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Abstract

Recent work on fairness in machine learning has focused on various statistical
discrimination criteria and how they trade off. Most of these criteria are observa-
tional: They depend only on the joint distribution of predictor, protected attribute,
features, and outcome. While convenient to work with, observational criteria have
severe inherent limitations that prevent them from resolving matters of fairness
conclusively.

Going beyond observational criteria, we frame the problem of discrimination
based on protected attributes in the language of causal reasoning. This view-
point shifts attention from “What is the right fairness criterion?” to “What do we
want to assume about our model of the causal data generating process?” Through
the lens of causality, we make several contributions. First, we crisply articulate
why and when observational criteria fail, thus formalizing what was before a mat-
ter of opinion. Second, our approach exposes previously ignored subtleties and
why they are fundamental to the problem. Finally, we put forward natural causal
non-discrimination criteria and develop algorithms that satisfy them.

1 Introduction

As machine learning progresses rapidly, its societal impact has come under scrutiny. An important
concern is potential discrimination based on protected attributes such as gender, race, or religion.
Since learned predictors and risk scores increasingly support or even replace human judgment, there
is an opportunity to formalize what harmful discrimination means and to design algorithms that
avoid it. However, researchers have found it difficult to agree on a single measure of discrimination.
As of now, there are several competing approaches, representing different opinions and striking
different trade-offs. Most of the proposed fairness criteria are observational: They depend only
on the joint distribution of predictor R, protected attribute A, features X , and outcome Y. For
example, the natural requirement that R and A must be statistically independent is referred to as
demographic parity. Some approaches transform the features X to obfuscate the information they
contain about A [1]. The recently proposed equalized odds constraint [2] demands that the predictor
R and the attribute A be independent conditional on the actual outcome Y. All three are examples
of observational approaches.

A growing line of work points at the insufficiency of existing definitions. Hardt, Price and Srebro [2]
construct two scenarios with intuitively different social interpretations that admit identical joint dis-

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

http://arxiv.org/abs/1706.02744v2


tributions over (R,A, Y,X). Thus, no observational criterion can distinguish them. While there
are non-observational criteria, notably the early work on individual fairness [3], these have not yet
gained traction. So, it might appear that the community has reached an impasse.

1.1 Our contributions

We assay the problem of discrimination in machine learning in the language of causal reasoning.
This viewpoint supports several contributions:

• Revisiting the two scenarios proposed in [2], we articulate a natural causal criterion that
formally distinguishes them. In particular, we show that observational criteria are unable
to determine if a protected attribute has direct causal influence on the predictor that is not
mitigated by resolving variables.

• We point out subtleties in fair decision making that arise naturally from a causal perspec-
tive, but have gone widely overlooked in the past. Specifically, we formally argue for the
need to distinguish between the underlying concept behind a protected attribute, such as
race or gender, and its proxies available to the algorithm, such as visual features or name.

• We introduce and discuss two natural causal criteria centered around the notion of inter-
ventions (relative to a causal graph) to formally describe specific forms of discrimination.

• Finally, we initiate the study of algorithms that avoid these forms of discrimination. Under
certain linearity assumptions about the underlying causal model generating the data, an
algorithm to remove a specific kind of discrimination leads to a simple and natural heuristic.

At a higher level, our work proposes a shift from trying to find a single statistical fairness criterion
to arguing about properties of the data and which assumptions about the generating process are
justified. Causality provides a flexible framework for organizing such assumptions.

1.2 Related work

Demographic parity and its variants have been discussed in numerous papers, e.g., [1, 4–6]. While
demographic parity is easy to work with, the authors of [3] already highlighted its insufficiency as
a fairness constraint. In an attempt to remedy the shortcomings of demographic parity [2] proposed
two notions, equal opportunity and equal odds, that were also considered in [7]. A review of various
fairness criteria can be found in [8], where they are discussed in the context of criminal justice.
In [9, 10] it has been shown that imperfect predictors cannot simultaneously satisfy equal odds and
calibration unless the groups have identical base rates, i.e. rates of positive outcomes.

A starting point for our investigation is the unidentifiability result of [2]. It shows that observed-
vational criteria are too weak to distinguish two intuitively very different scenarios. However, the
work does not provide a formal mechanism to articulate why and how these scenarios should be
considered different. Inspired by Pearl’s causal interpretation of Simpson’s paradox [11, Section 6],
we propose causality as a way of coping with this unidentifiability result.

