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Abstract

Deep Learning has revolutionized vision via convolutional neural networks (CNNs)
and natural language processing via recurrent neural networks (RNNs). However,
success stories of Deep Learning with standard feed-forward neural networks
(FNNs) are rare. FNNs that perform well are typically shallow and, therefore cannot
exploit many levels of abstract representations. We introduce self-normalizing
neural networks (SNNs) to enable high-level abstract representations. While
batch normalization requires explicit normalization, neuron activations of SNNs
automatically converge towards zero mean and unit variance. The activation
function of SNNs are “scaled exponential linear units” (SELUs), which induce
self-normalizing properties. Using the Banach fixed-point theorem, we prove that
activations close to zero mean and unit variance that are propagated through many
network layers will converge towards zero mean and unit variance — even under
the presence of noise and perturbations. This convergence property of SNNs allows
to (1) train deep networks with many layers, (2) employ strong regularization
schemes, and (3) to make learning highly robust. Furthermore, for activations
not close to unit variance, we prove an upper and lower bound on the variance,
thus, vanishing and exploding gradients are impossible. We compared SNNs on
(a) 121 tasks from the UCI machine learning repository, on (b) drug discovery
benchmarks, and on (c) astronomy tasks with standard FNNs, and other machine
learning methods such as random forests and support vector machines. For FNNs
we considered (i) ReLU networks without normalization, (ii) batch normalization,
(iii) layer normalization, (iv) weight normalization, (v) highway networks, and (vi)
residual networks. SNNs significantly outperformed all competing FNN methods
at 121 UCI tasks, outperformed all competing methods at the Tox21 dataset, and
set a new record at an astronomy data set. The winning SNN architectures are often
very deep. Implementations are available at: github.com/bioinf-jku/SNNs.
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Introduction

Deep Learning has set new records at different benchmarks and led to various commercial applications
[25, 33]. Recurrent neural networks (RNNs) [18] achieved new levels at speech and natural language
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processing, for example at the TIMIT benchmark [12] or at language translation [36], and are already
employed in mobile devices [31]. RNNs have won handwriting recognition challenges (Chinese and
Arabic handwriting) [33, 13, 6] and Kaggle challenges, such as the “Grasp-and Lift EEG” competition.
Their counterparts, convolutional neural networks (CNNs) [24] excel at vision and video tasks. CNNs
are on par with human dermatologists at the visual detection of skin cancer [9]. The visual processing
for self-driving cars is based on CNNs [19], as is the visual input to AlphaGo which has beaten one
of the best human GO players [34]. At vision challenges, CNNs are constantly winning, for example
at the large ImageNet competition [23, 16], but also almost all Kaggle vision challenges, such as the
“Diabetic Retinopathy” and the “Right Whale” challenges [8, 14].

However, looking at Kaggle challenges that are not related to vision or sequential tasks, gradient
boosting, random forests, or support vector machines (SVMs) are winning most of the competitions.
Deep Learning is notably absent, and for the few cases where FNNs won, they are shallow. For
example, the HIGGS challenge, the Merck Molecular Activity challenge, and the Tox21 Data
challenge were all won by FNNs with at most four hidden layers. Surprisingly, it is hard to find
success stories with FNNs that have many hidden layers, though they would allow for different levels
of abstract representations of the input [3].

To robustly train very deep CNNs, batch normalization evolved into a standard to normalize neuron
activations to zero mean and unit variance [20]. Layer normalization [2] also ensures zero mean
and unit variance, while weight normalization [32] ensures zero mean and unit variance if in the
previous layer the activations have zero mean and unit variance. However, training with normalization
techniques is perturbed by stochastic gradient descent (SGD), stochastic regularization (like dropout),
and the estimation of the normalization parameters. Both RNNs and CNNs can stabilize learning
via weight sharing, therefore they are less prone to these perturbations. In contrast, FNNs trained
with normalization techniques suffer from these perturbations and have high variance in the training
error (see Figure 1). This high variance hinders learning and slows it down. Furthermore, strong
regularization, such as dropout, is not possible as it would further increase the variance which in turn
would lead to divergence of the learning process. We believe that this sensitivity to perturbations is
the reason that FNNs are less successful than RNNs and CNNs.

Self-normalizing neural networks (SNNs) are robust to perturbations and do not have high variance
in their training errors (see Figure 1). SNNs push neuron activations to zero mean and unit variance
thereby leading to the same effect as batch normalization, which enables to robustly learn many
layers. SNNs are based on scaled exponential linear units “SELUs” which induce self-normalizing
properties like variance stabilization which in turn avoids exploding and vanishing gradients.

Self-normalizing Neural Networks (SNNs)

Normalization and SNNs. For a neural network with activation function f , we consider two
consecutive layers that are connected by a weight matrix W . Since the input to a neural network
is a random variable, the activations x in the lower layer, the network inputs z = Wx, and the
activations y = f(z) in the higher layer are random variables as well. We assume that all activations
xi of the lower layer have mean µ := E(xi) and variance ν := Var(xi). An activation y in the higher
layer has mean µ̃ := E(y) and variance ν̃ := Var(y). Here E(.) denotes the expectation and Var(.)
the variance of a random variable. A single activation y = f(z) has net input z = wTx. For n units
with activation xi, 1 6 i 6 n in the lower layer, we define n times the mean of the weight vector
w ∈ Rn as ω :=

∑n
i=1 wi and n times the second moment as τ :=

∑n
i=1 w

2
i .

We consider the mapping g that maps mean and variance of the activations from one layer to mean
and variance of the activations in the next layer

(
µ
ν

)
7→
(
µ̃
ν̃

)
:

(
µ̃
ν̃

)
= g

(
µ
ν

)
. (1)

Normalization techniques like batch, layer, or weight normalization ensure a mapping g that keeps
(µ, ν) and (µ̃, ν̃) close to predefined values, typically (0, 1).
Definition 1 (Self-normalizing neural net). A neural network is self-normalizing if it possesses a
mapping g : Ω 7→ Ω for each activation y that maps mean and variance from one layer to the next
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Figure 1: The left panel and the right panel show the training error (y-axis) for feed-forward neural
networks (FNNs) with batch normalization (BatchNorm) and self-normalizing networks (SNN) across
update steps (x-axis) on the MNIST dataset the CIFAR10 dataset, respectively. We tested networks
with 8, 16, and 32 layers and learning rate 1e-5. FNNs with batch normalization exhibit high variance
due to perturbations. In contrast, SNNs do not suffer from high variance as they are more robust to
perturbations and learn faster.

and has a stable and attracting fixed point depending on (ω, τ) in Ω. Furthermore, the mean and
the variance remain in the domain Ω, that is g(Ω) ⊆ Ω, where Ω = {(µ, ν) | µ ∈ [µmin, µmax], ν ∈
[νmin, νmax]}. When iteratively applying the mapping g, each point within Ω converges to this fixed
point.

Therefore, we consider activations of a neural network to be normalized, if both their mean and their
variance across samples are within predefined intervals. If mean and variance of x are already within
these intervals, then also mean and variance of y remain in these intervals, i.e., the normalization is
transitive across layers. Within these intervals, the mean and variance both converge to a fixed point
if the mapping g is applied iteratively.

Therefore, SNNs keep normalization of activations when propagating them through layers of the
network. The normalization effect is observed across layers of a network: in each layer the activations
are getting closer to the fixed point. The normalization effect can also observed be for two fixed
layers across learning steps: perturbations of lower layer activations or weights are damped in the
higher layer by drawing the activations towards the fixed point. If for all y in the higher layer, ω and
τ of the corresponding weight vector are the same, then the fixed points are also the same. In this
case we have a unique fixed point for all activations y. Otherwise, in the more general case, ω and
τ differ for different y but the mean activations are drawn into [µmin, µmax] and the variances are
drawn into [νmin, νmax].

Constructing Self-Normalizing Neural Networks. We aim at constructing self-normalizing neu-
ral networks by adjusting the properties of the function g. Only two design choices are available for
the function g: (1) the activation function and (2) the initialization of the weights.

For the activation function, we propose “scaled exponential linear units” (SELUs) to render a FNN as
self-normalizing. The SELU activation function is given by

selu(x) = λ

{
x if x > 0

αex − α if x 6 0
. (2)

SELUs allow to construct a mapping g with properties that lead to SNNs. SNNs cannot be derived
with (scaled) rectified linear units (ReLUs), sigmoid units, tanh units, and leaky ReLUs. The
activation function is required to have (1) negative and positive values for controlling the mean, (2)
saturation regions (derivatives approaching zero) to dampen the variance if it is too large in the lower
layer, (3) a slope larger than one to increase the variance if it is too small in the lower layer, (4) a
continuous curve. The latter ensures a fixed point, where variance damping is equalized by variance
increasing. We met these properties of the activation function by multiplying the exponential linear
unit (ELU) [7] with λ > 1 to ensure a slope larger than one for positive net inputs.
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For the weight initialization, we propose ω = 0 and τ = 1 for all units in the higher layer. The
next paragraphs will show the advantages of this initialization. Of course, during learning these
assumptions on the weight vector will be violated. However, we can prove the self-normalizing
property even for weight vectors that are not normalized, therefore, the self-normalizing property can
be kept during learning and weight changes.

Deriving the Mean and Variance Mapping Function g. We assume that the xi are independent
from each other but share the same mean µ and variance ν. Of course, the independence assumptions
is not fulfilled in general. We will elaborate on the independence assumption below. The network
input z in the higher layer is z = wTx for which we can infer the following moments E(z) =∑n
i=1 wi E(xi) = µ ω and Var(z) = Var(

∑n
i=1 wi xi) = ν τ , where we used the independence

of the xi. The net input z is a weighted sum of independent, but not necessarily identically distributed
variables xi, for which the central limit theorem (CLT) states that z approaches a normal distribution:
z ∼ N (µω,

√
ντ) with density pN(z;µω,

√
ντ). According to the CLT, the larger n, the closer is z

to a normal distribution. For Deep Learning, broad layers with hundreds of neurons xi are common.
Therefore the assumption that z is normally distributed is met well for most currently used neural
networks (see Figure A8). The function g maps the mean and variance of activations in the lower
layer to the mean µ̃ = E(y) and variance ν̃ = Var(y) of the activations y in the next layer:

g :

(
µ
ν

)
7→
(
µ̃
ν̃

)
: µ̃(µ, ω, ν, τ) =

∫ ∞
−∞

selu(z) pN(z;µω,
√
ντ) dz (3)

ν̃(µ, ω, ν, τ) =

∫ ∞
−∞

selu(z)2 pN(z;µω,
√
ντ) dz − (µ̃)2 .

These integrals can be analytically computed and lead to following mappings of the moments:

µ̃ =
1

2
λ

(
(µω) erf

(
µω√
2
√
ντ

)
+ (4)

α eµω+ ντ
2 erfc

(
µω + ντ√

2
√
ντ

)
− α erfc

(
µω√
2
√
ντ

)
+

√
2

π

√
ντe−

(µω)2

2(ντ) + µω

)

ν̃ =
1

2
λ2

((
(µω)2 + ντ

)(
2− erfc

(
µω√
2
√
ντ

))
+ α2

(
−2eµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
(5)

+e2(µω+ντ) erfc

(
µω + 2ντ√

2
√
ντ

)
+ erfc

(
µω√
2
√
ντ

))
+

√
2

π
(µω)

√
ντe−

(µω)2

2(ντ)

)
− (µ̃)

2

Stable and Attracting Fixed Point (0,1) for Normalized Weights. We assume a normalized
weight vector w with ω = 0 and τ = 1. Given a fixed point (µ, ν), we can solve equations Eq. (4)
and Eq. (5) for α and λ. We chose the fixed point (µ, ν) = (0, 1), which is typical for activation
normalization. We obtain the fixed point equations µ̃ = µ = 0 and ν̃ = ν = 1 that we solve for α
and λ and obtain the solutions α01 ≈ 1.6733 and λ01 ≈ 1.0507, where the subscript 01 indicates
that these are the parameters for fixed point (0, 1). The analytical expressions for α01 and λ01 are
given in Eq. (14). We are interested whether the fixed point (µ, ν) = (0, 1) is stable and attracting. If
the Jacobian of g has a norm smaller than 1 at the fixed point, then g is a contraction mapping and the
fixed point is stable. The (2x2)-Jacobian J (µ, ν) of g : (µ, ν) 7→ (µ̃, ν̃) evaluated at the fixed point
(0, 1) with α01 and λ01 is

J (µ, ν) =

∂ µ
new(µ,ν)
∂µ ∂ µ

new(µ,ν)
∂ν

∂ ν
new(µ,ν)
∂µ ∂ ν

new(µ,ν)
∂ν

 , J (0, 1) =

(
0.0 0.088834
0.0 0.782648

)
. (6)

The spectral norm of J (0, 1) (its largest singular value) is 0.7877 < 1. That means g is a contraction
mapping around the fixed point (0, 1) (the mapping is depicted in Figure 2). Therefore, (0, 1) is a
stable fixed point of the mapping g.

4



  

Figure 2: For ω = 0 and τ = 1, the mapping g of mean µ (x-axis) and variance ν (y-axis) to the
next layer’s mean µ̃ and variance ν̃ is depicted. Arrows show in which direction (µ, ν) is mapped by
g : (µ, ν) 7→ (µ̃, ν̃). The fixed point of the mapping g is (0, 1).

Stable and Attracting Fixed Points for Unnormalized Weights. A normalized weight vector w
cannot be ensured during learning. For SELU parameters α = α01 and λ = λ01, we show in the next
theorem that if (ω, τ) is close to (0, 1), then g still has an attracting and stable fixed point that is close
to (0, 1). Thus, in the general case there still exists a stable fixed point which, however, depends
on (ω, τ). If we restrict (µ, ν, ω, τ) to certain intervals, then we can show that (µ, ν) is mapped to
the respective intervals. Next we present the central theorem of this paper, from which follows that
SELU networks are self-normalizing under mild conditions on the weights.
Theorem 1 (Stable and Attracting Fixed Points). We assume α = α01 and λ = λ01. We restrict the
range of the variables to the following intervals µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and
τ ∈ [0.95, 1.1], that define the functions’ domain Ω. For ω = 0 and τ = 1, the mapping Eq. (3) has
the stable fixed point (µ, ν) = (0, 1), whereas for other ω and τ the mapping Eq. (3) has a stable
and attracting fixed point depending on (ω, τ) in the (µ, ν)-domain: µ ∈ [−0.03106, 0.06773] and
ν ∈ [0.80009, 1.48617]. All points within the (µ, ν)-domain converge when iteratively applying the
mapping Eq. (3) to this fixed point.

Proof. We provide a proof sketch (see detailed proof in Appendix Section A3). With the Banach
fixed point theorem we show that there exists a unique attracting and stable fixed point. To this end,
we have to prove that a) g is a contraction mapping and b) that the mapping stays in the domain, that
is, g(Ω) ⊆ Ω. The spectral norm of the Jacobian of g can be obtained via an explicit formula for the
largest singular value for a 2× 2 matrix. g is a contraction mapping if its spectral norm is smaller
than 1. We perform a computer-assisted proof to evaluate the largest singular value on a fine grid and
ensure the precision of the computer evaluation by an error propagation analysis of the implemented
algorithms on the according hardware. Singular values between grid points are upper bounded by the
mean value theorem. To this end, we bound the derivatives of the formula for the largest singular
value with respect to ω, τ, µ, ν. Then we apply the mean value theorem to pairs of points, where one
is on the grid and the other is off the grid. This shows that for all values of ω, τ, µ, ν in the domain Ω,
the spectral norm of g is smaller than one. Therefore, g is a contraction mapping on the domain Ω.
Finally, we show that the mapping g stays in the domain Ω by deriving bounds on µ̃ and ν̃. Hence,
the Banach fixed-point theorem holds and there exists a unique fixed point in Ω that is attained.

Consequently, feed-forward neural networks with many units in each layer and with the SELU
activation function are self-normalizing (see definition 1), which readily follows from Theorem 1. To
give an intuition, the main property of SELUs is that they damp the variance for negative net inputs
and increase the variance for positive net inputs. The variance damping is stronger if net inputs are
further away from zero while the variance increase is stronger if net inputs are close to zero. Thus, for
large variance of the activations in the lower layer the damping effect is dominant and the variance
decreases in the higher layer. Vice versa, for small variance the variance increase is dominant and the
variance increases in the higher layer.

However, we cannot guarantee that mean and variance remain in the domain Ω. Therefore, we next
treat the case where (µ, ν) are outside Ω. It is especially crucial to consider ν because this variable
has much stronger influence than µ. Mapping ν across layers to a high value corresponds to an
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exploding gradient, since the Jacobian of the activation of high layers with respect to activations
in lower layers has large singular values. Analogously, mapping ν across layers to a low value
corresponds to an vanishing gradient. Bounding the mapping of ν from above and below would avoid
both exploding and vanishing gradients. Theorem 2 states that the variance of neuron activations of
SNNs is bounded from above, and therefore ensures that SNNs learn robustly and do not suffer from
exploding gradients.

Theorem 2 (Decreasing ν). For λ = λ01, α = α01 and the domain Ω+: −1 6 µ 6 1, −0.1 6 ω 6
0.1, 3 6 ν 6 16, and 0.8 6 τ 6 1.25, we have for the mapping of the variance ν̃(µ, ω, ν, τ, λ, α)
given in Eq. (5): ν̃(µ, ω, ν, τ, λ01, α01) < ν.

The proof can be found in the Appendix Section A3. Thus, when mapped across many layers, the
variance in the interval [3, 16] is mapped to a value below 3. Consequently, all fixed points (µ, ν)
of the mapping g (Eq. (3)) have ν < 3. Analogously, Theorem 3 states that the variance of neuron
activations of SNNs is bounded from below, and therefore ensures that SNNs do not suffer from
vanishing gradients.

Theorem 3 (Increasing ν). We consider λ = λ01, α = α01 and the domain Ω−: −0.1 6 µ 6 0.1,
and −0.1 6 ω 6 0.1. For the domain 0.02 6 ν 6 0.16 and 0.8 6 τ 6 1.25 as well as for the
domain 0.02 6 ν 6 0.24 and 0.9 6 τ 6 1.25, the mapping of the variance ν̃(µ, ω, ν, τ, λ, α) given
in Eq. (5) increases: ν̃(µ, ω, ν, τ, λ01, α01) > ν.

The proof can be found in the Appendix Section A3. All fixed points (µ, ν) of the mapping g (Eq. (3))
ensure for 0.8 6 τ that ν̃ > 0.16 and for 0.9 6 τ that ν̃ > 0.24. Consequently, the variance mapping
Eq. (5) ensures a lower bound on the variance ν. Therefore SELU networks control the variance of
the activations and push it into an interval, whereafter the mean and variance move toward the fixed
point. Thus, SELU networks are steadily normalizing the variance and subsequently normalizing the
mean, too. In all experiments, we observed that self-normalizing neural networks push the mean and
variance of activations into the domain Ω .

Initialization. Since SNNs have a fixed point at zero mean and unit variance for normalized weights
ω =

∑n
i=1 wi = 0 and τ =

∑n
i=1 w

2
i = 1 (see above), we initialize SNNs such that these constraints

are fulfilled in expectation. We draw the weights from a Gaussian distribution with E(wi) = 0 and
variance Var(wi) = 1/n. Uniform and truncated Gaussian distributions with these moments led to
networks with similar behavior. The “MSRA initialization” is similar since it uses zero mean and
variance 2/n to initialize the weights [17]. The additional factor 2 counters the effect of rectified
linear units.

New Dropout Technique. Standard dropout randomly sets an activation x to zero with probability
1 − q for 0 < q 6 1. In order to preserve the mean, the activations are scaled by 1/q during
training. If x has mean E(x) = µ and variance Var(x) = ν, and the dropout variable d follows a
binomial distribution B(1, q), then the mean E(1/qdx) = µ is kept. Dropout fits well to rectified
linear units, since zero is in the low variance region and corresponds to the default value. For scaled
exponential linear units, the default and low variance value is limx→−∞ selu(x) = −λα = α′.
Therefore, we propose “alpha dropout”, that randomly sets inputs to α′. The new mean and new
variance is E(xd + α′(1 − d)) = qµ + (1 − q)α′, and Var(xd + α′(1 − d)) = q((1 − q)(α′ −
µ)2 + ν). We aim at keeping mean and variance to their original values after “alpha dropout”, in
order to ensure the self-normalizing property even for “alpha dropout”. The affine transformation
a(xd + α′(1 − d)) + b allows to determine parameters a and b such that mean and variance are
kept to their values: E(a(xd + α′(1 − d)) + b) = µ and Var(a(xd + α′(1 − d)) + b) = ν . In
contrast to dropout, a and b will depend on µ and ν, however our SNNs converge to activations with
zero mean and unit variance. With µ = 0 and ν = 1, we obtain a =

(
q + α′2q(1− q)

)−1/2
and

b = −
(
q + α′2q(1− q)

)−1/2
((1− q)α′). The parameters a and b only depend on the dropout rate

1− q and the most negative activation α′. Empirically, we found that dropout rates 1− q = 0.05 or
0.10 lead to models with good performance. “Alpha-dropout” fits well to scaled exponential linear
units by randomly setting activations to the negative saturation value.
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Applicability of the central limit theorem and independence assumption. In the derivative of
the mapping (Eq. (3)), we used the central limit theorem (CLT) to approximate the network inputs
z =

∑n
i=1 wixi with a normal distribution. We justified normality because network inputs represent

a weighted sum of the inputs xi, where for Deep Learning n is typically large. The Berry-Esseen
theorem states that the convergence rate to normality is n−1/2 [22]. In the classical version of the CLT,
the random variables have to be independent and identically distributed, which typically does not
hold for neural networks. However, the Lyapunov CLT does not require the variable to be identically
distributed anymore. Furthermore, even under weak dependence, sums of random variables converge
in distribution to a Gaussian distribution [5].

Experiments

We compare SNNs to other deep networks at different benchmarks. Hyperparameters such as number
of layers (blocks), neurons per layer, learning rate, and dropout rate, are adjusted by grid-search for
each dataset on a separate validation set (see Section A4). We compare the following FNN methods:

• “MSRAinit”: FNNs without normalization and with ReLU activations and “Microsoft
weight initialization” [17].
• “BatchNorm”: FNNs with batch normalization [20].
• “LayerNorm”: FNNs with layer normalization [2].
• “WeightNorm”: FNNs with weight normalization [32].
• “Highway”: Highway networks [35].
• “ResNet”: Residual networks [16] adapted to FNNs using residual blocks with 2 or 3 layers

with rectangular or diavolo shape.
• “SNNs”: Self normalizing networks with SELUs with α = α01 and λ = λ01 and the

proposed dropout technique and initialization strategy.

121 UCI Machine Learning Repository datasets. The benchmark comprises 121 classification
datasets from the UCI Machine Learning repository [10] from diverse application areas, such as
physics, geology, or biology. The size of the datasets ranges between 10 and 130, 000 data points
and the number of features from 4 to 250. In abovementioned work [10], there were methodological
mistakes [37] which we avoided here. Each compared FNN method was optimized with respect to
its architecture and hyperparameters on a validation set that was then removed from the subsequent
analysis. The selected hyperparameters served to evaluate the methods in terms of accuracy on the
pre-defined test sets (details on the hyperparameter selection are given in Section A4). The accuracies
are reported in the Table A11. We ranked the methods by their accuracy for each prediction task and
compared their average ranks. SNNs significantly outperform all competing networks in pairwise
comparisons (paired Wilcoxon test across datasets) as reported in Table 1 (left panel).

We further included 17 machine learning methods representing diverse method groups [10] in the
comparison and the grouped the data sets into “small” and “large” data sets (for details see Section A4).
On 75 small datasets with less than 1000 data points, random forests and SVMs outperform SNNs
and other FNNs. On 46 larger datasets with at least 1000 data points, SNNs show the highest
performance followed by SVMs and random forests (see right panel of Table 1, for complete results
see Tables A12 and A12). Overall, SNNs have outperformed state of the art machine learning methods
on UCI datasets with more than 1,000 data points.

Typically, hyperparameter selection chose SNN architectures that were much deeper than the selected
architectures of other FNNs, with an average depth of 10.8 layers, compared to average depths of 6.0
for BatchNorm, 3.8 WeightNorm, 7.0 LayerNorm, 5.9 Highway, and 7.1 for MSRAinit networks. For
ResNet, the average number of blocks was 6.35. SNNs with many more than 4 layers often provide
the best predictive accuracies across all neural networks.

Drug discovery: The Tox21 challenge dataset. The Tox21 challenge dataset comprises about
12,000 chemical compounds whose twelve toxic effects have to be predicted based on their chemical
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Table 1: Left: Comparison of seven FNNs on 121 UCI tasks. We consider the average rank difference
to rank 4, which is the average rank of seven methods with random predictions. The first column gives
the method, the second the average rank difference, and the last the p-value of a paired Wilcoxon test
whether the difference to the best performing method is significant. SNNs significantly outperform
all other methods. Right: Comparison of 24 machine learning methods (ML) on the UCI datasets
with more than 1000 data points. The first column gives the method, the second the average rank
difference to rank 12.5, and the last the p-value of a paired Wilcoxon test whether the difference
to the best performing method is significant. Methods that were significantly worse than the best
method are marked with “*”. The full tables can be found in Table A11, Table A12 and Table A13.
SNNs outperform all competing methods.

FNN method comparison ML method comparison
Method avg. rank diff. p-value Method avg. rank diff. p-value

SNN -0.756 SNN -6.7
MSRAinit -0.240* 2.7e-02 SVM -6.4 5.8e-01
LayerNorm -0.198* 1.5e-02 RandomForest -5.9 2.1e-01
Highway 0.021* 1.9e-03 MSRAinit -5.4* 4.5e-03
ResNet 0.273* 5.4e-04 LayerNorm -5.3 7.1e-02
WeightNorm 0.397* 7.8e-07 Highway -4.6* 1.7e-03
BatchNorm 0.504* 3.5e-06 . . . . . . . . .

structure. We used the validation sets of the challenge winners for hyperparameter selection (see
Section A4) and the challenge test set for performance comparison. We repeated the whole evaluation
procedure 5 times to obtain error bars. The results in terms of average AUC are given in Table 2.
In 2015, the challenge organized by the US NIH was won by an ensemble of shallow ReLU FNNs
which achieved an AUC of 0.846 [28]. Besides FNNs, this ensemble also contained random forests
and SVMs. Single SNNs came close with an AUC of 0.845±0.003. The best performing SNNs have
8 layers, compared to the runner-ups ReLU networks with layer normalization with 2 and 3 layers.
Also batchnorm and weightnorm networks, typically perform best with shallow networks of 2 to 4
layers (Table 2). The deeper the networks, the larger the difference in performance between SNNs
and other methods (see columns 5–8 of Table 2). The best performing method is an SNN with 8
layers.

Table 2: Comparison of FNNs at the Tox21 challenge dataset in terms of AUC. The rows represent
different methods and the columns different network depth and for ResNets the number of residual
blocks (“na”: 32 blocks were omitted due to computational constraints). The deeper the networks,
the more prominent is the advantage of SNNs. The best networks are SNNs with 8 layers.

#layers / #blocks
method 2 3 4 6 8 16 32

SNN 83.7 ± 0.3 84.4 ± 0.5 84.2 ± 0.4 83.9 ± 0.5 84.5 ± 0.2 83.5 ± 0.5 82.5 ± 0.7

Batchnorm 80.0 ± 0.5 79.8 ± 1.6 77.2 ± 1.1 77.0 ± 1.7 75.0 ± 0.9 73.7 ± 2.0 76.0 ± 1.1

WeightNorm 83.7 ± 0.8 82.9 ± 0.8 82.2 ± 0.9 82.5 ± 0.6 81.9 ± 1.2 78.1 ± 1.3 56.6 ± 2.6

LayerNorm 84.3 ± 0.3 84.3 ± 0.5 84.0 ± 0.2 82.5 ± 0.8 80.9 ± 1.8 78.7 ± 2.3 78.8 ± 0.8

Highway 83.3 ± 0.9 83.0 ± 0.5 82.6 ± 0.9 82.4 ± 0.8 80.3 ± 1.4 80.3 ± 2.4 79.6 ± 0.8

MSRAinit 82.7 ± 0.4 81.6 ± 0.9 81.1 ± 1.7 80.6 ± 0.6 80.9 ± 1.1 80.2 ± 1.1 80.4 ± 1.9

ResNet 82.2 ± 1.1 80.0 ± 2.0 80.5 ± 1.2 81.2 ± 0.7 81.8 ± 0.6 81.2 ± 0.6 na

Astronomy: Prediction of pulsars in the HTRU2 dataset. Since a decade, machine learning
methods have been used to identify pulsars in radio wave signals [27]. Recently, the High Time
Resolution Universe Survey (HTRU2) dataset has been released with 1,639 real pulsars and 16,259
spurious signals. Currently, the highest AUC value of a 10-fold cross-validation is 0.976 which has
been achieved by Naive Bayes classifiers followed by decision tree C4.5 with 0.949 and SVMs with
0.929. We used eight features constructed by the PulsarFeatureLab as used previously [27]. We
assessed the performance of FNNs using 10-fold nested cross-validation, where the hyperparameters
were selected in the inner loop on a validation set (for details on the hyperparameter selection see

8



Section A4). Table 3 reports the results in terms of AUC. SNNs outperform all other methods and
have pushed the state-of-the-art to an AUC of 0.98.

Table 3: Comparison of FNNs and reference methods at HTRU2 in terms of AUC. The first, fourth
and seventh column give the method, the second, fifth and eight column the AUC averaged over 10
cross-validation folds, and the third and sixth column the p-value of a paired Wilcoxon test of the
AUCs against the best performing method across the 10 folds. FNNs achieve better results than Naive
Bayes (NB), C4.5, and SVM. SNNs exhibit the best performance and set a new record.

FNN methods FNN methods ref. methods
method AUC p-value method AUC p-value method AUC

SNN 0.9803 ± 0.010

MSRAinit 0.9791 ± 0.010 3.5e-01 LayerNorm 0.9762* ± 0.011 1.4e-02 NB 0.976
WeightNorm 0.9786* ± 0.010 2.4e-02 BatchNorm 0.9760 ± 0.013 6.5e-02 C4.5 0.946
Highway 0.9766* ± 0.009 9.8e-03 ResNet 0.9753* ± 0.010 6.8e-03 SVM 0.929

Conclusion

We have introduced self-normalizing neural networks for which we have proved that neuron ac-
tivations are pushed towards zero mean and unit variance when propagated through the network.
Additionally, for activations not close to unit variance, we have proved an upper and lower bound
on the variance mapping. Consequently, SNNs do not face vanishing and exploding gradient prob-
lems. Therefore, SNNs work well for architectures with many layers, allowed us to introduce a
novel regularization scheme, and learn very robustly. On 121 UCI benchmark datasets, SNNs have
outperformed other FNNs with and without normalization techniques, such as batch, layer, and
weight normalization, or specialized architectures, such as Highway or Residual networks. SNNs
also yielded the best results on drug discovery and astronomy tasks. The best performing SNN
architectures are typically very deep in contrast to other FNNs.
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This appendix is organized as follows: the first section sets the background, definitions, and for-
mulations. The main theorems are presented in the next section. The following section is devoted
to the proofs of these theorems. The next section reports additional results and details on the per-
formed computational experiments, such as hyperparameter selection. The last section shows that our
theoretical bounds can be confirmed by numerical methods as a sanity check.

