM
5.2.1. Wordpieces

Our next set of results looks at incorporating wordpieces into the LAS
and NT models, which provide a stronger LM from the decoder side.
For these experiments, we used 32,000 wordpieces. Table [5]shows
that with wordpieces, the NT and LAS models are now much closer
compared to graphemes. In addition, there is very little difference
between NT with a chunk size of 5 and 10. One hypothesis is that
since wordpieces are now longer units, each attention head focused
on by neural transducer corresponds to a much longer subword unit
(potentially a word) compared to the NT grapheme MHA system.
Therefore, the MHA WPM feeds a much stronger set of context
vectors to the decoder compared to NT grapheme model. This can
also be visually observed by looking at the attention plots for the
grapheme vs. wordpiece systems in Figure[2] The plot shows that
the attention vectors for wordpieces span a much longer left context
window compared to graphemes.

System | Chunk | WER
LAS - 8.6
NT 10 8.6
NT 5 8.7

Table 5: WER for NT with MHA + WPM

5.2.2. WPM + LM

Finally, we investigate incorporating an external LM into the
MHA+WPM LAS and NT models. In these experiments, a n-
gram FST LM, trained on 32K wordpieces, is used. This LM is
trained on 1 billion text queries, a much larger set compared to the 15
million utterances seen by the LAS/NT models. Table[6]shows the
the FST LM does not give any additional improvement for both NT

(a) NT MHA with Graphemes (b) NT MHA with WPM

30

0 20 40 60 B8O 100 120 140 o 50 100 150

frames

Fig. 2: Attention Plots for NT-MHA with (a) Graphemes, (b) WPM.
The two attention plots also correspond to different utterances.

and LAS. It has been observed in [18] that the perplexity of a WPM
RNN-LM is much lower than a WPM FST. Since the decoder of the
LAS and NT models is an RNN-LM, it is possible there is nothing
more to gain by incorporating the WPM FST. In the future, we will
repeat this with a WPM RNN-LM trained on text data.

System | Chunk | NoLM | with LM
LAS - 8.6 8.6
NT 10 8.6 8.6
NT 5 8.7 8.7

Table 6: WER for NT, Incorporating External LM

Finally, it should be noted that after including both WPM and ex-
ternal LM, the last column of Table E} namely “NT-Ch5,MHA,WPM”
illustrates that many of the previous sentences are now fixed and
match the LAS hypothesis. With the proposed LM improvements,
NT with a chunk size of 5 has comparable performance to LAS, while
meeting the allowable delay of 300ms.

6. CONCLUSIONS

In this paper, we presented various improvements to NT. Specifically,
we showed we could improve performance by increasing the attention
window and pre-training NT with LAS. With these improvements, a
single-head NT model could come very close to the performance of
LAS while a multi-head attention NT model still degraded over LAS.
By incorporating a stronger LM through wordpieces, multi-head NT
could effetively match the performance of LAS.

7. ACKNOWLEDGEMENTS

The authors would like to thank Navdeep Jaitly, Michiel Bacchiani
and Gabor Simko for helpful discussions.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9

—

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

8. REFERENCES

J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-Based Models for Speech Recognition,” in
Proc. NIPS, 2015.

W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend
and spell,” CoRR, vol. abs/1508.01211, 2015.

N. Jaitly, D. Sussillo, Q. V. Le, O. Vinyals, 1. Sutskever, and
S. Bengio, “An Online Sequence-to-sequence Model Using
Partial Conditioning,” in Proc. NIPS, 2016.

R. Prabhavalkar, T. N. Sainath, B. Li, K. Rao, and N. Jaitly,
“An Analysis of ”Attention” in Sequence-to-Sequence Models,”
in Proc. Interspeech,” in Proc. Interspeech, 2017.

R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and
N. Jaitly, “A Comparison of Sequence-to-sequence Models for
Speech Recognition,” in Proc. Interspeech, 2017.

A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Con-
nectionist Temporal Classification: Labeling Unsegmented Se-
quenece Data with Recurrent Neural Networks,” in Proc. ICML,
2006.

