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Abstract

We present an interpretation of Inception modules in con-
volutional neural networks as being an intermediate step
in-between regular convolution and the depthwise separable
convolution operation (a depthwise convolution followed by
a pointwise convolution). In this light, a depthwise separable
convolution can be understood as an Inception module with
a maximally large number of towers. This observation leads
us to propose a novel deep convolutional neural network
architecture inspired by Inception, where Inception modules
have been replaced with depthwise separable convolutions.
We show that this architecture, dubbed Xception, slightly
outperforms Inception V3 on the ImageNet dataset (which
Inception V3 was designed for), and significantly outper-
forms Inception V3 on a larger image classification dataset
comprising 350 million images and 17,000 classes. Since
the Xception architecture has the same number of param-
eters as Inception V3, the performance gains are not due
to increased capacity but rather to a more efficient use of
model parameters.

1. Introduction
Convolutional neural networks have emerged as the mas-

ter algorithm in computer vision in recent years, and de-
veloping recipes for designing them has been a subject of
considerable attention. The history of convolutional neural
network design started with LeNet-style models [10], which
were simple stacks of convolutions for feature extraction
and max-pooling operations for spatial sub-sampling. In
2012, these ideas were refined into the AlexNet architec-
ture [9], where convolution operations were being repeated
multiple times in-between max-pooling operations, allowing
the network to learn richer features at every spatial scale.
What followed was a trend to make this style of network
increasingly deeper, mostly driven by the yearly ILSVRC
competition; first with Zeiler and Fergus in 2013 [25] and
then with the VGG architecture in 2014 [18].

At this point a new style of network emerged, the Incep-
tion architecture, introduced by Szegedy et al. in 2014 [20]

as GoogLeNet (Inception V1), later refined as Inception V2
[7], Inception V3 [21], and most recently Inception-ResNet
[19]. Inception itself was inspired by the earlier Network-
In-Network architecture [11]. Since its first introduction,
Inception has been one of the best performing family of
models on the ImageNet dataset [14], as well as internal
datasets in use at Google, in particular JFT [5].

The fundamental building block of Inception-style mod-
els is the Inception module, of which several different ver-
sions exist. In figure 1 we show the canonical form of an
Inception module, as found in the Inception V3 architec-
ture. An Inception model can be understood as a stack of
such modules. This is a departure from earlier VGG-style
networks which were stacks of simple convolution layers.

While Inception modules are conceptually similar to con-
volutions (they are convolutional feature extractors), they
empirically appear to be capable of learning richer repre-
sentations with less parameters. How do they work, and
how do they differ from regular convolutions? What design
strategies come after Inception?

1.1. The Inception hypothesis

A convolution layer attempts to learn filters in a 3D space,
with 2 spatial dimensions (width and height) and a chan-
nel dimension; thus a single convolution kernel is tasked
with simultaneously mapping cross-channel correlations and
spatial correlations.

This idea behind the Inception module is to make this
process easier and more efficient by explicitly factoring it
into a series of operations that would independently look at
cross-channel correlations and at spatial correlations. More
precisely, the typical Inception module first looks at cross-
channel correlations via a set of 1x1 convolutions, mapping
the input data into 3 or 4 separate spaces that are smaller than
the original input space, and then maps all correlations in
these smaller 3D spaces, via regular 3x3 or 5x5 convolutions.
This is illustrated in figure 1. In effect, the fundamental hy-
pothesis behind Inception is that cross-channel correlations
and spatial correlations are sufficiently decoupled that it is
preferable not to map them jointly 1.

1A variant of the process is to independently look at width-wise corre-
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Consider a simplified version of an Inception module that
only uses one size of convolution (e.g. 3x3) and does not
include an average pooling tower (figure 2). This Incep-
tion module can be reformulated as a large 1x1 convolution
followed by spatial convolutions that would operate on non-
overlapping segments of the output channels (figure 3). This
observation naturally raises the question: what is the ef-
fect of the number of segments in the partition (and their
size)? Would it be reasonable to make a much stronger
hypothesis than the Inception hypothesis, and assume that
cross-channel correlations and spatial correlations can be
mapped completely separately?

Figure 1. A canonical Inception module (Inception V3).