The proof of theorem 1 is based on the Banach’s fixed point theorem for which we require (1) a
contraction mapping, which is proved in Subsection A3.4.1 and (2) that the mapping stays within its
domain, which is proved in Subsection A3.4.2 For part (1), the proof relies on the main Lemma 12,
which is a computer-assisted proof, and can be found in Subsection A3.4.1. The validity of the
computer-assisted proof is shown in Subsection A3.4.5 by error analysis and the precision of the
functions’ implementation. The last Subsection A3.4.6 compiles various lemmata with intermediate
results that support the proofs of the main lemmata and theorems.
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A1 Background

We consider a neural network with activation function f and two consecutive layers that are
connected by weight matrix W . Since samples that serve as input to the neural network are chosen
according to a distribution, the activations x in the lower layer, the network inputs z = Wx, and
activations y = f(z) in the higher layer are all random variables. We assume that all units xi in
the lower layer have mean activation µ := E(xi) and variance of the activation ν := Var(xi) and
a unit y in the higher layer has mean activation µ̃ := E(y) and variance ν̃ := Var(y). Here E(.)
denotes the expectation and Var(.) the variance of a random variable. For activation of unit y, we
have net input z = wTx and the scaled exponential linear unit (SELU) activation y = selu(z),
with

selu(x) = λ

{
x if x > 0

αex − α if x 6 0
. (7)

For n units xi, 1 6 i 6 n in the lower layer and the weight vector w ∈ Rn, we define n times the
mean by ω :=

∑n
i=1 wi and n times the second moment by τ :=

∑n
i=1 w

2
i .

We define a mapping g from mean µ and variance ν of one layer to the mean µ̃ and variance ν̃ in the
next layer:

g : (µ, ν) 7→ (µ̃, ν̃) . (8)

For neural networks with scaled exponential linear units, the mean is of the activations in the next
layer computed according to

µ̃ =

∫ 0

−∞
λα(exp(z)− 1)pGauss(z;µω,

√
ντ)dz +

∫ ∞
0

λzpGauss(z;µω,
√
ντ)dz , (9)

and the second moment of the activations in the next layer is computed according to

ξ̃ =

∫ 0

−∞
λ2α2(exp(z)− 1)2pGauss(z;µω,

√
ντ)dz +

∫ ∞
0

λ2z2pGauss(z;µω,
√
ντ)dz . (10)

Therefore, the expressions µ̃ and ν̃ have the following form:

µ̃(µ, ω, ν, τ, λ, α) =
1

2
λ

(
−(α+ µω) erfc

(
µω√
2
√
ντ

)
+ (11)

αeµω+ ντ
2 erfc

(
µω + ντ√

2
√
ντ

)
+

√
2

π

√
ντe−

µ2ω2

2ντ + 2µω

)
ν̃(µ, ω, ν, τ, λ, α) = ξ̃(µ, ω, ν, τ, λ, α)− (µ̃(µ, ω, ν, τ, λ, α))

2 (12)

ξ̃(µ, ω, ν, τ, λ, α) =
1

2
λ2

((
(µω)2 + ντ

)(
erf

(
µω√
2
√
ντ

)
+ 1

)
+ (13)

α2

(
−2eµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
+ e2(µω+ντ) erfc

(
µω + 2ντ√

2
√
ντ

)
+

erfc

(
µω√
2
√
ντ

))
+

√
2

π
(µω)

√
ντe−

(µω)2

2(ντ)

)

We solve equations Eq. 4 and Eq. 5 for fixed points µ̃ = µ and ν̃ = ν. For a normalized weight vector
with ω = 0 and τ = 1 and the fixed point (µ, ν) = (0, 1), we can solve equations Eq. 4 and Eq. 5
for α and λ. We denote the solutions to fixed point (µ, ν) = (0, 1) by α01 and λ01.

α01 = −

√
2
π

erfc
(

1√
2

)
exp

(
1
2

)
− 1
≈ 1.67326 (14)

λ01 =

(
1− erfc

(
1√
2

)√
e

)√
2π
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(
2 erfc

(√
2
)
e2 + π erfc

(
1√
2

)2

e− 2(2 + π) erfc

(
1√
2

)√
e+ π + 2

)−1/2

λ01 ≈ 1.0507 .

The parameters α01 and λ01 ensure

µ̃(0, 0, 1, 1, λ01, α01) = 0

ν̃(0, 0, 1, 1, λ01, α01) = 1

Since we focus on the fixed point (µ, ν) = (0, 1), we assume throughout the analysis that α =
α01 and λ = λ01. We consider the functions µ̃(µ, ω, ν, τ, λ01, α01), ν̃(µ, ω, ν, τ, λ01, α01), and
ξ̃(µ, ω, ν, τ, λ01, α01) on the domain Ω = {(µ, ω, ν, τ) | µ ∈ [µmin, µmax] = [−0.1, 0.1], ω ∈
[ωmin, ωmax] = [−0.1, 0.1], ν ∈ [νmin, νmax] = [0.8, 1.5], τ ∈ [τmin, τmax] = [0.95, 1.1]}.
Figure 2 visualizes the mapping g for ω = 0 and τ = 1 and α01 and λ01 at few pre-selected points. It
can be seen that (0, 1) is an attracting fixed point of the mapping g.

A2 Theorems

A2.1 Theorem 1: Stable and Attracting Fixed Points Close to (0,1)

Theorem 1 shows that the mapping g defined by Eq. (4) and Eq. (5) exhibits a stable and attracting
fixed point close to zero mean and unit variance. Theorem 1 establishes the self-normalizing property
of self-normalizing neural networks (SNNs). The stable and attracting fixed point leads to robust
learning through many layers.
Theorem 1 (Stable and Attracting Fixed Points). We assume α = α01 and λ = λ01. We restrict
the range of the variables to the domain µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈
[0.95, 1.1]. For ω = 0 and τ = 1, the mapping Eq. (4) and Eq. (5) has the stable fixed point (µ, ν) =
(0, 1). For other ω and τ the mapping Eq. (4) and Eq. (5) has a stable and attracting fixed point
depending on (ω, τ) in the (µ, ν)-domain: µ ∈ [−0.03106, 0.06773] and ν ∈ [0.80009, 1.48617].
All points within the (µ, ν)-domain converge when iteratively applying the mapping Eq. (4) and
Eq. (5) to this fixed point.

A2.2 Theorem 2: Decreasing Variance from Above

The next Theorem 2 states that the variance of unit activations does not explode through consecutive
layers of self-normalizing networks. Even more, a large variance of unit activations decreases when
propagated through the network. In particular this ensures that exploding gradients will never be
observed. In contrast to the domain in previous subsection, in which ν ∈ [0.8, 1.5], we now consider
a domain in which the variance of the inputs is higher ν ∈ [3, 16] and even the range of the mean is
increased µ ∈ [−1, 1]. We denote this new domain with the symbol Ω++ to indicate that the variance
lies above the variance of the original domain Ω. In Ω++, we can show that the variance ν̃ in the
next layer is always smaller then the original variance ν. Concretely, this theorem states that:
Theorem 2 (Decreasing ν). For λ = λ01, α = α01 and the domain Ω++: −1 6 µ 6 1, −0.1 6
ω 6 0.1, 3 6 ν 6 16, and 0.8 6 τ 6 1.25 we have for the mapping of the variance ν̃(µ, ω, ν, τ, λ, α)
given in Eq. (5)

ν̃(µ, ω, ν, τ, λ01, α01) < ν . (15)

The variance decreases in [3, 16] and all fixed points (µ, ν) of mapping Eq. (5) and Eq. (4) have
ν < 3.

A2.3 Theorem 3: Increasing Variance from Below

The next Theorem 3 states that the variance of unit activations does not vanish through consecutive
layers of self-normalizing networks. Even more, a small variance of unit activations increases when
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propagated through the network. In particular this ensures that vanishing gradients will never be
observed. In contrast to the first domain, in which ν ∈ [0.8, 1.5], we now consider two domains Ω−1
and Ω−2 in which the variance of the inputs is lower 0.05 6 ν 6 0.16 and 0.05 6 ν 6 0.24, and even
the parameter τ is different 0.9 6 τ 6 1.25 to the original Ω. We denote this new domain with the
symbol Ω−i to indicate that the variance lies below the variance of the original domain Ω. In Ω−1
and Ω−2 , we can show that the variance ν̃ in the next layer is always larger then the original variance
ν, which means that the variance does not vanish through consecutive layers of self-normalizing
networks. Concretely, this theorem states that:

Theorem 3 (Increasing ν). We consider λ = λ01, α = α01 and the two domains Ω−1 =
{(µ, ω, ν, τ) | − 0.1 6 µ 6 0.1,−0.1 6 ω 6 0.1, 0.05 6 ν 6 0.16, 0.8 6 τ 6 1.25} and
Ω−2 = {(µ, ω, ν, τ) | − 0.1 6 µ 6 0.1,−0.1 6 ω 6 0.1, 0.05 6 ν 6 0.24, 0.9 6 τ 6 1.25}.
The mapping of the variance ν̃(µ, ω, ν, τ, λ, α) given in Eq. (5) increases

ν̃(µ, ω, ν, τ, λ01, α01) > ν (16)

in both Ω−1 and Ω−2 . All fixed points (µ, ν) of mapping Eq. (5) and Eq. (4) ensure for 0.8 6 τ that
ν̃ > 0.16 and for 0.9 6 τ that ν̃ > 0.24. Consequently, the variance mapping Eq. (5) and Eq. (4)
ensures a lower bound on the variance ν.

A3 Proofs of the Theorems

A3.1 Proof of Theorem 1

We have to show that the mapping g defined by Eq. (4) and Eq. (5) has a stable and attracting fixed
point close to (0, 1). To proof this statement and Theorem 1, we apply the Banach fixed point theorem
which requires (1) that g is a contraction mapping and (2) that g does not map outside the function’s
domain, concretely:

Theorem 4 (Banach Fixed Point Theorem). Let (X, d) be a non-empty complete metric space with a
contraction mapping f : X → X . Then f has a unique fixed-point xf ∈ X with f(xf ) = xf . Every
sequence xn = f(xn−1) with starting element x0 ∈ X converges to the fixed point: xn −−−−→

n→∞
xf .

Contraction mappings are functions that map two points such that their distance is decreasing:

Definition 2 (Contraction mapping). A function f : X → X on a metric space X with distance
d is a contraction mapping, if there is a 0 6 δ < 1, such that for all points u and v in X:
d(f(u), f(v)) 6 δd(u,v).

To show that g is a contraction mapping in Ω with distance ‖.‖2, we use the Mean Value Theorem for
u, v ∈ Ω

‖g(u)− g(v)‖2 6M ‖u− v‖2, (17)

in which M is an upper bound on the spectral norm the JacobianH of g. The spectral norm is given
by the largest singular value of the Jacobian of g. If the largest singular value of the Jacobian is
smaller than 1, the mapping g of the mean and variance to the mean and variance in the next layer
is contracting. We show that the largest singular value is smaller than 1 by evaluating the function
for the singular value S(µ, ω, ν, τ, λ, α) on a grid. Then we use the Mean Value Theorem to bound
the deviation of the function S between grid points. To this end, we have to bound the gradient of S
with respect to (µ, ω, ν, τ). If all function values plus gradient times the deltas (differences between
grid points and evaluated points) is still smaller than 1, then we have proofed that the function is
below 1 (Lemma 12). To show that the mapping does not map outside the function’s domain, we
derive bounds on the expressions for the mean and the variance (Lemma 13). Section A3.4.1 and
Section A3.4.2 are concerned with the contraction mapping and the image of the function domain of
g, respectively.

With the results that the largest singular value of the Jacobian is smaller than one (Lemma 12) and that
the mapping stays in the domain Ω (Lemma 13), we can prove Theorem 1. We first recall Theorem 1:
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Theorem (Stable and Attracting Fixed Points). We assume α = α01 and λ = λ01. We restrict
the range of the variables to the domain µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈
[0.95, 1.1]. For ω = 0 and τ = 1, the mapping Eq. (4) and Eq. (5) has the stable fixed point (µ, ν) =
(0, 1). For other ω and τ the mapping Eq. (4) and Eq. (5) has a stable and attracting fixed point
depending on (ω, τ) in the (µ, ν)-domain: µ ∈ [−0.03106, 0.06773] and ν ∈ [0.80009, 1.48617].
All points within the (µ, ν)-domain converge when iteratively applying the mapping Eq. (4) and
Eq. (5) to this fixed point.

Proof. According to Lemma 12 the mapping g (Eq. (4) and Eq. (5)) is a contraction mapping in the
given domain, that is, it has a Lipschitz constant smaller than one. We showed that (µ, ν) = (0, 1) is
a fixed point of the mapping for (ω, τ) = (0, 1).

The domain is compact (bounded and closed), therefore it is a complete metric space. We further
have to make sure the mapping g does not map outside its domain Ω. According to Lemma 13, the
mapping maps into the domain µ ∈ [−0.03106, 0.06773] and ν ∈ [0.80009, 1.48617].

Now we can apply the Banach fixed point theorem given in Theorem 4 from which the statement of
the theorem follows.

A3.2 Proof of Theorem 2

First we recall Theorem 2:
Theorem (Decreasing ν). For λ = λ01, α = α01 and the domain Ω++: −1 6 µ 6 1, −0.1 6 ω 6
0.1, 3 6 ν 6 16, and 0.8 6 τ 6 1.25 we have for the mapping of the variance ν̃(µ, ω, ν, τ, λ, α)
given in Eq. (5)

ν̃(µ, ω, ν, τ, λ01, α01) < ν . (18)

The variance decreases in [3, 16] and all fixed points (µ, ν) of mapping Eq. (5) and Eq. (4) have
ν < 3.

Proof. We start to consider an even larger domain −1 6 µ 6 1, −0.1 6 ω 6 0.1, 1.5 6 ν 6 16,
and 0.8 6 τ 6 1.25. We prove facts for this domain and later restrict to 3 6 ν 6 16, i.e. Ω++. We
consider the function g of the difference between the second moment ξ̃ in the next layer and the
variance ν in the lower layer:

g(µ, ω, ν, τ, λ01, α01) = ξ̃(µ, ω, ν, τ, λ01, α01) − ν . (19)

If we can show that g(µ, ω, ν, τ, λ01, α01) < 0 for all (µ, ω, ν, τ) ∈ Ω++, then we would obtain our
desired result ν̃ 6 ξ̃ < ν. The derivative with respect to ν is according to Theorem 16:

∂

∂ν
g(µ, ω, ν, τ, λ01, α01) =

∂

∂ν
ξ̃(µ, ω, ν, τ, λ01, α01) − 1 < 0 . (20)

Therefore g is strictly monotonically decreasing in ν. Since ξ̃ is a function in ντ (these variables only
appear as this product), we have for x = ντ

∂

∂ν
ξ̃ =

∂

∂x
ξ̃
∂x

∂ν
=

∂

∂x
ξ̃ τ (21)

and
∂

∂τ
ξ̃ =

∂

∂x
ξ̃
∂x

∂τ
=

∂

∂x
ξ̃ ν . (22)

Therefore we have according to Theorem 16:

∂

∂τ
ξ̃(µ, ω, ν, τ, λ01, α01) =

ν

τ

∂

∂ν
ξ̃(µ, ω, ν, τ, λ01, α01) > 0 . (23)

Therefore
∂

∂τ
g(µ, ω, ν, τ, λ01, α01) =

∂

∂τ
ξ̃(µ, ω, ν, τ, λ01, α01) > 0 . (24)
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Consequently, g is strictly monotonically increasing in τ . Now we consider the derivative with respect
to µ and ω. We start with ∂

∂µ ξ̃(µ, ω, ν, τ, λ, α), which is

∂

∂µ
ξ̃(µ, ω, ν, τ, λ, α) = (25)

λ2ω

(
α2
(
−eµω+ ντ

2

)
erfc

(
µω + ντ√

2
√
ντ

)
+

α2e2µω+2ντ erfc

(
µω + 2ντ√

2
√
ντ

)
+ µω

(
2− erfc

(
µω√
2
√
ντ

))
+

√
2

π

√
ντe−

µ2ω2

2ντ

)
.

We consider the sub-function√
2

π

√
ντ − α2

(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

))
. (26)

We set x = ντ and y = µω and obtain√
2

π

√
x− α2

(
e

(
x+y√
2
√
x

)2

erfc

(
x+ y√

2
√
x

)
− e

(
2x+y√
2
√
x

)2

erfc

(
2x+ y√

2
√
x

))
. (27)

The derivative to this sub-function with respect to y is

α2
(
e

(2x+y)2

2x (2x+ y) erfc
(

2x+y√
2
√
x

)
− e

(x+y)2

2x (x+ y) erfc
(
x+y√
2
√
x

))
x

= (28)

√
2α2
√
x

 e
(2x+y)2

2x (2x+y) erfc
(

2x+y√
2
√
x

)
√

2
√
x

−
e
(x+y)2

2x (x+y) erfc
(
x+y√
2
√
x

)
√

2
√
x


x

> 0 .

The inequality follows from Lemma 24, which states that zez
2

erfc(z) is monotonically increasing in
z. Therefore the sub-function is increasing in y. The derivative to this sub-function with respect to x
is

1

2
√
πx2

√
πα2

(
e

(2x+y)2

2x

(
4x2 − y2

)
erfc

(
2x+ y√

2
√
x

)
(29)

−e
(x+y)2

2x (x− y)(x+ y) erfc

(
x+ y√

2
√
x

))
−
√

2
(
α2 − 1

)
x3/2.

The sub-function is increasing in x, since the derivative is larger than zero:
√
πα2

(
e

(2x+y)2

2x

(
4x2 − y2

)
erfc

(
2x+y√

2
√
x

)
− e

(x+y)2

2x (x− y)(x+ y) erfc
(
x+y√
2
√
x

))
−
√

2x3/2
(
α2 − 1

)
2
√
πx2

>

(30)

√
πα2

 (2x−y)(2x+y)2

√
π

(
2x+y√
2
√
x

+

√(
2x+y√
2
√
x

)2
+2

) − (x−y)(x+y)2

√
π

(
x+y√
2
√
x

+

√(
x+y√
2
√
x

)2
+ 4
π

)
−√2x3/2

(
α2 − 1

)
2
√
πx2

=

√
πα2

(
(2x−y)(2x+y)2(

√
2
√
x)

√
π
(

2x+y+
√

(2x+y)2+4x
) − (x−y)(x+y)2(

√
2
√
x)

√
π
(
x+y+

√
(x+y)2+ 8x

π

))−√2x3/2
(
α2 − 1

)
2
√
πx2

=

√
πα2

(
(2x−y)(2x+y)2

√
π
(

2x+y+
√

(2x+y)2+4x
) − (x−y)(x+y)2

√
π
(
x+y+

√
(x+y)2+ 8x

π

))− x (α2 − 1
)

√
2
√
πx3/2

>
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√
πα2

(
(2x−y)(2x+y)2

√
π
(

2x+y+
√

(2x+y)2+2(2x+y)+1
) − (x−y)(x+y)2

√
π
(
x+y+

√
(x+y)2+0.878·2(x+y)+0.8782

))− x (α2 − 1
)

√
2
√
πx3/2

=

√
πα2

(
(2x−y)(2x+y)2

√
π
(

2x+y+
√

(2x+y+1)2
) − (x−y)(x+y)2

√
π
(
x+y+

√
(x+y+0.878)2

))− x (α2 − 1
)

√
2
√
πx3/2

=

√
πα2

(
(2x−y)(2x+y)2√
π(2(2x+y)+1)

− (x−y)(x+y)2√
π(2(x+y)+0.878)

)
− x

(
α2 − 1

)
√

2
√
πx3/2

=

√
πα2

(
(2(x+y)+0.878)(2x−y)(2x+y)2√

π
− (x−y)(x+y)(2(2x+y)+1)2√

π

)
(2(2x+ y) + 1)(2(x+ y) + 0.878)

√
2
√
πx3/2

+

√
πα2

(
−x
(
α2 − 1

)
(2(2x+ y) + 1)(2(x+ y) + 0.878)

)
(2(2x+ y) + 1)(2(x+ y) + 0.878)

√
2
√
πx3/2

=

8x3 + 12x2y + 4.14569x2 + 4xy2 − 6.76009xy − 1.58023x+ 0.683154y2

(2(2x+ y) + 1)(2(x+ y) + 0.878)
√

2
√
πx3/2

>

8x3 − 0.1 · 12x2 + 4.14569x2 + 4 · (0.0)2x− 6.76009 · 0.1x− 1.58023x+ 0.683154 · (0.0)2

(2(2x+ y) + 1)(2(x+ y) + 0.878)
√

2
√
πx3/2

=

8x2 + 2.94569x− 2.25624

(2(2x+ y) + 1)(2(x+ y) + 0.878)
√

2
√
π
√
x

=

8(x− 0.377966)(x+ 0.746178)

(2(2x+ y) + 1)(2(x+ y) + 0.878)
√

2
√
π
√
x
> 0 .

We explain this chain of inequalities:

• First inequality: We applied Lemma 22 two times.

• Equalities factor out
√

2
√
x and reformulate.

• Second inequality part 1: we applied

0 < 2y =⇒ (2x+ y)2 + 4x+ 1 < (2x+ y)2 + 2(2x+ y) + 1 = (2x+ y + 1)2 . (31)

• Second inequality part 2: we show that for a = 1
10

(√
960+169π

π − 13
)

following holds:
8x
π −

(
a2 + 2a(x+ y)

)
> 0. We have ∂

∂x
8x
π −

(
a2 + 2a(x+ y)

)
= 8

π − 2a > 0 and
∂
∂y

8x
π −

(
a2 + 2a(x+ y)

)
= −2a < 0. Therefore the minimum is at border for minimal x

and maximal y:

8 · 1.2
π
−

 2

10

(√
960 + 169π

π
− 13

)
(1.2 + 0.1) +

(
1

10

(√
960 + 169π

π
− 13

))2
 = 0 .

(32)

Thus
8x

π
> a2 + 2a(x+ y) . (33)

for a = 1
10

(√
960+169π

π − 13
)
> 0.878.

• Equalities only solve square root and factor out the resulting terms (2(2x + y) + 1) and
(2(x+ y) + 0.878).

• We set α = α01 and multiplied out. Thereafter we also factored out x in the numerator.
Finally a quadratic equations was solved.
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The sub-function has its minimal value for minimal x = ντ = 1.5 · 0.8 = 1.2 and minimal
y = µω = −1 · 0.1 = −0.1. We further minimize the function

µωe
µ2ω2

2ντ

(
2− erfc

(
µω√
2
√
ντ

))
> −0.1e

0.12

2·1.2

(
2− erfc

(
0.1√
2
√

1.2

))
. (34)

We compute the minimum of the term in brackets of ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α) in Eq. (25):

µωe
µ2ω2

2ντ

(
2− erfc

(
µω√
2
√
ντ

))
+ (35)

α2
01

(
−
(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

)))
+

√
2

π

√
ντ >

α2
01

(
−
(
e

(
1.2−0.1√

2
√

1.2

)2

erfc

(
1.2− 0.1√

2
√

1.2

)
− e

(
2·1.2−0.1√

2
√

1.2

)2

erfc

(
2 · 1.2− 0.1√

2
√

1.2

)))
−

0.1e
0.12

2·1.2

(
2− erfc

(
0.1√
2
√

1.2

))
+
√

1.2

√
2

π
= 0.212234 .

Therefore the term in brackets of Eq. (25) is larger than zero. Thus, ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α) has the sign

of ω. Since ξ̃ is a function in µω (these variables only appear as this product), we have for x = µω

∂

∂ν
ξ̃ =

∂

∂x
ξ̃
∂x

∂µ
=

∂

∂x
ξ̃ ω (36)

and
∂

∂ω
ξ̃ =

∂

∂x
ξ̃
∂x

∂ω
=

∂

∂x
ξ̃ µ . (37)

∂

∂ω
ξ̃(µ, ω, ν, τ, λ01, α01) =

µ

ω

∂

∂µ
ξ̃(µ, ω, ν, τ, λ01, α01) . (38)

Since ∂
∂µ ξ̃ has the sign of ω, ∂

∂µ ξ̃ has the sign of µ. Therefore

∂

∂ω
g(µ, ω, ν, τ, λ01, α01) =

∂

∂ω
ξ̃(µ, ω, ν, τ, λ01, α01) (39)

has the sign of µ.

We now divide the µ-domain into −1 6 µ 6 0 and 0 6 µ 6 1. Analogously we divide the ω-domain
into −0.1 6 ω 6 0 and 0 6 ω 6 0.1. In this domains g is strictly monotonically.

For all domains g is strictly monotonically decreasing in ν and strictly monotonically increasing in τ .
Note that we now consider the range 3 6 ν 6 16. For the maximal value of g we set ν = 3 (we set it
to 3!) and τ = 1.25.

We consider now all combination of these domains:

• −1 6 µ 6 0 and −0.1 6 ω 6 0:

g is decreasing in µ and decreasing in ω. We set µ = −1 and ω = −0.1.

g(−1,−0.1, 3, 1.25, λ01, α01) = −0.0180173 . (40)

• −1 6 µ 6 0 and 0 6 ω 6 0.1:

g is increasing in µ and decreasing in ω. We set µ = 0 and ω = 0.

g(0, 0, 3, 1.25, λ01, α01) = −0.148532 . (41)

• 0 6 µ 6 1 and −0.1 6 ω 6 0:

g is decreasing in µ and increasing in ω. We set µ = 0 and ω = 0.

g(0, 0, 3, 1.25, λ01, α01) = −0.148532 . (42)
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• 0 6 µ 6 1 and 0 6 ω 6 0.1:

g is increasing in µ and increasing in ω. We set µ = 1 and ω = 0.1.

g(1, 0.1, 3, 1.25, λ01, α01) = −0.0180173 . (43)

Therefore the maximal value of g is −0.0180173.

A3.3 Proof of Theorem 3

First we recall Theorem 3:
Theorem (Increasing ν). We consider λ = λ01, α = α01 and the two domains Ω−1 =
{(µ, ω, ν, τ) | − 0.1 6 µ 6 0.1,−0.1 6 ω 6 0.1, 0.05 6 ν 6 0.16, 0.8 6 τ 6 1.25} and
Ω−2 = {(µ, ω, ν, τ) | − 0.1 6 µ 6 0.1,−0.1 6 ω 6 0.1, 0.05 6 ν 6 0.24, 0.9 6 τ 6 1.25} .

The mapping of the variance ν̃(µ, ω, ν, τ, λ, α) given in Eq. (5) increases

ν̃(µ, ω, ν, τ, λ01, α01) > ν (44)

in both Ω−1 and Ω−2 . All fixed points (µ, ν) of mapping Eq. (5) and Eq. (4) ensure for 0.8 6 τ that
ν̃ > 0.16 and for 0.9 6 τ that ν̃ > 0.24. Consequently, the variance mapping Eq. (5) and Eq. (4)
ensures a lower bound on the variance ν.

Proof. The mean value theorem states that there exists a t ∈ [0, 1] for which

ξ̃(µ, ω, ν, τ, λ01, α01) − ξ̃(µ, ω, νmin, τ, λ01, α01) = (45)
∂

∂ν
ξ̃(µ, ω, ν + t(νmin − ν), τ, λ01, α01) (ν − νmin) .

Therefore

ξ̃(µ, ω, ν, τ, λ01, α01) = ξ̃(µ, ω, νmin, τ, λ01, α01) + (46)
∂

∂ν
ξ̃(µ, ω, ν + t(νmin − ν), τ, λ01, α01) (ν − νmin) .

Therefore we are interested to bound the derivative of the ξ-mapping Eq. (13) with respect to ν:

∂

∂ν
ξ̃(µ, ω, ν, τ, λ01, α01) = (47)

1

2
λ2τe−

µ2ω2

2ντ

(
α2

(
−
(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− 2e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

)))
−

erfc

(
µω√
2
√
ντ

)
+ 2

)
.

The sub-term Eq. (308) enters the derivative Eq. (47) with a negative sign! According to Lemma 18,
the minimal value of sub-term Eq. (308) is obtained by the largest largest ν, by the smallest τ , and
the largest y = µω = 0.01. Also the positive term erfc

(
µω√
2
√
ντ

)
+ 2 is multiplied by τ , which is

minimized by using the smallest τ . Therefore we can use the smallest τ in whole formula Eq. (47) to
lower bound it.

First we consider the domain 0.05 6 ν 6 0.16 and 0.8 6 τ 6 1.25. The factor consisting of the
exponential in front of the brackets has its smallest value for e−

0.01·0.01
2·0.05·0.8 . Since erfc is monotonically

decreasing we inserted the smallest argument via erfc
(
− 0.01√

2
√

0.05·0.8

)
in order to obtain the maximal

negative contribution. Thus, applying Lemma 18, we obtain the lower bound on the derivative:

1

2
λ2τe−

µ2ω2

2ντ

(
α2

(
−
(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− 2e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

)))
−

(48)
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erfc

(
µω√
2
√
ντ

)
+ 2

)
>

1

2
0.8e−

0.01·0.01
2·0.05·0.8λ2

01

(
α2

01

(
−
(
e

(
0.16·0.8+0.01√

2
√

0.16·0.8

)2

erfc

(
0.16 · 0.8 + 0.01√

2
√

0.16 · 0.8

)
−

2e

(
2·0.16·0.8+0.01√

2
√

0.16·0.8

)2

erfc

(
2 · 0.16 · 0.8 + 0.01√

2
√

0.16 · 0.8

)))
− erfc

(
− 0.01√

2
√

0.05 · 0.8

)
+ 2

)
) > 0.969231 .

For applying the mean value theorem, we require the smallest ν̃(ν). We follow the proof of Lemma 8,
which shows that at the minimum y = µω must be maximal and x = ντ must be minimal. Thus, the
smallest ξ̃(µ, ω, ν, τ, λ01, α01) is ξ̃(0.01, 0.01, 0.05, 0.8, λ01, α01) = 0.0662727 for 0.05 6 ν and
0.8 6 τ .

Therefore the mean value theorem and the bound on (µ̃)2 (Lemma 43) provide

ν̃ = ξ̃(µ, ω, ν, τ, λ01, α01)− (µ̃(µ, ω, ν, τ, λ01, α01))
2
> (49)

0.0662727 + 0.969231(ν − 0.05)− 0.005 = 0.01281115 + 0.969231ν >

0.08006969 · 0.16 + 0.969231ν > 1.049301ν > ν .

Next we consider the domain 0.05 6 ν 6 0.24 and 0.9 6 τ 6 1.25. The factor consisting of the
exponential in front of the brackets has its smallest value for e−

0.01·0.01
2·0.05·0.9 . Since erfc is monotonically

decreasing we inserted the smallest argument via erfc
(
− 0.01√

2
√

0.05·0.9

)
in order to obtain the maximal

negative contribution.

Thus, applying Lemma 18, we obtain the lower bound on the derivative:

1

2
λ2τe−

µ2ω2

2ντ

(
α2

(
−
(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− 2e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

)))
−

(50)

erfc

(
µω√
2
√
ντ

)
+ 2

)
>

1

2
0.9e−

0.01·0.01
2·0.05·0.9λ2

01

(
α2

01

(
−
(
e

(
0.24·0.9+0.01√

2
√

0.24·0.9

)2

erfc

(
0.24 · 0.9 + 0.01√

2
√

0.24 · 0.9

)
−

2e

(
2·0.24·0.9+0.01√

2
√

0.24·0.9

)2

erfc

(
2 · 0.24 · 0.9 + 0.01√

2
√

0.24 · 0.9

)))
− erfc

(
− 0.01√

2
√

0.05 · 0.9

)
+ 2

)
) > 0.976952 .

