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Abstract
Review fraud is a pervasive problem in online commerce, in which
fraudulent sellers write or purchase fake reviews to manipulate
perception of their products and services. Fake reviews are of-
ten detected based on several signs, including 1) they occur in
short bursts of time; 2) fraudulent user accounts have skewed rat-
ing distributions. However, these may both be true in any given
dataset. Hence, in this paper, we propose an approach for detecting
fraudulent reviews which combines these 2 approaches in a princi-
pled manner, allowing successful detection even when one of these
signs is not present. To combine these 2 approaches, we formu-
late our Bayesian Inference for Rating Data (BIRD) model, a flex-
ible Bayesian model of user rating behavior. Based on our model
we formulate a likelihood-based suspiciousness metric, Normalized
Expected Surprise Total (NEST). We propose a linear-time algo-
rithm for performing Bayesian inference using our model and com-
puting the metric. Experiments on real data show that BIRDNEST
successfully spots review fraud in large, real-world graphs: the 50

most suspicious users of the Flipkart platform flagged by our algo-
rithm were investigated and all identified as fraudulent by domain
experts at Flipkart.

1 Introduction
Online reviews play an important role in informing cus-
tomers’ purchasing decisions. This has led to the problem
of fake reviews, in which businesses write or purchase fake
reviews in order to raise the popularity of their products or
services. Hence, it is crucial for online commercial platforms
to identify and remove these reviews, in order to maintain
customers’ trust in the accuracy of their reviews.

Various inputs such as rating, review text, timestamp etc.
may be available for detection systems; in this work we focus
on ratings and timestamps as they are commonly available
and informative features. Informally, our problem is:

PROBLEM 1. (INFORMAL) Given a set of users and prod-
ucts, and timestamped ratings (e.g. 1 to 5 stars) by users for
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products, compute a suspiciousness score for each user.

Currently, a number of algorithms use a temporal ap-
proach to detect ratings fraud [6, 7, 28]. These focus on
catching products that receive a large number of positive or
negative reviews in a short time, motivated by the ‘bursty’
nature of fraudulent reviews when a store wishes to rapidly
increase their popularity or defame their competitors. An al-
ternative approach based on rating distributions is to focus on
finding users who rate products very differently from other
users [12, 17]. These focus on detection of suspicious be-
havior by users or products in terms of their deviation from
normal practice.

In this paper, we aim to combine both approaches in a
principled way by constructing a Bayesian model for rating
behavior, then formulating a likelihood-based metric which
measures how much a user deviates from the rest of the users.

The Bayesian approach also provides a principled solu-
tion to the conceptually difficult problem of finding a good
tradeoff between users with extreme rating distributions vs.
users with larger number of ratings. Is a user with 50 ratings
(average rating 5.0) more suspicious than a user with 500
ratings (average rating 4.95)? Bayesian methods allow us to
quantitatively answer this question. Namely, our Bayesian
method combines the rating distribution and number of rat-
ings to estimate our beliefs about the rating characteristics
of a user in a way that captures our uncertainty, which then
determines how suspicious the user is.

Our contributions are:
• Theoretically sound user behavior model: we define

a Bayesian model for the data based on a mixture
model which captures different types of user behavior.
This model then allows us to determine how much an
anomalous user deviates from normal behavior.

• Suspiciousness metric: we define a likelihood-based
metric which measures how much a user deviates from
normal behavior.

• Algorithm: we propose a scalable and effective algo-
rithm for learning the Bayesian model and evaluating
suspiciousness.

• Effectiveness: we show that our method successfully
spots review fraud in large, real-world graphs, with
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(a) Common pattern observed that detected users’ ratings are
more ‘bursty’ than normal users.. Times between a user’s ratings
were bucketed logarithmically; detected users have shorter times
between ratings.

(b) BIRDNEST is effective in practice, with 211 users of the top
250 flagged by BIRDNEST involved in fraud.

Figure 1: BIRDNEST combines temporal and rating information in a principled manner to detect fraud with high
precision. Inspecting the most suspicious 100 users shows their strongly anomalous patterns.