Figure 2. A simplified Inception module.

1.2. The continuum between convolutions and sep-
arable convolutions

An “extreme” version of an Inception module, based on
this stronger hypothesis, would first use a 1x1 convolution to
map cross-channel correlations, and would then separately
map the spatial correlations of every output channel. This
is shown in figure 4. We remark that this extreme form of
an Inception module is almost identical to a depthwise sepa-
rable convolution, an operation that has been used in neural

lations and height-wise correlations. This is implemented by some of the
modules found in Inception V3, which alternate 7x1 and 1x7 convolutions.
The use of such spatially separable convolutions has a long history in im-
age processing and has been used in some convolutional neural network
implementations since at least 2012 (possibly earlier).

Figure 3. A strictly equivalent reformulation of the simplified In-
ception module.

Figure 4. An “extreme” version of our Inception module, with one
spatial convolution per output channel of the 1x1 convolution.

network design as early as 2014 [15] and has become more
popular since its inclusion in the TensorFlow framework [1]
in 2016.

A depthwise separable convolution, commonly called
“separable convolution” in deep learning frameworks such as
TensorFlow and Keras, consists in a depthwise convolution,
i.e. a spatial convolution performed independently over each
channel of an input, followed by a pointwise convolution,
i.e. a 1x1 convolution, projecting the channels output by the
depthwise convolution onto a new channel space. This is
not to be confused with a spatially separable convolution,
which is also commonly called “separable convolution” in
the image processing community.

Two minor differences between and “extreme” version of
an Inception module and a depthwise separable convolution
would be:

• The order of the operations: depthwise separable con-
volutions as usually implemented (e.g. in TensorFlow)
perform first channel-wise spatial convolution and then
perform 1x1 convolution, whereas Inception performs
the 1x1 convolution first.

• The presence or absence of a non-linearity after the
first operation. In Inception, both operations are fol-
lowed by a ReLU non-linearity, however depthwise



separable convolutions are usually implemented with-
out non-linearities.

We argue that the first difference is unimportant, in par-
ticular because these operations are meant to be used in a
stacked setting. The second difference might matter, and we
investigate it in the experimental section (in particular see
figure 10).

We also note that other intermediate formulations of In-
ception modules that lie in between regular Inception mod-
ules and depthwise separable convolutions are also possible:
in effect, there is a discrete spectrum between regular convo-
lutions and depthwise separable convolutions, parametrized
by the number of independent channel-space segments used
for performing spatial convolutions. A regular convolution
(preceded by a 1x1 convolution), at one extreme of this
spectrum, corresponds to the single-segment case; a depth-
wise separable convolution corresponds to the other extreme
where there is one segment per channel; Inception modules
lie in between, dividing a few hundreds of channels into 3
or 4 segments. The properties of such intermediate modules
appear not to have been explored yet.

Having made these observations, we suggest that it may
be possible to improve upon the Inception family of archi-
tectures by replacing Inception modules with depthwise sep-
arable convolutions, i.e. by building models that would be
stacks of depthwise separable convolutions. This is made
practical by the efficient depthwise convolution implementa-
tion available in TensorFlow. In what follows, we present a
convolutional neural network architecture based on this idea,
with a similar number of parameters as Inception V3, and
we evaluate its performance against Inception V3 on two
large-scale image classification task.

2. Prior work
The present work relies heavily on prior efforts in the

following areas:

• Convolutional neural networks [10, 9, 25], in particular
the VGG-16 architecture [18], which is schematically
similar to our proposed architecture in a few respects.

• The Inception architecture family of convolutional neu-
ral networks [20, 7, 21, 19], which first demonstrated
the advantages of factoring convolutions into multiple
branches operating successively on channels and then
on space.