For applying the mean value theorem, we require the smallest ν̃(ν). We follow the proof of Lemma 8,
which shows that at the minimum y = µω must be maximal and x = ντ must be minimal. Thus, the
smallest ξ̃(µ, ω, ν, τ, λ01, α01) is ξ̃(0.01, 0.01, 0.05, 0.9, λ01, α01) = 0.0738404 for 0.05 6 ν and
0.9 6 τ . Therefore the mean value theorem and the bound on (µ̃)2 (Lemma 43) gives

ν̃ = ξ̃(µ, ω, ν, τ, λ01, α01)− (µ̃(µ, ω, ν, τ, λ01, α01))
2
> (51)

0.0738404 + 0.976952(ν − 0.05)− 0.005 = 0.0199928 + 0.976952ν >

0.08330333 · 0.24 + 0.976952ν > 1.060255ν > ν .

A3.4 Lemmata and Other Tools Required for the Proofs

A3.4.1 Lemmata for proofing Theorem 1 (part 1): Jacobian norm smaller than one

In this section, we show that the largest singular value of the Jacobian of the mapping g is smaller
than one. Therefore, g is a contraction mapping. This is even true in a larger domain than the original
Ω. We do not need to restrict τ ∈ [0.95, 1.1], but we can extend to τ ∈ [0.8, 1.25]. The range of the
other variables is unchanged such that we consider the following domain throughout this section:
µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈ [0.8, 1.25].
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Jacobian of the mapping. In the following, we denote two Jacobians: (1) the Jacobian J of the
mapping h : (µ, ν) 7→ (µ̃, ξ̃), and (2) the JacobianH of the mapping g : (µ, ν) 7→ (µ̃, ν̃) because the
influence of µ̃ on ν̃ is small, and many properties of the system can already be seen on J .

J =

(
J11 J12

J21 J22

)
=

(
∂
∂µ µ̃

∂
∂ν µ̃

∂
∂µ ξ̃

∂
∂ν ξ̃

)
(52)

H =

(
H11 H12

H21 H22

)
=

(
J11 J12

J21 − 2µ̃J11 J22 − 2µ̃J12

)
(53)

The definition of the entries of the Jacobian J is:

J11(µ, ω, ν, τ, λ, α) =
∂

∂µ
µ̃(µ, ω, ν, τ, λ, α) = (54)

1

2
λω

(
αeµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2

)
J12(µ, ω, ν, τ, λ, α) =

∂

∂ν
µ̃(µ, ω, ν, τ, λ, α) = (55)

1

4
λτ

(
αeµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
− (α− 1)

√
2

πντ
e−

µ2ω2

2ντ

)

J21(µ, ω, ν, τ, λ, α) =
∂

∂µ
ξ̃(µ, ω, ν, τ, λ, α) = (56)

λ2ω

(
α2
(
−eµω+ ντ

2

)
erfc

(
µω + ντ√

2
√
ντ

)
+

α2e2µω+2ντ erfc

(
µω + 2ντ√

2
√
ντ

)
+ µω

(
2− erfc

(
µω√
2
√
ντ

))
+

√
2

π

√
ντe−

µ2ω2

2ντ

)

J22(µ, ω, ν, τ, λ, α) =
∂

∂ν
ξ̃(µ, ω, ν, τ, λ, α) = (57)

1

2
λ2τ

(
α2
(
−eµω+ ντ

2

)
erfc

(
µω + ντ√

2
√
ντ

)
+

2α2e2µω+2ντ erfc

(
µω + 2ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2

)

Proof sketch: Bounding the largest singular value of the Jacobian. If the largest singular value
of the Jacobian is smaller than 1, then the spectral norm of the Jacobian is smaller than 1. Then the
mapping Eq. (4) and Eq. (5) of the mean and variance to the mean and variance in the next layer is
contracting.

We show that the largest singular value is smaller than 1 by evaluating the function S(µ, ω, ν, τ, λ, α)
on a grid. Then we use the Mean Value Theorem to bound the deviation of the function S between
grid points. Toward this end we have to bound the gradient of S with respect to (µ, ω, ν, τ). If all
function values plus gradient times the deltas (differences between grid points and evaluated points)
is still smaller than 1, then we have proofed that the function is below 1.

The singular values of the 2× 2 matrix

A =

(
a11 a12

a21 a22

)
(58)

are

s1 =
1

2

(√
(a11 + a22)2 + (a21 − a12)2 +

√
(a11 − a22)2 + (a12 + a21)2

)
(59)

s2 =
1

2

(√
(a11 + a22)2 + (a21 − a12)2 −

√
(a11 − a22)2 + (a12 + a21)2

)
. (60)
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We used an explicit formula for the singular values [4]. We now setH11 = a11,H12 = a12,H21 =
a21,H22 = a22 to obtain a formula for the largest singular value of the Jacobian depending on
(µ, ω, ν, τ, λ, α). The formula for the largest singular value for the Jacobian is:

S(µ, ω, ν, τ, λ, α) =
(√

(H11 +H22)2 + (H21 −H12)2 +
√

(H11 −H22)2 + (H12 +H21)2
)

=

(61)

=
1

2

(√
(J11 + J22 − 2µ̃J12)2 + (J21 − 2µ̃J11 − J12)2 +√

(J11 − J22 + 2µ̃J12)2 + (J12 + J21 − 2µ̃J11)2
)
,

where J are defined in Eq. (54) and we left out the dependencies on (µ, ω, ν, τ, λ, α) in order to keep
the notation uncluttered, e.g. we wrote J11 instead of J11(µ, ω, ν, τ, λ, α).

Bounds on the derivatives of the Jacobian entries. In order to bound the gradient of the
singular value, we have to bound the derivatives of the Jacobian entries J11(µ, ω, ν, τ, λ, α),
J12(µ, ω, ν, τ, λ, α), J21(µ, ω, ν, τ, λ, α), and J22(µ, ω, ν, τ, λ, α) with respect to µ, ω, ν, and τ .
The values λ and α are fixed to λ01 and α01. The 16 derivatives of the 4 Jacobian entries with respect
to the 4 variables are:

∂J11

∂µ
=

1

2
λω2e−

µ2ω2

2ντ

αe (µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
−

√
2
π (α− 1)
√
ντ

 (62)

∂J11

∂ω
=

1

2
λ

−e−µ2ω2

2ντ


√

2
π (α− 1)µω
√
ντ

− α(µω + 1)e
(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

) −
erfc

(
µω√
2
√
ντ

)
+ 2

)
∂J11

∂ν
=

1

4
λτωe−

µ2ω2

2ντ

(
αe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+

√
2

π

(
(α− 1)µω

(ντ)3/2
− α√

ντ

))
∂J11

∂τ
=

1

4
λνωe−

µ2ω2

2ντ

(
αe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+

√
2

π

(
(α− 1)µω

(ντ)3/2
− α√

ντ

))
∂J12

∂µ
=

∂J11

∂ν

∂J12

∂ω
=

1

4
λµτe−

µ2ω2

2ντ

(
αe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+

√
2

π

(
(α− 1)µω

(ντ)3/2
− α√

ντ

))
∂J12

∂ν
=

1

8
λe−

µ2ω2

2ντ

(
ατ2e

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+√

2

π

(
(−1)(α− 1)µ2ω2

ν5/2
√
τ

+

√
τ(α+ αµω − 1)

ν3/2
− ατ3/2

√
ν

))
∂J12

∂τ
=

1

8
λe−

µ2ω2

2ντ

(
2αe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+ αντe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+√

2

π

(
(−1)(α− 1)µ2ω2

(ντ)3/2
+
−α+ αµω + 1√

ντ
− α
√
ντ

))
∂J21

∂µ
= λ2ω2

(
α2

(
−e−

µ2ω2

2ντ

)
e

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+
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2α2e
(µω+2ντ)2

2ντ e−
µ2ω2

2ντ erfc

(
µω + 2ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2

)
∂J21

∂ω
= λ2

(
α2(µω + 1)

(
−e−

µ2ω2

2ντ

)
e

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+

α2(2µω + 1)e
(µω+2ντ)2

2ντ e−
µ2ω2
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(
µω + 2ντ√

2
√
ντ

)
+

2µω

(
2− erfc

(
µω√
2
√
ντ

))
+

√
2

π

√
ντe−

µ2ω2

2ντ

)
∂J21

∂ν
=

1

2
λ2τωe−

µ2ω2

2ντ

(
α2

(
−e

(µω+ντ)2

2ντ

)
erfc

(
µω + ντ√

2
√
ντ

)
+

4α2e
(µω+2ντ)2
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(
µω + 2ντ√

2
√
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)
+

√
2
π (−1)

(
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)
√
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
∂J21

∂τ
=

1

2
λ2νωe−

µ2ω2

2ντ

(
α2

(
−e

(µω+ντ)2

2ντ

)
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(
µω + ντ√

2
√
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)
+

4α2e
(µω+2ντ)2
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(
µω + 2ντ√

2
√
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)
+

√
2
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(
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)
√
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
∂J22

∂µ
=

∂J21

∂ν

∂J22

∂ω
=

1

2
λ2µτe−

µ2ω2

2ντ

(
α2

(
−e

(µω+ντ)2

2ντ

)
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(
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2
√
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)
+

4α2e
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(
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2
√
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)
+

√
2
π (−1)

(
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)
√
ντ


∂J22

∂ν
=

1

4
λ2τ2e−

µ2ω2

2ντ

(
α2

(
−e

(µω+ντ)2

2ντ

)
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(
µω + ντ√

2
√
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)
+

8α2e
(µω+2ντ)2

2ντ erfc

(
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2
√
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)
+

√
2

π
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α2 − 1

)
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(ντ)3/2
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√
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))
∂J22

∂τ
=

1

4
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(
−2α2e−

µ2ω2

2ντ e
(µω+ντ)2
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(
µω + ντ√

2
√
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)
−
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2ντ e
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(
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(µω+2ντ)2

2ντ e−
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(
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2
√
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+

8α2ντe
(µω+2ντ)2
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2ντ erfc

(
µω + 2ντ√
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√
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(
2− erfc

(
µω√
2
√
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+√

2

π
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µ2ω2

2ντ

((
α2 − 1

)
µω

√
ντ
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√
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))

Lemma 5 (Bounds on the Derivatives). The following bounds on the absolute values of the deriva-
tives of the Jacobian entries J11(µ, ω, ν, τ, λ, α), J12(µ, ω, ν, τ, λ, α), J21(µ, ω, ν, τ, λ, α), and
J22(µ, ω, ν, τ, λ, α) with respect to µ, ω, ν, and τ hold:

∣∣∣∣∂J11

∂µ

∣∣∣∣ < 0.0031049101995398316 (63)∣∣∣∣∂J11

∂ω

∣∣∣∣ < 1.055872374194189
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∣∣∣∣∂J11

∂ν

∣∣∣∣ < 0.031242911235461816∣∣∣∣∂J11

∂τ

∣∣∣∣ < 0.03749149348255419

∣∣∣∣∂J12

∂µ

∣∣∣∣ < 0.031242911235461816∣∣∣∣∂J12

∂ω

∣∣∣∣ < 0.031242911235461816∣∣∣∣∂J12

∂ν

∣∣∣∣ < 0.21232788238624354∣∣∣∣∂J12

∂τ

∣∣∣∣ < 0.2124377655377270

∣∣∣∣∂J21

∂µ

∣∣∣∣ < 0.02220441024325437∣∣∣∣∂J21

∂ω

∣∣∣∣ < 1.146955401845684∣∣∣∣∂J21

∂ν

∣∣∣∣ < 0.14983446469110305∣∣∣∣∂J21

∂τ

∣∣∣∣ < 0.17980135762932363

∣∣∣∣∂J22

∂µ

∣∣∣∣ < 0.14983446469110305∣∣∣∣∂J22

∂ω

∣∣∣∣ < 0.14983446469110305∣∣∣∣∂J22

∂ν

∣∣∣∣ < 1.805740052651535∣∣∣∣∂J22

∂τ

∣∣∣∣ < 2.396685907216327

Proof. See proof 39.

Bounds on the entries of the Jacobian.
Lemma 6 (Bound on J11). The absolute value of the function
J11 = 1

2λω
(
αeµω+ ντ

2 erfc
(
µω+ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2
)

is bounded by |J11| 6 0.104497 in
the domain −0.1 6 µ 6 0.1, −0.1 6 ω 6 0.1, 0.8 6 ν 6 1.5, and 0.8 6 τ 6 1.25 for α = α01

and λ = λ01.

Proof.

|J11| =
∣∣∣∣12λω

(
αeµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
+ 2− erfc

(
µω√
2
√
ντ

))∣∣∣∣
6 |1

2
||λ||ω| (|α|0.587622 + 1.00584) 6 0.104497,
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(64)

where we used that (a) J11 is strictly monotonically increasing in µω and |2 − erfc
(

0.01√
2
√
ντ

)
| 6

1.00584 and (b) Lemma 47 that |eµω+ ντ
2 erfc

(
µω+ντ√

2
√
ντ

)
| 6 e0.01+ 0.64

2 erfc
(

0.01+0.64√
2
√

0.64

)
= 0.587622

Lemma 7 (Bound on J12). The absolute value of the function

J12 = 1
4λτ

(
αeµω+ ντ

2 erfc
(
µω+ντ√

2
√
ντ

)
− (α− 1)

√
2
πντ e

−µ
2ω2

2ντ

)
is bounded by |J12| 6 0.194145

in the domain −0.1 6 µ 6 0.1, −0.1 6 ω 6 0.1, 0.8 6 ν 6 1.5, and 0.8 6 τ 6 1.25 for α = α01

and λ = λ01.

Proof.

|J12| 6
1

4
|λ||τ |

∣∣∣∣∣
(
αeµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
− (α− 1)

√
2

πντ
e−

µ2ω2

2ντ

)∣∣∣∣∣ 6
1

4
|λ||τ | |0.983247− 0.392294| 6

0.194035 (65)

For the first term we have 0.434947 6 eµω+ ντ
2 erfc

(
µω+ντ√

2
√
ντ

)
6 0.587622 after Lemma 47 and for

the second term 0.582677 6
√

2
πντ e

−µ
2ω2

2ντ 6 0.997356, which can easily be seen by maximizing
or minimizing the arguments of the exponential or the square root function. The first term scaled
by α is 0.727780 6 αeµω+ ντ

2 erfc
(
µω+ντ√

2
√
ντ

)
6 0.983247 and the second term scaled by α − 1 is

0.392294 6 (α − 1)
√

2
πντ e

−µ
2ω2

2ντ 6 0.671484. Therefore, the absolute difference between these
terms is at most 0.983247− 0.392294 leading to the derived bound.

Bounds on mean, variance and second moment. For deriving bounds on µ̃, ξ̃, and ν̃, we need
the following lemma.
Lemma 8 (Derivatives of the Mapping). We assume α = α01 and λ = λ01. We restrict the range of
the variables to the domain µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈ [0.8, 1.25].

The derivative ∂
∂µ µ̃(µ, ω, ν, τ, λ, α) has the sign of ω.

The derivative ∂
∂ν µ̃(µ, ω, ν, τ, λ, α) is positive.

The derivative ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α) has the sign of ω.

The derivative ∂
∂ν ξ̃(µ, ω, ν, τ, λ, α) is positive.

Proof. See 40.

Lemma 9 (Bounds on mean, variance and second moment). The expressions µ̃, ξ̃, and ν̃ for
α = α01 and λ = λ01 are bounded by −0.041160 < µ̃ < 0.087653, 0.703257 < ξ̃ < 1.643705
and 0.695574 < ν̃ < 1.636023 in the domain µ ∈ [−0.1, 0.1], ν ∈ [0.8, 15], ω ∈ [−0.1, 0.1],
τ ∈ [0.8, 1.25].

Proof. We use Lemma 8 which states that with given sign the derivatives of the mapping Eq. (4) and
Eq. (5) with respect to ν and µ are either positive or have the sign of ω. Therefore with given sign of
ω the mappings are strict monotonic and the their maxima and minima are found at the borders. The
minimum of µ̃ is obtained at µω = −0.01 and its maximum at µω = 0.01 and σ and τ at minimal or
maximal values, respectively. It follows that
−0.041160 < µ̃(−0.1, 0.1, 0.8, 0.8, λ01, α01) 6µ̃ 6 µ̃(0.1, 0.1, 1.5, 1.25, λ01, α01) < 0.087653.

(66)
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Similarly, the maximum and minimum of ξ̃ is obtained at the values mentioned above:

0.703257 < ξ̃(−0.1, 0.1, 0.8, 0.8, λ01, α01) 6ξ̃ 6 ξ̃(0.1, 0.1, 1.5, 1.25, λ01, α01) < 1.643705.
(67)

Hence we obtain the following bounds on ν̃:

0.703257− µ̃2 < ξ̃ − µ̃2 < 1.643705− µ̃2 (68)
0.703257− 0.007683 < ν̃ < 1.643705− 0.007682

0.695574 < ν̃ < 1.636023.

Upper Bounds on the Largest Singular Value of the Jacobian.
Lemma 10 (Upper Bounds on Absolute Derivatives of Largest Singular Value). We set α = α01

and λ = λ01 and restrict the range of the variables to µ ∈ [µmin, µmax] = [−0.1, 0.1], ω ∈
[ωmin, ωmax] = [−0.1, 0.1], ν ∈ [νmin, νmax] = [0.8, 1.5], and τ ∈ [τmin, τmax] = [0.8, 1.25].

The absolute values of derivatives of the largest singular value S(µ, ω, ν, τ, λ, α) given in Eq. (61)
with respect to (µ, ω, ν, τ) are bounded as follows:

∣∣∣∣∂S∂µ
∣∣∣∣ < 0.32112 , (69)∣∣∣∣∂S∂ω
∣∣∣∣ < 2.63690 , (70)∣∣∣∣∂S∂ν
∣∣∣∣ < 2.28242 , (71)∣∣∣∣∂S∂τ
∣∣∣∣ < 2.98610 . (72)

Proof. The Jacobian of our mapping Eq. (4) and Eq. (5) is defined as

H =

(
H11 H12

H21 H22

)
=

(
J11 J12

J21 − 2µ̃J11 J22 − 2µ̃J12

)
(73)

and has the largest singular value

S(µ, ω, ν, τ, λ, α) =
1

2

(√
(H11 −H22)2 + (H12 +H21)2 +

√
(H11 +H22)2 + (H12 −H21)2

)
,

(74)

according to the formula of Blinn [4].

We obtain∣∣∣∣ ∂S∂H11

∣∣∣∣ =

∣∣∣∣∣12
(

H11 −H22√
(H11 −H22)2 + (H12 +H21)2

+
H11 +H22√

(H11 +H22)2 + (H21 −H12)2

)∣∣∣∣∣ <
(75)

1

2

∣∣∣∣∣∣ 1√
(H12+H21)2

(H11−H22)2 + 1

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1√
(H21−H12)2

(H11+H22)2 + 1

∣∣∣∣∣∣
 <

1 + 1

2
= 1

and analogously∣∣∣∣ ∂S∂H12

∣∣∣∣ =

∣∣∣∣∣12
(

H12 +H21√
(H11 −H22)2 + (H12 +H21)2

− H21 −H12√
(H11 +H22)2 + (H21 −H12)2

)∣∣∣∣∣ < 1

(76)
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and∣∣∣∣ ∂S∂H21

∣∣∣∣ =

∣∣∣∣∣12
(

H21 −H12√
(H11 +H22)2 + (H21 −H12)2

+
H12 +H21√

(H11 −H22)2 + (H12 +H21)2

)∣∣∣∣∣ < 1

(77)

and∣∣∣∣ ∂S∂H22

∣∣∣∣ =

∣∣∣∣∣12
(

H11 +H22√
(H11 +H22)2 + (H21 −H12)2

− H11 −H22√
(H11 −H22)2 + (H12 +H21)2

)∣∣∣∣∣ < 1 .

(78)

We have

∂S

∂µ
=

∂S

∂H11

∂H11

∂µ
+

∂S

∂H12

∂H12

∂µ
+

∂S

∂H21

∂H21

∂µ
+

∂S

∂H22

∂H22

∂µ
(79)

∂S

∂ω
=

∂S

∂H11

∂H11

∂ω
+

∂S

∂H12

∂H12

∂ω
+

∂S

∂H21

∂H21

∂ω
+

∂S

∂H22

∂H22

∂ω
(80)

∂S

∂ν
=

∂S

∂H11

∂H11

∂ν
+

∂S

∂H12

∂H12

∂ν
+

∂S

∂H21

∂H21

∂ν
+

∂S

∂H22

∂H22

∂ν
(81)

∂S

∂τ
=

∂S

∂H11

∂H11

∂τ
+

∂S

∂H12

∂H12

∂τ
+

∂S

∂H21

∂H21

∂τ
+

∂S

∂H22

∂H22

∂τ
(82)

(83)

from which follows using the bounds from Lemma 5:

Derivative of the singular value w.r.t. µ:∣∣∣∣∂S∂µ
∣∣∣∣ 6 (84)∣∣∣∣ ∂S∂H11

∣∣∣∣ ∣∣∣∣∂H11

∂µ

∣∣∣∣+

∣∣∣∣ ∂S∂H12

∣∣∣∣ ∣∣∣∣∂H12

∂µ

∣∣∣∣+

∣∣∣∣ ∂S∂H21

∣∣∣∣ ∣∣∣∣∂H21

∂µ

∣∣∣∣+

∣∣∣∣ ∂S∂H22

∣∣∣∣ ∣∣∣∣∂H22

∂µ

∣∣∣∣ 6∣∣∣∣∂H11

∂µ

∣∣∣∣+

∣∣∣∣∂H12

∂µ

∣∣∣∣+

∣∣∣∣∂H21

∂µ

∣∣∣∣+

∣∣∣∣∂H22

∂µ

∣∣∣∣ 6∣∣∣∣∂J11

∂µ

∣∣∣∣+

∣∣∣∣∂J12

∂µ

∣∣∣∣+

∣∣∣∣∂J21 − 2µ̃J11

∂µ

∣∣∣∣+

∣∣∣∣∂J22 − 2µ̃J12

∂µ

∣∣∣∣ 6∣∣∣∣∂J11

∂µ

∣∣∣∣+

∣∣∣∣∂J12

∂µ

∣∣∣∣+

∣∣∣∣∂J21

∂µ

∣∣∣∣+

∣∣∣∣∂J22

∂µ

∣∣∣∣+ 2

∣∣∣∣∂J11

∂µ

∣∣∣∣ |µ̃|+ 2 |J11|2 + 2

∣∣∣∣∂J12

∂µ

∣∣∣∣ |µ̃|+ 2 |J12| |J11| 6

0.0031049101995398316 + 0.031242911235461816 + 0.02220441024325437 + 0.14983446469110305+

2 · 0.104497 · 0.087653 + 2 · 0.1044972+

2 · 0.194035 · 0.087653 + 2 · 0.104497 · 0.194035 < 0.32112,

where we used the results from the lemmata 5, 6, 7, and 9.

Derivative of the singular value w.r.t. ω:∣∣∣∣∂S∂ω
∣∣∣∣ 6 (85)∣∣∣∣ ∂S∂H11

∣∣∣∣ ∣∣∣∣∂H11

∂ω

∣∣∣∣+

∣∣∣∣ ∂S∂H12

∣∣∣∣ ∣∣∣∣∂H12

∂ω

∣∣∣∣+

∣∣∣∣ ∂S∂H21

∣∣∣∣ ∣∣∣∣∂H21

∂ω

∣∣∣∣+

∣∣∣∣ ∂S∂H22

∣∣∣∣ ∣∣∣∣∂H22

∂ω

∣∣∣∣ 6∣∣∣∣∂H11

∂ω

∣∣∣∣+

∣∣∣∣∂H12
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∣∣∣∣∂J11
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∣∣∣∣ 6 (86)

2.38392 + 2 · 1.055872374194189 · 0.087653 + 2 · 0.1044972 + 2 · 0.031242911235461816 · 0.087653

+ 2 · 0.194035 · 0.104497 < 2.63690 ,

where we used the results from the lemmata 5, 6, 7, and 9 and that µ̃ is symmetric for µ, ω.

Derivative of the singular value w.r.t. ν:∣∣∣∣∂S∂ν
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2.19916 + 2 · 0.031242911235461816 · 0.087653 + 2 · 0.104497 · 0.194035+

2 · 0.21232788238624354 · 0.087653 + 2 · 0.1940352 < 2.28242 ,

where we used the results from the lemmata 5, 6, 7, and 9.

Derivative of the singular value w.r.t. τ :∣∣∣∣∂S∂τ
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∣∣∣∣ 6 (89)

2.82643 + 2 · 0.03749149348255419 · 0.087653 + 2 · 0.104497 · 0.194035+

2 · 0.2124377655377270 · 0.087653 + 2 · 0.1940352 < 2.98610 ,

where we used the results from the lemmata 5, 6, 7, and 9 and that µ̃ is symmetric for ν, τ .

Lemma 11 (Mean Value Theorem Bound on Deviation from Largest Singular Value). We set
α = α01 and λ = λ01 and restrict the range of the variables to µ ∈ [µmin, µmax] = [−0.1, 0.1],
ω ∈ [ωmin, ωmax] = [−0.1, 0.1], ν ∈ [νmin, νmax] = [0.8, 1.5], and τ ∈ [τmin, τmax] = [0.8, 1.25].

The distance of the singular value at S(µ, ω, ν, τ, λ01, α01) and that at S(µ + ∆µ, ω + ∆ω, ν +
∆ν, τ + ∆τ, λ01, α01) is bounded as follows:

|S(µ+ ∆µ, ω + ∆ω, ν + ∆ν, τ + ∆τ, λ01, α01) − S(µ, ω, ν, τ, λ01, α01)| < (90)
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0.32112 |∆µ|+ 2.63690 |∆ω|+ 2.28242 |∆ν|+ 2.98610 |∆τ | .

Proof. The mean value theorem states that a t ∈ [0, 1] exists for which

S(µ+ ∆µ, ω + ∆ω, ν + ∆ν, τ + ∆τ, λ01, α01) − S(µ, ω, ν, τ, λ01, α01) = (91)
∂S

∂µ
(µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01) ∆µ +

∂S

∂ω
(µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01) ∆ω +

∂S

∂ν
(µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01) ∆ν +

∂S

∂τ
(µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01) ∆τ

from which immediately follows that

|S(µ+ ∆µ, ω + ∆ω, ν + ∆ν, τ + ∆τ, λ01, α01) − S(µ, ω, ν, τ, λ01, α01)| 6 (92)∣∣∣∣∂S∂µ (µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01)

∣∣∣∣ |∆µ| +∣∣∣∣∂S∂ω (µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01)

∣∣∣∣ |∆ω| +∣∣∣∣∂S∂ν (µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01)

∣∣∣∣ |∆ν| +∣∣∣∣∂S∂τ (µ+ t∆µ, ω + t∆ω, ν + t∆ν, τ + t∆τ, λ01, α01)

∣∣∣∣ |∆τ | .
We now apply Lemma 10 which gives bounds on the derivatives, which immediately gives the
statement of the lemma.

Lemma 12 (Largest Singular Value Smaller Than One). We set α = α01 and λ = λ01 and restrict
the range of the variables to µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈ [0.8, 1.25].

The the largest singular value of the Jacobian is smaller than 1:

S(µ, ω, ν, τ, λ01, α01) < 1 . (93)

Therefore the mapping Eq. (4) and Eq. (5) is a contraction mapping.

Proof. We set ∆µ = 0.0068097371, ∆ω = 0.0008292885, ∆ν = 0.0009580840, and ∆τ =
0.0007323095.

According to Lemma 11 we have

|S(µ+ ∆µ, ω + ∆ω, ν + ∆ν, τ + ∆τ, λ01, α01) − S(µ, ω, ν, τ, λ01, α01)| < (94)
0.32112 · 0.0068097371 + 2.63690 · 0.0008292885+

2.28242 · 0.0009580840 + 2.98610 · 0.0007323095 < 0.008747 .

For a grid with grid length ∆µ = 0.0068097371, ∆ω = 0.0008292885, ∆ν = 0.0009580840, and
∆τ = 0.0007323095, we evaluated the function Eq. (61) for the largest singular value in the domain
µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈ [0.8, 1.25]. We did this using a computer.
According to Subsection A3.4.5 the precision if regarding error propagation and precision of the
implemented functions is larger than 10−13. We performed the evaluation on different operating
systems and different hardware architectures including CPUs and GPUs. In all cases the function
Eq. (61) for the largest singular value of the Jacobian is bounded by 0.9912524171058772.

We obtain from Eq. (94):

S(µ+ ∆µ, ω + ∆ω, ν + ∆ν, τ + ∆τ, λ01, α01) 6 0.9912524171058772 + 0.008747 < 1 .
(95)
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A3.4.2 Lemmata for proofing Theorem 1 (part 2): Mapping within domain

We further have to investigate whether the the mapping Eq. (4) and Eq. (5) maps into a predefined
domains.

Lemma 13 (Mapping into the domain). The mapping Eq. (4) and Eq. (5) map for α = α01 and
λ = λ01 into the domain µ ∈ [−0.03106, 0.06773] and ν ∈ [0.80009, 1.48617] with ω ∈ [−0.1, 0.1]
and τ ∈ [0.95, 1.1].

Proof. We use Lemma 8 which states that with given sign the derivatives of the mapping Eq. (4) and
Eq. (5) with respect to α = α01 and λ = λ01 are either positive or have the sign of ω. Therefore with
given sign of ω the mappings are strict monotonic and the their maxima and minima are found at the
borders. The minimum of µ̃ is obtained at µω = −0.01 and its maximum at µω = 0.01 and σ and τ
at their minimal and maximal values, respectively. It follows that:

−0.03106 < µ̃(−0.1, 0.1, 0.8, 0.95, λ01, α01) 6µ̃ 6 µ̃(0.1, 0.1, 1.5, 1.1, λ01, α01) < 0.06773,
(96)

and that µ̃ ∈ [−0.1, 0.1].

Similarly, the maximum and minimum of ξ̃( is obtained at the values mentioned above:

0.80467 < ξ̃(−0.1, 0.1, 0.8, 0.95, λ01, α01) 6ξ̃ 6 ξ̃(0.1, 0.1, 1.5, 1.1, λ01, α01) < 1.48617. (97)

Since |ξ̃ − ν̃| = |µ̃2| < 0.004597, we can conclude that 0.80009 < ν̃ < 1.48617 and the variance
remains in [0.8, 1.5].

Corollary 14. The image g(Ω′) of the mapping g : (µ, ν) 7→ (µ̃, ν̃) (Eq. (8)) and the domain
Ω′ = {(µ, ν)| − 0.1 6 µ 6 0.1, 0.8 6 µ 6 1.5} is a subset of Ω′:

g(Ω′) ⊆ Ω′, (98)

for all ω ∈ [−0.1, 0.1] and τ ∈ [0.95, 1.1].

Proof. Directly follows from Lemma 13.

A3.4.3 Lemmata for proofing Theorem 2: The variance is contracting

Main Sub-Function. We consider the main sub-function of the derivate of second moment, J22
(Eq. (54)):

∂

∂ν
ξ̃ =

1

2
λ2τ

(
−α2eµω+ ντ

2 erfc

(
µω + ντ√

2
√
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)
+ 2α2e2µω+2ντ erfc

(
µω + 2ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2

)
(99)

that depends on µω and ντ , therefore we set x = ντ and y = µω. Algebraic reformulations provide
the formula in the following form:

∂

∂ν
ξ̃ =

1

2
λ2τ

(
α2

(
−e−

y2

2x

)(
e

(x+y)2

2x erfc

(
y + x√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
y + 2x√

2
√
x

))
− erfc

(
y√
2
√
x

)
+ 2

)
(100)

For λ = λ01 and α = α01, we consider the domain −1 6 µ 6 1, −0.1 6 ω 6 0.1, 1.5 6 ν 6 16,
and, 0.8 6 τ 6 1.25.