A. Graves, “Sequence transduction with recurrent neural net-
works,” CoRR, vol. abs/1211.3711, 2012.

M. Shannon, G. Simko, S. Chan, and C. Parada, “Improved
End-of-Query Detection for Streaming Speech Recognition,” .

E. Battenberg, J. Chen, R. Child, and A. Coates et. al., “Explor-
ing Neural Transducers for End-to-End Speech Recognition,”
in Proc. ASRU, 2017.

Mike Schuster and Kaisuke Nakajima, “Japanese and Korean
voice search,” 2012 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2012.

K. Rao, R. Prabhavalkar, and H. Sak, “Exploring Architectures,
Data and Units for Streaming End-to-End Speech Recognition
with RNN-Transducer,” in Proc. ASRU, 2017.

J. K. Chorowski and N. Jaitly, “Towards Better Decoding and
Language Model Integration in Sequence to Sequence Models,”
in Proc. Interspeech, 2017.

G. Pundak and T. N. Sainath, “Lower Frame Rate Neural
Network Acoustic Models,” in Proc. Interspeech, 2016.

Y. Wu, M. Schuster, and et. al., “Google’s neural machine trans-
lation system: Bridging the gap between human and machine
translation,” CoRR, vol. abs/1609.08144, 2016.

William Chan, Yu Zhang, Quoc Le, and Navdeep Jaitly, “Latent
Sequence Decompositions,” in /CLR, 2017.

J. Chorowski and N. Jaitly, “Towards Better Decoding and

Language Model Integration in Sequence to Sequence Models,
in Proc. Interspeech, 2017.

A. Sriram, H. Jun, S. Satheesh, and A. Coates, “Cold fu-
sion: Training seq2seq models together with language models,”
CoRR, vol. abs/1708.06426, 2017.

A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and
R. Prabhavalkar, “An analysis of incorporating an external lan-
guage model into a sequence-to-sequence model,” in submitted
to Proc. ICASSP, 2018.

C. Kim, A. Misra, K. Chin, T. Hughes, A. Narayanan, T. N.
Sainath, and M. Bacchiani, “Generated of large-scale simulated
utterances in virtual rooms to train deep-neural networks for far-
field speech recognition in google home,” in Proc. Interspeech,
2017.

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and Accu-
rate Recurrent Neural Network Acoustic Models for Speech
Recognition,” in Proc. Interspeech, 2015.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov 1997.

D. Bahdanau, K. Cho, and Y. Bengio, ‘“Neural Machine Trans-
lation by Jointly Learning to Align and Translate,” CoRR, vol.
abs/1409.0473, 2014.

J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le,
M.Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A.Y.
Ng, “Large Scale Distributed Deep Networks,” in Proc. NIPS,
2012.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in Proc. of ICLR, 2015.

M. Abadi et al., “TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Distributed Systems,” Available on-
line: http://download.tensorflow.org/paper/whitepaper2015.pdf,
2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention Is All You
Need,” CoRR, vol. abs/1706.03762, 2017.

C. Chen, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, N. Jaitly, B. Li,
and J. Chorowski, ‘“State-of-the-art speech recognition with
sequence-to-sequence models,” in submitted to Proc. ICASSP,
2018.

	1 Introduction
	2 Original Neural Transducer Algorithm
	3 Improving Performance of Basic Neural Transducer Algorithm
	3.1 Training grapheme-based models using Word Alignments
	3.2 Extending Attention Range
	3.3 Pre-training with LAS
	3.4 Incorporating a Stronger Language Model
	3.4.1 Wordpiece Models
	3.4.2 Incorporating external LM

	4 Experimental Details
	5 Results
	5.1 Getting NT To Work Online
	5.1.1 Attention Window
	5.1.2 Initialization from LAS, Single-head attention
	5.1.3 Initialization from LAS, Multi-head attention

	5.2 Incorporating the LM
	5.2.1 Wordpieces
	5.2.2 WPM + LM

	6 Conclusions
	7 Acknowledgements
	8 References