• Depthwise separable convolutions, which our proposed
architecture is entirely based upon. While the use of spa-
tially separable convolutions in neural networks has a
long history, going back to at least 2012 [12] (but likely
even earlier), the depthwise version is more recent. Lau-
rent Sifre developed depthwise separable convolutions

during an internship at Google Brain in 2013, and used
them in AlexNet to obtain small gains in accuracy and
large gains in convergence speed, as well as a significant
reduction in model size. An overview of his work was
first made public in a presentation at ICLR 2014 [23].
Detailed experimental results are reported in Sifre’s the-
sis, section 6.2 [15]. This initial work on depthwise sep-
arable convolutions was inspired by prior research from
Sifre and Mallat on transformation-invariant scattering
[16, 15]. Later, a depthwise separable convolution was
used as the first layer of Inception V1 and Inception
V2 [20, 7]. Within Google, Andrew Howard [6] has
introduced efficient mobile models called MobileNets
using depthwise separable convolutions. Jin et al. in
2014 [8] and Wang et al. in 2016 [24] also did related
work aiming at reducing the size and computational
cost of convolutional neural networks using separable
convolutions. Additionally, our work is only possible
due to the inclusion of an efficient implementation of
depthwise separable convolutions in the TensorFlow
framework [1].

• Residual connections, introduced by He et al. in [4],
which our proposed architecture uses extensively.

3. The Xception architecture
We propose a convolutional neural network architecture

based entirely on depthwise separable convolution layers.
In effect, we make the following hypothesis: that the map-
ping of cross-channels correlations and spatial correlations
in the feature maps of convolutional neural networks can be
entirely decoupled. Because this hypothesis is a stronger ver-
sion of the hypothesis underlying the Inception architecture,
we name our proposed architecture Xception, which stands
for “Extreme Inception”.

A complete description of the specifications of the net-
work is given in figure 5. The Xception architecture has
36 convolutional layers forming the feature extraction base
of the network. In our experimental evaluation we will ex-
clusively investigate image classification and therefore our
convolutional base will be followed by a logistic regression
layer. Optionally one may insert fully-connected layers be-
fore the logistic regression layer, which is explored in the
experimental evaluation section (in particular, see figures
7 and 8). The 36 convolutional layers are structured into
14 modules, all of which have linear residual connections
around them, except for the first and last modules.

In short, the Xception architecture is a linear stack of
depthwise separable convolution layers with residual con-
nections. This makes the architecture very easy to define
and modify; it takes only 30 to 40 lines of code using a high-
level library such as Keras [2] or TensorFlow-Slim [17], not
unlike an architecture such as VGG-16 [18], but rather un-



like architectures such as Inception V2 or V3 which are far
more complex to define. An open-source implementation of
Xception using Keras and TensorFlow is provided as part of
the Keras Applications module2, under the MIT license.

4. Experimental evaluation
We choose to compare Xception to the Inception V3 ar-

chitecture, due to their similarity of scale: Xception and
Inception V3 have nearly the same number of parameters
(table 3), and thus any performance gap could not be at-
tributed to a difference in network capacity. We conduct
our comparison on two image classification tasks: one is
the well-known 1000-class single-label classification task on
the ImageNet dataset [14], and the other is a 17,000-class
multi-label classification task on the large-scale JFT dataset.

4.1. The JFT dataset

JFT is an internal Google dataset for large-scale image
classification dataset, first introduced by Hinton et al. in [5],
which comprises over 350 million high-resolution images
annotated with labels from a set of 17,000 classes. To eval-
uate the performance of a model trained on JFT, we use an
auxiliary dataset, FastEval14k.

FastEval14k is a dataset of 14,000 images with dense
annotations from about 6,000 classes (36.5 labels per im-
age on average). On this dataset we evaluate performance
using Mean Average Precision for top 100 predictions
(MAP@100), and we weight the contribution of each class
to MAP@100 with a score estimating how common (and
therefore important) the class is among social media images.
This evaluation procedure is meant to capture performance
on frequently occurring labels from social media, which is
crucial for production models at Google.

4.2. Optimization configuration

A different optimization configuration was used for Ima-
geNet and JFT:

• On ImageNet:

– Optimizer: SGD

– Momentum: 0.9

– Initial learning rate: 0.045

– Learning rate decay: decay of rate 0.94 every 2
epochs

• On JFT:

– Optimizer: RMSprop [22]

– Momentum: 0.9

– Initial learning rate: 0.001
2https://keras.io/applications/#xception

– Learning rate decay: decay of rate 0.9 every
3,000,000 samples

For both datasets, the same exact same optimization con-
figuration was used for both Xception and Inception V3.
Note that this configuration was tuned for best performance
with Inception V3; we did not attempt to tune optimization
hyperparameters for Xception. Since the networks have dif-
ferent training profiles (figure 6), this may be suboptimal, es-
pecially on the ImageNet dataset, on which the optimization
configuration used had been carefully tuned for Inception
V3.