For x and y we obtain: 0.8 · 1.5 = 1.2 6 x 6 20 = 1.25 · 16 and 0.1 · (−1) = −0.1 6 y 6 0.1 =
0.1 · 1. In the following we assume to remain within this domain.
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Figure A3: Left panel: Graphs of the main subfunction f(x, y) = e
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treated in Lemma 15. The function is negative and monotonically increasing

with x independent of y. Right panel: Graphs of the main subfunction at minimal x = 1.2. The
graph shows that the function f(1.2, y) is strictly monotonically decreasing in y.

Lemma 15 (Main subfunction). For 1.2 6 x 6 20 and −0.1 6 y 6 0.1,

the function

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
(101)

is smaller than zero, is strictly monotonically increasing in x, and strictly monotonically decreasing
in y for the minimal x = 12/10 = 1.2.

Proof. See proof 44.

The graph of the subfunction in the specified domain is displayed in Figure A3.

Theorem 16 (Contraction ν-mapping). The mapping of the variance ν̃(µ, ω, ν, τ, λ, α) given in
Eq. (5) is contracting for λ = λ01, α = α01 and the domain Ω+: −0.1 6 µ 6 0.1, −0.1 6 ω 6 0.1,
1.5 6 ν 6 16, and 0.8 6 τ 6 1.25, that is,∣∣∣∣ ∂∂ν ν̃(µ, ω, ν, τ, λ01, α01)

∣∣∣∣ < 1 . (102)

Proof. In this domain Ω+ we have the following three properties (see further below): ∂
∂ν ξ̃ < 1,

µ̃ > 0, and ∂
∂ν µ̃ > 0. Therefore, we have

∣∣∣∣ ∂∂ν ν̃
∣∣∣∣ =

∣∣∣∣ ∂∂ν ξ̃ − 2µ̃
∂

∂ν
µ̃

∣∣∣∣ < ∣∣∣∣ ∂∂ν ξ̃
∣∣∣∣ < 1 (103)

• We first proof that ∂
∂ν ξ̃ < 1 in an even larger domain that fully contains Ω+. According to

Eq. (54), the derivative of the mapping Eq. (5) with respect to the variance ν is

∂

∂ν
ξ̃(µ, ω, ν, τ, λ01, α01) = (104)
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For λ = λ01, α = α01, −1 6 µ 6 1, −0.1 6 ω 6 0.1 1.5 6 ν 6 16, and 0.8 6 τ 6 1.25,
we first show that the derivative is positive and then upper bound it.

According to Lemma 15, the expression
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√
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2
√
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)
(105)

is negative. This expression multiplied by positive factors is subtracted in the derivative
Eq. (104), therefore, the whole term is positive. The remaining term

2− erfc

(
µω√
2
√
ντ

)
(106)

of the derivative Eq. (104) is also positive according to Lemma 21. All factors outside the
brackets in Eq. (104) are positive. Hence, the derivative Eq. (104) is positive.

The upper bound of the derivative is:
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0.995063 < 1 .

We explain the chain of inequalities:

– First equality brings the expression into a shape where we can apply Lemma 15 for the
the function Eq. (101).

– First inequality: The overall factor τ is bounded by 1.25.
– Second inequality: We apply Lemma 15. According to Lemma 15 the function

Eq. (101) is negative. The largest contribution is to subtract the most negative value
of the function Eq. (101), that is, the minimum of function Eq. (101). According to
Lemma 15 the function Eq. (101) is strictly monotonically increasing in x and strictly
monotonically decreasing in y for x = 1.2. Therefore the function Eq. (101) has its
minimum at minimal x = ντ = 1.5 ·0.8 = 1.2 and maximal y = µω = 1.0 ·0.1 = 0.1.
We insert these values into the expression.
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– Third inequality: We use for the whole expression the maximal factor e−
µ2ω2

2ντ < 1 by
setting this factor to 1.

– Fourth inequality: erfc is strictly monotonically decreasing. Therefore we maximize its
argument to obtain the least value which is subtracted. We use the minimal x = ντ =
1.5 · 0.8 = 1.2 and the maximal y = µω = 1.0 · 0.1 = 0.1.

– Sixth inequality: evaluation of the terms.

• We now show that µ̃ > 0. The expression µ̃(µ, ω, ν, τ) (Eq. (4)) is strictly monoton-
ically increasing im µω and ντ . Therefore, the minimal value in Ω+ is obtained at
µ̃(0.01, 0.01, 1.5, 0.8) = 0.008293 > 0.

• Last we show that ∂
∂ν µ̃ > 0. The expression ∂

∂ν µ̃(µ, ω, ν, τ) = J12(µ, ω, ν, τ) (Eq. (54))
can we reformulated as follows:

J12(µ, ω, ν, τ, λ, α) =
λτe−

µ2ω2

2ντ

(√
παe

(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
−
√

2(α−1)√
ντ

)
4
√
π

(108)

is larger than zero when the term
√
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2ντ erfc
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−
√

2(α−1)√
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is larger than
zero. This term obtains its minimal value at µω = 0.01 and ντ = 16 · 1.25, which can
easily be shown using the Abramowitz bounds (Lemma 22) and evaluates to 0.16, therefore
J12 > 0 in Ω+.

A3.4.4 Lemmata for proofing Theorem 3: The variance is expanding

Main Sub-Function From Below. We consider functions in µω and ντ , therefore we set x = µω
and y = ντ .

For λ = λ01 and α = α01, we consider the domain −0.1 6 µ 6 0.1, −0.1 6 ω 6 0.1 0.00875 6
ν 6 0.7, and 0.8 6 τ 6 1.25.

For x and y we obtain: 0.8 ·0.00875 = 0.007 6 x 6 0.875 = 1.25 ·0.7 and 0.1 · (−0.1) = −0.01 6
y 6 0.01 = 0.1 · 0.1. In the following we assume to be within this domain.

In this domain, we consider the main sub-function of the derivate of second moment in the next layer,
J22 (Eq. (54)):

∂

∂ν
ξ̃ =

1

2
λ2τ

(
−α2eµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
+ 2α2e2µω+2ντ erfc

(
µω + 2ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2

)
(109)

that depends on µω and ντ , therefore we set x = ντ and y = µω. Algebraic reformulations provide
the formula in the following form:

∂

∂ν
ξ̃ = (110)

1

2
λ2τ

(
α2

(
−e−

y2

2x

)(
e

(x+y)2

2x erfc

(
y + x√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
y + 2x√

2
√
x

))
− erfc

(
y√
2
√
x

)
+ 2

)
Lemma 17 (Main subfunction Below). For 0.007 6 x 6 0.875 and−0.01 6 y 6 0.01, the function

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
(111)

smaller than zero, is strictly monotonically increasing in x and strictly monotonically increasing in
y for the minimal x = 0.007 = 0.00875 · 0.8, x = 0.56 = 0.7 · 0.8, x = 0.128 = 0.16 · 0.8, and
x = 0.216 = 0.24 · 0.9 (lower bound of 0.9 on τ ).
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Proof. See proof 45.

Lemma 18 (Monotone Derivative). For λ = λ01, α = α01 and the domain −0.1 6 µ 6 0.1,
−0.1 6 ω 6 0.1, 0.00875 6 ν 6 0.7, and 0.8 6 τ 6 1.25. We are interested of the derivative of

τ

(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− 2e

(
µω+2·ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

))
. (112)

The derivative of the equation above with respect to

• ν is larger than zero;

• τ is smaller than zero for maximal ν = 0.7, ν = 0.16, and ν = 0.24 (with 0.9 6 τ );

• y = µω is larger than zero for ντ = 0.008750.8 = 0.007, ντ = 0.70.8 = 0.56, ντ =
0.160.8 = 0.128, and ντ = 0.24 · 0.9 = 0.216.

Proof. See proof 46.

A3.4.5 Computer-assisted proof details for main Lemma 12 in Section A3.4.1.

Error Analysis. We investigate the error propagation for the singular value (Eq. (61)) if the function
arguments µ, ω, ν, τ suffer from numerical imprecisions up to ε. To this end, we first derive error
propagation rules based on the mean value theorem and then we apply these rules to the formula for
the singular value.
Lemma 19 (Mean value theorem). For a real-valued function f which is differentiable in the closed
interval [a, b], there exists t ∈ [0, 1] with

f(a) − f(b) = ∇f(a + t(b− a)) · (a − b) . (113)

It follows that for computation with error ∆x, there exists a t ∈ [0, 1] with

|f(x + ∆x) − f(x)| 6 ‖∇f(x + t∆x)‖ ‖∆x‖ . (114)

Therefore the increase of the norm of the error after applying function f is bounded by the norm of
the gradient ‖∇f(x + t∆x)‖.
We now compute for the functions, that we consider their gradient and its 2-norm:

• addition:
f(x) = x1 + x2 and ∇f(x) = (1, 1), which gives ‖∇f(x)‖ =

√
2.

We further know that

|f(x + ∆x)− f(x)| = |x1 + x2 + ∆x1 + ∆x2 − x1 − x2| 6 |∆x1|+ |∆x2| .
(115)

Adding n terms gives:∣∣∣∣∣
n∑
i=1

xi + ∆xi −
n∑
i=1

xi

∣∣∣∣∣ 6
n∑
i=1

|∆xi| 6 n |∆xi|max . (116)

• subtraction:
f(x) = x1 − x2 and ∇f(x) = (1,−1), which gives ‖∇f(x)‖ =

√
2.

We further know that

|f(x + ∆x)− f(x)| = |x1 − x2 + ∆x1 −∆x2 − x1 + x2| 6 |∆x1|+ |∆x2| .
(117)

Subtracting n terms gives:∣∣∣∣∣
n∑
i=1

−(xi + ∆xi) +

n∑
i=1

xi

∣∣∣∣∣ 6
n∑
i=1

|∆xi| 6 n |∆xi|max . (118)

33



• multiplication:
f(x) = x1x2 and ∇f(x) = (x2, x1), which gives ‖∇f(x)‖ = ‖x‖.
We further know that

|f(x + ∆x)− f(x)| = |x1 · x2 + ∆x1 · x2 + ∆x2 · x1 + ∆x1 ·∆xs − x1 · x2| 6
(119)

|∆x1| |x2|+ |∆x2| |x1|+O(∆2) .

Multiplying n terms gives:∣∣∣∣∣
n∏
i=1

(xi + ∆xi) −
n∏
i=1

xi

∣∣∣∣∣ =

∣∣∣∣∣
n∏
i=1

xi

n∑
i=1

∆xi
xi

+ O(∆2)

∣∣∣∣∣ 6 (120)

n∏
i=1

|xi|
n∑
i=1

∣∣∣∣∆xixi

∣∣∣∣ + O(∆2) 6 n

n∏
i=1

|xi|
∣∣∣∣∆xixi

∣∣∣∣
max

+ O(∆2) .

• division:
f(x) = x1

x2
and ∇f(x) =

(
1
x2
,−x1

x2
2

)
, which gives ‖∇f(x)‖ = ‖x‖

x2
2

.

We further know that

|f(x + ∆x)− f(x)| =

∣∣∣∣x1 + ∆x1

x2 + ∆x2
− x1

x2

∣∣∣∣ =

∣∣∣∣ (x1 + ∆x1)x2 − x1(x2 + ∆x2)

(x2 + ∆x2)x2

∣∣∣∣ =

(121)∣∣∣∣∆x1 · x2 −∆x2 · x1

x2
2 + ∆x2 · x2

∣∣∣∣ =

∣∣∣∣∆x1

x2
− ∆x2 · x1

x2
2

∣∣∣∣+O(∆2) .

• square root:
f(x) =

√
x and f ′(x) = 1

2
√
x

, which gives |f ′(x)| = 1
2
√
x

.

• exponential function:
f(x) = exp(x) and f ′(x) = exp(x), which gives |f ′(x)| = exp(x).

• error function:
f(x) = erf(x) and f ′(x) = 2√

π
exp(−x2), which gives |f ′(x)| = 2√

π
exp(−x2).

• complementary error function:
f(x) = erfc(x) and f ′(x) = − 2√

π
exp(−x2), which gives |f ′(x)| = 2√

π
exp(−x2).

Lemma 20. If the values µ, ω, ν, τ have a precision of ε, the singular value (Eq. (61)) evaluated
with the formulas given in Eq. (54) and Eq. (61) has a precision better than 292ε.

This means for a machine with a typical precision of 2−52 = 2.220446 · 10−16, we have the rounding
error ε ≈ 10−16, the evaluation of the singular value (Eq. (61)) with the formulas given in Eq. (54)
and Eq. (61) has a precision better than 10−13 > 292ε.

Proof. We have the numerical precision ε of the parameters µ, ω, ν, τ , that we denote by
∆µ,∆ω,∆ν,∆τ together with our domain Ω.

With the error propagation rules that we derived in Subsection A3.4.5, we can obtain bounds for the
numerical errors on the following simple expressions:

∆ (µω) 6 ∆µ |ω|+ ∆ω |µ| 6 0.2ε (122)
∆ (ντ) 6 ∆ν |τ |+ ∆τ |ν| 6 1.5ε+ 1.5ε = 3ε

∆
(ντ

2

)
6 (∆(ντ)2 + ∆2 |ντ |) 1

22
6 (6ε+ 1.25 · 1.5ε)/4 < 2ε

∆ (µω + ντ) 6 ∆ (µω) + ∆ (ντ) = 3.2ε

∆
(
µω +

ντ

2

)
6 ∆ (µω) + ∆

(ντ
2

)
< 2.2ε

∆
(√
ντ
)
6

∆ (ντ)

2
√
ντ

6
3ε

2
√

0.64
= 1.875ε
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∆
(√

2
)
6

∆2

2
√

2
6

1

2
√

2
ε

∆
(√

2
√
ντ
)
6
√

2∆
(√
ντ
)

+ ντ∆
(√

2
)
6
√

2 · 1.875ε+ 1.5 · 1.25 · 1

2
√

2
ε < 3.5ε

∆

(
µω√
2
√
ντ

)
6
(

∆ (µω)
√

2
√
ντ + |µω|∆

(√
2
√
ντ
)) 1(√

2
√
ντ
)2 6

(
0.2ε
√

2
√

0.64 + 0.01 · 3.5ε
) 1

2 · 0.64
< 0.25ε

∆

(
µω + ντ√

2
√
ντ

)
6
(

∆ (µω + ντ)
√

2
√
ντ + |µω + ντ |∆

(√
2
√
ντ
)) 1(√

2
√
ντ
)2 6

(
3.2ε
√

2
√

0.64 + 1.885 · 3.5ε
) 1

2 · 0.64
< 8ε.

Using these bounds on the simple expressions, we can now calculate bounds on the numerical errors
of compound expressions:

∆

(
erfc

(
µω√
2
√
ντ

))
6

2√
π
e
−
(

µω√
2
√
ντ

)2

∆

(
µω√
2
√
ντ

)
< (123)

2√
π

0.25ε < 0.3ε

∆

(
erfc

(
µω + ντ√

2
√
ντ

))
6

2√
π
e
−
(
µω+ντ√

2
√
ντ

)2

∆

(
µω + ντ√

2
√
ντ

)
< (124)

2√
π

8ε < 10ε

∆
(
eµω+ ντ

2

)
6
(
eµω+ ντ

2

)
∆
(
eµω+ ντ

2

)
< (125)

e0.94752.2ε < 5.7ε (126)

Subsequently, we can use the above results to get bounds for the numerical errors on the Jacobian
entries (Eq. (54)), applying the rules from Subsection A3.4.5 again:

∆ (J11) = ∆

(
1

2
λω

(
αeµω+ ντ

2 erfc

(
µω + ντ√

2
√
ντ

)
− erfc

(
µω√
2
√
ντ

)
+ 2

))
< 6ε, (127)

and we obtain ∆ (J12) < 78ε, ∆ (J21) < 189ε, ∆ (J22) < 405ε and ∆ (µ̃) < 52ε. We also have
bounds on the absolute values on Jij and µ̃ (see Lemma 6, Lemma 7, and Lemma 9), therefore we
can propagate the error also through the function that calculates the singular value (Eq. (61)).

∆ (S(µ, ω, ν, τ, λ, α)) = (128)

∆

(
1

2

(√
(J11 + J22 − 2µ̃J12)2 + (J21 − 2µ̃J11 − J12)2 +√

(J11 − J22 + 2µ̃J12)2 + (J12 + J21 − 2µ̃J11)2
))

< 292ε.

Precision of Implementations. We will show that our computations are correct up to 3 ulps. For
our implementation in GNU C library and the hardware architectures that we used, the precision of
all mathematical functions that we used is at least one ulp. The term “ulp” (acronym for “unit in the
last place”) was coined by W. Kahan in 1960. It is the highest precision (up to some factor smaller 1),
which can be achieved for the given hardware and floating point representation.

Kahan defined ulp as [21]:
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“Ulp(x) is the gap between the two finite floating-point numbers nearest x, even if
x is one of them. (But ulp(NaN) is NaN.)”

Harrison defined ulp as [15]:

“an ulp in x is the distance between the two closest straddling floating point
numbers a and b, i.e. those with a 6 x 6 b and a 6= b assuming an unbounded
exponent range.”

In the literature we find also slightly different definitions [29].

According to [29] who refers to [11]:

“IEEE-754 mandates four standard rounding modes:”
“Round-to-nearest: r(x) is the floating-point value closest to x with the usual
distance; if two floating-point value are equally close to x, then r(x) is the one
whose least significant bit is equal to zero.”
“IEEE-754 standardises 5 operations: addition (which we shall note ⊕ in order to
distinguish it from the operation over the reals), subtraction (	), multiplication
(⊗), division (�), and also square root.”
“IEEE-754 specifies em exact rounding [Goldberg, 1991, §1.5]: the result of a
floating-point operation is the same as if the operation were performed on the real
numbers with the given inputs, then rounded according to the rules in the preceding
section. Thus, x ⊕ y is defined as r(x + y), with x and y taken as elements of
R ∪ {−∞,+∞}; the same applies for the other operators.”

Consequently, the IEEE-754 standard guarantees that addition, subtraction, multiplication, division,
and squared root is precise up to one ulp.

We have to consider transcendental functions. First the is the exponential function, and then the
complementary error function erfc(x), which can be computed via the error function erf(x).

Intel states [29]:

“With the Intel486 processor and Intel 387 math coprocessor, the worst- case,
transcendental function error is typically 3 or 3.5 ulps, but is some- times as large
as 4.5 ulps.”

According to https://www.mirbsd.org/htman/i386/man3/exp.htm and http:
//man.openbsd.org/OpenBSD-current/man3/exp.3:

“exp(x), log(x), expm1(x) and log1p(x) are accurate to within an ulp”

which is the same for freebsd https://www.freebsd.org/cgi/man.cgi?query=exp&sektion=
3&apropos=0&manpath=freebsd:

“The values of exp(0), expm1(0), exp2(integer), and pow(integer, integer) are exact
provided that they are representable. Otherwise the error in these functions is
generally below one ulp.”

The same holds for “FDLIBM” http://www.netlib.org/fdlibm/readme:

“FDLIBM is intended to provide a reasonably portable (see assumptions below),
reference quality (below one ulp for major functions like sin,cos,exp,log) math
library (libm.a).”

In http://www.gnu.org/software/libc/manual/html_node/
Errors-in-Math-Functions.html we find that both exp and erf have an error of 1 ulp
while erfc has an error up to 3 ulps depending on the architecture. For the most common architectures
as used by us, however, the error of erfc is 1 ulp.

We implemented the function in the programming language C. We rely on the GNU C Library
[26]. According to the GNU C Library manual which can be obtained from http://www.gnu.org/
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Figure A4: Graphs of the upper and lower bounds on erfc. The lower bound 2e−x
2

√
π(
√
x2+2+x)

(red), the

upper bound 2e−x
2

√
π
(√

x2+ 4
π+x

) (green) and the function erfc(x) (blue) as treated in Lemma 22.

software/libc/manual/pdf/libc.pdf, the errors of the math functions exp, erf , and erfc are
not larger than 3 ulps for all architectures [26, pp. 528]. For the architectures ix86, i386/i686/fpu,
and m68k/fpmu68k/m680x0/fpu that we used the error are at least one ulp [26, pp. 528].

A3.4.6 Intermediate Lemmata and Proofs

Since we focus on the fixed point (µ, ν) = (0, 1), we assume for our whole analysis that α = α01

and λ = λ01. Furthermore, we restrict the range of the variables µ ∈ [µmin, µmax] = [−0.1, 0.1],
ω ∈ [ωmin, ωmax] = [−0.1, 0.1], ν ∈ [νmin, νmax] = [0.8, 1.5], and τ ∈ [τmin, τmax] = [0.8, 1.25].

For bounding different partial derivatives we need properties of different functions. We will bound a
the absolute value of a function by computing an upper bound on its maximum and a lower bound
on its minimum. These bounds are computed by upper or lower bounding terms. The bounds get
tighter if we can combine terms to a more complex function and bound this function. The following
lemmata give some properties of functions that we will use in bounding complex functions.

Throughout this work, we use the error function erf(x) := 1√
π

∫ x
−x e

−t2 and the complementary error
function erfc(x) = 1− erf(x).

Lemma 21 (Basic functions). exp(x) is strictly monotonically increasing from 0 at −∞ to∞ at∞
and has positive curvature.

According to its definition erfc(x) is strictly monotonically decreasing from 2 at −∞ to 0 at∞.

Next we introduce a bound on erfc:

Lemma 22 (Erfc bound from Abramowitz).

2e−x
2

√
π
(√
x2 + 2 + x

) < erfc(x) 6
2e−x

2

√
π
(√

x2 + 4
π + x

) , (129)

for x > 0.

Proof. The statement follows immediately from [1] (page 298, formula 7.1.13).

These bounds are displayed in figure A4.
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Figure A5: Graphs of the functions ex
2

erfc(x) (left) and xex
2

erfc(x) (right) treated in Lemma 23
and Lemma 24, respectively.

Lemma 23 (Function ex
2

erfc(x)). ex
2

erfc(x) is strictly monotonically decreasing for x > 0 and
has positive curvature (positive 2nd order derivative), that is, the decreasing slowes down.

A graph of the function is displayed in Figure A5.

Proof. The derivative of ex
2

erfc(x) is

∂ex
2

erfc(x)

∂x
= 2ex

2

x erfc(x)− 2√
π
. (130)

Using Lemma 22, we get

∂ex
2

erfc(x)

∂x
= 2ex

2

x erfc(x)− 2√
π
<

4x
√
π
(√

x2 + 4
π + x

) − 2√
π

=

2

(
2√

4
πx2

+1+1
− 1

)
√
π

< 0

(131)

Thus ex
2

erfc(x) is strictly monotonically decreasing for x > 0.

The second order derivative of ex
2

erfc(x) is

∂2ex
2

erfc(x)

∂x2
= 4ex

2

x2 erfc(x) + 2ex
2

erfc(x)− 4x√
π
. (132)

Again using Lemma 22 (first inequality), we get

2

((
2x2 + 1

)
ex

2

erfc(x)− 2x√
π

)
> (133)

4
(
2x2 + 1

)
√
π
(√
x2 + 2 + x

) − 4x√
π

=

4
(
x2 −

√
x2 + 2x+ 1

)
√
π
(√
x2 + 2 + x

) =

4
(
x2 −

√
x4 + 2x2 + 1

)
√
π
(√
x2 + 2 + x

) >

4
(
x2 −

√
x4 + 2x2 + 1 + 1

)
√
π
(√
x2 + 2 + x

) = 0

For the last inequality we added 1 in the numerator in the square root which is subtracted, that is,
making a larger negative term in the numerator.
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Lemma 24 (Properties of xex
2

erfc(x)). The function xex
2

erfc(x) has the sign of x and is mono-
tonically increasing to 1√

π
.

Proof. The derivative of xex
2

erfc(x) is

2ex
2

x2 erfc(x) + ex
2

erfc(x)− 2x√
π
. (134)

This derivative is positive since

2ex
2

x2 erfc(x) + ex
2

erfc(x)− 2x√
π

= (135)

ex
2 (

2x2 + 1
)

erfc(x)− 2x√
π
>

2
(
2x2 + 1

)
√
π
(√
x2 + 2 + x

) − 2x√
π

=
2
((

2x2 + 1
)
− x

(√
x2 + 2 + x

))
√
π
(√
x2 + 2 + x

) =

2
(
x2 − x

√
x2 + 2 + 1

)
√
π
(√
x2 + 2 + x

) =
2
(
x2 − x

√
x2 + 2 + 1

)
√
π
(√
x2 + 2 + x

) >
2
(
x2 − x

√
x2 + 1

x2 + 2 + 1
)

√
π
(√
x2 + 2 + x

) =

2
(
x2 −

√
x4 + 2x2 + 1 + 1

)
√
π
(√
x2 + 2 + x

) =

2

(
x2 −

√
(x2 + 1)

2
+ 1

)
√
π
(√
x2 + 2 + x

) = 0 .

We apply Lemma 22 to x erfc(x)ex
2

and divide the terms of the lemma by x, which gives

2
√
π
(√

2
x2 + 1 + 1

) < x erfc(x)ex
2

6
2

√
π
(√

4
πx2 + 1 + 1

) . (136)

For limx→∞ both the upper and the lower bound go to 1√
π

.

Lemma 25 (Function µω). h11(µ, ω) = µω is monotonically increasing in µω. It has minimal value
t11 = −0.01 and maximal value T11 = 0.01.

Proof. Obvious.

Lemma 26 (Function ντ ). h22(ν, τ) = ντ is monotonically increasing in ντ and is positive. It has
minimal value t22 = 0.64 and maximal value T22 = 1.875.

Proof. Obvious.

Lemma 27 (Function µω+ντ√
2
√
ντ

). h1(µ, ω, ν, τ) = µω+ντ√
2
√
ντ

is larger than zero and increasing in both
ντ and µω. It has minimal value t1 = 0.5568 and maximal value T1 = 0.9734.

Proof. The derivative of the function µω+x√
2
√
x

with respect to x is

1√
2
√
x
− µω + x

2
√

2x3/2
=

2x− (µω + x)

2
√

2x3/2
=

x− µω
2
√

2x3/2
> 0 , (137)

since x > 0.8 · 0.8 and µω < 0.1 · 0.1.

Lemma 28 (Function µω+2ντ√
2
√
ντ

). h2(µ, ω, ν, τ) = µω+2ντ√
2
√
ντ

is larger than zero and increasing in both
ντ and µω. It has minimal value t2 = 1.1225 and maximal value T2 = 1.9417.

Proof. The derivative of the function µω+2x√
2
√
x

with respect to x is
√

2√
x
− µω + 2x

2
√

2x3/2
=

4x− (µω + 2x)

2
√

2x3/2
=

2x− µω
2
√

2x3/2
> 0 . (138)
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Lemma 29 (Function µω√
2
√
ντ

). h3(µ, ω, ν, τ) = µω√
2
√
ντ

monotonically decreasing in ντ and
monotonically increasing in µω. It has minimal value t3 = −0.0088388 and maximal value
T3 = 0.0088388.

Proof. Obvious.

Lemma 30 (Function
(

µω√
2
√
ντ

)2

). h4(µ, ω, ν, τ) =
(

µω√
2
√
ντ

)2

has a minimum at 0 for µ = 0 or

ω = 0 and has a maximum for the smallest ντ and largest |µω| and is larger or equal to zero. It has
minimal value t4 = 0 and maximal value T4 = 0.000078126.

Proof. Obvious.

Lemma 31 (Function
√

2
π (α−1)√
ντ

).
√

2
π (α−1)√
ντ

> 0 and decreasing in ντ .

Proof. Statements follow directly from elementary functions square root and division.

Lemma 32 (Function 2 − erfc
(

µω√
2
√
ντ

)
). 2 − erfc

(
µω√
2
√
ντ

)
> 0 and decreasing in ντ and

increasing in µω.

Proof. Statements follow directly from Lemma 21 and erfc.

Lemma 33 (Function
√

2
π

(
(α−1)µω
(ντ)3/2

− α√
ντ

)
). For λ = λ01 and α = α01,√

2
π

(
(α−1)µω
(ντ)3/2

− α√
ντ

)
< 0 and increasing in both ντ and µω.

Proof. We consider the function
√

2
π

(
(α−1)µω
x3/2 − α√

x

)
, which has the derivative with respect to x:√

2

π

(
α

2x3/2
− 3(α− 1)µω

2x5/2

)
. (139)

This derivative is larger than zero, since√
2

π

(
α

2(ντ)3/2
− 3(α− 1)µω

2(ντ)5/2

)
>

√
2
π

(
α− 3(α−1)µω

ντ

)
2(ντ)3/2

> 0 . (140)

The last inequality follows from α− 3·0.1·0.1(α−1)
0.8·0.8 > 0 for α = α01.

We next consider the function
√

2
π

(
(α−1)x
(ντ)3/2

− α√
ντ

)
, which has the derivative with respect to x:√

2
π (α− 1)

(ντ)3/2
> 0 . (141)

Lemma 34 (Function
√

2
π

(
(−1)(α−1)µ2ω2

(ντ)3/2
+ −α+αµω+1√

ντ
− α
√
ντ
)

). The function√
2
π

(
(−1)(α−1)µ2ω2

(ντ)3/2
+ −α+αµω+1√

ντ
− α
√
ντ
)
< 0 is decreasing in ντ and increasing in µω.

Proof. We define the function√
2

π

(
(−1)(α− 1)µ2ω2

x3/2
+
−α+ αµω + 1√

x
− α
√
x

)
(142)

which has as derivative with respect to x:√
2

π

(
3(α− 1)µ2ω2

2x5/2
− −α+ αµω + 1

2x3/2
− α

2
√
x

)
= (143)
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1√
2πx5/2

(
3(α− 1)µ2ω2 − x(−α+ αµω + 1)− αx2

)
.

The derivative of the term 3(α − 1)µ2ω2 − x(−α + αµω + 1) − αx2 with respect to x is −1 +
α− µωα− 2αx < 0, since 2αx > 1.6α. Therefore the term is maximized with the smallest value
for x, which is x = ντ = 0.8 · 0.8. For µω we use for each term the value which gives maximal
contribution. We obtain an upper bound for the term:
3(−0.1 · 0.1)2(α01 − 1)− (0.8 · 0.8)2α01 − 0.8 · 0.8((−0.1 · 0.1)α01 − α01 + 1) = −0.243569 .

(144)
Therefore the derivative with respect to x = ντ is smaller than zero and the original function is
decreasing in ντ

We now consider the derivative with respect to x = µω. The derivative with respect to x of the
function √

2

π

(
−α
√
ντ − (α− 1)x2

(ντ)3/2
+
−α+ αx+ 1√

ντ

)
(145)

is √
2
π (αντ − 2(α− 1)x)

(ντ)3/2
. (146)

Since −2x(−1 + α) + ντα > −2 · 0.01 · (−1 + α01) + 0.8 · 0.8α01 > 1.0574 > 0, the derivative
is larger than zero. Consequently, the original function is increasing in µω.

The maximal value is obtained with the minimal ντ = 0.8 · 0.8 and the maximal µω = 0.1 · 0.1. The
maximal value is√

2

π

(
0.1 · 0.1α01 − α01 + 1√

0.8 · 0.8
+

0.120.12(−1)(α01 − 1)

(0.8 · 0.8)3/2
−
√

0.8 · 0.8α01

)
= −1.72296 .

(147)
Therefore the original function is smaller than zero.

Lemma 35 (Function
√

2
π

(
(α2−1)µω

(ντ)3/2
− 3α2
√
ντ

)
). For λ = λ01 and α = α01,√

2
π

(
(α2−1)µω

(ντ)3/2
− 3α2
√
ντ

)
< 0 and increasing in both ντ and µω.