Figure 2: Common pattern observed that detected users’
ratings deviate strongly from normal users: inspecting the
detected users shows that they consists of two groups: highly
negative users (middle) and highly positive users (right).

precision of over 84% on the top 250 Flipkart users
flagged by our algorithm.
Reproducibility: our code is open-sourced at www.

andrew.cmu.edu/user/bhooi/ratings.tar.

2 Background and Related Work
Content-based approaches A significant portion of opin-
ion fraud comes from customer reviews online. Customer
reviews have been long studied [8], and many methods for
review fraud focus on review text, such as [5, 11, 19]. While
these methods are illuminating, many sites only have ratings
without text, or text is easily manipulated. Therefore, in our
setting, we focus on ratings and their temporal characteris-
tics, as review text is not always available.

Graph-based approaches Much of the existing work in
fraud or anomaly detection on graphs has focused on de-
tecting fraud in pure graphs; that is, graphs with no node
or edge labels. This includes spectral methods which use
eigen-decomposition or singular value decomposition (SVD)
to group similar nodes in the graph [10, 21, 24]. [27] uses
an iterative approach to label as honest and dishonest. Ap-
proaches based on Markov Random Fields and belief propa-
gation have also been used to identify dense or suspicious
subgraphs [1, 20]. [29] detects spammers through graph-
based measures measuring self-similarity and neighborhood
diversity. However, these methods do not make use of key
temporal and rating data.

Temporal methods for fraud detection There are a num-
ber of works on anomaly detection in multivariate time se-
ries [4, 16, 22, 26]. [3] focuses on fraudulent temporal pat-
terns in graphs, and [6] found suspicious inter-arrival times
between events in social media. A couple of works address
temporal patterns of reviews, e.g. [28] detects spam single-
ton reviews and [7] detects time periods of unusual activ-
ity. However, our goal is to compute a general, principled,
likelihood-based measurement of how suspicious each user
is. In this regard, [9] offers a general suspiciousness metric
for count data but is not suitable for ratings data.

Behavior modeling and fraud detection A wide body of
research has focused on understanding user behavior and
especially rating behavior. In particular ratings have been
studied by the recommendation systems community, with
both frequentist [13] and Bayesian models [23] demonstrat-
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ing great success. Additionally some models have worked
to take into account temporal features [14], and others have
captured the bimodal patterns in ratings data [2].

Other behavior models have been proposed to detect
users who deviate from normal practice in a meaningful way
[12, 17]. In [25] a similar problem of finding anomalies in
temporal rating data was treated with information theoretic
arguments. By taking a Bayesian approach, we develop a
significantly different perspective on the problem and our
resulting metric of suspiciousness is more flexible, allowing
for explicit priors, unique posteriors for each user, and easy
extensions to other distributions.

3 Bayesian Model
3.1 Motivating Example We start by illustrating why a
Bayesian approach is helpful. Consider users Alice, Bob and
Carol whose rating distributions are as given in Figure 3. For
example, Alice rated 4 products, all with 5 stars. Bob did the
same, 50 times. Carol gave about 300 ratings, and exhibits
a ‘hockey-stick’ distribution, which is close to the average
over all users. Which user is the most suspicious (i.e. likely
fraudulent)? Our goal is to come up with a principled and
intuitive measure of how suspicious each user is.

Figure 3: Rating distributions of example users. The his-
tograms show how many times each user gave each star rat-
ing.

Why does Alice’s low rating count makes her less
suspicious than Bob? Our answer is: since we only have
4 products rated by Alice, we have little information about
her true (i.e. long-term) rating behavior. She may simply be
a normal user who appears unusual as her first few ratings
were high, but given more ratings, she would converge to a
more typical distribution. Bob, however, is much less likely
to be a normal user: we can say with greater certainty that
his true rating behavior is anomalous.

Intuitively, deciding how suspicious each user is in-
volves a two-step process: first, we estimate our beliefs for
what that user’s true rating distribution is. Second, we esti-
mate how suspicious we believe they are, given our beliefs.
For Alice, our beliefs are highly uncertain: we cannot be
confident that her rating distribution is unusual. For Bob,
we are confident that his rating distribution is fairly skewed

toward 5s. For Carol, we know her rating distribution with
high confidence, but it is not suspicious.