An interesting non-observational fairness definition is the notion of individual fairness [3] that as-
sumes the existence of a similarity measure on individuals, and requires that any two similar individ-
uals should receive a similar distribution over outcomes. More recent work lends additional support
to such a definition [12]. From the perspective of causality, the idea of a similarity measure is akin
to the method of matching in counterfactual reasoning [13, 14]. That is, evaluating approximate
counterfactuals by comparing individuals with similar values of covariates excluding the protected
attribute.

Recently, [15] put forward one possible causal definition, namely the notion of counterfactual fair-
ness. It requires modeling counterfactuals on a per individual level, which is a delicate task. Even
determining the effect of race at the group level is difficult; see the discussion in [16]. The goal of
our paper is to assay a more general causal framework for reasoning about discrimination in machine
learning without committing to a single fairness criterion, and without committing to evaluating in-
dividual causal effects. In particular, we draw an explicit distinction between the protected attribute
(for which interventions are often impossible in practice) and its proxies (which sometimes can be
intervened upon).
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Moreover, causality has already been employed for the discovery of discrimination in existing data
sets by [14, 17]. Causal graphical conditions to identify meaningful partitions have been proposed
for the discovery and prevention of certain types of discrimination by preprocessing the data [18].
These conditions rely on the evaluation of path specific effects, which can be traced back all the
way to [11, Section 4.5.3]. The authors of [19] recently picked up this notion and generalized
Pearl’s approach by a constraint based prevention of discriminatory path specific effects arising
from counterfactual reasoning. Our research was done independently of these works.

1.3 Causal graphs and notation

Causal graphs are a convenient way of organizing assumptions about the data generating process.
We will generally consider causal graphs involving a protected attributeA, a set of proxy variablesP,
features X, a predictor R and sometimes an observed outcome Y. For background on causal graphs
see [11]. In the present paper a causal graph is a directed, acyclic graph whose nodes represent
random variables. A directed path is a sequence of distinct nodes V1, . . . , Vk, for k ≥ 2, such
that Vi → Vi+1 for all i ∈ {1, . . . , k − 1}. We say a directed path is blocked by a set of nodes Z ,
where V1, Vk /∈ Z , if Vi ∈ Z for some i ∈ {2, . . . , k − 1}.1

A structural equation model is a set of equations Vi = fi(pa(Vi), Ni), for i ∈ {1, . . . , n},
where pa(Vi) are the parents of Vi, i.e. its direct causes, and the Ni are independent noise vari-
ables. We interpret these equations as assignments. Because we assume acyclicity, starting from
the roots of the graph, we can recursively compute the other variables, given the noise variables.
This leads us to view the structural equation model and its corresponding graph as a data gener-
ating model. The predictor R maps inputs, e.g., the features X , to a predicted output. Hence we
model it as a childless node, whose parents are its input variables. Finally, note that given the noise
variables, a structural equation model entails a unique joint distribution; however, the same joint
distribution can usually be entailed by multiple structural equation models corresponding to distinct
causal structures.

2 Unresolved discrimination and limitations of observational criteria

A

X R

Figure 1: The admission de-
cision R does not only di-
rectly depend on gender A, but
also on department choice X ,
which in turn is also affected
by gender A.

To bear out the limitations of observational criteria, we turn to
Pearl’s commentary on claimed gender discrimination in Berke-
ley college admissions [11, Section 4.5.3]. Bickel [20] had shown
earlier that a lower college-wide admission rate for women than
for men was explained by the fact that women applied in more
competitive departments. When adjusted for department choice,
women experienced a slightly higher acceptance rate compared
with men. From the causal point of view, what matters is the di-
rect effect of the protected attribute (here, gender A) on the deci-
sion (here, college admission R) that cannot be ascribed to a re-
solving variable such as department choice X , see Figure 1. We
shall use the term resolving variable for any variable in the causal
graph that is influenced by A in a manner that we accept as non-
discriminatory. With this convention, the criterion can be stated as
follows.

Definition 1 (Unresolved discrimination). A variable V in a causal graph exhibits unresolved dis-
crimination if there exists a directed path from A to V that is not blocked by a resolving variable
and V itself is non-resolving.

Pearl’s commentary is consistent with what we call the skeptic viewpoint. All paths from the pro-
tected attribute A to R are problematic, unless they are justified by a resolving variable. The pres-
ence of unresolved discrimination in the predictor R is worrisome and demands further scrutiny.
In practice, R is not a priori part of a given graph. Instead it is our objective to construct it as a
function of the features X , some of which might be resolving. Hence we should first look for unre-
solved discrimination in the features. A canonical way to avoid unresolved discrimination in R is to
only input the set of features that do not exhibit unresolved discrimination. However, the remaining

1As it is not needed in our work, we do not discuss the graph-theoretic notion of d-separation.