Proof. The derivative of the function√
2

π

((
α2 − 1

)
µω

x3/2
− 3α2

√
x

)
(148)

with respect to x is√
2

π

(
3α2

2x3/2
−

3
(
α2 − 1

)
µω

2x5/2

)
=

3
(
α2x−

(
α2 − 1

)
µω
)

√
2πx5/2

> 0 , (149)

since α2x− µω(−1 + α2) > α2
010.8 · 0.8− 0.1 · 0.1 · (−1 + α2

01) > 1.77387

The derivative of the function √
2

π

((
α2 − 1

)
x

(ντ)3/2
− 3α2

√
ντ

)
(150)

with respect to x is √
2
π

(
α2 − 1

)
(ντ)3/2

> 0 . (151)

The maximal function value is obtained by maximal ντ = 1.5 · 1.25 and the maximal µω = 0.1 · 0.1.

The maximal value is
√

2
π

(
0.1·0.1(α2

01−1)
(1.5·1.25)3/2

− 3α2
01√

1.5·1.25

)
= −4.88869. Therefore the function is

negative.

41



Lemma 36 (Function
√

2
π

(
(α2−1)µω√

ντ
− 3α2

√
ντ

)
). The function√

2
π

(
(α2−1)µω√

ντ
− 3α2

√
ντ

)
< 0 is decreasing in ντ and increasing in µω.

Proof. The derivative of the function√
2

π

((
α2 − 1

)
µω

√
x

− 3α2
√
x

)
(152)

with respect to x is√
2

π

(
−
(
α2 − 1

)
µω

2x3/2
− 3α2

2
√
x

)
=
−
(
α2 − 1

)
µω − 3α2x

√
2πx3/2

< 0 , (153)

since −3α2x− µω(−1 + α2) < −3α2
010.8 · 0.8 + 0.1 · 0.1(−1 + α2

01) < −5.35764.

The derivative of the function √
2

π

((
α2 − 1

)
x

√
ντ

− 3α2
√
ντ

)
(154)

with respect to x is √
2
π

(
α2 − 1

)
√
ντ

> 0 . (155)

The maximal function value is obtained for minimal ντ = 0.8 · 0.8 and the maximal µω = 0.1 ·

0.1. The value is
√

2
π

(
0.1·0.1(α2

01−1)√
0.8·0.8 − 3

√
0.8 · 0.8α2

01

)
= −5.34347. Thus, the function is

negative.

Lemma 37 (Function ντe
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
). The function ντe

(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
> 0 is

increasing in ντ and decreasing in µω.

Proof. The derivative of the function

xe
(µω+x)2

2x erfc

(
µω + x√

2
√
x

)
(156)

with respect to x is

e
(µω+x)2

2x

(
x(x+ 2)− µ2ω2

)
erfc

(
µω+x√

2
√
x

)
2x

+
µω − x√

2π
√
x
. (157)

This derivative is larger than zero, since

e
(µω+ντ)2

2ντ

(
ντ(ντ + 2)− µ2ω2

)
erfc

(
µω+ντ√

2
√
ντ

)
2ντ

+
µω − ντ√

2π
√
ντ

> (158)

0.4349
(
ντ(ντ + 2)− µ2ω2

)
2ντ

+
µω − ντ√

2π
√
ντ

>

0.5
(
ντ(ντ + 2)− µ2ω2

)
√

2πντ
+
µω − ντ√

2π
√
ντ

=

0.5
(
ντ(ντ + 2)− µ2ω2

)
+
√
ντ(µω − ντ)

√
2πντ

=
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−0.5µ2ω2 + µω
√
ντ + 0.5(ντ)2 − ντ

√
ντ + ντ√

2πντ
=

−0.5µ2ω2 + µω
√
ντ + (0.5ντ −

√
ντ)

2
+ 0.25(ντ)2

√
2πντ

> 0 .

We explain this chain of inequalities:

• The first inequality follows by applying Lemma 23 which says that e
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
is strictly monotonically decreasing. The minimal value that is larger than 0.4349 is taken
on at the maximal values ντ = 1.5 · 1.25 and µω = 0.1 · 0.1.

• The second inequality uses 1
20.4349

√
2π = 0.545066 > 0.5.

• The equalities are just algebraic reformulations.

• The last inequality follows from −0.5µ2ω2 + µω
√
ντ + 0.25(ντ)2 > 0.25(0.8 · 0.8)2 −

0.5 · (0.1)2(0.1)2 − 0.1 · 0.1 ·
√

0.8 · 0.8 = 0.09435 > 0.

Therefore the function is increasing in ντ .

Decreasing in µω follows from decreasing of ex
2

erfc(x) according to Lemma 23. Positivity follows
form the fact that erfc and the exponential function are positive and that ντ > 0.

Lemma 38 (Function ντe
(µω+2ντ)2

2ντ erfc
(
µω+2ντ√

2
√
ντ

)
). The function ντe

(µω+2ντ)2

2ντ erfc
(
µω+2ντ√

2
√
ντ

)
> 0

is increasing in ντ and decreasing in µω.

Proof. The derivative of the function

xe
(µω+2x)2

2x erfc

(
µω + 2x√

2
√

2x

)
(159)

is

e
(µω+2x)2

4x

(√
πe

(µω+2x)2

4x

(
2x(2x+ 1)− µ2ω2

)
erfc

(
µω+2x

2
√
x

)
+
√
x(µω − 2x)

)
2
√
πx

. (160)

We only have to determine the sign of
√
πe

(µω+2x)2

4x

(
2x(2x+ 1)− µ2ω2

)
erfc

(
µω+2x

2
√
x

)
+
√
x(µω−

2x) since all other factors are obviously larger than zero.

This derivative is larger than zero, since

√
πe

(µω+2ντ)2

4ντ

(
2ντ(2ντ + 1)− µ2ω2

)
erfc

(
µω + 2ντ

2
√
ντ

)
+
√
ντ(µω − 2ντ) > (161)

0.463979
(
2ντ(2ντ + 1)− µ2ω2

)
+
√
ντ(µω − 2ντ) =

− 0.463979µ2ω2 + µω
√
ντ + 1.85592(ντ)2 + 0.927958ντ − 2ντ

√
ντ =

µω
(√
ντ − 0.463979µω

)
+ 0.85592(ντ)2 +

(
ντ −

√
ντ
)2 − 0.0720421ντ > 0 .

We explain this chain of inequalities:

• The first inequality follows by applying Lemma 23 which says that

e
(µω+2ντ)2

2ντ erfc
(
µω+2ντ√

2
√
ντ

)
is strictly monotonically decreasing. The minimal value

that is larger than 0.261772 is taken on at the maximal values ντ = 1.5 · 1.25 and
µω = 0.1 · 0.1. 0.261772

√
π > 0.463979.

• The equalities are just algebraic reformulations.
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• The last inequality follows from µω (
√
ντ − 0.463979µω) + 0.85592(ντ)2 −

0.0720421ντ > 0.85592 · (0.8 · 0.8)2 − 0.1 · 0.1
(√

1.5 · 1.25 + 0.1 · 0.1 · 0.463979
)
−

0.0720421 · 1.5 · 1.25 > 0.201766.

Therefore the function is increasing in ντ .

Decreasing in µω follows from decreasing of ex
2

erfc(x) according to Lemma 23. Positivity follows
from the fact that erfc and the exponential function are positive and that ντ > 0.

Lemma 39 (Bounds on the Derivatives). The following bounds on the absolute values of the deriva-
tives of the Jacobian entries J11(µ, ω, ν, τ, λ, α), J12(µ, ω, ν, τ, λ, α), J21(µ, ω, ν, τ, λ, α), and
J22(µ, ω, ν, τ, λ, α) with respect to µ, ω, ν, and τ hold:∣∣∣∣∂J11

∂µ

∣∣∣∣ < 0.0031049101995398316 (162)∣∣∣∣∂J11

∂ω

∣∣∣∣ < 1.055872374194189∣∣∣∣∂J11

∂ν

∣∣∣∣ < 0.031242911235461816∣∣∣∣∂J11

∂τ

∣∣∣∣ < 0.03749149348255419

∣∣∣∣∂J12

∂µ

∣∣∣∣ < 0.031242911235461816∣∣∣∣∂J12

∂ω

∣∣∣∣ < 0.031242911235461816∣∣∣∣∂J12

∂ν

∣∣∣∣ < 0.21232788238624354∣∣∣∣∂J12

∂τ

∣∣∣∣ < 0.2124377655377270

∣∣∣∣∂J21

∂µ

∣∣∣∣ < 0.02220441024325437∣∣∣∣∂J21

∂ω

∣∣∣∣ < 1.146955401845684∣∣∣∣∂J21

∂ν

∣∣∣∣ < 0.14983446469110305∣∣∣∣∂J21

∂τ

∣∣∣∣ < 0.17980135762932363

∣∣∣∣∂J22

∂µ

∣∣∣∣ < 0.14983446469110305∣∣∣∣∂J22

∂ω

∣∣∣∣ < 0.14983446469110305∣∣∣∣∂J22

∂ν

∣∣∣∣ < 1.805740052651535∣∣∣∣∂J22

∂τ

∣∣∣∣ < 2.396685907216327
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Proof. For each derivative we compute a lower and an upper bound and take the maximum of
the absolute value. A lower bound is determined by minimizing the single terms of the functions
that represents the derivative. An upper bound is determined by maximizing the single terms of
the functions that represent the derivative. Terms can be combined to larger terms for which the
maximum and the minimum must be known. We apply many previous lemmata which state properties
of functions representing single or combined terms. The more terms are combined, the tighter the
bounds can be made.

Next we go through all the derivatives, where we use Lemma 25, Lemma 26, Lemma 27, Lemma 28,
Lemma 29, Lemma 30, Lemma 21, and Lemma 23 without citing. Furthermore, we use the bounds
on the simple expressions t11,t22, ..., and T4 as defined the aforementioned lemmata:

• ∂J11

∂µ

We use Lemma 31 and consider the expression αe
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
−
√

2
π (α−1)√
ντ

in
brackets. An upper bound on the maximum of is

α01e
t21 erfc(t1)−

√
2
π (α01 − 1)
√
T22

= 0.591017 . (163)

A lower bound on the minimum is

α01e
T 2
1 erfc(T1)−

√
2
π (α01 − 1)
√
t22

= 0.056318 . (164)

Thus, an upper bound on the maximal absolute value is

1

2
λ01ω

2
maxe

t4

α01e
t21 erfc(t1)−

√
2
π (α01 − 1)
√
T22

 = 0.0031049101995398316 .

(165)

• ∂J11

∂ω

We use Lemma 31 and consider the expression
√

2
π (α−1)µω√

ντ
− α(µω +

1)e
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
in brackets.

An upper bound on the maximum is√
2
π (α01 − 1)T11
√
t22

− α01(t11 + 1)eT
2
1 erfc(T1) = −0.713808 . (166)

A lower bound on the minimum is√
2
π (α01 − 1)t11
√
t22

− α01(T11 + 1)et
2
1 erfc(t1) = −0.99987 . (167)

This term is subtracted, and 2− erfc(x) > 0, therefore we have to use the minimum and the
maximum for the argument of erfc.

Thus, an upper bound on the maximal absolute value is

1

2
λ01

−et4

√

2
π (α01 − 1)t11
√
t22

− α01(T11 + 1)et
2
1 erfc(t1)

 − erfc(T3) + 2

 =

(168)
1.055872374194189 .
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• ∂J11

∂ν

We consider the term in brackets

αe
(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
+

√
2

π

(
(α− 1)µω

(ντ)3/2
− α√

ντ

)
. (169)

We apply Lemma 33 for the first sub-term. An upper bound on the maximum is

α01e
t21 erfc(t1) +

√
2

π

(
(α01 − 1)T11

T
3/2
22

− α01√
T22

)
= 0.0104167 . (170)

A lower bound on the minimum is

α01e
T 2
1 erfc(T1) +

√
2

π

(
(α01 − 1)t11

t
3/2
22

− α01√
t22

)
= −0.95153 . (171)

Thus, an upper bound on the maximal absolute value is

− 1

4
λ01τmaxωmaxe

t4

(
α01e

T 2
1 erfc(T1) +

√
2

π

(
(α01 − 1)t11

t
3/2
22

− α01√
t22

))
= (172)

0.031242911235461816 .

• ∂J11

∂τ

We use the results of item ∂J11

∂ν were the brackets are only differently scaled. Thus, an upper
bound on the maximal absolute value is

− 1

4
λ01νmaxωmaxe

t4

(
α01e

T 2
1 erfc(T1) +

√
2

π

(
(α01 − 1)t11

t
3/2
22

− α01√
t22

))
= (173)

0.03749149348255419 .

• ∂J12

∂µ

Since ∂J12

∂µ = ∂J11

∂ν , an upper bound on the maximal absolute value is

− 1

4
λ01τmaxωmaxe

t4

(
α01e

T 2
1 erfc(T1) +

√
2

π

(
(α01 − 1)t11

t
3/2
22

− α01√
t22

))
= (174)

0.031242911235461816 .

• ∂J12

∂ω

We use the results of item ∂J11

∂ν were the brackets are only differently scaled. Thus, an upper
bound on the maximal absolute value is

− 1

4
λ01µmaxτmaxe

t4

(
α01e

T 2
1 erfc(T1) +

√
2

π

(
(α01 − 1)t11

t
3/2
22

− α01√
t22

))
= (175)

0.031242911235461816 .

• ∂J12

∂ν

For the second term in brackets, we see that α01τ
2
mine

T 2
1 erfc(T1) = 0.465793 and

α01τ
2
maxe

t21 erfc(t1) = 1.53644.

We now check different values for√
2

π

(
(−1)(α− 1)µ2ω2

ν5/2
√
τ

+

√
τ(α+ αµω − 1)

ν3/2
− ατ3/2

√
ν

)
, (176)
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where we maximize or minimize all single terms.

A lower bound on the minimum of this expression is√
2

π

(
(−1)(α01 − 1)µ2

maxω
2
max

ν
5/2
min

√
τmin

+

√
τmin(α01 + α01t11 − 1)

ν
3/2
max

− α01τ
3/2
max√

νmin

)
= (177)

− 1.83112 .

An upper bound on the maximum of this expression is√
2

π

(
(−1)(α01 − 1)µ2

minω
2
min

ν
5/2
max
√
τmax

+

√
τmax(α01 + α01T11 − 1)

ν
3/2
min

− α01τ
3/2
min√

νmax

)
= (178)

0.0802158 .

An upper bound on the maximum is

1

8
λ01e

t4

(√
2

π

(
(−1)(α01 − 1)µ2

minω
2
min

ν
5/2
max
√
τmax

− α01τ
3/2
min√

νmax
+ (179)

√
τmax(α01 + α01T11 − 1)

ν
3/2
min

)
+ α01τ

2
maxe

t21 erfc(t1)

)
= 0.212328 .

A lower bound on the minimum is
1

8
λ01e

t4
(
α01τ

2
mine

T 2
1 erfc(T1) + (180)√

2

π

(
(−1)(α01 − 1)µ2

maxω
2
max

ν
5/2
min

√
τmin

+

√
τmin(α01 + α01t11 − 1)

ν
3/2
max

− α01τ
3/2
max√

νmin

))
=

− 0.179318 .

Thus, an upper bound on the maximal absolute value is

1

8
λ01e

t4

(√
2

π

(
(−1)(α01 − 1)µ2

minω
2
min

ν
5/2
max
√
τmax

− α01τ
3/2
min√

νmax
+ (181)

√
τmax(α01 + α01T11 − 1)

ν
3/2
min

)
+ α01τ

2
maxe

t21 erfc(t1)

)
= 0.21232788238624354 .

• ∂J12

∂τ

We use Lemma 34 to obtain an upper bound on the maximum of the expression of the
lemma:√

2

π

(
0.12 · 0.12(−1)(α01 − 1)

(0.8 · 0.8)3/2
−
√

0.8 · 0.8α01 +
(0.1 · 0.1)α01 − α01 + 1√

0.8 · 0.8

)
= −1.72296 .

(182)

We use Lemma 34 to obtain an lower bound on the minimum of the expression of the lemma:√
2

π

(
0.12 · 0.12(−1)(α01 − 1)

(1.5 · 1.25)3/2
−
√

1.5 · 1.25α01 +
(−0.1 · 0.1)α01 − α01 + 1√

1.5 · 1.25

)
= −2.2302 .

(183)

Next we apply Lemma 37 for the expression ντe
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
. We use Lemma 37

to obtain an upper bound on the maximum of this expression:

1.5 · 1.25e
(1.5·1.25−0.1·0.1)2

2·1.5·1.25 α01 erfc

(
1.5 · 1.25− 0.1 · 0.1√

2
√

1.5 · 1.25

)
= 1.37381 . (184)
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We use Lemma 37 to obtain an lower bound on the minimum of this expression:

0.8 · 0.8e
(0.8·0.8+0.1·0.1)2

2·0.8·0.8 α01 erfc

(
0.8 · 0.8 + 0.1 · 0.1√

2
√

0.8 · 0.8

)
= 0.620462 . (185)

Next we apply Lemma 23 for 2αe
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
. An upper bound on this expres-

sion is

2e
(0.8·0.8−0.1·0.1)2

20.8·0.8 α01 erfc

(
0.8 · 0.8− 0.1 · 0.1√

2
√

0.8 · 0.8

)
= 1.96664 . (186)

A lower bound on this expression is

2e
(1.5·1.25+0.1·0.1)2

2·1.5·1.25 α01 erfc

(
1.5 · 1.25 + 0.1 · 0.1√

2
√

1.5 · 1.25

)
= 1.4556 . (187)

The sum of the minimal values of the terms is−2.23019+0.62046+1.45560 = −0.154133.

The sum of the maximal values of the terms is −1.72295 + 1.37380 + 1.96664 = 1.61749.

Thus, an upper bound on the maximal absolute value is

1

8
λ01e

t4

(
α01T22e

(t11+T22)2

2T22 erfc

(
t11 + T22√

2
√
T22

)
+ (188)

2α01e
t21 erfc(t1) +

√
2

π

(
− (α01 − 1)T 2

11

t
3/2
22

+
−α01 + α01T11 + 1√

t22
−

α01

√
t22

))
= 0.2124377655377270 .

• ∂J21

∂µ

An upper bound on the maximum is

λ2
01ω

2
max

(
α2

01e
T 2
1
(
−e−T4

)
erfc(T1) + 2α2

01e
t22et4 erfc(t2) − erfc(T3) + 2

)
= (189)

0.0222044 .

A upper bound on the absolute minimum is

λ2
01ω

2
max

(
α2

01e
t21
(
−e−t4

)
erfc(t1) + 2α2

01e
T 2
2 eT4 erfc(T2) − erfc(t3) + 2

)
= (190)

0.00894889 .

Thus, an upper bound on the maximal absolute value is

λ2
01ω

2
max

(
α2

01e
T 2
1
(
−e−T4

)
erfc(T1) + 2α2

01e
t22et4 erfc(t2) − erfc(T3) + 2

)
= (191)

0.02220441024325437 .

• ∂J21

∂ω

An upper bound on the maximum is

λ2
01

(
α2

01(2T11 + 1)et
2
2e−t4 erfc(t2) + 2T11(2− erfc(T3)) + (192)

α2
01(t11 + 1)eT

2
1
(
−e−T4

)
erfc(T1) +

√
2

π

√
T22e

−t4

)
= 1.14696 .

A lower bound on the minimum is

λ2
01

(
α2

01(T11 + 1)et
2
1
(
−e−t4

)
erfc(t1) + (193)

α2
01(2t11 + 1)eT

2
2 e−T4 erfc(T2) + 2t11(2− erfc(T3))+
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√
2

π

√
t22e

−T4

)
= −0.359403 .

Thus, an upper bound on the maximal absolute value is

λ2
01

(
α2

01(2T11 + 1)et
2
2e−t4 erfc(t2) + 2T11(2− erfc(T3)) + (194)

α2
01(t11 + 1)eT

2
1
(
−e−T4

)
erfc(T1) +

√
2

π

√
T22e

−t4

)
= 1.146955401845684 .

• ∂J21

∂ν

An upper bound on the maximum is

1

2
λ2

01τmaxωmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(195)
0.149834 .

A lower bound on the minimum is

1

2
λ2

01τmaxωmaxe
−t4

α2
01

(
−et

2
1

)
erfc(t1) + 4α2

01e
T 2
2 erfc(T2) +

√
2
π (−1)

(
α2

01 − 1
)

√
t22

 =

(196)
− 0.0351035 .

Thus, an upper bound on the maximal absolute value is

1

2
λ2

01τmaxωmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(197)
0.14983446469110305 .

• ∂J21

∂τ

An upper bound on the maximum is

1

2
λ2

01νmaxωmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(198)
0.179801 .

A lower bound on the minimum is

1

2
λ2

01νmaxωmaxe
−t4

α2
01

(
−et

2
1

)
erfc(t1) + 4α2

01e
T 2
2 erfc(T2) +

√
2
π (−1)

(
α2

01 − 1
)

√
t22

 =

(199)
− 0.0421242 .

Thus, an upper bound on the maximal absolute value is

1

2
λ2

01νmaxωmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(200)
0.17980135762932363 .
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• ∂J22

∂µ

We use the fact that ∂J22

∂µ = ∂J21

∂ν . Thus, an upper bound on the maximal absolute value is

1

2
λ2

01τmaxωmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(201)
0.14983446469110305 .

• ∂J22

∂ω

An upper bound on the maximum is

1

2
λ2

01µmaxτmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(202)
0.149834 .

A lower bound on the minimum is

1

2
λ2

01µmaxτmaxe
−t4

α2
01

(
−et

2
1

)
erfc(t1) + 4α2

01e
T 2
2 erfc(T2) +

√
2
π (−1)

(
α2

01 − 1
)

√
t22

 =

(203)
− 0.0351035 .

Thus, an upper bound on the maximal absolute value is

1

2
λ2

01µmaxτmaxe
−t4

α2
01

(
−eT

2
1

)
erfc(T1) + 4α2

01e
t22 erfc(t2) +

√
2
π (−1)

(
α2

01 − 1
)

√
T22

 =

(204)
0.14983446469110305 .

• ∂J22

∂ν

We apply Lemma 35 to the expression
√

2
π

(
(α2−1)µω

(ντ)3/2
− 3α2
√
ντ

)
. Using Lemma 35, an

upper bound on the maximum is
1

4
λ2

01τ
2
maxe

−t4
(
α2

01

(
−eT

2
1

)
erfc(T1) + 8α2

01e
t22 erfc(t2) + (205)√

2

π

((
α2

01 − 1
)
T11

T
3/2
22

− 3α2
01√
T22

))
= 1.19441 .

Using Lemma 35, a lower bound on the minimum is
1

4
λ2

01τ
2
maxe

−t4
(
α2

01

(
−et

2
1

)
erfc(t1) + 8α2

01e
T 2
2 erfc(T2) + (206)√

2

π

((
α2

01 − 1
)
t11

t
3/2
22

− 3α2
01√
t22

))
= −1.80574 .

Thus, an upper bound on the maximal absolute value is

− 1

4
λ2

01τ
2
maxe

−t4
(
α2

01

(
−et

2
1

)
erfc(t1) + 8α2

01e
T 2
2 erfc(T2) + (207)√

2

π

((
α2

01 − 1
)
t11

t
3/2
22

− 3α2
01√
t22

))
= 1.805740052651535 .

50



• ∂J22

∂τ

We apply Lemma 36 to the expression
√

2
π

(
(α2−1)µω√

ντ
− 3α2

√
ντ

)
.

We apply Lemma 37 to the expression ντe
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
. We apply Lemma 38 to

the expression ντe
(µω+2ντ)2

2ντ erfc
(
µω+2ντ√

2
√
ντ

)
.

We combine the results of these lemmata to obtain an upper bound on the maximum:

1

4
λ2

01

(
−α2

01t22e
−T4e

(T11+t22)2

2t22 erfc

(
T11 + t22√

2
√
t22

)
+ (208)

8α2
01T22e

−t4e
(t11+2T22)2

2T22 erfc

(
t11 + 2T22√

2
√
T22

)
−

2α2
01e

T 2
1 e−T4 erfc(T1) + 4α2

01e
t22e−t4 erfc(t2) + 2(2− erfc(T3)) +√

2

π
e−T4

((
α2

01 − 1
)
T11√

t22
− 3α2

01

√
t22

))
= 2.39669 .

We combine the results of these lemmata to obtain an lower bound on the minimum:
1

4
λ2

01

(
8α2

01t22e
−T4e

(T11+2t22)2

2t22 erfc

(
T11 + 2t22√

2
√
t22

)
+ (209)

α2
01T22e

−t4e
(t11+T22)2

2T22 erfc

(
t11 + T22√

2
√
T22

)
−

2α2
01e

t21e−t4 erfc(t1) + 4α2
01e

T 2
2 e−T4 erfc(T2) +

2(2− erfc(t3)) +

√
2

π
e−t4

((
α2

01 − 1
)
t11√

T22

− 3α2
01

√
T22

))
= −1.17154 .

Thus, an upper bound on the maximal absolute value is

1

4
λ2

01

(
−α2

01t22e
−T4e

(T11+t22)2

2t22 erfc

(
T11 + t22√

2
√
t22

)
+ (210)

8α2
01T22e

−t4e
(t11+2T22)2

2T22 erfc

(
t11 + 2T22√

2
√
T22

)
−

2α2
01e

T 2
1 e−T4 erfc(T1) + 4α2

01e
t22e−t4 erfc(t2) + 2(2− erfc(T3)) +√

2

π
e−T4

((
α2

01 − 1
)
T11√

t22
− 3α2

01

√
t22

))
= 2.396685907216327 .

Lemma 40 (Derivatives of the Mapping). We assume α = α01 and λ = λ01. We restrict the range
of the variables to the domain µ ∈ [−0.1, 0.1], ω ∈ [−0.1, 0.1], ν ∈ [0.8, 1.5], and τ ∈ [0.8, 1.25].

The derivative ∂
∂µ µ̃(µ, ω, ν, τ, λ, α) has the sign of ω.

The derivative ∂
∂ν µ̃(µ, ω, ν, τ, λ, α) is positive.

The derivative ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α) has the sign of ω.

The derivative ∂
∂ν ξ̃(µ, ω, ν, τ, λ, α) is positive.

Proof. • ∂
∂µ µ̃(µ, ω, ν, τ, λ, α)

(2− erfc(x) > 0 according to Lemma 21 and ex
2

erfc(x) is also larger than zero according
to Lemma 23. Consequently, has ∂

∂µ µ̃(µ, ω, ν, τ, λ, α) the sign of ω.
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• ∂
∂ν µ̃(µ, ω, ν, τ, λ, α)

Lemma 23 says ex
2

erfc(x) is decreasing in µω+ντ√
2
√
ντ

. The first term (negative) is increasing
in ντ since it is proportional to minus one over the squared root of ντ .

We obtain a lower bound by setting µω+ντ√
2
√
ντ

= 1.5·1.25+0.1·0.1√
2
√

1.5·1.25
for the ex

2

erfc(x)

term. The term in brackets is larger than e
(

1.5·1.25+0.1·0.1√
2
√

1.5·1.25

)2

α01 erfc
(

1.5·1.25+0.1·0.1√
2
√

1.5·1.25

)
−√

2
π0.8·0.8 (α01 − 1) = 0.056 Consequently, the function is larger than zero.

• ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α)

We consider the sub-function√
2

π

√
ντ − α2

(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

))
.

(211)

We set x = ντ and y = µω and obtain√
2

π

√
x− α2

(
e

(
x+y√
2
√
x

)2

erfc

(
x+ y√

2
√
x

)
− e

(
2x+y√
2
√
x

)2

erfc

(
2x+ y√

2
√
x

))
. (212)

The derivative of this sub-function with respect to y is

α2
(
e

(2x+y)2

2x (2x+ y) erfc
(

2x+y√
2
√
x

)
− e

(x+y)2

2x (x+ y) erfc
(
x+y√
2
√
x

))
x

= (213)

√
2α2
√
x

 e
(2x+y)2

2x (x+y) erfc
(
x+y√
2
√
x

)
√

2
√
x

−
e
(x+y)2

2x (x+y) erfc
(
x+y√
2
√
x

)
√

2
√
x


x

> 0 .

The inequality follows from Lemma 24, which states that zez
2

erfc(z) is monotonically
increasing in z. Therefore the sub-function is increasing in y.

The derivative of this sub-function with respect to x is
√
πα2

(
e

(2x+y)2

2x

(
4x2 − y2

)
erfc

(
2x+y√

2
√
x

)
− e

(x+y)2

2x (x− y)(x+ y) erfc
(
x+y√
2
√
x

))
−
√

2
(
α2 − 1

)
x3/2

2
√
πx2

.

(214)

The sub-function is increasing in x, since the derivative is larger than zero:
√
πα2

(
e

(2x+y)2

2x

(
4x2 − y2

)
erfc

(
2x+y√

2
√
x

)
− e

(x+y)2

2x (x− y)(x+ y) erfc
(
x+y√
2
√
x

))
−
√

2x3/2
(
α2 − 1

)
2
√
πx2

>

(215)

√
πα2

 (2x−y)(2x+y)2

√
π

(
2x+y√
2
√
x

+

√(
2x+y√
2
√
x

)2
+2

) − (x−y)(x+y)2

√
π

(
x+y√
2
√
x

+

√(
x+y√
2
√
x

)2
+ 4
π

)
−√2x3/2

(
α2 − 1

)
2
√
πx2

=

√
πα2

(
(2x−y)(2x+y)2(

√
2
√
x)

√
π
(

2x+y+
√

(2x+y)2+4x
) − (x−y)(x+y)2(

√
2
√
x)

√
π
(
x+y+

√
(x+y)2+ 8x

π

))−√2x3/2
(
α2 − 1

)
2
√
πx2

=

√
πα2

(
(2x−y)(2x+y)2

√
π
(

2x+y+
√

(2x+y)2+4x
) − (x−y)(x+y)2

√
π
(
x+y+

√
(x+y)2+ 8x

π

))− x (α2 − 1
)

√
2
√
πx3/2

>

52



√
πα2

(
(2x−y)(2x+y)2

√
π
(

2x+y+
√

(2x+y)2+2(2x+y)+1
) − (x−y)(x+y)2

√
π
(
x+y+

√
(x+y)2+0.782·2(x+y)+0.7822

))− x (α2 − 1
)

√
2
√
πx3/2

=

√
πα2

(
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√
π
(

2x+y+
√
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√
π
(
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√
(x+y+0.782)2

))− x (α2 − 1
)

√
2
√
πx3/2

=

√
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π(2(2x+y)+1)

− (x−y)(x+y)2√
π(2(x+y)+0.782)
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)
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2
√
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√
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√
2
√
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√
πα2
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(
α2 − 1
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(2(2x+ y) + 1)(2(x+ y) + 0.782)
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√
2
√
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=

8x3 + (12y + 2.68657)x2 + (y(4y − 6.41452)− 1.40745)x+ 1.22072y2
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√

2
√
πx3/2

>

8x3 + (2.68657− 120.01)x2 + (0.01(−6.41452− 40.01)− 1.40745)x+ 1.22072(0.0)2

(2(2x+ y) + 1)(2(x+ y) + 0.782)
√

2
√
πx3/2

=

8x2 + 2.56657x− 1.472

(2(2x+ y) + 1)(2(x+ y) + 0.782)
√

2
√
π
√
x

=

8x2 + 2.56657x− 1.472

(2(2x+ y) + 1)(2(x+ y) + 0.782)
√

2
√
π
√
x

=

8(x+ 0.618374)(x− 0.297553)

(2(2x+ y) + 1)(2(x+ y) + 0.782)
√

2
√
π
√
x
> 0 .

We explain this chain of inequalities:

– First inequality: We applied Lemma 22 two times.
– Equalities factor out

√
2
√
x and reformulate.