Additionally, all models were evaluated using Polyak
averaging [13] at inference time.

4.3. Regularization configuration

• Weight decay: The Inception V3 model uses a weight
decay (L2 regularization) rate of 4e − 5, which has
been carefully tuned for performance on ImageNet. We
found this rate to be quite suboptimal for Xception
and instead settled for 1e − 5. We did not perform
an extensive search for the optimal weight decay rate.
The same weight decay rates were used both for the
ImageNet experiments and the JFT experiments.

• Dropout: For the ImageNet experiments, both models
include a dropout layer of rate 0.5 before the logistic
regression layer. For the JFT experiments, no dropout
was included due to the large size of the dataset which
made overfitting unlikely in any reasonable amount of
time.

• Auxiliary loss tower: The Inception V3 architecture
may optionally include an auxiliary tower which back-
propagates the classification loss earlier in the network,
serving as an additional regularization mechanism. For
simplicity, we choose not to include this auxiliary tower
in any of our models.

4.4. Training infrastructure

All networks were implemented using the TensorFlow
framework [1] and trained on 60 NVIDIA K80 GPUs each.
For the ImageNet experiments, we used data parallelism
with synchronous gradient descent to achieve the best classi-
fication performance, while for JFT we used asynchronous
gradient descent so as to speed up training. The ImageNet
experiments took approximately 3 days each, while the JFT
experiments took over one month each. The JFT models
were not trained to full convergence, which would have
taken over three month per experiment.

https://keras.io/applications/#xception


Figure 5. The Xception architecture: the data first goes through the entry flow, then through the middle flow which is repeated eight times,
and finally through the exit flow. Note that all Convolution and SeparableConvolution layers are followed by batch normalization [7] (not
included in the diagram). All SeparableConvolution layers use a depth multiplier of 1 (no depth expansion).

4.5. Comparison with Inception V3

4.5.1 Classification performance

All evaluations were run with a single crop of the inputs
images and a single model. ImageNet results are reported
on the validation set rather than the test set (i.e. on the
non-blacklisted images from the validation set of ILSVRC
2012). JFT results are reported after 30 million iterations
(one month of training) rather than after full convergence.
Results are provided in table 1 and table 2, as well as figure
6, figure 7, figure 8. On JFT, we tested both versions of our
networks that did not include any fully-connected layers, and
versions that included two fully-connected layers of 4096
units each before the logistic regression layer.

On ImageNet, Xception shows marginally better results
than Inception V3. On JFT, Xception shows a 4.3% rel-
ative improvement on the FastEval14k MAP@100 metric.
We also note that Xception outperforms ImageNet results
reported by He et al. for ResNet-50, ResNet-101 and ResNet-

152 [4].

Table 1. Classification performance comparison on ImageNet (sin-
gle crop, single model). VGG-16 and ResNet-152 numbers are
only included as a reminder. The version of Inception V3 being
benchmarked does not include the auxiliary tower.

Top-1 accuracy Top-5 accuracy
VGG-16 0.715 0.901
ResNet-152 0.770 0.933
Inception V3 0.782 0.941
Xception 0.790 0.945

The Xception architecture shows a much larger perfor-
mance improvement on the JFT dataset compared to the
ImageNet dataset. We believe this may be due to the fact
that Inception V3 was developed with a focus on ImageNet
and may thus be by design over-fit to this specific task. On
the other hand, neither architecture was tuned for JFT. It is
likely that a search for better hyperparameters for Xception
on ImageNet (in particular optimization parameters and reg-



Table 2. Classification performance comparison on JFT (single
crop, single model).

FastEval14k MAP@100
Inception V3 - no FC layers 6.36
Xception - no FC layers 6.70
Inception V3 with FC layers 6.50
Xception with FC layers 6.78

Figure 6. Training profile on ImageNet

Figure 7. Training profile on JFT, without fully-connected layers

ularization parameters) would yield significant additional
improvement.