3



features might be affected by non-resolving and resolving variables. In Section 4 we investigate
whether one can exclusively remove unresolved discrimination from such features. A related notion
of “explanatory features” in a non-causal setting was introduced in [21].

A X1 Y

X2

R∗

A Y

X1

X2

R∗

Figure 2: Two graphs that may generate the same
joint distribution for the Bayes optimal uncon-
strained predictor R∗. If X1 is a resolving vari-
able, R∗ exhibits unresolved discrimination in the
right graph (along the red paths), but not in the left
one.

The definition of unresolved discrimination in
a predictor has some interesting special cases
worth highlighting. If we take the set of resolv-
ing variables to be empty, we intuitively get a
causal analog of demographic parity. No di-
rected paths from A to R are allowed, but A
and R can still be statistically dependent. Simi-
larly, if we choose the set of resolving variables
to be the singleton set {Y } containing the true
outcome, we obtain a causal analog of equal-
ized odds where strict independence is not nec-
essary. The causal intuition implied by “the
protected attribute should not affect the predic-
tion”, and “the protected attribute can only af-
fect the prediction when the information comes
through the true label”, is neglected by (con-
ditional) statistical independences A⊥⊥R, and A⊥⊥R |Y , but well captured by only considering
dependences mitigated along directed causal paths.

We will next show that observational criteria are fundamentally unable to determine whether a pre-
dictor exhibits unresolved discrimination or not. This is true even if the predictor is Bayes optimal.
In passing, we also note that fairness criteria such as equalized odds may or may not exhibit unre-
solved discrimination, but this is again something an observational criterion cannot determine.

Theorem 1. Given a joint distribution over the protected attribute A, the true label Y , and some
features X1, . . . , Xn, in which we have already specified the resolving variables, no observational
criterion can generally determine whether the Bayes optimal unconstrained predictor or the Bayes
optimal equal odds predictor exhibit unresolved discrimination.

All proofs for the statements in this paper are in the supplementary material.

The two graphs in Figure 2 are taken from [2], which we here reinterpret in the causal context to
prove Theorem 1. We point out that there is an established set of conditions under which unresolved
discrimination can, in fact, be determined from observational data. Note that the two graphs are
not Markov equivalent. Therefore, to obtain the same joint distribution we must violate a condition
called faithfulness.2 We later argue that violation of faithfulness is by no means pathological, but
emerges naturally when designing predictors. In any case, interpreting conditional dependences can
be difficult in practice [22].

3 Proxy discrimination and interventions

We now turn to an important aspect of our framework. Determining causal effects in general requires
modeling interventions. Interventions on deeply rooted individual properties such as gender or
race are notoriously difficult to conceptualize—especially at an individual level, and impossible to
perform in a randomized trial. VanderWeele et al. [16] discuss the problem comprehensively in an
epidemiological setting. From a machine learning perspective, it thus makes sense to separate the
protected attribute A from its potential proxies, such as name, visual features, languages spoken at
home, etc. Intervention based on proxy variables poses a more manageable problem. By deciding on
a suitable proxy we can find an adequate mounting point for determining and removing its influence
on the prediction. Moreover, in practice we are often limited to imperfect measurements of A in any
case, making the distinction between root concept and proxy prudent.

As was the case with resolving variables, a proxy is a priori nothing more than a descendant of A in
the causal graph that we choose to label as a proxy. Nevertheless in reality we envision the proxy

2If we do assume the Markov condition and faithfulness, then conditional independences determine the
graph up to its so called Markov equivalence class.
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to be a clearly defined observable quantity that is significantly correlated with A, yet in our view
should not affect the prediction.

Definition 2 (Potential proxy discrimination). A variable V in a causal graph exhibits potential
proxy discrimination, if there exists a directed path from A to V that is blocked by a proxy variable
and V itself is not a proxy.

Potential proxy discrimination articulates a causal criterion that is in a sense dual to unresolved
discrimination. From the benevolent viewpoint, we allow any path from A to R unless it passes
through a proxy variable, which we consider worrisome. This viewpoint acknowledges the fact that
the influence of A on the graph may be complex and it can be too restraining to rule out all but a few
designated features. In practice, as with unresolved discrimination, we can naively build an uncon-
strained predictor based only on those features that do not exhibit potential proxy discrimination.
Then we must not provide P as input to R; unawareness, i.e. excluding P from the inputs of R,
suffices. However, by granting R access to P , we can carefully tune the function R(P,X) to cancel
the implicit influence of P on features X that exhibit potential proxy discrimination by the explicit
dependence on P . Due to this possible cancellation of paths, we called the path based criterion po-
tential proxy discrimination. When building predictors that exhibit no overall proxy discrimination,
we precisely aim for such a cancellation.