The Bayesian approach applies this intuition in a princi-
pled manner. It first sets a prior, estimated from data, repre-
senting our ‘default’ beliefs about users’s rating behavior. It
then estimates our beliefs (in the form of a posterior distri-
bution) about their rating distribution. Finally, we compute
how suspicious we believe them to be, averaging over their
posterior distribution. Figure 4 illustrates how posterior dis-
tributions capture the information we need to identify a user
as suspicious. The posterior distributions in Figure 4 refer to
our beliefs about each user’s true long-term average rating,
expressed as a probability distribution. The point estimates
refer to each user’s observed average rating, which do not
capture how much more certain we are in Bob’s case than
Alice, and hence how much more suspicious Bob is.

Figure 4: Posterior distributions, not point estimates,
mark a user as suspicious. Bob is suspicious because our
beliefs about his true average rating are both narrow and
close to 5, while Alice is less suspicious because our beliefs
about her true average rating are more spread out.

Alternatives that don’t work (z or t tests) What about
instead performing a standard hypothesis test (such as a z or
t-test) for each user’s average rating (or any other quantity
associated with their rating distribution), to see whether their
average rating differs significantly from the population? The
problem with this approach lies with users like Carol, who
differ slightly from the population but have a large number
of ratings. Even as normal (non-fraudulent) users, we expect
their true average rating to differ slightly from that of the
population (say, by 0.1) just due to inter-person variation.

Given enough ratings, however, even such a small dif-
ference could produce arbitrarily small p-values under such a
hypothesis test, since the test correctly concludes that there is
an extremely small probability of drawing Carol’s observed
average rating if her true average rating were equal to that
of the population. However, such small differences are not
suspicious. The Bayesian approach would instead estimate
Carol’s posterior distribution as in Figure 4 and conclude that
it is both narrow and entirely non-suspicious, which is a more



sensible result.

3.2 Proposed Model Table 1 summarizes the notation
used in this paper.

Table 1: Commonly used notation in this paper. Vectors are
in bold.

Parameter Interpretation

m No. of users
ni No. of ratings given by user i
s No. of star levels (e.g. s = 5 for 1 to 5 stars)

xij Rating of the jth rating given by user i
b base of logarithm for temporal bucketing

∆ij temporal bucket of the jth rating by user i
∆max temporal bucket with highest index
xi,∆i Vector (xij)

ni
j=1 (resp. ∆ij)

ni
j=1)

X,∆ Matrix containing all the (xij) (resp. (∆ij))
nxil, n

∆
il No. of times user i gave rating (resp. time) l

nxi ,n
∆
i Vector ((nxi1), . . . , (nxis)) (resp. ((n∆

i1), . . . ))
K No. of clusters
πk Probability of a random user being in cluster k
zi Cluster (or mixture component) of user i

pi,qi User i’s rating (resp. temporal) distribution
αk,βk Dirichlet parameters for cluster k
Fx, F∆ Global distributions; refer to (4.5)

In our problem setting, users are indexed i = 1, . . . ,m.
User i has ni ratings, indexed by j = 1, . . . , ni. The
ratings in stars given by user i are denoted by the variables
xij ∈ {1, 2, . . . , s} (e.g. for star ratings from 1 to 5 we have
s = 5). Similarly to [6], we preprocess the rating timestamps
by computing its time difference from the previous rating,
i.e. the difference between its timestamp and the timestamp
of the last rating given by the same user. We then bucket
the time differences according to the integer part of the log
base b, where b is chosen to result in close to 20 buckets.
The temporal bucket of the jth rating of user i is denoted
∆ij ∈ {1, 2, . . . ,∆max} for j = 1, . . . , ni, analogous to
xij .