– Second inequality part 1: we applied

0 < 2y =⇒ (2x+ y)2 + 4x+ 1 < (2x+ y)2 + 2(2x+ y) + 1 = (2x+ y + 1)2 .
(216)

– Second inequality part 2: we show that for a = 1
20

(√
2048+169π

π − 13
)

following

holds: 8x
π −

(
a2 + 2a(x+ y)

)
> 0. We have ∂

∂x
8x
π −

(
a2 + 2a(x+ y)

)
= 8

π−2a > 0

and ∂
∂y

8x
π −

(
a2 + 2a(x+ y)

)
= −2a > 0. Therefore the minimum is at border for

minimal x and maximal y:

8 · 0.64

π
−

 2

20

(√
2048 + 169π

π
− 13

)
(0.64 + 0.01) +

(
1

20

(√
2048 + 169π

π
− 13

))2
 = 0 .

(217)

Thus
8x

π
> a2 + 2a(x+ y) . (218)

for a = 1
20

(√
2048+169π

π − 13
)
> 0.782.

– Equalities only solve square root and factor out the resulting terms (2(2x + y) + 1)
and (2(x+ y) + 0.782).

– We set α = α01 and multiplied out. Thereafter we also factored out x in the numerator.
Finally a quadratic equations was solved.
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The sub-function has its minimal value for minimal x and minimal y x = ντ = 0.8 · 0.8 =
0.64 and y = µω = −0.1 · 0.1 = −0.01. We further minimize the function

µωe
µ2ω2

2ντ

(
2− erfc

(
µω√
2
√
ντ

))
> −0.01e

0.012

20.64

(
2− erfc

(
0.01√
2
√

0.64

))
. (219)

We compute the minimum of the term in brackets of ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α):

µωe
µ2ω2

2ντ

(
2− erfc

(
µω√
2
√
ντ

))
+ (220)

α2
01

(
−
(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

)))
+

√
2

π

√
ντ >

α2
01

(
−
(
e

(
0.64−0.01√

2
√

0.64

)2

erfc

(
0.64− 0.01√

2
√

0.64

)
− e

(
20.64−0.01√

2
√

0.64

)2

erfc

(
2 · 0.64− 0.01√

2
√

0.64

)))
−

0.01e
0.012

20.64

(
2− erfc

(
0.01√
2
√

0.64

))
+
√

0.64

√
2

π
= 0.0923765 .

Therefore the term in brackets is larger than zero.

Thus, ∂
∂µ ξ̃(µ, ω, ν, τ, λ, α) has the sign of ω.

• ∂
∂ν ξ̃(µ, ω, ν, τ, λ, α)

We look at the sub-term

2e

(
2x+y√
2
√
x

)2

erfc

(
2x+ y√

2
√
x

)
− e

(
x+y√
2
√
x

)2

erfc

(
x+ y√

2
√
x

)
. (221)

We obtain a chain of inequalities:

2e

(
2x+y√
2
√
x

)2

erfc

(
2x+ y√

2
√
x

)
− e

(
x+y√
2
√
x

)2

erfc

(
x+ y√

2
√
x

)
> (222)

2 · 2
√
π

(
2x+y√

2
√
x

+

√(
2x+y√

2
√
x

)2

+ 2

) − 2

√
π

(
x+y√
2
√
x

+

√(
x+y√
2
√
x

)2

+ 4
π

) =

2
√

2
√
x

(
2√

(2x+y)2+4x+2x+y
− 1√

(x+y)2+ 8x
π +x+y

)
√
π

>

2
√

2
√
x

(
2√

(2x+y)2+2(2x+y)+1+2x+y
− 1√

(x+y)2+0.782·2(x+y)+0.7822+x+y

)
√
π

=

2
√

2
√
x
(

2
2(2x+y)+1 −

1
2(x+y)+0.782

)
√
π

=(
2
√

2
√
x
)

(2(2(x+ y) + 0.782)− (2(2x+ y) + 1))
√
π((2(x+ y) + 0.782)(2(2x+ y) + 1))

=(
2
√

2
√
x
)

(2y + 0.782 · 2− 1)
√
π((2(x+ y) + 0.782)(2(2x+ y) + 1))

> 0 .

We explain this chain of inequalities:

– First inequality: We applied Lemma 22 two times.
– Equalities factor out

√
2
√
x and reformulate.

– Second inequality part 1: we applied

0 < 2y =⇒ (2x+ y)2 + 4x+ 1 < (2x+ y)2 + 2(2x+ y) + 1 = (2x+ y + 1)2 .
(223)
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– Second inequality part 2: we show that for a = 1
20

(√
2048+169π

π − 13
)

following

holds: 8x
π −

(
a2 + 2a(x+ y)

)
> 0. We have ∂

∂x
8x
π −

(
a2 + 2a(x+ y)

)
= 8

π−2a > 0

and ∂
∂y

8x
π −

(
a2 + 2a(x+ y)

)
= −2a < 0. Therefore the minimum is at border for

minimal x and maximal y:

8 · 0.64

π
−

 2

20

(√
2048 + 169π

π
− 13

)
(0.64 + 0.01) +

(
1

20

(√
2048 + 169π

π
− 13

))2
 = 0 .

(224)

Thus
8x

π
> a2 + 2a(x+ y) . (225)

for a = 1
20

(√
2048+169π

π − 13
)
> 0.782.

– Equalities only solve square root and factor out the resulting terms (2(2x + y) + 1)
and (2(x+ y) + 0.782).

We know that (2− erfc(x) > 0 according to Lemma 21. For the sub-term we derived

2e

(
2x+y√
2
√
x

)2

erfc

(
2x+ y√

2
√
x

)
− e

(
x+y√
2
√
x

)2

erfc

(
x+ y√

2
√
x

)
> 0 . (226)

Consequently, both terms in the brackets of ∂
∂ν ξ̃(µ, ω, ν, τ, λ, α) are larger than zero. There-

fore ∂
∂ν ξ̃(µ, ω, ν, τ, λ, α) is larger than zero.

Lemma 41 (Mean at low variance). The mapping of the mean µ̃ (Eq. (4))

µ̃(µ, ω, ν, τ, λ, α) =
1

2
λ

(
−(α+ µω) erfc

(
µω√
2
√
ντ

)
+ (227)

αeµω+ ντ
2 erfc

(
µω + ντ√

2
√
ντ

)
+

√
2

π

√
ντe−

µ2ω2

2ντ + 2µω

)
in the domain −0.1 6 µ 6 −0.1, −0.1 6 ω 6 −0.1, and 0.02 6 ντ 6 0.5 is bounded by

|µ̃(µ, ω, ν, τ, λ01, α01)| < 0.289324 (228)

and

lim
ν→0
|µ̃(µ, ω, ν, τ, λ01, α01)| = λµω. (229)

We can consider µ̃ with given µω as a function in x = ντ . We show the graph of this function at the
maximal µω = 0.01 in the interval x ∈ [0, 1] in Figure A6.

Proof. Since µ̃ is strictly monotonically increasing with µω

µ̃(µ, ω, ν, τ, λ, α) 6 (230)
µ̃(0.1, 0.1, ν, τ, λ, α) 6

1

2
λ

(
−(α+ 0.01) erfc

(
0.01√
2
√
ντ

)
+ αe0.01+ ντ

2 erfc

(
0.01 + ντ√

2
√
ντ

)
+

√
2

π

√
ντe−

0.012

2ντ + 2 · 0.01

)
6

1

2
λ01

(
e

0.05
2 +0.01α01 erfc

(
0.02 + 0.01√

2
√

0.02

)
− (α01 + 0.01) erfc

(
0.01√
2
√

0.02

)
+ e−

0.012

2·0.5
√

0.5

√
2

π
+ 0.01 · 2

)
< 0.21857,

where we have used the monotonicity of the terms in ντ .
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Figure A6: The graph of function µ̃ for low variances x = ντ for µω = 0.01, where x ∈ [0, 3], is
displayed in yellow. Lower and upper bounds based on the Abramowitz bounds (Lemma 22) are
displayed in green and blue, respectively.

Similarly, we can use the monotonicity of the terms in ντ to show that

µ̃(µ, ω, ν, τ, λ, α) > µ̃(0.1,−0.1, ν, τ, λ, α) > −0.289324, (231)

such that |µ̃| < 0.289324 at low variances.

Furthermore, when (ντ)→ 0, the terms with the arguments of the complementary error functions
erfc and the exponential function go to infinity, therefore these three terms converge to zero. Hence,
the remaining terms are only 2µω 1

2λ.

Lemma 42 (Bounds on derivatives of µ̃ in Ω−). The derivatives of the function µ̃(µ, ω, ν, τ, λ01, α01

(Eq. (4)) with respect to µ, ω, ν, τ in the domain Ω− = {µ, ω, ν, τ | − 0.1 6 µ 6 0.1,−0.1 6 ω 6
0.1, 0.05 6 ν 6 0.24, 0.8 6 τ 6 1.25} can be bounded as follows:

∣∣∣∣ ∂∂µµ̃
∣∣∣∣ < 0.14 (232)∣∣∣∣ ∂∂ω µ̃
∣∣∣∣ < 0.14∣∣∣∣ ∂∂ν µ̃
∣∣∣∣ < 0.52∣∣∣∣ ∂∂τ µ̃
∣∣∣∣ < 0.11.

Proof. The expression

∂

∂µ
µ̃ = J11 =

1

2
λωe

−(µω)2

2ντ

(
2e

(µω)2

2ντ − e
(µω)2

2ντ erfc

(
µω√
2
√
ντ

)
+ αe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

))
(233)

contains the terms e
(µω)2

2ντ erfc
(

µω√
2
√
ντ

)
and e

(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
which are monotonically de-

creasing in their arguments (Lemma 23). We can therefore obtain their minima and maximal at the
minimal and maximal arguments. Since the first term has a negative sign in the expression, both
terms reach their maximal value at µω = −0.01, ν = 0.05, and τ = 0.8.∣∣∣∣ ∂∂µµ̃

∣∣∣∣ 6 1

2
|λω|

∣∣∣(2− e0.03535532

erfc (0.0353553) + αe0.1060662

erfc (0.106066)
)∣∣∣ < 0.133

(234)

Since, µ̃ is symmetric in µ and ω, these bounds also hold for the derivate to ω.
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Figure A7: The graph of the function h(x) = µ̃2(0.1,−0.1, x, 1, λ01, α01) is displayed. It has a local
maximum at x = ντ ≈ 0.187342 and h(x) ≈ 0.00451457 in the domain x ∈ [0, 1].

We use the argumentation that the term with the error function is monotonically decreasing
(Lemma 23) again for the expression

∂

∂ν
µ̃ = J12 = (235)

=
1

4
λτe−

µ2ω2

2ντ

(
αe

(µω+ντ)2

2ντ erfc

(
µω + ντ√

2
√
ντ

)
− (α− 1)

√
2

πντ

)
6∣∣∣∣14λτ

∣∣∣∣ (|1.1072− 2.68593|) < 0.52.

We have used that the term 1.1072 6 α01e
(µω+ντ)2

2ντ erfc
(
µω+ντ√

2
√
ντ

)
6 1.49042 and the term

0.942286 6 (α − 1)
√

2
πντ 6 2.68593. Since µ̃ is symmetric in ν and τ , we only have to chance

outermost term
∣∣ 1

4λτ
∣∣ to

∣∣ 1
4λν

∣∣ to obtain the estimate
∣∣ ∂
∂τ µ̃

∣∣ < 0.11.

Lemma 43 (Tight bound on µ̃2 in Ω−). The function µ̃2(µ, ω, ν, τ, λ01, α01) (Eq. (4)) is bounded by∣∣µ̃2
∣∣ < 0.005 (236)

(237)

in the domain Ω− = {µ, ω, ν, τ | − 0.1 6 µ 6 0.1,−0.1 6 ω 6 0.1, 0.05 6 ν 6 0.24, 0.8 6 τ 6
1.25}.

We visualize the function µ̃2 at its maximal µν = −0.01 and for x = ντ in the form h(x) =
µ̃2(0.1,−0.1, x, 1, λ01, α01) in Figure A7.

Proof. We use a similar strategy to the one we have used to show the bound on the singular value
(Lemmata 10, 11, and 12), where we evaluted the function on a grid and used bounds on the derivatives
together with the mean value theorem. Here we have∣∣µ̃2(µ, ω, ν, τ, λ01, α01)− µ̃2(µ+ ∆µ, ω + ∆ω, ν + ∆ν, τ + ∆τ, λ01, α01)

∣∣ 6 (238)∣∣∣∣ ∂∂µµ̃2

∣∣∣∣ |∆µ|+ ∣∣∣∣ ∂∂ω µ̃2

∣∣∣∣ |∆ω|+ ∣∣∣∣ ∂∂ν µ̃2

∣∣∣∣ |∆ν|+ ∣∣∣∣ ∂∂τ µ̃2

∣∣∣∣ |∆τ |.
We use Lemma 42 and Lemma 41, to obtain∣∣∣∣ ∂∂µµ̃2

∣∣∣∣ = 2 |µ̃|
∣∣∣∣ ∂∂µµ̃

∣∣∣∣ < 2 · 0.289324 · 0.14 = 0.08101072 (239)∣∣∣∣ ∂∂ω µ̃2

∣∣∣∣ = 2 |µ̃|
∣∣∣∣ ∂∂ω µ̃

∣∣∣∣ < 2 · 0.289324 · 0.14 = 0.08101072

57



∣∣∣∣ ∂∂ν µ̃2

∣∣∣∣ = 2 |µ̃|
∣∣∣∣ ∂∂ν µ̃

∣∣∣∣ < 2 · 0.289324 · 0.52 = 0.30089696∣∣∣∣ ∂∂τ µ̃2

∣∣∣∣ = 2 |µ̃|
∣∣∣∣ ∂∂τ µ̃

∣∣∣∣ < 2 · 0.289324 · 0.11 = 0.06365128

We evaluated the function µ̃2 in a grid G of Ω− with ∆µ = 0.001498041, ∆ω = 0.001498041,
∆ν = 0.0004033190, and ∆τ = 0.0019065994 using a computer and obtained the maximal value
maxG(µ̃)2 = 0.00451457, therefore the maximal value of µ̃2 is bounded by

max
(µ,ω,ν,τ)∈Ω−

(µ̃)2 6 (240)

0.00451457 + 0.001498041 · 0.08101072 + 0.001498041 · 0.08101072+

0.0004033190 · 0.30089696 + 0.0019065994 · 0.06365128 < 0.005. (241)

Furthermore we used error propagation to estimate the numerical error on the function evaluation.
Using the error propagation rules derived in Subsection A3.4.5, we found that the numerical error is
smaller than 10−13 in the worst case.

Lemma 44 (Main subfunction). For 1.2 6 x 6 20 and −0.1 6 y 6 0.1,

the function

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
(242)

is smaller than zero, is strictly monotonically increasing in x, and strictly monotonically decreasing
in y for the minimal x = 12/10 = 1.2.

Proof. We first consider the derivative of sub-function Eq. (101) with respect to x. The derivative of
the function

e
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(
x+ y√

2
√
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)
− 2e

(2x+y)2
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(
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2
√
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)
(243)

with respect to x is
√
π
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e
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2x (x− y)(x+ y) erfc
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√
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)
− 2e
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√
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√
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√
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=

(244)
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2
√

2
√
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√
x

.

We consider the numerator

√
π

e (x+y)2

2x (x− y)(x+ y) erfc
(
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2
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+ (3x− y) .

(245)

For bounding this value, we use the approximation

ez
2

erfc(z) ≈ 2.911
√
π(2.911− 1)z +

√
πz2 + 2.9112

. (246)
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from Ren and MacKenzie [30]. We start with an error analysis of this approximation. According
to Ren and MacKenzie [30] (Figure 1), the approximation error is positive in the range [0.7, 3.2].
This range contains all possible arguments of erfc that we consider. Numerically we maximized and
minimized the approximation error of the whole expression

E(x, y) =

e (x+y)2

2x (x− y)(x+ y) erfc
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√
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√
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−
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2
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x
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2
√
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)2
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+
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2x+y√
2
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)
 .

We numerically determined 0.0113556 6 E(x, y) 6 0.0169551 for 1.2 6 x 6 20 and −0.1 6
y 6 0.1. We used different numerical optimization techniques like gradient based constraint BFGS
algorithms and non-gradient-based Nelder-Mead methods with different start points. Therefore our
approximation is smaller than the function that we approximate. We subtract an additional safety gap
of 0.0131259 from our approximation to ensure that the inequality via the approximation holds true.
With this safety gap the inequality would hold true even for negative x, where the approximation
error becomes negative and the safety gap would compensate. Of course, the safety gap of 0.0131259
is not necessary for our analysis but may help or future investigations.

We have the sequences of inequalities using the approximation of Ren and MacKenzie [30]:
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√
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2(2x− y)(2x+ y)
(√

2
√
x2.911

)(√
2
√
x
) (√

π(2x+ y)2 + 2 · 2.9112x+ (2.911− 1)(2x+ y)
√
π
)
√π − 0.0131259 =
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(3x− y) + 2.911

 (x− y)(x+ y)

(2.911− 1)(x+ y) +
√

(x+ y)2 + 2·2.9112x
π

−

2(2x− y)(2x+ y)

(2.911− 1)(2x+ y) +
√

(2x+ y)2 + 2·2.9112x
π

− 0.0131259 >

(3x− y) + 2.911

 (x− y)(x+ y)

(2.911− 1)(x+ y) +

√(
2.9112

π

)2
+ (x+ y)2 + 2·2.9112x

π + 2·2.9112y
π

−

2(2x− y)(2x+ y)

(2.911− 1)(2x+ y) +
√

(2x+ y)2 + 2·2.9112x
π

− 0.0131259 =

(3x− y) + 2.911

 (x− y)(x+ y)

(2.911− 1)(x+ y) +

√(
x+ y + 2.9112

π

)2 −
2(2x− y)(2x+ y)

(2.911− 1)(2x+ y) +
√

(2x+ y)2 + 2·2.9112x
π

− 0.0131259 =

(3x− y) + 2.911

 (x− y)(x+ y)

2.911(x+ y) + 2.9112

π

− 2(2x− y)(2x+ y)

(2.911− 1)(2x+ y) +
√

(2x+ y)2 + 2·2.9112x
π

− 0.0131259 =

(3x− y) +
(x− y)(x+ y)

(x+ y) + 2.911
π

− 2(2x− y)(2x+ y)2.911

(2.911− 1)(2x+ y) +
√

(2x+ y)2 + 2·2.9112x
π

− 0.0131259 = (3x− y) +
(x− y)(x+ y)

(x+ y) + 2.911
π

− 2(2x− y)(2x+ y)2.911

(2.911− 1)(2x+ y) +
√

(2x+ y)2 + 2·2.9112x
π

− 0.0131259 =

(
−2(2x− y)2.911

(
(x+ y) +

2.911

π

)
(2x+ y) +(

(x+ y) +
2.911

π

)
(3x− y − 0.0131259)

(
(2.911− 1)(2x+ y) +

√
(2x+ y)2 +

2 · 2.9112x

π

)
+

(x− y)(x+ y)

(
(2.911− 1)(2x+ y) +

√
(2x+ y)2 +

2 · 2.9112x

π

))
((

(x+ y) +
2.911

π

)(
(2.911− 1)(2x+ y) +

√
(2x+ y)2 +

2 · 2.9112x

π

))−1

=(
((x− y)(x+ y) + (3x− y − 0.0131259)(x+ y + 0.9266))

(√
(2x+ y)2 + 5.39467x+ 3.822x+ 1.911y

)
−

(249)
5.822(2x− y)(x+ y + 0.9266)(2x+ y))((

(x+ y) +
2.911

π

)(
(2.911− 1)(2x+ y) +

√
(2x+ y)2 +

22.9112x

π

))−1

> 0 .

We explain this sequence of inequalities:

• First inequality: The approximation of Ren and MacKenzie [30] and then subtracting a
safety gap (which would not be necessary for the current analysis).

• Equalities: The factor
√

2
√
x is factored out and canceled.

• Second inequality: adds a positive term in the first root to obtain a binomial form. The term
containing the root is positive and the root is in the denominator, therefore the whole term
becomes smaller.
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• Equalities: solve for the term and factor out.

• Bringing all terms to the denominator
(
(x+ y) + 2.911

π

)(
(2.911− 1)(2x+ y) +

√
(2x+ y)2 + 2·2.9112x

π

)
.

• Equalities: Multiplying out and expanding terms.

• Last inequality > 0 is proofed in the following sequence of inequalities.

We look at the numerator of the last expression of Eq. (248), which we show to be positive in order to
show > 0 in Eq. (248). The numerator is

((x− y)(x+ y) + (3x− y − 0.0131259)(x+ y + 0.9266))
(√

(2x+ y)2 + 5.39467x+ 3.822x+ 1.911y
)
−

(250)
5.822(2x− y)(x+ y + 0.9266)(2x+ y) =

− 5.822(2x− y)(x+ y + 0.9266)(2x+ y) + (3.822x+ 1.911y)((x− y)(x+ y)+

(3x− y − 0.0131259)(x+ y + 0.9266)) + ((x− y)(x+ y)+

(3x− y − 0.0131259)(x+ y + 0.9266))
√

(2x+ y)2 + 5.39467x =

− 8.0x3 +
(
4x2 + 2xy + 2.76667x− 2y2 − 0.939726y − 0.0121625

)√
(2x+ y)2 + 5.39467x−

8.0x2y − 11.0044x2 + 2.0xy2 + 1.69548xy − 0.0464849x+ 2.0y3 + 3.59885y2 − 0.0232425y =

− 8.0x3 +
(
4x2 + 2xy + 2.76667x− 2y2 − 0.939726y − 0.0121625

)√
(2x+ y)2 + 5.39467x−

8.0x2y − 11.0044x2 + 2.0xy2 + 1.69548xy − 0.0464849x+ 2.0y3 + 3.59885y2 − 0.0232425y .

The factor in front of the root is positive. If the term, that does not contain the root, was positive, then
the whole expression would be positive and we would have proofed that the numerator is positive.
Therefore we consider the case that the term, that does not contain the root, is negative. The term that
contains the root must be larger than the other term in absolute values.

−
(
−8.0x3 − 8.0x2y − 11.0044x2 + 2.xy2 + 1.69548xy − 0.0464849x+ 2.y3 + 3.59885y2 − 0.0232425y

)
<

(251)(
4x2 + 2xy + 2.76667x− 2y2 − 0.939726y − 0.0121625

)√
(2x+ y)2 + 5.39467x .

Therefore the squares of the root term have to be larger than the square of the other term to show > 0
in Eq. (248). Thus, we have the inequality:(
−8.0x3 − 8.0x2y − 11.0044x2 + 2.xy2 + 1.69548xy − 0.0464849x+ 2.y3 + 3.59885y2 − 0.0232425y

)2
<

(252)(
4x2 + 2xy + 2.76667x− 2y2 − 0.939726y − 0.0121625

)2 (
(2x+ y)2 + 5.39467x

)
.

This is equivalent to

0 <
(
4x2 + 2xy + 2.76667x− 2y2 − 0.939726y − 0.0121625

)2 (
(2x+ y)2 + 5.39467x

)
−
(253)(

−8.0x3 − 8.0x2y − 11.0044x2 + 2.0xy2 + 1.69548xy − 0.0464849x+ 2.0y3 + 3.59885y2 − 0.0232425y
)2

=

− 1.2227x5 + 40.1006x4y + 27.7897x4 + 41.0176x3y2 + 64.5799x3y + 39.4762x3 + 10.9422x2y3−
13.543x2y2 − 28.8455x2y − 0.364625x2 + 0.611352xy4 + 6.83183xy3 + 5.46393xy2+

0.121746xy + 0.000798008x− 10.6365y5 − 11.927y4 + 0.190151y3 − 0.000392287y2 .

We obtain the inequalities:

− 1.2227x5 + 40.1006x4y + 27.7897x4 + 41.0176x3y2 + 64.5799x3y + 39.4762x3 + 10.9422x2y3−
(254)

13.543x2y2 − 28.8455x2y − 0.364625x2 + 0.611352xy4 + 6.83183xy3 + 5.46393xy2+

0.121746xy + 0.000798008x− 10.6365y5 − 11.927y4 + 0.190151y3 − 0.000392287y2 =
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− 1.2227x5 + 27.7897x4 + 41.0176x3y2 + 39.4762x3 − 13.543x2y2 − 0.364625x2+

y
(
40.1006x4 + 64.5799x3 + 10.9422x2y2 − 28.8455x2 + 6.83183xy2 + 0.121746x −

10.6365y4 + 0.190151y2
)

+ 0.611352xy4 + 5.46393xy2 + 0.000798008x− 11.927y4 − 0.000392287y2 >

− 1.2227x5 + 27.7897x4 + 41.0176 · (0.0)2x3 + 39.4762x3 − 13.543 · (0.1)2x2 − 0.364625x2−
0.1 ·

(
40.1006x4 + 64.5799x3 + 10.9422 · (0.1)2x2 − 28.8455x2 + 6.83183 · (0.1)2x+ 0.121746x +

10.6365 · (0.1)4 + 0.190151 · (0.1)2
)

+

0.611352 · (0.0)4x+ 5.46393 · (0.0)2x+ 0.000798008x− 11.927 · (0.1)4 − 0.000392287 · (0.1)2 =

− 1.2227x5 + 23.7796x4 + (20 + 13.0182)x3 + 2.37355x2 − 0.0182084x− 0.000194074 >

− 1.2227x5 + 24.7796x4 + 13.0182x3 + 2.37355x2 − 0.0182084x− 0.000194074 >

13.0182x3 + 2.37355x2 − 0.0182084x− 0.000194074 > 0 .

We used 24.7796 · (20)4 − 1.2227 · (20)5 = 52090.9 > 0 and x 6 20. We have proofed the last
inequality > 0 of Eq. (248).

Consequently the derivative is always positive independent of y, thus

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
(255)

is strictly monotonically increasing in x.

The main subfunction is smaller than zero. Next we show that the sub-function Eq. (101) is
smaller than zero. We consider the limit:

lim
x→∞

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
= 0 (256)

The limit follows from Lemma 22. Since the function is monotonic increasing in x, it has to approach
0 from below. Thus,

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
(257)

is smaller than zero.

Behavior of the main subfunction with respect to y at minimal x. We now consider the deriva-
tive of sub-function Eq. (101) with respect to y. We proofed that sub-function Eq. (101) is strictly
monotonically increasing independent of y. In the proof of Theorem 16, we need the minimum of
sub-function Eq. (101). Therefore we are only interested in the derivative of sub-function Eq. (101)
with respect to y for the minimum x = 12/10 = 1.2

Consequently, we insert the minimum x = 12/10 = 1.2 into the sub-function Eq. (101). The main
terms become

x+ y√
2
√
x

=
y + 1.2√

2
√

1.2
=

y√
2
√

1.2
+

√
1.2√
2

=
5y + 6

2
√

15
(258)

and
2x+ y√

2
√
x

=
y + 1.2 · 2√

2
√

1.2
=

y√
2
√

1.2
+
√

1.2
√

2 =
5y + 12

2
√

15
. (259)

Sub-function Eq. (101) becomes:

e

(
y

√
2
√

12
10

+

√
12
10√
2

)2

erfc

 y
√

2
√

12
10

+

√
12
10√
2

− 2e

(
y

√
2
√

12
10

+
√

2
√

12
10

)2

erfc

 y
√

2
√

12
10

+
√

2

√
12

10

 .

(260)
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The derivative of this function with respect to y is
√

15π
(
e

1
60 (5y+6)2(5y + 6) erfc

(
5y+6

2
√

15

)
− 2e

1
60 (5y+12)2(5y + 12) erfc

(
5y+12

2
√

15

))
+ 30

6
√

15π
. (261)

We again will use the approximation of Ren and MacKenzie [30]

ez
2

erfc(z) =
2.911

√
π(2.911− 1)z +

√
πz2 + 2.9112

. (262)

Therefore we first perform an error analysis. We estimated the maximum and minimum of

√
15π

 2 · 2.911(5y + 12)
√
π(2.911−1)(5y+12)

2
√

15
+

√
π
(

5y+12

2
√

15

)2

+ 2.9112

− 2.911(5y + 6)
√
π(2.911−1)(5y+6)

2
√

15
+

√
π
(

5y+6

2
√

15

)2

+ 2.9112

+ 30 +

(263)
√

15π

(
e

1
60 (5y+6)2(5y + 6) erfc

(
5y + 6

2
√

15

)
− 2e

1
60 (5y+12)2(5y + 12) erfc

(
5y + 12

2
√

15

))
+ 30 .

We obtained for the maximal absolute error the value 0.163052. We added an approximation error
of 0.2 to the approximation of the derivative. Since we want to show that the approximation upper
bounds the true expression, the addition of the approximation error is required here. We get a
sequence of inequalities:

√
15π

(
e

1
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(
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2
√
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+ 30 6

(264)

√
15π

 2.911(5y + 6)
√
π(2.911−1)(5y+6)

2
√
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+

√
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2
√
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+ 2.9112
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√
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√
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√
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2
√
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)2
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√
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(
2
√
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π
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√
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(
2
√
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π
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+
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(
2
√
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π
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(2.911− 1)(5y + 6) +

√√√√(5y + 6)2 +

(
2
√
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π
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−
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(2.911− 1)(5y + 6) +

√√√√(5y + 6)2 +

(
2
√

15 · 2.911√
π
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+
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(2.911− 1)(5y + 12) +
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2
√
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

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
(2.911− 1)(5y + 6) +

√√√√(5y + 6)2 +

(
2
√

15 · 2.911√
π

)2


(2.911− 1)(5y + 12) +

√√√√(5y + 12)2 +

(
2
√

15 · 2.911√
π

)2


−1

< 0 .

We explain this sequence of inequalities.

• First inequality: The approximation of Ren and MacKenzie [30] and then adding the error
bound to ensure that the approximation is larger than the true value.

• First equality: The factor 2
√

15 and 2
√
π are factored out and canceled.

• Second equality: Bringing all terms to the denominator(2.911− 1)(5y + 6) +

√√√√(5y + 6)2 +

(
2
√

152.911√
π

)2
 (265)

(2.911− 1)(5y + 12) +

√√√√(5y + 12)2 +

(
2
√

15 · 2.911√
π

)2
 .

• Last inequality < 0 is proofed in the following sequence of inequalities.

We look at the numerator of the last term in Eq. (264). We have to proof that this numerator is smaller
than zero in order to proof the last inequality of Eq. (264). The numerator is

(0.2 + 30)

(2.911− 1)(5y + 12) +

√√√√(5y + 12)2 +

(
2
√

15 · 2.911√
π
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 (266)
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√

15 · 2.911√
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 −
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√√√√(5y + 6)2 +

(
2
√

15 · 2.911√
π
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√√√√(5y + 12)2 +

(
2
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15 .2.911√
π
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 .

We now compute upper bounds for this numerator:
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 (267)
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−
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2 · 30 · 2.911(5y + 12)

(2.911− 1)(5y + 6) +

√√√√(5y + 6)2 +

(
2
√

15 · 2.911√
π

)2
+

2.911 · 30(5y + 6)

(2.911− 1)(5y + 12) +

√√√√(5y + 12)2 +

(
2
√

15 · 2.911√
π

)2
 =

− 1414.99y2 − 584.739
√

(5y + 6)2 + 161.84y + 725.211
√

(5y + 12)2 + 161.84y−

5093.97y − 1403.37
√

(5y + 6)2 + 161.84 + 30.2
√

(5y + 6)2 + 161.84
√

(5y + 12)2 + 161.84+

870.253
√

(5y + 12)2 + 161.84− 4075.17 <

− 1414.99y2 − 584.739
√

(5y + 6)2 + 161.84y + 725.211
√

(5y + 12)2 + 161.84y−

5093.97y − 1403.37
√

(6 + 5 · (−0.1))2 + 161.84 + 30.2
√

(6 + 5 · 0.1)2 + 161.84
√

(12 + 5 · 0.1)2 + 161.84+

870.253
√

(12 + 5 · 0.1)2 + 161.84− 4075.17 =

− 1414.99y2 − 584.739
√

(5y + 6)2 + 161.84y + 725.211
√

(5y + 12)2 + 161.84y − 5093.97y − 309.691 <

y
(
−584.739

√
(5y + 6)2 + 161.84 + 725.211

√
(5y + 12)2 + 161.84− 5093.97

)
− 309.691 <

− 0.1
(

725.211
√

(12 + 5 · (−0.1))2 + 161.84− 584.739
√

(6 + 5 · 0.1)2 + 161.84− 5093.97
)
− 309.691 =

− 208.604 .