Fortunately, this idea can be conveniently expressed by an intervention on P , which is denoted
by do(P = p) [11]. Visually, intervening on P amounts to removing all incoming arrows of P in
the graph; algebraically, it consists of replacing the structural equation of P by P = p, i.e. we put
point mass on the value p.

Definition 3 (Proxy discrimination). A predictor R exhibits no proxy discrimination based on a
proxy P if for all p, p′

P(R | do(P = p)) = P(R | do(P = p′)) . (1)

The interventional characterization of proxy discrimination leads to a simple procedure to remove
it in causal graphs that we will turn to in the next section. It also leads to several natural variants
of the definition that we discuss in Section 4.3. We remark that Equation (1) is an equality of
probabilities in the “do-calculus” that cannot in general be inferred by an observational method,
because it depends on an underlying causal graph, see the discussion in [11]. However, in some
cases, we do not need to resort to interventions to avoid proxy discrimination.

Proposition 1. If there is no directed path from a proxy to a feature, unawareness avoids proxy
discrimination.

4 Procedures for avoiding discrimination

Having motivated the two types of discrimination that we distinguish, we now turn to building
predictors that avoid them in a given causal model. First, we remark that a more comprehensive
treatment requires individual judgement of not only variables, but the legitimacy of every existing
path that ends in R, i.e. evaluation of path-specific effects [18, 19], which is tedious in practice.
The natural concept of proxies and resolving variables covers most relevant scenarios and allows for
natural removal procedures.

4.1 Avoiding proxy discrimination

While presenting the general procedure, we illustrate each step in the example shown in Figure 3.
A protected attribute A affects a proxy P as well as a feature X . Both P and X have additional
unobserved causes NP and NX , where NP , NX , A are pairwise independent. Finally, the proxy also
has an effect on the features X and the predictor R is a function of P and X . Given labeled training
data, our task is to find a good predictor that exhibits no proxy discrimination within a hypothesis
class of functions Rθ(P,X) parameterized by a real valued vector θ.

We now work out a formal procedure to solve this task under specific assumptions and simultane-
ously illustrate it in a fully linear example, i.e. the structural equations are given by

P = αPA+NP , X = αXA+ βP +NX , Rθ = λPP + λXX .

Note that we choose linear functions parameterized by θ = (λP , λX) as the hypothesis class
for Rθ(P,X).
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NP A NX

P X

RG̃

NP A NX

P X

RG

Figure 3: A template graph G̃ for proxy dis-
crimination (left) with its intervened version G
(right). While from the benevolent viewpoint we
do not generically prohibit any influence from A
on R, we want to guarantee that the proxy P has
no overall influence on the prediction, by adjust-
ing P → R to cancel the influence along P →
X → R in the intervened graph.

NE A NX

E X

RG̃

NE A NX

E X

RG

Figure 4: A template graph G̃ for unresolved
discrimination (left) with its intervened ver-
sion G (right). While from the skeptical
viewpoint we generically do not want A to
influence R, we first intervene on E inter-
rupting all paths through E and only cancel
the remaining influence on A to R.

We will refer to the terminal ancestors of a node V in a causal graph D, denoted by taD(V ), which
are those ancestors of V that are also root nodes of D. Moreover, in the procedure we clarify the
notion of expressibility, which is an assumption about the relation of the given structural equations
and the hypothesis class we choose for Rθ .

Proposition 2. If there is a choice of parameters θ0 such that Rθ0(P,X) is constant with respect
to its first argument and the structural equations are expressible, the following procedure returns a
predictor from the given hypothesis class that exhibits no proxy discrimination and is non-trivial in
the sense that it can make use of features that exhibit potential proxy discrimination.