Using time differences instead of raw timestamps makes
it possible to detect either unusually rapid rating of products
by a user (due to having a concentration of small time
differences), or unusually regular patterns, such as rating
products once every hour. Both of these patterns suggest
bot-like or spammy behavior, which we would like to detect.
Moreover, the discretized i.e. multinomial approach allows
us to flexibly detect a wide range of possible deviations
from normal behavior without assuming a more restrictive
parametric form, such as a Gaussian distribution.

We will consider the ratings X and time differences ∆
to be generated based on a model. From a high level, our
generative model for user behavior is a mixture model in

which each user belongs to one of K clusters: in general,
there is no single type of user behavior, so we use clusters
to capture different types of user behavior. Each cluster
represents a certain type of rating distribution and temporal
distribution for the users in that cluster.

Let k = 1, . . . ,K index into the K clusters. For
each user i, we first generate which cluster they belong to,
zi ∈ {1, 2, . . . ,K}, from a Multinomial(π) distribution,
where πk, the kth entry of π, is the probability that a random
user is generated in cluster k.

Even within a single cluster, it would not be reasonable
to expect all users to behave exactly the same way. Thus,
instead of using a single rating/temporal distribution per
cluster, we allow small deviations per user. We do this by
associating a common Dirichlet prior with each cluster: each
user has their individual rating distribution drawn from this
prior. We denote user i’s rating distribution by pi, a vector of
length s of nonnegative entries which sums to 1, where the
jth entry of this vector gives their probability of giving the
jth rating. Thus, we draw user i’s rating distribution pi from
a Dirichlet(αzi ). Similarly, qi represents user i’s temporal
distribution, and we draw qi ∼ Dirichlet(βzi).

Finally, to generate user i’s ratings, we draw each
rating xij based on user i’s rating distribution: xij ∼
Multinomial(pi). Similarly, for the temporal buckets, we
draw each ∆ij from a Multinomial(qi) distribution.

The generative model we have described is summarized
in (3.1).

zi ∼ Discrete(π)

pi|zi = k ∼ Dirichlet(αk)

xij ∼ Multinomial(ni,pi)

qi|zi = k ∼ Dirichlet(βk)

∆ij ∼ Multinomial(ni,qi)(3.1)

The corresponding graphical model is given in Figure 5.

4 Proposed Algorithms
4.1 Fitting our Bayesian Model (BIRD) Algorithm 1 fits
data to the model of Fig.5, by using a greedy hill climbing
approach to maximize the overall likelihood function. In
this algorithm, we iteratively adjust each parameter and
the cluster assignments z until convergence. Each of the
arg max lines in the algorithm can be solved efficiently,
which we next describe how to do.

Cluster parameters
Here we fix z and compute arg maxαk

P (X,∆|αk, z) in
Line 10; adjusting with respect to β will be similar. Note
that adjusting αk only affects the likelihood with respect to
xi, for i in cluster k. Thus we are equivalently maximizing∏
i:zi=k

P (xi|αk, z).



Figure 5: Graphical model describing users, ratings and
rating times. User i’s mixture component zi determines how
we generate their individual multinomial parameter vectors
pi, qi, which then generate xij and ∆ij as samples from these
multinomial distributions.

To be clear, here P (xi|αk, z) refers to the marginal
likelihood, i.e. the probability of generating xi, after
marginalizing out pi. Thus we need to find the maxi-
mum likelihood update for αk given the xi for i in clus-
ter k, which were sampled from the two-step process of
first generating pi ∼ Dirichlet(αk) and then generating
xi ∼ Multinomial(pi). This two-step process is also known
as the Dirichlet-multinomial distribution; [18] provide fixed-
point iteration methods for maximum likelihood estimation
of αk in this setting. Specifically, we repeat until conver-
gence, for each k = 1, . . . ,K and l = 1, . . . , s:

αnewkl = αkl

∑m
i=1

nx
il

nx
il−1+αkl∑m

i=1
nx
i

nx
i −1+

∑
l′ αkl′

(4.2)

Similarly, the update for β is:

βnewkl = βkl

∑m
i=1

n∆
il

n∆
il−1+βkl∑m

i=1
n∆
i

n∆
i −1+

∑
l′ βkl′

(4.3)

Cluster assignments In Line 15, we fix the cluster param-
eters and fit the maximum likelihood cluster assignment zi.
Note that changing zi only affects the likelihood with respect
to user i. Referring to our graphical model in Figure 5, max-
imizing P (X,∆|zi = k) is equivalent to finding:

zi = arg max
k

πkP (xi|zi = k)P (∆i|zi = k)(4.4)

To compute P (xi|zi = k), note that this is the probability
of drawing xi from a Dirichlet-multinomial distribution with
known parameter αk.