For the first inequality we choose y in the roots, so that positive terms maximally increase and
negative terms maximally decrease. The second inequality just removed the y2 term which is always
negative, therefore increased the expression. For the last inequality, the term in brackets is negative
for all settings of y. Therefore we make the brackets as negative as possible and make the whole term
positive by multiplying with y = −0.1.

Consequently
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)
(268)

is strictly monotonically decreasing in y for the minimal x = 1.2.

Lemma 45 (Main subfunction below). For 0.007 6 x 6 0.875 and −0.01 6 y 6 0.01, the function

e
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)
− 2e
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2x erfc
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)
(269)

smaller than zero, is strictly monotonically increasing in x and strictly monotonically increasing in
y for the minimal x = 0.007 = 0.00875 · 0.8, x = 0.56 = 0.7 · 0.8, x = 0.128 = 0.16 · 0.8, and
x = 0.216 = 0.24 · 0.9 (lower bound of 0.9 on τ ).

Proof. We first consider the derivative of sub-function Eq. (111) with respect to x. The derivative of
the function
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)
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with respect to x is
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We consider the numerator
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(272)

For bounding this value, we use the approximation

ez
2

erfc(z) ≈ 2.911
√
π(2.911− 1)z +

√
πz2 + 2.9112

. (273)

from Ren and MacKenzie [30]. We start with an error analysis of this approximation. According to
Ren and MacKenzie [30] (Figure 1), the approximation error is both positive and negative in the range
[0.175, 1.33]. This range contains all possible arguments of erfc that we consider in this subsection.
Numerically we maximized and minimized the approximation error of the whole expression
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We numerically determined −0.000228141 6 E(x, y) 6 0.00495688 for 0.08 6 x 6 0.875 and
−0.01 6 y 6 0.01. We used different numerical optimization techniques like gradient based
constraint BFGS algorithms and non-gradient-based Nelder-Mead methods with different start points.
Therefore our approximation is smaller than the function that we approximate.

We use an error gap of −0.0003 to countermand the error due to the approximation. We have the
sequences of inequalities using the approximation of Ren and MacKenzie [30]:
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We explain this sequence of inequalities:

• First inequality: The approximation of Ren and MacKenzie [30] and then subtracting an
error gap of 0.0003.

• Equalities: The factor
√

2
√
x is factored out and canceled.

• Second inequality: adds a positive term in the first root to obtain a binomial form. The term
containing the root is positive and the root is in the denominator, therefore the whole term
becomes smaller.

• Equalities: solve for the term and factor out.

• Bringing all terms to the denominator
(
(x+ y) + 2.911

π

)(
(2.911− 1)(2x+ y) +

√
(2x+ y)2 + 2·2.9112x

π

)
.

• Equalities: Multiplying out and expanding terms.

• Last inequality > 0 is proofed in the following sequence of inequalities.

We look at the numerator of the last expression of Eq. (275), which we show to be positive in order to
show > 0 in Eq. (275). The numerator is

− 8x3 +
(
4x2 + 2xy + 2.7795x− 2y2 − 0.9269y − 0.00027798

)√
(2x+ y)2 + 5.39467x −

(276)

8x2y − 10.9554x2 + 2xy2 + 1.76901xy − 0.00106244x+ 2y3 + 3.62336y2 − 0.00053122y .

The factor 4x2 + 2xy + 2.7795x− 2y2 − 0.9269y − 0.00027798 in front of the root is positive:
4x2 + 2xy + 2.7795x− 2y2 − 0.9269y − 0.00027798 > (277)

−2y2 + 0.007 · 2y − 0.9269y + 4 · 0.0072 + 2.7795 · 0.007− 0.00027798 =

−2y2 − 0.9129y + 2.77942 = −2(y + 1.42897)(y − 0.972523) > 0 .

If the term that does not contain the root would be positive, then everything is positive and we have
proofed the the numerator is positive. Therefore we consider the case that the term that does not
contain the root is negative. The term that contains the root must be larger than the other term in
absolute values.
−
(
−8x3 − 8x2y − 10.9554x2 + 2xy2 + 1.76901xy − 0.00106244x+ 2y3 + 3.62336y2 − 0.00053122y

)
<

(278)(
4x2 + 2xy + 2.7795x− 2y2 − 0.9269y − 0.00027798

)√
(2x+ y)2 + 5.39467x .

Therefore the squares of the root term have to be larger than the square of the other term to show > 0
in Eq. (275). Thus, we have the inequality:(
−8x3 − 8x2y − 10.9554x2 + 2xy2 + 1.76901xy − 0.00106244x+ 2y3 + 3.62336y2 − 0.00053122y

)2
<

(279)
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)2 (
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)
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This is equivalent to

0 <
(
4x2 + 2xy + 2.7795x− 2y2 − 0.9269y − 0.00027798

)2 (
(2x+ y)2 + 5.39467x

)
−

(280)(
−8x3 − 8x2y − 10.9554x2 + 2xy2 + 1.76901xy − 0.00106244x+ 2y3 + 3.62336y2 − 0.00053122y

)2
=

x · 4.168614250 · 10−7 − y22.049216091 · 10−7 − 0.0279456x5+

43.0875x4y + 30.8113x4 + 43.1084x3y2 + 68.989x3y + 41.6357x3 + 10.7928x2y3 − 13.1726x2y2−
27.8148x2y − 0.00833715x2 + 0.0139728xy4 + 5.47537xy3+

4.65089xy2 + 0.00277916xy − 10.7858y5 − 12.2664y4 + 0.00436492y3 .

We obtain the inequalities:

x · 4.168614250 · 10−7 − y22.049216091 · 10−7 − 0.0279456x5+ (281)
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x · 4.168614250 · 10−7 − 1.237626189 · 10−7 − 0.0279456x5 + 30.8113x4 + 41.6357x3 − 0.287802x2 >

−
( x

0.007

)3

1.237626189 · 10−7 + 30.8113x4 − (0.875) · 0.0279456x4 + 41.6357x3 − (0.287802x)x2

0.007
=

30.7869x4 + 0.160295x3 > 0 .

We used x > 0.007 and x 6 0.875 (reducing the negative x4-term to a x3-term). We have proofed
the last inequality > 0 of Eq. (275).

Consequently the derivative is always positive independent of y, thus
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is strictly monotonically increasing in x.

Next we show that the sub-function Eq. (111) is smaller than zero. We consider the limit:

lim
x→∞
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= 0 (283)

The limit follows from Lemma 22. Since the function is monotonic increasing in x, it has to approach
0 from below. Thus,
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(284)

is smaller than zero.

We now consider the derivative of sub-function Eq. (111) with respect to y. We proofed that sub-
function Eq. (111) is strictly monotonically increasing independent of y. In the proof of Theorem 3,
we need the minimum of sub-function Eq. (111). First, we are interested in the derivative of sub-
function Eq. (111) with respect to y for the minimum x = 0.007 = 7/1000.
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Consequently, we insert the minimum x = 0.007 = 7/1000 into the sub-function Eq. (111):
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The derivative of this function with respect to y is(
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For the first inequality, we use Lemma 24. Lemma 24 says that the function xex
2

erfc(x) has the sign
of x and is monotonically increasing to 1√

π
. Consequently, we inserted the maximal y = 0.01 to

make the negative term more negative and the minimal y = −0.01 to make the positive term less
positive.

Consequently

e
(x+y)2

2x erfc

(
x+ y√

2
√
x

)
− 2e

(2x+y)2

2x erfc

(
2x+ y√

2
√
x

)
(287)

is strictly monotonically increasing in y for the minimal x = 0.007.

Next, we consider x = 0.7 · 0.8 = 0.56, which is the maximal ν = 0.7 and minimal τ = 0.8. We
insert the minimum x = 0.56 = 56/100 into the sub-function Eq. (111):
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The derivative with respect to y is:
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For the first inequality we applied Lemma 24 which states that the function xex
2

erfc(x) is monotoni-
cally increasing. Consequently, we inserted the maximal y = 0.01 to make the negative term more
negative and the minimal y = −0.01 to make the positive term less positive.

Consequently
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is strictly monotonically increasing in y for x = 0.56.

Next, we consider x = 0.16 · 0.8 = 0.128, which is the minimal τ = 0.8. We insert the minimum
x = 0.128 = 128/1000 into the sub-function Eq. (111):
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The derivative with respect to y is:
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For the first inequality we applied Lemma 24 which states that the function xex
2

erfc(x) is monotoni-
cally increasing. Consequently, we inserted the maximal y = 0.01 to make the negative term more
negative and the minimal y = −0.01 to make the positive term less positive.

Consequently
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is strictly monotonically increasing in y for x = 0.128.

Next, we consider x = 0.24 · 0.9 = 0.216, which is the minimal τ = 0.9 (here we consider 0.9 as
lower bound for τ ). We insert the minimum x = 0.216 = 216/1000 into the sub-function Eq. (111):
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The derivative with respect to y is:
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For the first inequality we applied Lemma 24 which states that the function xex
2

erfc(x) is monotoni-
cally increasing. Consequently, we inserted the maximal y = 0.01 to make the negative term more
negative and the minimal y = −0.01 to make the positive term less positive.

Consequently
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(296)

is strictly monotonically increasing in y for x = 0.216.

Lemma 46 (Monotone Derivative). For λ = λ01, α = α01 and the domain −0.1 6 µ 6 0.1,
−0.1 6 ω 6 0.1, 0.00875 6 ν 6 0.7, and 0.8 6 τ 6 1.25. We are interested of the derivative of
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2
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. (297)

The derivative of the equation above with respect to

• ν is larger than zero;

• τ is smaller than zero for maximal ν = 0.7, ν = 0.16, and ν = 0.24 (with 0.9 6 τ );

• y = µω is larger than zero for ντ = 0.00875 · 0.8 = 0.007, ντ = 0.7 · 0.8 = 0.56,
ντ = 0.16 · 0.8 = 0.128, and ντ = 0.24 · 0.9 = 0.216.

Proof. We consider the domain: −0.1 6 µ 6 0.1, −0.1 6 ω 6 0.1, 0.00875 6 ν 6 0.7, and
0.8 6 τ 6 1.25.

We use Lemma 17 to determine the derivatives. Consequently, the derivative of
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with respect to ν is larger than zero, which follows directly from Lemma 17 using the chain rule.

Consequently, the derivative of

τ

(
e

(
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erfc
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− 2e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

))
(299)

with respect to y = µω is larger than zero for ντ = 0.00875 · 0.8 = 0.007, ντ = 0.7 · 0.8 = 0.56,
ντ = 0.16 · 0.8 = 0.128, and ντ = 0.24 · 0.9 = 0.216, which also follows directly from Lemma 17.

We now consider the derivative with respect to τ , which is not trivial since τ is a factor of the whole
expression. The sub-expression should be maximized as it appears with negative sign in the mapping
for ν.

72



First, we consider the function for the largest ν = 0.7 and the largest y = µω = 0.01 for determining
the derivative with respect to τ .

The expression becomes
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The derivative with respect to τ is(√
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.

We are considering only the numerator and use again the approximation of Ren and MacKenzie [30].
The error analysis on the whole numerator gives an approximation error 97 < E < 186. Therefore
we add 200 to the numerator when we use the approximation Ren and MacKenzie [30]. We obtain
the inequalities:
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After applying the approximation of Ren and MacKenzie [30] and adding 200, we first factored out
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τ . Then we brought all terms to the same denominator.
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First we expanded the term (multiplied it out). The we put the terms multiplied by the same square
root into brackets. The next inequality sign stems from inserting the maximal value of 1.25 for τ for
some positive terms and value of 0.8 for negative terms. These terms are then expanded at the =-sign.
The next equality factors the terms under the squared root. We decreased the negative term by setting
τ = τ + 0.0000263835 under the root. We increased positive terms by setting τ + 0.000026286 =
1.00003τ and τ + 0.000026383 = 1.00003τ under the root for positive terms. The positive terms are
increase, since 0.8+0.000026383

0.8 = 1.00003, thus τ + 0.000026286 < τ + 0.000026383 6 1.00003τ .
For the next inequality we decreased negative terms by inserting τ = 0.8 and increased positive terms
by inserting τ = 1.25. The next equality expands the terms. We use upper bound of 1.25 and lower
bound of 0.8 to obtain terms with corresponding exponents of τ .

For the last 6-sign we used the function

−1.46191× 109τ3/2 + 4.07198× 109
√
τ − 4.66103× 108τ − 2.26457× 109 (304)

The derivative of this function is

−2.19286× 109
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√
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− 4.66103× 108 (305)

and the second order derivative is

−1.01799× 109

τ3/2
− 1.09643× 109

√
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< 0 . (306)

The derivative at 0.8 is smaller than zero:

− 2.19286× 109
√

0.8− 4.66103× 108 +
2.03599× 109

√
0.8

= (307)

− 1.51154× 108 < 0 .

Since the second order derivative is negative, the derivative decreases with increasing τ . Therefore
the derivative is negative for all values of τ that we consider, that is, the function Eq. (304) is strictly
monotonically decreasing. The maximum of the function Eq. (304) is therefore at 0.8. We inserted
0.8 to obtain the maximum.
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Consequently, the derivative of
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with respect to τ is smaller than zero for maximal ν = 0.7.

Next, we consider the function for the largest ν = 0.16 and the largest y = µω = 0.01 for determining
the derivative with respect to τ .

The expression becomes
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The derivative with respect to τ is(√
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We are considering only the numerator and use again the approximation of Ren and MacKenzie [30].
The error analysis on the whole numerator gives an approximation error 1.1 < E < 12. Therefore
we add 20 to the numerator when we use the approximation of Ren and MacKenzie [30]. We obtain
the inequalities:
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π(2.911− 1)(16τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(16τ + 1)2

))
((
√
π(2.911− 1)(32τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(32τ + 1)2

)
(
√
π(2.911− 1)(32τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(32τ + 1)2

))−1

.

After applying the approximation of Ren and MacKenzie [30] and adding 20, we first factored out
40
√

2
√
τ . Then we brought all terms to the same denominator.

We now consider the numerator:(
40
√

2(48τ − 1)
√
τ + 20

)(√
π(2.911− 1)(16τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(16τ + 1)2

)
(312)(

√
π(2.911− 1)(32τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(32τ + 1)2

)
+

2.911 · 40
√

2
√
π(128τ(2τ + 25)− 1)

√
τ(

√
π(2.911− 1)(32τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(32τ + 1)2

)
−

2
√
π40
√

22.911(128τ(8τ + 25)− 1)
√
τ(

√
π(2.911− 1)(16τ + 1) +

√(
40
√

22.911
√
τ
)2

+ π(16τ + 1)2

)
=

− 1.86491× 106
√
π(16τ + 1)2 + 27116.5ττ3/2+

1920
√

2
√
π(16τ + 1)2 + 27116.5τ

√
π(32τ + 1)2 + 27116.5ττ3/2+

940121
√
π(32τ + 1)2 + 27116.5ττ3/2 − 3.16357× 106τ3/2−

303446
√
π(16τ + 1)2 + 27116.5ττ5/2 + 221873

√
π(32τ + 1)2 + 27116.5ττ5/2 − 608588τ5/2−

8.34635× 106τ7/2 + 117482.τ2 + 2167.78
√
π(16τ + 1)2 + 27116.5ττ+

1083.89
√
π(32τ + 1)2 + 27116.5ττ+

11013.9τ + 339.614
√
τ + 392.137

√
τ
√
π(16τ + 1)2 + 27116.5τ+

67.7432
√
π(16τ + 1)2 + 27116.5τ − 483.478

√
τ
√
π(32τ + 1)2 + 27116.5τ−

40
√

2
√
τ
√
π(16τ + 1)2 + 27116.5τ

√
π(32τ + 1)2 + 27116.5τ+

20
√
π(16τ + 1)2 + 27116.5τ

√
π(32τ + 1)2 + 27116.5τ+

67.7432
√
π(32τ + 1)2 + 27116.5τ + 229.457 =

− 3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2+(
−1.86491× 106τ3/2 − 303446τ5/2 + 2167.78τ + 392.137

√
τ + 67.7432

)
√
π(16τ + 1)2 + 27116.5τ+(
940121τ3/2 + 221873τ5/2 + 1083.89τ − 483.478

√
τ + 67.7432

)
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√
π(32τ + 1)2 + 27116.5τ+(
1920

√
2τ3/2 − 40

√
2
√
τ + 20

)√
π(16τ + 1)2 + 27116.5τ

√
π(32τ + 1)2 + 27116.5τ+

117482.τ2 + 11013.9τ + 339.614
√
τ + 229.457 6

− 3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2+(
−1.86491× 106τ3/2 − 303446τ5/2 + 392.137

√
1.25 + 1.252167.78 + 67.7432

)
√
π(16τ + 1)2 + 27116.5τ+(
940121τ3/2 + 221873τ5/2 − 483.478

√
0.8 + 1.251083.89 + 67.7432

)
√
π(32τ + 1)2 + 27116.5τ+(
1920

√
2τ3/2 − 40

√
2
√
τ + 20

)√
π(16τ + 1)2 + 27116.5τ

√
π(32τ + 1)2 + 27116.5τ+

117482.τ2 + 339.614
√

1.25 + 1.2511013.9 + 229.457 =

− 3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2+(
−1.86491× 106τ3/2 − 303446τ5/2 + 3215.89

)√
π(16τ + 1)2 + 27116.5τ+(

940121τ3/2 + 221873τ5/2 + 990.171
)√

π(32τ + 1)2 + 27116.5τ+(
1920

√
2τ3/2 − 40

√
2
√
τ + 20

)√
π(16τ + 1)2 + 27116.5τ

√
π(32τ + 1)2 + 27116.5τ+

117482τ2 + 14376.6 =

− 3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2+(
940121τ3/2 + 221873τ5/2 + 990.171

)√
1024π(τ + 8.49155)(τ + 0.000115004)+(

−1.86491× 106τ3/2 − 303446τ5/2 + 3215.89
)√

256π(τ + 33.8415)(τ + 0.000115428)+(
1920

√
2τ3/2 − 40

√
2
√
τ + 20

)√
1024π(τ + 8.49155)(τ + 0.000115004)√

256π(τ + 33.8415)(τ + 0.000115428)+

117482.τ2 + 14376.6 6

− 3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2+(
940121τ3/2 + 221873τ5/2 + 990.171

)√
1024π1.00014(τ + 8.49155)τ+(

1920
√

2τ3/2 − 40
√

2
√
τ + 20

)√
256π1.00014(τ + 33.8415)τ

√
1024π1.00014(τ + 8.49155)τ+(

−1.86491× 106τ3/2 − 303446τ5/2 + 3215.89
)√

256π(τ + 33.8415)τ+

117482.τ2 + 14376.6 =

− 3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2+(
−91003τ3/2 + 4.36814× 106τ5/2 + 32174.4τ

)√
τ + 8.49155

√
τ + 33.8415 + 117482.τ2+(

1.25852× 107τ3 + 5.33261× 107τ2 + 56165.1
√
τ
)√

τ + 8.49155+(
−8.60549× 106τ3 − 5.28876× 107τ2 + 91200.4

√
τ
)√

τ + 33.8415 + 14376.6 6
√

1.25 + 8.49155
√

1.25 + 33.8415
(
−91003τ3/2 + 4.36814× 106τ5/2 + 32174.4τ

)
+

√
1.25 + 8.49155

(
1.25852× 107τ3 + 5.33261× 107τ2 + 56165.1

√
τ
)

+
√

0.8 + 33.8415
(
−8.60549× 106τ3 − 5.28876× 107τ2 + 91200.4

√
τ
)
−

3.16357× 106τ3/2 − 608588τ5/2 − 8.34635× 106τ7/2 + 117482.τ2 + 14376.6 =
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− 4.84613× 106τ3/2 + 8.01543× 107τ5/2 − 8.34635× 106τ7/2−
1.13691× 107τ3 − 1.44725× 108τ2+

594875.τ + 712078.
√
τ + 14376.6 6

14376.6τ3/2

0.83/2
− 4.84613× 106τ3/2+

8.01543× 107τ5/2 − 8.34635× 106τ7/2−

1.13691× 107τ3 − 1.44725× 108τ2 +
594875.

√
ττ√

0.8
+

712078.τ
√
τ

0.8
=

− 3.1311 · 106τ3/2 − 1.44725 · 108τ2 + 8.01543 · 107τ5/2 − 1.13691 · 107τ3−
8.34635 · 106τ7/2 6

− 3.1311× 106τ3/2 +
8.01543× 107

√
1.25τ5/2

√
τ

−

8.34635× 106τ7/2 − 1.13691× 107τ3 − 1.44725× 108τ2 =

− 3.1311× 106τ3/2 − 8.34635× 106τ7/2 − 1.13691× 107τ3 − 5.51094× 107τ22 < 0 .

First we expanded the term (multiplied it out). The we put the terms multiplied by the same square
root into brackets. The next inequality sign stems from inserting the maximal value of 1.25 for τ for
some positive terms and value of 0.8 for negative terms. These terms are then expanded at the =-sign.
The next equality factors the terms under the squared root. We decreased the negative term by setting
τ = τ + 0.00011542 under the root. We increased positive terms by setting τ + 0.00011542 =
1.00014τ and τ + 0.000115004 = 1.00014τ under the root for positive terms. The positive terms are
increase, since 0.8+0.00011542

0.8 < 1.000142, thus τ + 0.000115004 < τ + 0.00011542 6 1.00014τ .
For the next inequality we decreased negative terms by inserting τ = 0.8 and increased positive terms
by inserting τ = 1.25. The next equality expands the terms. We use upper bound of 1.25 and lower
bound of 0.8 to obtain terms with corresponding exponents of τ .

Consequently, the derivative of

τ

(
e

(
µω+ντ√

2
√
ντ

)2

erfc

(
µω + ντ√

2
√
ντ

)
− 2e

(
µω+2ντ√

2
√
ντ

)2

erfc

(
µω + 2ντ√

2
√
ντ

))
(313)

with respect to τ is smaller than zero for maximal ν = 0.16.

Next, we consider the function for the largest ν = 0.24 and the largest y = µω = 0.01 for determining
the derivative with respect to τ . However we assume 0.9 6 τ , in order to restrict the domain of τ .

The expression becomes

τ

e
(

24τ
100

+ 1
100

√
2
√

24τ
100

)2

erfc

 24τ
100 + 1

100
√

2
√

24τ
100

− e
(

2 24τ
100

+ 1
100

√
2
√

24τ
100

)2

erfc

 2 24τ
100 + 1

100
√

2
√

24τ
100


 . (314)

The derivative with respect to τ is(√
π

(
e

(24τ+1)2

4800τ (192τ(3τ + 25)− 1) erfc

(
24τ + 1

40
√

3
√
τ

)
− (315)

2e
(48τ+1)2

4800τ (192τ(12τ + 25)− 1) erfc

(
48τ + 1

40
√

3
√
τ

))
+ 40
√

3(72τ − 1)
√
τ

)
(
4800

√
πτ
)−1

.

We are considering only the numerator and use again the approximation of Ren and MacKenzie [30].
The error analysis on the whole numerator gives an approximation error 14 < E < 32. Therefore we
add 32 to the numerator when we use the approximation of Ren and MacKenzie [30]. We obtain the
inequalities:
√
π

(
e

(24τ+1)2

4800τ (192τ(3τ + 25)− 1) erfc

(
24τ + 1

40
√

3
√
τ

)
− (316)
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2e
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(
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√

3
√
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√
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√
τ 6

√
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√
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√
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√
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√
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√
τ

)2

+ 2.9112

−

2 · 2.911(192τ(12τ + 25)− 1)
√
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√
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+
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√
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√
π
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(
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√
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.

After applying the approximation of Ren and MacKenzie [30] and adding 200, we first factored out
40
√

3
√
τ . Then we brought all terms to the same denominator.

We now consider the numerator:
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√
τ + 108.389

)
√
π(24τ + 1)2 + 40674.8τ+(
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− 5.81185× 106τ3/2 − 1.67707× 106τ5/2 − 3.44998× 107τ7/2+(
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− 5.81185106τ3/2 − 1.67707× 106τ5/2 − 3.44998× 107τ7/2+(
−250764.τ3/2 + 1.8055× 107τ5/2 + 115823.τ

)
√
τ + 5.66103

√
τ + 22.561 + 422935.τ2+(
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√
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(
−250764.τ3/2 + 1.8055× 107τ5/2 + 115823.τ

)
+

√
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(
5.20199× 107τ3 + 1.46946× 108τ2 + 238086.

√
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)

+
√
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−3.55709× 107τ3 − 1.45741× 108τ2 + 304097.
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−

5.81185106τ3/2 − 1.67707× 106τ5/2 − 3.44998× 107τ7/2 + 422935.τ2 + 33874. 6

33874.τ3/2

0.93/2
− 9.02866× 106τ3/2 + 2.29933× 108τ5/2 − 3.44998× 107τ7/2−

3.5539× 107τ3 − 3.19193× 108τ2 +
1.48578× 106

√
ττ√

0.9
+

2.09884× 106τ
√
τ

0.9
=

− 5.09079× 106τ3/2 + 2.29933× 108τ5/2−
3.44998× 107τ7/2 − 3.5539× 107τ3 − 3.19193× 108τ2 6

− 5.09079× 106τ3/2 +
2.29933× 108

√
1.25τ5/2

√
τ

− 3.44998× 107τ7/2−

3.5539× 107τ3 − 3.19193× 108τ2 =

− 5.09079× 106τ3/2 − 3.44998× 107τ7/2 − 3.5539× 107τ3 − 6.21197× 107τ2 < 0 .

First we expanded the term (multiplied it out). The we put the terms multiplied by the same square
root into brackets. The next inequality sign stems from inserting the maximal value of 1.25 for
τ for some positive terms and value of 0.9 for negative terms. These terms are then expanded
at the =-sign. The next equality factors the terms under the squared root. We decreased the
negative term by setting τ = τ + 0.0000769518 under the root. We increased positive terms by
setting τ + 0.0000769518 = 1.0000962τ and τ + 0.0000766694 = 1.0000962τ under the root
for positive terms. The positive terms are increase, since 0.8+0.0000769518

0.8 < 1.0000962, thus
τ + 0.0000766694 < τ + 0.0000769518 6 1.0000962τ . For the next inequality we decreased
negative terms by inserting τ = 0.9 and increased positive terms by inserting τ = 1.25. The next
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equality expands the terms. We use upper bound of 1.25 and lower bound of 0.9 to obtain terms with
corresponding exponents of τ .

Consequently, the derivative of
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with respect to τ is smaller than zero for maximal ν = 0.24 and the domain 0.9 6 τ 6 1.25.

Lemma 47. In the domain −0.01 6 y 6 0.01 and 0.64 6 x 6 1.875, the function f(x, y) =
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has a global maximum at y = 0.64 and x = −0.01 and a global minimum at

y = 1.875 and x = 0.01.

Proof. f(x, y) = e
1
2 (2y+x) erfc

(
x+y√

2x

)
is strictly monotonically decreasing in x, since its derivative

with respect to x is negative:

e−
y2

2x

(√
πx3/2e

(x+y)2

2x erfc
(
x+y√
2
√
x

)
+
√

2(y − x)
)

2
√
πx3/2

< 0

⇐⇒
√
πx3/2e

(x+y)2

2x erfc

(
x+ y√

2
√
x

)
+
√

2(y − x) < 0

√
πx3/2e

(x+y)2

2x erfc

(
x+ y√

2
√
x

)
+
√

2(y − x) 6

2x3/2

x+y√
2
√
x

+
√

(x+y)2

2x + 4
π

+ y
√

2− x
√

2 6

2 · 0.643/2

0.01+0.64√
2
√

0.64
+
√

(0.01+0.64)2

2·0.64 + 4
π

+ 0.01
√

2− 0.64
√

2 = −0.334658 < 0. (319)

The two last inqualities come from applying Abramowitz bounds 22 and from the fact that the
expression 2x3/2
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√
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+
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(x+y)2
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π

+ y
√

2− x
√

2 does not change monotonicity in the domain and hence

the maximum must be found at the border. For x = 0.64 that maximizes the function f(x, y) is
monotonically in y, because its derivative w.r.t. y at x = 0.64 is

ey
(

1.37713 erfc(0.883883y + 0.565685)− 1.37349e−0.78125(y+0.64)2
)
< 0

⇐⇒
(

1.37713 erfc(0.883883y + 0.565685)− 1.37349e−0.78125(y+0.64)2
)
< 0(

1.37713 erfc(0.883883y + 0.565685)− 1.37349e−0.78125(y+0.64)2
)
6(

1.37713 erfc(0.883883 · −0.01 + 0.565685)− 1.37349e−0.78125(0.01+0.64)2
)

=

0.5935272325870631− 0.987354705867739 < 0. (320)

Therefore, the values y = 0.64 and x = −0.01 give a global maximum of the function f(x, y) in the
domain −0.01 6 y 6 0.01 and 0.64 6 x 6 1.875 and the values y = 1.875 and x = 0.01 give the
global minimum.

A4 Additional information on experiments

In this section, we report the hyperparameters that were considered for each method and data set and
give details on the processing of the data sets.
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A4.1 121 UCI Machine Learning Repository data sets: Hyperparameters

For the UCI data sets, the best hyperparameter setting was determined by a grid-search over all
hyperparameter combinations using 15% of the training data as validation set. The early stopping
parameter was determined on the smoothed learning curves of 100 epochs of the validation set.
Smoothing was done using moving averages of 10 consecutive values. We tested “rectangular”
and “conic” layers – rectangular layers have constant number of hidden units in each layer, conic
layers start with the given number of hidden units in the first layer and then decrease the number
of hidden units to the size of the output layer according to the geometric progession. If multiple
hyperparameters provided identical performance on the validation set, we preferred settings with a
higher number of layers, lower learning rates and higher dropout rates. All methods had the chance
to adjust their hyperparameters to the data set at hand.

Table A4: Hyperparameters considered for self-normalizing networks in the UCI data sets.

Hyperparameter Considered values

Number of hidden units {1024, 512, 256}
Number of hidden layers {2, 3, 4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Dropout rate {0.05, 0}
Layer form {rectangular, conic}

Table A5: Hyperparameters considered for ReLU networks with MS initialization in the UCI data
sets.

Hyperparameter Considered values

Number of hidden units {1024, 512, 256}
Number of hidden layers {2,3,4,8,16,32}
Learning rate {0.01, 0.1, 1}
Dropout rate {0.5, 0}
Layer form {rectangular, conic}

Table A6: Hyperparameters considered for batch normalized networks in the UCI data sets.

Hyperparameter Considered values

Number of hidden units {1024, 512, 256}
Number of hidden layers {2, 3, 4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Normalization {Batchnorm}
Layer form {rectangular, conic}
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Table A7: Hyperparameters considered for weight normalized networks in the UCI data sets.

Hyperparameter Considered values

Number of hidden units {1024, 512, 256}
Number of hidden layers {2, 3, 4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Normalization {Weightnorm}
Layer form {rectangular, conic}

Table A8: Hyperparameters considered for layer normalized networks in the UCI data sets.