1. Intervene on P by removing all incoming arrows and replacing the structural equation for P
by P = p. For the example in Figure 3,

P = p, X = αXA+ βP +NX , Rθ = λPP + λXX . (2)

2. Iteratively substitute variables in the equation for Rθ from their structural equations until only
root nodes of the intervened graph are left, i.e. write Rθ(P,X) as Rθ(P, g(ta

G(X))) for some
function g. In the example, ta(X) = {A,P,NX} and

Rθ = (λP + λXβ)p+ λX(αXA+NX) . (3)

3. We now require the distribution of Rθ in (3) to be independent of p, i.e. for all p, p′

P((λP + λXβ)p+ λX(αXA+NX)) = P((λP + λXβ)p′ + λX(αXA+NX)) . (4)

We seek to write the predictor as a function of P and all the other roots of G separately. If our

hypothesis class is such that there exists θ̃ such that Rθ(P, g(ta(X))) = Rθ̃(P, g̃(ta(X)\{P})),
we call the structural equation model and hypothesis class specified in (2) expressible. In our

example, this is possible with θ̃ = (λP + λXβ, λX) and g̃ = αXA + NX . Equation (4) then

yields the non-discrimination constraint θ̃ = θ0. Here, a possible θ0 is θ0 = (0, λX), which
simply yields λP = −λXβ.

4. Given labeled training data, we can optimize the predictorRθ within the hypothesis class as given
in (2), subject to the non-discrimination constraint. In the example

Rθ = −λXβP + λXX = λX(X − βP ) ,

with the free parameter λX ∈ R.

In general, the non-discrimination constraint (4) is by construction just P(R | do(P = p)) =
P(R | do(P = p′)), coinciding with Definition 3. Thus Proposition 2 holds by construction of
the procedure. The choice of θ0 strongly influences the non-discrimination constraint. However, as
the example shows, it allows Rθ to exploit features that exhibit potential proxy discrimination.
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DAG

A P R X

G̃ DAG

A P R X

G

Figure 5: Left: A generic graph G̃ to describe proxy discrimination. Right: The graph corresponding

to an intervention on P . The circle labeled “DAG” represents any sub-DAG of G̃ and G containing
an arbitrary number of variables that is compatible with the shown arrows. Dashed arrows can, but
do not have to be present in a given scenario.

4.2 Avoiding unresolved discrimination

We proceed analogously to the previous subsection using the example graph in Figure 4. Instead of
the proxy, we consider a resolving variable E. The causal dependences are equivalent to the ones in
Figure 3 and we again assume linear structural equations

E = αEA+NE , X = αXA+ βE +NX , Rθ = λEE + λXX .

Let us now try to adjust the previous procedure to the context of avoiding unresolved discrimination.

1. Intervene on E by fixing it to a random variable η with P(η) = P(E), the marginal distribution

of E in G̃, see Figure 4. In the example we find

E = η, X = αXA+ βE +NX , Rθ = λEE + λXX . (5)

2. By iterative substitution write Rθ(E,X) as Rθ(E, g(taG(X))) for some function g, i.e. in the
example

Rθ = (λE + λXβ)η + λXαXA+ λXNX . (6)

3. We now demand the distribution of Rθ in (6) be invariant under interventions on A, which coin-

cides with conditioning on A whenever A is a root of G̃. Hence, in the example, for all a, a′

P((λE + λXβ)η + λXαXa+ λXNX)) = P((λE + λXβ)η + λXαXa′ + λXNX)) . (7)

Here, the subtle asymmetry between proxy discrimination and unresolved discrimination becomes
apparent. Because Rθ is not explicitly a function of A, we cannot cancel implicit influences of A
through X . There might still be a θ0 such that Rθ0 indeed fulfils (7), but there is no princi-
pled way for us to construct it. In the example, (7) suggests the obvious non-discrimination con-
straint λX = 0. We can then proceed as before and, given labeled training data, optimizeRθ = λEE
by varying λE . However, by setting λX = 0, we also cancel the path A → E → X → R, even
though it is blocked by a resolving variable. In general, if Rθ does not have access to A, we can not
adjust for unresolved discrimination without also removing resolved influences from A on Rθ.

If, however, Rθ is a function of A, i.e. we add the term λAA to Rθ in (5), the non-discrimination
constraint is λA = −λXαX and we can proceed analogously to the procedure for proxies.

4.3 Relating proxy discriminations to other notions of fairness

Motivated by the algorithm to avoid proxy discrimination, we discuss some natural variants of the
notion in this section that connect our interventional approach to individual fairness and other pro-
posed criteria. We consider a generic graph structure as shown on the left in Figure 5. The proxy P
and the features X could be multidimensional. The empty circle in the middle represents any num-
ber of variables forming a DAG that respects the drawn arrows. Figure 3 is an example thereof. All
dashed arrows are optional depending on the specifics of the situation.

Definition 4. A predictor R exhibits no individual proxy discrimination, if for all x and all p, p′

P(R | do(P = p), X = x) = P(R | do(P = p′), X = x) .

A predictor R exhibits no proxy discrimination in expectation, if for all p, p′

E[R | do(P = p)] = E[R | do(P = p′)] .