Let nxil =
∑ni

j=1 1{xij = l} be the number of user i’s
ratings that equal l, and similarly n∆

il =
∑ni

j=1 1{∆ij =
l}. The marginal distribution of a Dirichlet-multinomial

distribution (after marginalizing out pi) is known to be

P (xi|zi = k) =
Γ(Ak)

Γ(ni +Ak)

s∏
l=1

Γ(nxil + αkl)

Γ(αkl)

where Γ is the gamma function, andAk =
∑
l αkl. The term

P (∆i|zi = k) can be computed in the same manner. Since
zi is discrete, we can thus maximize (4.4) by computing
πkP (xi|zi = k)P (∆i|zi = k) for each value of k and
choosing the maximizing value of k.

Posterior distributions of p and q Here we explain how
to compute the posterior distributions in Line 18 of Al-
gorithm 1. Let nxi = ((nxi1), . . . , (nxis)) and n∆

i =
((n∆

i1), . . . , (n∆
is)). At this point the entire iterative process

of estimating the hyperparameters and cluster assignments is
complete, and we have to compute the posterior distributions
of pi and qi given the dataX and ∆. pi has a Dirichlet(αzi)
prior, so by the conjugate prior property of Dirichlet distribu-
tions, its posterior distribution is Dirichlet(αzi + nxi ). Simi-
larly, the posterior distribution of β is Dirichlet(βzi + n∆

i ).

Number of clusters We select the number of clusters K
using the Bayesian Information Criterion (BIC).

Convergence As we can see from Algorithm 1, each ad-
justment to π, α, β or z is an arg max step and increases the
overall likelihood P (X,∆|z;π, α, β). Because the overall
likelihood is bounded, this must converge.

4.2 NEST: Proposed Metric for Detecting Suspicious
Users Algorithm 1 gives us the posterior distributions
P (pi|xi,∆i) and P (qi|xi,∆i) for the user parameters. In
this section, we propose a suspiciousness metric, NEST
(Normalized Expected Surprise Total). Recalling Figure 4,
the overall idea is to compute user i’s suspiciousness, aver-
aged over their posterior distribution.

We will compute suspiciousness with respect to rating
and temporally, then normalize and combine them to ensure
that each has equal influence. This is a practically motivated
decision that ensures that even in settings where one of the
variables has a much finer resolution than the other (i.e.
it is bucketized into more buckets), neither variable will
dominate the other in determining suspiciousness.

We now explain how to compute user i’s suspiciousness
is in terms of their ratings distribution; the same formulas
directly apply to the temporal distribution, and we explain
how to combine the scores in (4.7).

Global Distribution Recall that our Bayesian model BIRD
gives us an estimate for the distribution underlying the
rating behavior of all users, in the form of a mixture of
Dirichlet(αk) distributions with mixture coefficients πk (and
similarly, mixture of Dirichlet(βk) distributions for temporal



Algorithm 1 Fitting parameters for the model in Figure 5. X
is a matrix containing all the xij and ∆ is a matrix containing
all the ∆ij .