4.5.2 Size and speed

Table 3. Size and training speed comparison.

Parameter count Steps/second
Inception V3 23,626,728 31
Xception 22,855,952 28

In table 3 we compare the size and speed of Inception

Figure 8. Training profile on JFT, with fully-connected layers

V3 and Xception. Parameter count is reported on ImageNet
(1000 classes, no fully-connected layers) and the number of
training steps (gradient updates) per second is reported on
ImageNet with 60 K80 GPUs running synchronous gradient
descent. Both architectures have approximately the same
size (within 3.5%), and Xception is marginally slower. We
expect that engineering optimizations at the level of the
depthwise convolution operations can make Xception faster
than Inception V3 in the near future. The fact that both
architectures have almost the same number of parameters
indicates that the improvement seen on ImageNet and JFT
does not come from added capacity but rather from a more
efficient use of the model parameters.

4.6. Effect of the residual connections

Figure 9. Training profile with and without residual connections.

To quantify the benefits of residual connections in the
Xception architecture, we benchmarked on ImageNet a mod-
ified version of Xception that does not include any residual



connections. Results are shown in figure 9. Residual con-
nections are clearly essential in helping with convergence,
both in terms of speed and final classification performance.
However we will note that benchmarking the non-residual
model with the same optimization configuration as the resid-
ual model may be uncharitable and that better optimization
configurations might yield more competitive results.

Additionally, let us note that this result merely shows the
importance of residual connections for this specific architec-
ture, and that residual connections are in no way required
in order to build models that are stacks of depthwise sepa-
rable convolutions. We also obtained excellent results with
non-residual VGG-style models where all convolution layers
were replaced with depthwise separable convolutions (with
a depth multiplier of 1), superior to Inception V3 on JFT at
equal parameter count.

4.7. Effect of an intermediate activation after point-
wise convolutions

Figure 10. Training profile with different activations between the
depthwise and pointwise operations of the separable convolution
layers.

We mentioned earlier that the analogy between depth-
wise separable convolutions and Inception modules suggests
that depthwise separable convolutions should potentially in-
clude a non-linearity between the depthwise and pointwise
operations. In the experiments reported so far, no such non-
linearity was included. However we also experimentally
tested the inclusion of either ReLU or ELU [3] as intermedi-
ate non-linearity. Results are reported on ImageNet in figure
10, and show that the absence of any non-linearity leads to
both faster convergence and better final performance.

This is a remarkable observation, since Szegedy et al. re-
port the opposite result in [21] for Inception modules. It may
be that the depth of the intermediate feature spaces on which
spatial convolutions are applied is critical to the usefulness
of the non-linearity: for deep feature spaces (e.g. those

found in Inception modules) the non-linearity is helpful, but
for shallow ones (e.g. the 1-channel deep feature spaces
of depthwise separable convolutions) it becomes harmful,
possibly due to a loss of information.

5. Future directions

We noted earlier the existence of a discrete spectrum be-
tween regular convolutions and depthwise separable convo-
lutions, parametrized by the number of independent channel-
space segments used for performing spatial convolutions. In-
ception modules are one point on this spectrum. We showed
in our empirical evaluation that the extreme formulation of
an Inception module, the depthwise separable convolution,
may have advantages over regular a regular Inception mod-
ule. However, there is no reason to believe that depthwise
separable convolutions are optimal. It may be that intermedi-
ate points on the spectrum, lying between regular Inception
modules and depthwise separable convolutions, hold further
advantages. This question is left for future investigation.

6. Conclusions

We showed how convolutions and depthwise separable
convolutions lie at both extremes of a discrete spectrum,
with Inception modules being an intermediate point in be-
tween. This observation has led to us to propose replacing
Inception modules with depthwise separable convolutions in
neural computer vision architectures. We presented a novel
architecture based on this idea, named Xception, which has
a similar parameter count as Inception V3. Compared to
Inception V3, Xception shows small gains in classification
performance on the ImageNet dataset and large gains on the
JFT dataset. We expect depthwise separable convolutions
to become a cornerstone of convolutional neural network
architecture design in the future, since they offer similar
properties as Inception modules, yet are as easy to use as
regular convolution layers.
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