7



Individual proxy discrimination aims at comparing examples with the same features X , for different
values of P . Note that this can be individuals with different values for the unobserved non-feature
variables. A true individual-level comparison of the form “What would have happened to me, if I
had always belonged to another group” is captured by counterfactuals and discussed in [15, 19].

For an analysis of proxy discrimination, we need the structural equations for P,X,R in Figure 5

P = f̂P (pa(P )) ,

X = f̂X(pa(X)) = fX(P, taG(X) \ {P}) ,

R = f̂R(P,X) = fR(P, ta
G(R) \ {P}) .

For convenience, we will use the notation taGP (X) := taG(X) \ {P}. We can find fX , fR
from f̂X , f̂R by first rewriting the functions in terms of root nodes of the intervened graph, shown
on the right side of Figure 5, and then assigning the overall dependence on P to the first argument.

We now compare proxy discrimination to other existing notions.

Theorem 2. Let the influence of P on X be additive and linear, i.e.

X = fX(P, taGP (X)) = gX(taGP (X)) + µXP

for some function gX and µX ∈ R. Then any predictor of the form

R = r(X − E[X | do(P )])

for some function r exhibits no proxy discrimination.

Note that in general E[X | do(P )] 6= E[X |P ]. Since in practice we only have observational data

from G̃, one cannot simply build a predictor based on the “regressed out features” X̃ := X −
E[X |P ] to avoid proxy discrimination. In the scenario of Figure 3, the direct effect of P on X
along the arrow P → X in the left graph cannot be estimated by E[X |P ], because of the common
confounder A. The desired interventional expectation E[X | do(P )] coincides with E[X |P ] only
if one of the arrows A → P or A → X is not present. Estimating direct causal effects is a hard
problem, well studied by the causality community and often involves instrumental variables [23].

This cautions against the natural idea of using X̃ as a “fair representation” of X , as it implicitly
neglects that we often want to remove the effect of proxies and not the protected attribute. Never-
theless, the notion agrees with our interventional proxy discrimination in some cases.

Corollary 1. Under the assumptions of Theorem 2, if all directed paths from any ancestor of P
to X in the graph G are blocked by P , then any predictor based on the adjusted features X̃ :=
X − E[X |P ] exhibits no proxy discrimination and can be learned from the observational distribu-
tion P(P,X, Y ) when target labels Y are available.

Our definition of proxy discrimination in expectation (4) is motivated by a weaker notion proposed
in [24]. It asks for the expected outcome to be the same across the different populations E[R |P =
p] = E[R |P = p′]. Again, when talking about proxies, we must be careful to distinguish conditional
and interventional expectations, which is captured by the following proposition and its corollary.

Proposition 3. Any predictor of the form R = λ(X − E[X | do(P )]) + c for λ, c ∈ R exhibits no
proxy discrimination in expectation.

From this and the proof of Corollary 1 we conclude the following Corollary.

Corollary 2. If all directed paths from any ancestor of P to X are blocked by P , any predictor of
the form R = r(X −E[X |P ]) for linear r exhibits no proxy discrimination in expectation and can
be learned from the observational distribution P(P,X, Y ) when target labels Y are available.

5 Conclusion

The goal of our work is to assay fairness in machine learning within the context of causal reasoning.
This perspective naturally addresses shortcomings of earlier statistical approaches. Causal fairness
criteria are suitable whenever we are willing to make assumptions about the (causal) generating
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process governing the data. Whilst not always feasible, the causal approach naturally creates an
incentive to scrutinize the data more closely and work out plausible assumptions to be discussed
alongside any conclusions regarding fairness.

Key concepts of our conceptual framework are resolving variables and proxy variables that play
a dual role in defining causal discrimination criteria. We develop a practical procedure to remove
proxy discrimination given the structural equation model and analyze a similar approach for un-
resolved discrimination. In the case of proxy discrimination for linear structural equations, the
procedure has an intuitive form that is similar to heuristics already used in the regression literature.
Our framework is limited by the assumption that we can construct a valid causal graph. The removal
of proxy discrimination moreover depends on the functional form of the causal dependencies. We
have focused on the conceptual and theoretical analysis, and experimental validations are beyond
the scope of the present work.

The causal perspective suggests a number of interesting new directions at the technical, empirical,
and conceptual level. We hope that the framework and language put forward in our work will be a
stepping stone for future investigations.
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Supplementary material

Proof of Theorem 1

Theorem. Given a joint distribution over the protected attribute A, the true label Y , and some
features X1, . . . , Xn, in which we have already specified the resolving variables, no observational
criterion can generally determine whether the Bayes optimal unconstrained predictor or the Bayes
optimal equal odds predictor exhibit unresolved discrimination.