1: procedure BIRD (X,∆)
2: Output:
3: cluster hyperparameters π, (αk,βk)Kk=1

4: posterior distributions for each user’s rating and
temporal distribution P (pi), P (qi)

5: while not converged do
6: Adjust cluster proportions π
7: πk =

∑m
i=1 1{zi = k}/m

8: for k = 1, . . . ,K do
9: Adjust cluster hyperparameters αk,βk

10: αnewk = arg maxαk
P (X,∆|αk, z) (4.2)

11: βnewk = arg maxβk
P (X,∆|βk, z) (4.3)

12: end for
13: for i = 1, . . . ,m do
14: Adjust users’ assignments to clusters:
15: znewi = arg maxk P (X,∆|zi = k) (4.4)
16: end for
17: end while
18: Compute user posterior distributions:
19: P (pi|X,∆) = Dirichlet(αzi + nxi )
20: P (qi|X,∆) = Dirichlet(βzi + n∆

i )
21: end procedure

distributions). Denote this global distribution by Fx (resp.
F∆):

Fx can be thought of as our estimate for the distribution
of pi in general over all users (pi is the true rating distribu-
tion of user i).

Fx(p) =

K∑
k=1

πk Dirichlet(p;αk)(4.5)

where Dirichlet(p;αk) refers to the probability of generat-
ing p under a Dirichlet(αk) distribution.

Surprise Denote p̃i := P (pi|xi,∆i), the posterior distribu-
tion of pi given the data. To be clear, observe that p̃i is a dis-
tribution over multinomial vectors. Recall that we estimate
p̃i as part of BIRD: p̃i is a Dirichlet(αzi + nxi ) distribution.
p̃i represents our beliefs about user i’s rating distribution.

For the sake of intuition, imagine p̃i was a point mass,
i.e. we had perfect knowledge of user i’s rating distribution:
assume that it consists of a point mass at p. Recall that the
posterior distribution p̃i is a distribution over multinomial
vectors, so p here is a multinomial vector. Then user i’s
suspiciousness could be calculated as surprise or negative
log likelihood under the global distribution Fx evaluated at
the rating distribution p:

surprise(p) = − logFx(p)

The less likely p is, the more suspicious the user is. This
makes sense because Fx is our estimate for the global
distribution from which all the usersare drawn from; the
lower the log-likelihood of p, the more anomalous user i is
when compared to this distribution. Thus, we use surprise to
estimate the suspiciousness of a rating distribution p.

Expected Surprise Now returning to the general case,
when p̃i is a posterior distribution. In this case, we com-
pute the average over p̃i of the surprise − logFx(p): that
is, now p is drawn at random from this posterior distribu-
tion p̃i. Averaging the surprise gives us the posterior mean
(or ‘Bayes estimate’) of user i’s suspiciousness, which can
be regarded as our ‘best estimate’ of user i’s suspiciousness
given our knowledge of them.1 Thus, we use expected sur-
prise to estimate the suspiciousness of a user based on their
posterior distribution p̃i.

DEFINITION 1. (EXPECTED SURPRISE)
The expected surprise for user i measures how surprising
user i rating distribution is averaged over its posterior
distribution, and is given by:

sx(i) = −Ep∼p̃i
logFx(p)(4.6)

The expected surprise s∆(i) with respect to the temporal
distribution is computed similarly.

As discussed,−Ep∼p̃i
logFx(p) measures the expected

suspiciousness of a sample rating distribution drawn at ran-
dom from the posterior distribution p̃i, where suspiciousness
of a single rating distribution is given by its surprise or neg-
ative log likelihood under Fx.

Normalized Expected Surprise Total (NEST) In our
dataset, we use both ratings and temporal data. Using rat-
ings data, we compute posterior distribution p̃i and the re-
sulting expected surprise sx(i); using temporal data simi-
larly gives us posterior distribution q̃i and expected surprise
s∆(i). To combine these, we could simply add them; how-
ever, if one had a larger range of possible values than the
other, the one with the largest range could end up dominat-
ing the sum. To give both terms comparable influence, we
normalize them by their respective standard deviations. Let
σx = std.dev(sx(1), . . . , sx(m)) and σ∆ be defined analo-
gously. Then NEST is defined as:

DEFINITION 2. (NEST)
NEST measures how jointly suspicious user i is based on

1The posterior mean of a parameter is also known as the minimum mean
square error estimator, as it minimizes expected least squares loss. It has
desirable properties such as consistency under fairly general conditions, and
is widely used in practice. [15]



his or her ratings and temporally, and is given by:

NEST(i) =
sx(i)

σx
+
s∆(i)

σ∆
(4.7)

Note that there is no need to normalize sx and s∆

additively (e.g. by subtracting the mean scores) since that
would simply shift all the scores by the same amount.