Hyperparameter Considered values

Number of hidden units {1024, 512, 256}
Number of hidden layers {2, 3, 4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Normalization {Layernorm}
Layer form {rectangular, conic}

Table A9: Hyperparameters considered for Highway networks in the UCI data sets.

Hyperparameter Considered values

Number of hidden layers {2, 3, 4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Dropout rate {0, 0.5}

Table A10: Hyperparameters considered for Residual networks in the UCI data sets.

Hyperparameter Considered values

Number of blocks {2, 3, 4, 8, 16}
Number of neurons per blocks {1024, 512, 256}
Block form {rectangular, diavolo}
Bottleneck {25%, 50%}
Learning rate {0.01, 0.1, 1}
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A4.2 121 UCI Machine Learning Repository data sets: detailed results

Methods compared. We used data sets and preprocessing scripts by Fernández-Delgado et al.
[10] for data preparation and defining training and test sets. With several flaws in the method
comparison[37] that we avoided, the authors compared 179 machine learning methods of 17 groups
in their experiments. The method groups were defined by Fernández-Delgado et al. [10] as follows:
Support Vector Machines, RandomForest, Multivariate adaptive regression splines (MARS), Boosting,
Rule-based, logistic and multinomial regression, Discriminant Analysis (DA), Bagging, Nearest
Neighbour, DecisionTree, other Ensembles, Neural Networks, Bayesian, Other Methods, generalized
linear models (GLM), Partial least squares and principal component regression (PLSR), and Stacking.
However, many of methods assigned to those groups were merely different implementations of the
same method. Therefore, we selected one representative of each of the 17 groups for method compar-
ison. The representative method was chosen as the group’s method with the median performance
across all tasks. Finally, we included 17 other machine learning methods of Fernández-Delgado
et al. [10], and 6 FNNs, BatchNorm, WeightNorm, LayerNorm, Highway, Residual and MSRAinit
networks, and self-normalizing neural networks (SNNs) giving a total of 24 compared methods.

Results of FNN methods for all 121 data sets. The results of the compared FNN methods can be
found in Table A11.

Small and large data sets. We assigned each of the 121 UCI data sets into the group “large datasets”
or “small datasets” if the had more than 1,000 data points or less, respectively. We expected that
Deep Learning methods require large data sets to competitive to other machine learning methods.
This resulted in 75 small and 46 large data sets.

Results. The results of the method comparison are given in Tables A12 and A13 for small and large
data sets, respectively. On small data sets, SVMs performed best followed by RandomForest and
SNNs. On large data sets, SNNs are the best method followed by SVMs and Random Forest.
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Table A11: Comparison of FNN methods on all 121 UCI data sets.. The table reports the accuracy
of FNN methods at each individual task of the 121 UCI data sets. The first column gives the name
of the data set, the second the number of training data points N , the third the number of features
M and the consecutive columns the accuracy values of self-normalizing networks (SNNs), ReLU
networks without normalization and with MSRA initialization (MS), Highway networks (HW),
Residual Networks (ResNet), networks with batch normalization (BN), weight normalization (WN),
and layer normalization (LN).

dataset N M SNN MS HW ResNet BN WN LN

abalone 4177 9 0.6657 0.6284 0.6427 0.6466 0.6303 0.6351 0.6178
acute-inflammation 120 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000
acute-nephritis 120 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
adult 48842 15 0.8476 0.8487 0.8453 0.8484 0.8499 0.8453 0.8517
annealing 898 32 0.7600 0.7300 0.3600 0.2600 0.1200 0.6500 0.5000
arrhythmia 452 263 0.6549 0.6372 0.6283 0.6460 0.5929 0.6018 0.5752
audiology-std 196 60 0.8000 0.6800 0.7200 0.8000 0.6400 0.7200 0.8000
balance-scale 625 5 0.9231 0.9231 0.9103 0.9167 0.9231 0.9551 0.9872
balloons 16 5 1.0000 0.5000 0.2500 1.0000 1.0000 0.0000 0.7500
bank 4521 17 0.8903 0.8876 0.8885 0.8796 0.8823 0.8850 0.8920
blood 748 5 0.7701 0.7754 0.7968 0.8021 0.7647 0.7594 0.7112
breast-cancer 286 10 0.7183 0.6901 0.7465 0.7465 0.7324 0.6197 0.6620
breast-cancer-wisc 699 10 0.9714 0.9714 0.9771 0.9714 0.9829 0.9657 0.9714
breast-cancer-wisc-diag 569 31 0.9789 0.9718 0.9789 0.9507 0.9789 0.9718 0.9648
breast-cancer-wisc-prog 198 34 0.6735 0.7347 0.8367 0.8163 0.7755 0.8367 0.7959
breast-tissue 106 10 0.7308 0.4615 0.6154 0.4231 0.4615 0.5385 0.5769
car 1728 7 0.9838 0.9861 0.9560 0.9282 0.9606 0.9769 0.9907
cardiotocography-10clases 2126 22 0.8399 0.8418 0.8456 0.8173 0.7910 0.8606 0.8362
cardiotocography-3clases 2126 22 0.9153 0.8964 0.9171 0.9021 0.9096 0.8945 0.9021
chess-krvk 28056 7 0.8805 0.8606 0.5255 0.8543 0.8781 0.7673 0.8938
chess-krvkp 3196 37 0.9912 0.9900 0.9900 0.9912 0.9862 0.9912 0.9875
congressional-voting 435 17 0.6147 0.6055 0.5872 0.5963 0.5872 0.5872 0.5780
conn-bench-sonar-mines-rocks 208 61 0.7885 0.8269 0.8462 0.8077 0.7115 0.8269 0.6731
conn-bench-vowel-deterding 990 12 0.9957 0.9935 0.9784 0.9935 0.9610 0.9524 0.9935
connect-4 67557 43 0.8807 0.8831 0.8599 0.8716 0.8729 0.8833 0.8856
contrac 1473 10 0.5190 0.5136 0.5054 0.5136 0.4538 0.4755 0.4592
credit-approval 690 16 0.8430 0.8430 0.8547 0.8430 0.8721 0.9070 0.8547
cylinder-bands 512 36 0.7266 0.7656 0.7969 0.7734 0.7500 0.7578 0.7578
dermatology 366 35 0.9231 0.9121 0.9780 0.9231 0.9341 0.9451 0.9451
echocardiogram 131 11 0.8182 0.8485 0.6061 0.8485 0.8485 0.7879 0.8182
ecoli 336 8 0.8929 0.8333 0.8690 0.8214 0.8214 0.8452 0.8571
energy-y1 768 9 0.9583 0.9583 0.8802 0.8177 0.8646 0.9010 0.9479
energy-y2 768 9 0.9063 0.8958 0.9010 0.8750 0.8750 0.8906 0.8802
fertility 100 10 0.9200 0.8800 0.8800 0.8400 0.6800 0.6800 0.8800
flags 194 29 0.4583 0.4583 0.4375 0.3750 0.4167 0.4167 0.3542
glass 214 10 0.7358 0.6038 0.6415 0.6415 0.5849 0.6792 0.6981
haberman-survival 306 4 0.7368 0.7237 0.6447 0.6842 0.7368 0.7500 0.6842
hayes-roth 160 4 0.6786 0.4643 0.7857 0.7143 0.7500 0.5714 0.8929
heart-cleveland 303 14 0.6184 0.6053 0.6316 0.5658 0.5789 0.5658 0.5789
heart-hungarian 294 13 0.7945 0.8356 0.7945 0.8082 0.8493 0.7534 0.8493
heart-switzerland 123 13 0.3548 0.3871 0.5806 0.3226 0.3871 0.2581 0.5161
heart-va 200 13 0.3600 0.2600 0.4000 0.2600 0.2800 0.2200 0.2400
hepatitis 155 20 0.7692 0.7692 0.6667 0.7692 0.8718 0.8462 0.7436
hill-valley 1212 101 0.5248 0.5116 0.5000 0.5396 0.5050 0.4934 0.5050
horse-colic 368 26 0.8088 0.8529 0.7794 0.8088 0.8529 0.7059 0.7941
ilpd-indian-liver 583 10 0.6986 0.6644 0.6781 0.6712 0.5959 0.6918 0.6986
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image-segmentation 2310 19 0.9114 0.9090 0.9024 0.8919 0.8481 0.8938 0.8838
ionosphere 351 34 0.8864 0.9091 0.9432 0.9545 0.9432 0.9318 0.9432
iris 150 5 0.9730 0.9189 0.8378 0.9730 0.9189 1.0000 0.9730
led-display 1000 8 0.7640 0.7200 0.7040 0.7160 0.6280 0.6920 0.6480
lenses 24 5 0.6667 1.0000 1.0000 0.6667 0.8333 0.8333 0.6667
letter 20000 17 0.9726 0.9712 0.8984 0.9762 0.9796 0.9580 0.9742
libras 360 91 0.7889 0.8667 0.8222 0.7111 0.7444 0.8000 0.8333
low-res-spect 531 101 0.8571 0.8496 0.9023 0.8647 0.8571 0.8872 0.8947
lung-cancer 32 57 0.6250 0.3750 0.1250 0.2500 0.5000 0.5000 0.2500
lymphography 148 19 0.9189 0.7297 0.7297 0.6757 0.7568 0.7568 0.7838
magic 19020 11 0.8692 0.8629 0.8673 0.8723 0.8713 0.8690 0.8620
mammographic 961 6 0.8250 0.8083 0.7917 0.7833 0.8167 0.8292 0.8208
miniboone 130064 51 0.9307 0.9250 0.9270 0.9254 0.9262 0.9272 0.9313
molec-biol-promoter 106 58 0.8462 0.7692 0.6923 0.7692 0.7692 0.6923 0.4615
molec-biol-splice 3190 61 0.9009 0.8482 0.8833 0.8557 0.8519 0.8494 0.8607
monks-1 556 7 0.7523 0.6551 0.5833 0.7546 0.9074 0.5000 0.7014
monks-2 601 7 0.5926 0.6343 0.6389 0.6273 0.3287 0.6644 0.5162
monks-3 554 7 0.6042 0.7454 0.5880 0.5833 0.5278 0.5231 0.6991
mushroom 8124 22 1.0000 1.0000 1.0000 1.0000 0.9990 0.9995 0.9995
musk-1 476 167 0.8739 0.8655 0.8992 0.8739 0.8235 0.8992 0.8992
musk-2 6598 167 0.9891 0.9945 0.9915 0.9964 0.9982 0.9927 0.9951
nursery 12960 9 0.9978 0.9988 1.0000 0.9994 0.9994 0.9966 0.9966
oocytes_merluccius_nucleus_4d 1022 42 0.8235 0.8196 0.7176 0.8000 0.8078 0.8078 0.7686
oocytes_merluccius_states_2f 1022 26 0.9529 0.9490 0.9490 0.9373 0.9333 0.9020 0.9412
oocytes_trisopterus_nucleus_2f 912 26 0.7982 0.8728 0.8289 0.7719 0.7456 0.7939 0.8202
oocytes_trisopterus_states_5b 912 33 0.9342 0.9430 0.9342 0.8947 0.8947 0.9254 0.8991
optical 5620 63 0.9711 0.9666 0.9644 0.9627 0.9716 0.9638 0.9755
ozone 2536 73 0.9700 0.9732 0.9716 0.9669 0.9669 0.9748 0.9716
page-blocks 5473 11 0.9583 0.9708 0.9656 0.9605 0.9613 0.9730 0.9708
parkinsons 195 23 0.8980 0.9184 0.8367 0.9184 0.8571 0.8163 0.8571
pendigits 10992 17 0.9706 0.9714 0.9671 0.9708 0.9734 0.9620 0.9657
pima 768 9 0.7552 0.7656 0.7188 0.7135 0.7188 0.6979 0.6927
pittsburg-bridges-MATERIAL 106 8 0.8846 0.8462 0.9231 0.9231 0.8846 0.8077 0.9231
pittsburg-bridges-REL-L 103 8 0.6923 0.7692 0.6923 0.8462 0.7692 0.6538 0.7308
pittsburg-bridges-SPAN 92 8 0.6957 0.5217 0.5652 0.5652 0.5652 0.6522 0.6087
pittsburg-bridges-T-OR-D 102 8 0.8400 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800
pittsburg-bridges-TYPE 105 8 0.6538 0.6538 0.5385 0.6538 0.1154 0.4615 0.6538
planning 182 13 0.6889 0.6667 0.6000 0.7111 0.6222 0.6444 0.6889
plant-margin 1600 65 0.8125 0.8125 0.8375 0.7975 0.7600 0.8175 0.8425
plant-shape 1600 65 0.7275 0.6350 0.6325 0.5150 0.2850 0.6575 0.6775
plant-texture 1599 65 0.8125 0.7900 0.7900 0.8000 0.8200 0.8175 0.8350
post-operative 90 9 0.7273 0.7273 0.5909 0.7273 0.5909 0.5455 0.7727
primary-tumor 330 18 0.5244 0.5000 0.4512 0.3902 0.5122 0.5000 0.4512
ringnorm 7400 21 0.9751 0.9843 0.9692 0.9811 0.9843 0.9719 0.9827
seeds 210 8 0.8846 0.8654 0.9423 0.8654 0.8654 0.8846 0.8846
semeion 1593 257 0.9196 0.9296 0.9447 0.9146 0.9372 0.9322 0.9447
soybean 683 36 0.8511 0.8723 0.8617 0.8670 0.8883 0.8537 0.8484
spambase 4601 58 0.9409 0.9461 0.9435 0.9461 0.9426 0.9504 0.9513
spect 265 23 0.6398 0.6183 0.6022 0.6667 0.6344 0.6398 0.6720
spectf 267 45 0.4973 0.6043 0.8930 0.7005 0.2299 0.4545 0.5561
statlog-australian-credit 690 15 0.5988 0.6802 0.6802 0.6395 0.6802 0.6860 0.6279
statlog-german-credit 1000 25 0.7560 0.7280 0.7760 0.7720 0.7520 0.7400 0.7400
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statlog-heart 270 14 0.9254 0.8358 0.7761 0.8657 0.7910 0.8657 0.7910
statlog-image 2310 19 0.9549 0.9757 0.9584 0.9584 0.9671 0.9515 0.9757
statlog-landsat 6435 37 0.9100 0.9075 0.9110 0.9055 0.9040 0.8925 0.9040
statlog-shuttle 58000 10 0.9990 0.9983 0.9977 0.9992 0.9988 0.9988 0.9987
statlog-vehicle 846 19 0.8009 0.8294 0.7962 0.7583 0.7583 0.8009 0.7915
steel-plates 1941 28 0.7835 0.7567 0.7608 0.7629 0.7031 0.7856 0.7588
synthetic-control 600 61 0.9867 0.9800 0.9867 0.9600 0.9733 0.9867 0.9733
teaching 151 6 0.5000 0.6053 0.5263 0.5526 0.5000 0.3158 0.6316
thyroid 7200 22 0.9816 0.9770 0.9708 0.9799 0.9778 0.9807 0.9752
tic-tac-toe 958 10 0.9665 0.9833 0.9749 0.9623 0.9833 0.9707 0.9791
titanic 2201 4 0.7836 0.7909 0.7927 0.7727 0.7800 0.7818 0.7891
trains 10 30 NA NA NA NA 0.5000 0.5000 1.0000
twonorm 7400 21 0.9805 0.9778 0.9708 0.9735 0.9757 0.9730 0.9724
vertebral-column-2clases 310 7 0.8312 0.8701 0.8571 0.8312 0.8312 0.6623 0.8442
vertebral-column-3clases 310 7 0.8312 0.8052 0.7922 0.7532 0.7792 0.7403 0.8312
wall-following 5456 25 0.9098 0.9076 0.9230 0.9223 0.9333 0.9274 0.9128
waveform 5000 22 0.8480 0.8312 0.8320 0.8360 0.8360 0.8376 0.8448
waveform-noise 5000 41 0.8608 0.8328 0.8696 0.8584 0.8480 0.8640 0.8504
wine 178 14 0.9773 0.9318 0.9091 0.9773 0.9773 0.9773 0.9773
wine-quality-red 1599 12 0.6300 0.6250 0.5625 0.6150 0.5450 0.5575 0.6100
wine-quality-white 4898 12 0.6373 0.6479 0.5564 0.6307 0.5335 0.5482 0.6544
yeast 1484 9 0.6307 0.6173 0.6065 0.5499 0.4906 0.5876 0.6092
zoo 101 17 0.9200 1.0000 0.8800 1.0000 0.7200 0.9600 0.9600

Table A12: UCI comparison reporting the average rank of a method on 75 classification task of the
UCI machine learning repository with less than 1000 data points. For each dataset, the 24 compared
methods, were ranked by their accuracy and the ranks were averaged across the tasks. The first
column gives the method group, the second the method, the third the average rank , and the last the
p-value of a paired Wilcoxon test whether the difference to the best performing method is significant.
SNNs are ranked third having been outperformed by Random Forests and SVMs.

methodGroup method avg. rank p-value

SVM LibSVM_weka 9.3
RandomForest RRFglobal_caret 9.6 2.5e-01
SNN SNN 9.6 3.8e-01
LMR SimpleLogistic_weka 9.9 1.5e-01
NeuralNetworks lvq_caret 10.1 1.0e-01
MARS gcvEarth_caret 10.7 3.6e-02
MSRAinit MSRAinit 11.0 4.0e-02
LayerNorm LayerNorm 11.3 7.2e-02
Highway Highway 11.5 8.9e-03
DiscriminantAnalysis mda_R 11.8 2.6e-03
Boosting LogitBoost_weka 11.9 2.4e-02
Bagging ctreeBag_R 12.1 1.8e-03
ResNet ResNet 12.3 3.5e-03
BatchNorm BatchNorm 12.6 4.9e-04
Rule-based JRip_caret 12.9 1.7e-04
WeightNorm WeightNorm 13.0 8.3e-05
DecisionTree rpart2_caret 13.6 7.0e-04
OtherEnsembles Dagging_weka 13.9 3.0e-05
Nearest Neighbour NNge_weka 14.0 7.7e-04
OtherMethods pam_caret 14.2 1.5e-04
PLSR simpls_R 14.3 4.6e-05
Bayesian NaiveBayes_weka 14.6 1.2e-04
GLM bayesglm_caret 15.0 1.6e-06
Stacking Stacking_weka 20.9 2.2e-12
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Table A13: UCI comparison reporting the average rank of a method on 46 classification task of the
UCI machine learning repository with more than 1000 data points. For each dataset, the 24 compared
methods, were ranked by their accuracy and the ranks were averaged across the tasks. The first
column gives the method group, the second the method, the third the average rank , and the last the
p-value of a paired Wilcoxon test whether the difference to the best performing method is significant.
SNNs are ranked first having outperformed diverse machine learning methods and other FNNs.

methodGroup method avg. rank p-value

SNN SNN 5.8
SVM LibSVM_weka 6.1 5.8e-01
RandomForest RRFglobal_caret 6.6 2.1e-01
MSRAinit MSRAinit 7.1 4.5e-03
LayerNorm LayerNorm 7.2 7.1e-02
Highway Highway 7.9 1.7e-03
ResNet ResNet 8.4 1.7e-04
WeightNorm WeightNorm 8.7 5.5e-04
BatchNorm BatchNorm 9.7 1.8e-04
MARS gcvEarth_caret 9.9 8.2e-05
Boosting LogitBoost_weka 12.1 2.2e-07
LMR SimpleLogistic_weka 12.4 3.8e-09
Rule-based JRip_caret 12.4 9.0e-08
Bagging ctreeBag_R 13.5 1.6e-05
DiscriminantAnalysis mda_R 13.9 1.4e-10
Nearest Neighbour NNge_weka 14.1 1.6e-10
DecisionTree rpart2_caret 15.5 2.3e-08
OtherEnsembles Dagging_weka 16.1 4.4e-12
NeuralNetworks lvq_caret 16.3 1.6e-12
Bayesian NaiveBayes_weka 17.9 1.6e-12
OtherMethods pam_caret 18.3 2.8e-14
GLM bayesglm_caret 18.7 1.5e-11
PLSR simpls_R 19.0 3.4e-11
Stacking Stacking_weka 22.5 2.8e-14
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A4.3 Tox21 challenge data set: Hyperparameters

For the Tox21 data set, the best hyperparameter setting was determined by a grid-search over all
hyperparameter combinations using the validation set defined by the challenge winners [28]. The
hyperparameter space was chosen to be similar to the hyperparameters that were tested by Mayr et al.
[28]. The early stopping parameter was determined on the smoothed learning curves of 100 epochs of
the validation set. Smoothing was done using moving averages of 10 consecutive values. We tested
“rectangular” and “conic” layers – rectangular layers have constant number of hidden units in each
layer, conic layers start with the given number of hidden units in the first layer and then decrease
the number of hidden units to the size of the output layer according to the geometric progession. All
methods had the chance to adjust their hyperparameters to the data set at hand.

Table A14: Hyperparameters considered for self-normalizing networks in the Tox21 data set.

Hyperparameter Considered values

Number of hidden units {1024, 2048}
Number of hidden layers {2,3,4,6,8,16,32}
Learning rate {0.01, 0.05, 0.1}
Dropout rate {0.05, 0.10}
Layer form {rectangular, conic}
L2 regularization parameter {0.001,0.0001,0.00001}

Table A15: Hyperparameters considered for ReLU networks with MS initialization in the Tox21 data
set.

Hyperparameter Considered values

Number of hidden units {1024, 2048}
Number of hidden layers {2,3,4,6,8,16,32}
Learning rate {0.01, 0.05, 0.1}
Dropout rate {0.5, 0}
Layer form {rectangular, conic}
L2 regularization parameter {0.001,0.0001,0.00001}

Table A16: Hyperparameters considered for batch normalized networks in the Tox21 data set.

Hyperparameter Considered values

Number of hidden units {1024, 2048}
Number of hidden layers {2, 3, 4, 6, 8, 16, 32}
Learning rate {0.01, 0.05, 0.1}
Normalization {Batchnorm}
Layer form {rectangular, conic}
L2 regularization parameter {0.001,0.0001,0.00001}
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Table A17: Hyperparameters considered for weight normalized networks in the Tox21 data set.

Hyperparameter Considered values

Number of hidden units {1024, 2048}
Number of hidden layers {2, 3, 4, 6, 8, 16, 32}
Learning rate {0.01, 0.05, 0.1}
Normalization {Weightnorm}
Dropout rate {0, 0.5}
Layer form {rectangular, conic}
L2 regularization parameter {0.001,0.0001,0.00001}

Table A18: Hyperparameters considered for layer normalized networks in the Tox21 data set.

Hyperparameter Considered values

Number of hidden units {1024, 2048}
Number of hidden layers {2, 3, 4, 6, 8, 16, 32}
Learning rate {0.01, 0.05, 0.1}
Normalization {Layernorm}
Dropout rate {0, 0.5}
Layer form {rectangular, conic}
L2 regularization parameter {0.001,0.0001,0.00001}

Table A19: Hyperparameters considered for Highway networks in the Tox21 data set.

Hyperparameter Considered values

Number of hidden layers {2, 3, 4, 6, 8, 16, 32}
Learning rate {0.01, 0.05, 0.1}
Dropout rate {0, 0.5}
L2 regularization parameter {0.001,0.0001,0.00001}

Table A20: Hyperparameters considered for Residual networks in the Tox21 data set.

Hyperparameter Considered values

Number of blocks {2, 3, 4, 6, 8, 16}
Number of neurons per blocks {1024, 2048}
Block form {rectangular, diavolo}
Bottleneck {25%, 50%}
Learning rate {0.01, 0.05, 0.1}
L2 regularization parameter {0.001,0.0001,0.00001}
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Figure A8: Distribution of network inputs of an SNN for the Tox21 data set. The plots show the
distribution of network inputs z of the second layer of a typical Tox21 network. The red curves
display a kernel density estimator of the network inputs and the black curve is the density of a
standard normal distribution. Left panel: At initialization time before learning. The distribution of
network inputs is close to a standard normal distribution. Right panel: After 40 epochs of learning.
The distributions of network inputs is close to a normal distribution.

Distribution of network inputs. We empirically checked the assumption that the distribution of
network inputs can well be approximated by a normal distribution. To this end, we investigated the
density of the network inputs before and during learning and found that these density are close to
normal distributions (see Figure A8).
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A4.4 HTRU2 data set: Hyperparameters

For the HTRU2 data set, the best hyperparameter setting was determined by a grid-search over all
hyperparameter combinations using one of the 9 non-testing folds as validation fold in a nested
cross-validation procedure. Concretely, if M was the testing fold, we used M − 1 as validation fold,
and for M = 1 we used fold 10 for validation. The early stopping parameter was determined on the
smoothed learning curves of 100 epochs of the validation set. Smoothing was done using moving
averages of 10 consecutive values. We tested “rectangular” and “conic” layers – rectangular layers
have constant number of hidden units in each layer, conic layers start with the given number of hidden
units in the first layer and then decrease the number of hidden units to the size of the output layer
according to the geometric progession. All methods had the chance to adjust their hyperparameters
to the data set at hand.

Table A21: Hyperparameters considered for self-normalizing networks on the HTRU2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1, 0.01, 1}
Dropout rate { 0, 0.05}
Layer form {rectangular, conic}

Table A22: Hyperparameters considered for ReLU networks with Microsoft initialization on the
HTRU2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1, 0.01, 1}
Dropout rate {0, 0.5}
Layer form {rectangular, conic}

Table A23: Hyperparameters considered for BatchNorm networks on the HTRU2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1, 0.01, 1}
Normalization {Batchnorm}
Layer form {rectangular, conic}
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Table A24: Hyperparameters considered for WeightNorm networks on the HTRU2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1, 0.01, 1}
Normalization {Weightnorm}
Layer form {rectangular, conic}

Table A25: Hyperparameters considered for LayerNorm networks on the HTRU2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1, 0.01, 1}
Normalization {Layernorm}
Layer form {rectangular, conic}

Table A26: Hyperparameters considered for Highway networks on the HTRU2 data set.

Hyperparameter Considered values

Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1, 0.01, 1}
Dropout rate {0, 0.5}

Table A27: Hyperparameters considered for Residual networks on the HTRU2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of residual blocks {2, 3, 4, 8, 16}
Learning rate {0.1, 0.01, 1}
Block form {rectangular, diavolo}
Bottleneck {0.25, 0.5}
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A5 Other fixed points

A similar analysis with corresponding function domains can be performed for other fixed points, for
example for µ = µ̃ = 0 and ν = ν̃ = 2, which leads to a SELU activation function with parameters
α02 = 1.97126 and λ02 = 1.06071.

A6 Bounds determined by numerical methods

In this section we report bounds on previously discussed expressions as determined by numerical
methods (min and max have been computed).

0(µ=0.06,ω=0,ν=1.35,τ=1.12) <
∂J11

∂µ
< .00182415(µ=−0.1,ω=0.1,ν=1.47845,τ=0.883374)

(321)

0.905413(µ=0.1,ω=−0.1,ν=1.5,τ=1.25) <
∂J11

∂ω
< 1.04143(µ=0.1,ω=0.1,ν=0.8,τ=0.8)

−0.0151177(µ=−0.1,ω=0.1,ν=0.8,τ=1.25) <
∂J11

∂ν
< 0.0151177(µ=0.1,ω=−0.1,ν=0.8,τ=1.25)

−0.015194(µ=−0.1,ω=0.1,ν=0.8,τ=1.25) <
∂J11

∂τ
< 0.015194(µ=0.1,ω=−0.1,ν=0.8,τ=1.25)

−0.0151177(µ=−0.1,ω=0.1,ν=0.8,τ=1.25) <
∂J12

∂µ
< 0.0151177(µ=0.1,ω=−0.1,ν=0.8,τ=1.25)

−0.0151177(µ=0.1,ω=−0.1,ν=0.8,τ=1.25) <
∂J12

∂ω
< 0.0151177(µ=0.1,ω=−0.1,ν=0.8,τ=1.25)

−0.00785613(µ=0.1,ω=−0.1,ν=1.5,τ=1.25) <
∂J12

∂ν
< 0.0315805(µ=0.1,ω=0.1,ν=0.8,τ=0.8)

0.0799824(µ=0.1,ω=−0.1,ν=1.5,τ=1.25) <
∂J12

∂τ
< 0.110267(µ=−0.1,ω=0.1,ν=0.8,τ=0.8)

0(µ=0.06,ω=0,ν=1.35,τ=1.12) <
∂J21

∂µ
< 0.0174802(µ=0.1,ω=0.1,ν=0.8,τ=0.8)

0.0849308(µ=0.1,ω=−0.1,ν=0.8,τ=0.8) <
∂J21

∂ω
< 0.695766(µ=0.1,ω=0.1,ν=1.5,τ=1.25)

−0.0600823(µ=0.1,ω=−0.1,ν=0.8,τ=1.25) <
∂J21

∂ν
< 0.0600823(µ=−0.1,ω=0.1,ν=0.8,τ=1.25)

−0.0673083(µ=0.1,ω=−0.1,ν=1.5,τ=0.8) <
∂J21

∂τ
< 0.0673083(µ=−0.1,ω=0.1,ν=1.5,τ=0.8)

−0.0600823(µ=0.1,ω=−0.1,ν=0.8,τ=1.25) <
∂J22

∂µ
< 0.0600823(µ=−0.1,ω=0.1,ν=0.8,τ=1.25)

−0.0600823(µ=0.1,ω=−0.1,ν=0.8,τ=1.25) <
∂J22

∂ω
< 0.0600823(µ=−0.1,ω=0.1,ν=0.8,τ=1.25)

−0.276862(µ=−0.01,ω=−0.01,ν=0.8,τ=1.25) <
∂J22

∂ν
< −0.084813(µ=−0.1,ω=0.1,ν=1.5,τ=0.8)

0.562302(µ=0.1,ω=−0.1,ν=1.5,τ=1.25) <
∂J22

∂τ
< 0.664051(µ=0.1,ω=0.1,ν=0.8,τ=0.8)

∣∣∣∣∂J11

∂µ

∣∣∣∣ < 0.00182415(0.0031049101995398316) (322)∣∣∣∣∂J11

∂ω

∣∣∣∣ < 1.04143(1.055872374194189)∣∣∣∣∂J11

∂ν

∣∣∣∣ < 0.0151177(0.031242911235461816)
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∣∣∣∣∂J11

∂τ

∣∣∣∣ < 0.015194(0.03749149348255419)∣∣∣∣∂J12

∂µ

∣∣∣∣ < 0.0151177(0.031242911235461816)∣∣∣∣∂J12

∂ω

∣∣∣∣ < 0.0151177(0.031242911235461816)∣∣∣∣∂J12

∂ν

∣∣∣∣ < 0.0315805(0.21232788238624354)∣∣∣∣∂J12

∂τ

∣∣∣∣ < 0.110267(0.2124377655377270)∣∣∣∣∂J21

∂µ

∣∣∣∣ < 0.0174802(0.02220441024325437)∣∣∣∣∂J21

∂ω

∣∣∣∣ < 0.695766(1.146955401845684)∣∣∣∣∂J21

∂ν

∣∣∣∣ < 0.0600823(0.14983446469110305)∣∣∣∣∂J21

∂τ

∣∣∣∣ < 0.0673083(0.17980135762932363)∣∣∣∣∂J22

∂µ

∣∣∣∣ < 0.0600823(0.14983446469110305)∣∣∣∣∂J22

∂ω

∣∣∣∣ < 0.0600823(0.14983446469110305)∣∣∣∣∂J22

∂ν

∣∣∣∣ < 0.562302(1.805740052651535)∣∣∣∣∂J22

∂τ

∣∣∣∣ < 0.664051(2.396685907216327)
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