Proof. Let us consider the two graphs in Figure 2. First, we show that these graphs can generate the
same joint distribution P(A, Y,X1, X2, R

∗) for the Bayes optimal unconstrained predictor R∗.

We choose the following structural equations for the graph on the left3

• A = Ber(1/2)

• X1 is a mixture of Gaussians N (A + 1, 1) with weight σ(2A) and N (A − 1, 1) with
weight σ(−2A)

• Y = Ber(σ(2X1))

• X2 = X1 −A

• R∗ = X1

• (R̃ = X2)

where the Bernoulli distribution Ber(p) without a superscript has support {−1, 1}.

For the graph on the right, we define the structural equations

• A = Ber(1/2)

• Y = Ber(σ(2A))

• X2 = N (Y, 1)

• X1 = A+X2

• R∗ = X1

• (R̃ = X2)

First we show that in both scenarios R∗ is actually an optimal score. In the first scenario Y ⊥⊥A |X1

and Y ⊥⊥X2 |X1 thus the optimal predictor is only based on X1. We find

Pr(Y = y |X1 = x1) = σ(2x1y) , (9)

which is monotonic in x1. Hence optimal classification is obtained by thresholding a score based
only on R∗ = X1.

3σ(x) = 1/(1 + e−x)
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In the second scenario, because Y ⊥⊥X1 | {A,X2} the optimal predictor only depends on A,X2.
We compute for the densities

P(Y |X2, A) =
P(Y,X2, A)

P(X2, A)
(10a)

=
P(X2, A |Y )P(Y )

P(X2, A)
(10b)

=
P(X2 |Y )P(A | Y )P(Y )

P(X2, A)
(10c)

=
P(X2 |Y )P(Y |A)P(A)

P(Y ) P(Y )

P(X2, A)
(10d)

=
P(X2 |Y )P(Y |A)P(A)

P(X2, A)
, (10e)

where for the third equal sign we use A⊥⊥X2 |Y . In the numerator we have

P(X2 |Y = y)(x2)P(Y |A = a)(y)P(A)(a) = fN (y,1)(x2)fBer(σ(2a))(y)fBer(1/2)(a) , (11)

where fD is the probability density function of the distributionD. The denominator can be computed
by summing up (11) for y ∈ {−1, 1}. Overall this results in

Pr(Y = y |X2 = x2, A = a) = σ(2y(a+ x2)) .

Since by construction X1 = A +X2, the optimal predictor is again R∗ = X1. If the joint distribu-
tion P(A, Y,R∗) is identical in the two scenarios, so are the joint distributions P(A, Y,X1, X2, R

∗),
because of X1 = R∗ and X2 = X1 −A.

To show that the joint distributions P(A, Y,R∗) = P(Y |A,R∗)P(R∗ |A)P(A) are the same, we
compare the conditional distributions in the factorization.

Let us start with P(Y |A,R∗). Since R∗ = X1 and in the first graph Y ⊥⊥A |X1, we already found
the distribution in (9). In the right graph, P(Y |R∗, A) = P(Y |X2 +A,A) = P(Y |X2, A) which
we have found in (10) and coincides with the conditional in the left graph because of X1 = A+X2.

Now consider R∗ |A. In the left graph we have P(R∗ |A) = P(X1 |A) and the distribu-
tion P(X1 |A) is just the mixture of Gaussians defined in the structural equation model. In the
right graph R∗ = A+X2 = Y +N (A, 1) and thus P(R∗ |A) = N (A± 1) for Y = ±1. Because
of the definition of Y in the structural equations of the right graph, following a Bernoulli distribution
with probability σ(2A), this is the same mixture of Gaussians as the one we found for the left graph.

Clearly the distribution of A is identical in both cases.

Consequently the joint distributions agree.

When X1 is an resolving variable, the optimal predictor in the left graph does not exhibit unresolved
discrimination, whereas the graph on the right does.

The proof for the equal odds predictor R̃ is immediate once we show R̃ = X2. This can be seen
from the graph on the right, because here X2 ⊥⊥A |Y and both using A or X1 would violate the

equal odds condition. Because the joint distribution in the left graph is the same, R̃ = X2 is also the
optimal equal odds score.

Proof of Proposition 1

Proposition. If there is no directed path from a proxy to a feature, unawareness avoids proxy dis-
crimination.