Computing NEST Fitting BIRD gives us the posterior dis-
tribution for user i’s rating distribution p̃i = P (pi|X,∆)
(Line 19 in Algorithm 1); we get q̃i = P (qi|X,∆) sim-
ilarly. We also know the full global distribution Fx(p) =∑K
k=1 πk Dirichlet(p;αk). Hence, we can compute the ex-

pected surprise sx(i) = −Ep∼p̃i
logFx(p) by taking a fixed

number of samples from p̃i and repeatedly evaluating their
log-likelihood under Fx. We can then compute the expected
surprise values s∆(·) and combining the two as shown in
(4.7).

5 Experiments
We conducted experiments to answer the following ques-
tions: Q1. Effectiveness on real data: does BIRDNEST
catch fraud on real data? Q2. Scalability: does it scale to
large datasets? Q3: Interpretability: can the results of the
Bayesian model BIRD and the scores given by NEST be
interpreted in a real-life setting?

We implemented BIRDNEST in Python; all experi-
ments were carried out on a 2.4 GHz Intel Core i5 Mac-
book Pro, 16 GB RAM, running OS X 10.9.5. The code
is available for download at www.andrew.cmu.edu/
user/bhooi/ratings.tar. We test BIRDNEST on
a variety of real world datasets: table 2 offers details on the
datasets we used.

Table 2: Datasets used.

Dataset # of users # of products # of ratings

Flipkart 1.1M 550K 3.3M
SWM [1] 0.97M 15K 1.1M

5.1 Q1: Effectiveness

Evaluation on Flipkart data Flipkart is an online
e-commerce platform on which merchants sell products to
customers, on which customers review products from 1
to 5 stars. We applied BIRDNEST to detect the 250
most suspicious users and provided them to Flipkart; these
accounts were investigated and hand-labelled by Flipkart,
finding that 211 users of the top 250 flagged by BIRDNEST
were involved in fraud. Figure 1b shows the algorithm’s
precision at k: for various values of k up to 250: note

that precision for the most suspicious users is very high:
e.g. precision of 1.0 for the first 50 users. These are
substantial findings for Flipkart. One common pattern that
the domain-experts found was that most of the users labeled
as fraudulent are either spamming 4/5 star ratings to multiple
products from a single seller (boosting seller’s ratings), or
spamming 1/2 star ratings to multiple products from another
seller (defaming the competition).

Figure 2 plots the averaged rating distributions of users
within each group: that is, for each user we computed their
frequency of giving each rating from 1 to 5; Figures 2 and
1a takes the average of the rating distributions for users in
the corresponding group. Examining the detected users in
Figure 2, a common pattern we find is that they consist of
extreme polarized rating distributions as well as temporal
distributions. The detected users consist of highly negative
users (who give only 1 ratings) and highly positive users
(who give mostly 5 ratings, with a relatively small fraction
of 4s). Similarly, Figure 1a shows the common pattern that
detected users contain much shorter temporal differences
than normal users.

Evaluation on SWM data The SWM datasets consists of
software product (app) reviews. The dataset was collected
by [1] by crawling all the app reviews in the entertainment
category from an anonymous online app store. Each review
consists of review text as well as a rating from 1 star to 5
stars.

We find clear evidence of fake reviews in the dataset:
for example, the most suspicious user posted a block of 27
reviews for the same app all within the span of less than
a week, all five-star ratings with near-identical review title
and text, as shown in Table 3. Moreover, the review text
shows clear signs of being a fake review: they advertise a
code associated with an app: typically, users advertise such
codes because they give some benefit to the owner when new
users download the app via one of these codes.

Table 3: BIRDNEST detects clearly fake reviews in
the SWM data: Example of a 5-star review by the user
flagged as most suspicious by BIRDNEST. 27 such near-
identical reviews were present for the same app (only trivial
differences between them were present, such as the number
of dollars signs). All 10 of the top 10 user accounts flagged
by BIRDNEST contain similar advertisements for codes.