Proof. An unaware predictor R is given by R = r(X) for some function r and features X . If
there is no directed path from proxies P to X , i.e. P /∈ taG(X), then R = r(X) = r(taG(X)) =
r(taGP (X)). Thus P(R | do(P = p)) = P(R) for all p, which avoids proxy discrimination.
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Proof of Theorem 2

Theorem. Let the influence of P on X be additive and linear, i.e.

X = fX(P, taGP (X)) = gX(taGP (X)) + µXP

for some function gX and µX ∈ R. Then any predictor of the form

R = r(X − E[X | do(P )])

for some function r exhibits no proxy discrimination.

Proof. It suffices to show that the argument of r is constant w.r.t. to P , because then R and thus P(R)
are invariant under changes of P . We compute

E[X | do(P )] = E[gX(taGP (X)) + µXP | do(P )]

= E[gX(taGP (X)) | do(P )]
︸ ︷︷ ︸

=0

+ E[µXP | do(P )]

= µXP .

Hence,

X − E[X | do(P )] = gX(taGP (X))

is clearly constant w.r.t. to P .

Proof of Corollary 1

Corollary. Under the assumptions of Theorem 2, if all directed paths from any ancestor of P to X in

the graph G are blocked by P , then any predictor based on the adjusted features X̃ := X−E[X |P ]
exhibits no proxy discrimination and can be learned from the observational distribution P(P,X, Y )
when target labels Y are available.

Proof. Let Z denote the set of ancestors of P . Under the given assumptions Z ∩ taG(X) = ∅,
because in G all arrows into P are removed, which breaks all directed paths from any variable

in Z to X by assumption. Hence the distribution of X under an intervention on P in G̃, where the
influence of potential ancestors of P on X that does not go through P would not be affected, is the
same as simply conditioning on P . Therefore E[X | do(P )] = E[X |P ], which can be computed

from the joint observational distribution, since we observe X and P as generated by G̃.

Proof of Proposition 3

Proposition. Any predictor of the form R = λ(X − E[X | do(P )]) + c for linear λ, c ∈ R exhibits
no proxy discrimination in expectation.

Proof. We directly test the definition of proxy discrimination in expectation using the linearity of
the expectation

E[R | do(P = p)] = E[λ(X − E[X | do(P )]) + c | do(P = p)]

= λ(E[X | do(P = p)]− E[X | do(P = p)]) + c

= c .

This holds for any p, hence proxy discrimination in expectation is achieved.

Additional statements

Here we provide an additional statement that is a first step towards the “opposite direction” of The-
orem 2, i.e. whether we can infer information about the structural equations, when we are given a
predictor of a special form that does not exhibit proxy discrimination.
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Theorem. Let the influence of P on X be additive and linear and let the influence of P on the
argument of R be additive linear, i.e.

fX(taG(X)) = gX(taGP (X)) + µXP

fR(P, ta
G
P (X)) = h(gR(ta

G
P (X)) + µRP )

for some functions gX , gR, real numbers µX , µR and a smooth, strictly monotonic function h. Then
any predictor that avoids proxy discrimination is of the form

R = r(X − E[X | do(P )])

for some function r.

Proof. From the linearity assumptions we conclude that

f̂R(P,X) = h(gX(taGP (X)) + µXP + µ̂RP ) ,

with µ̂R = µR − µP and thus gX = gR. That means that both the dependence of X on P along
the path P → · · · → X as well as the direct dependence of R on P along P → R are additive and
linear.

To avoid proxy discrimination, we need

P(R | do(P = p)) = P(h(gR(ta
G
P (X)) + µRp)) (12a)

!
= P(h(gR(ta

G
P (X)) + µRp

′)) = P(R | do(P = p′)) . (12b)

Because h is smooth an strictly monotonic, we can conclude that already the distributions of the
argument of h must be equal, otherwise the transformation of random variables could not result in
equal distributions, i.e.

P(gR(ta
G
P (X)) + µRp)

!
= P(gR(ta

G
P (X)) + µRp

′) .

Since, up to an additive constant, we are comparing the distributions of the same random vari-

able gR(ta
G
P (X)) and not merely identically distributed ones, the following condition is not only

sufficient, but also necessary for (12)

gR(ta
G
P (X)) + µRp

!
= gR(ta

G
P (X)) + µRp

′ .

This holds true for all p, p′ only if µR = 0, which is equivalent to µ̂R = −µP .

Because as in the proof of 2
E[X | do(P )] = µXP,

under the given assumptions any predictor that avoids proxy discrimination is simply

R = X + µRP = X − E[X | do(P )] .
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