AWESOMEApp4FreeMoney!!! $$$$$$
All first time users will need a
CODE after downloading this app. So
download it now and use my CODE for
bonus points. CODE: ...

Aside from this block of reviews, almost all of this

www.andrew.cmu.edu/user/bhooi/ratings.tar
www.andrew.cmu.edu/user/bhooi/ratings.tar


user’s reviews also consist of similar blocks of repeated text
advertising the code. In fact, all 10 of the top suspicious user
accounts flagged by BIRDNEST contain advertisements for
codes in similar contexts, often accompanied with promises
of free cash, points and gift cards.

Figure 6: BIRDNEST is fast and scalable: running on
our 1.1M user, 3.3M ratings dataset in around 2 minutes.
BIRDNEST shows linear growth in computation time.

5.2 Q2: Scalability Assume that we run (#it) iterations
of the outer loop of Algorithm 1, let m be the number of
users, and K the number of clusters. In each iteration, ad-
justing π takes O(m) time; adjusting each αi, βi and zi all
take O(K) time. Hence, the algorithm takes O((#it)mK)
time, which is linear. Figure 6 shows that the algorithm is
fast and its computation time grows linearly in practice.

5.3 Q3: Interpretability In Section 3.1, we motivated the
Bayesian approach by giving three users, Alice, Bob and
Carol. We explained how the Bayesian approach captures
our intuitions about these users through posterior distribu-
tions. We now use real data from Flipkart to verify that
BIRDNEST indeed conforms to the intuitions that moti-
vated this approach, and that the posterior distributions from
BIRDNEST are interpretable and useful in real-life settings.

We selected 3 real Flipkart users: alice, bob and
carol (names changed to maintain anonymity). They were
chosen to match the rating frequencies of Alice, Bob and
Carol in 3.1. We computed each user’s posterior distribution
of their true rating distribution using BIRDNEST. From this
we computed the posterior distribution of their true, long-
term average rating, by simulating 10, 000 draws of pi from
their Dirichlet posterior distribution. We display these with
their NEST values in Figure 7.

Agreeing with intuition, both alice and carol are
nonsuspicious, while bob is very suspicious, as indicated
by the NEST scores: alice is ranked around 189, 000th
most suspicious, bob is ranked around 800th, and carol
is ranked around 10, 000th, out of the 1.1 million users.
The NEST scores given by our algorithm are interpretable

as expected surprise values, i.e. they are in units of log-
likelihood, so a unit difference (after normalization) repre-
sents an exponential increase in likelihood. As such, we see
from this example that BIRDNEST conforms to intuition
in the way it uses posterior distributions to measure uncer-
tainty. Moreover, the posterior distributions of average rat-
ing or other quantities can be plotted via simulation and used
for further understanding and investigation.

Figure 7: BIRDNEST is interpretable and agrees with
intuition: the posterior distributions for users capture
both the location and certainty about a user’s true rating
distribution. Note that bob’s NEST is highest as his entire
posterior distribution is extreme (far from other users).

6 Conclusion
In this paper, we developed BIRD, a Bayesian inference ap-
proach for ratings data, and NEST, a principled likelihood-
based suspiciousness metric for fraud detection. Our method
provides a principled way to combine rating and temporal
information to detect rating fraud, and to find a tradeoff be-
tween users with extreme rating distributions vs. users with
larger number of ratings. Our contributions are:
• Theoretically sound user behavior model: we define

a Bayesian model for the data based on a mixture
model which captures different types of user behavior.
This model then allows us to determine how much an
anomalous user deviates from normal behavior.

• Suspiciousness metric: we define a likelihood-based
metric which measures how much a user deviates from
normal behavior.

• Algorithm: we propose a scalable and effective algo-
rithm for learning the Bayesian model and evaluating
suspiciousness.

• Effectiveness: we show that our method successfully
spots review fraud in large, real-world graphs, with
precision of over 84% for the top 250 Flipkart users



flagged by our algorithm.
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