
Fractional Max-Pooling

Benjamin Graham
Dept of Statistics, University of Warwick, CV4 7AL, UK

b.graham@warwick.ac.uk

May 13, 2015

Abstract

Convolutional networks almost always incorporate some form of spatial
pooling, and very often it is α× α max-pooling with α = 2. Max-pooling
act on the hidden layers of the network, reducing their size by an integer
multiplicative factor α. The amazing by-product of discarding 75% of
your data is that you build into the network a degree of invariance with
respect to translations and elastic distortions. However, if you simply
alternate convolutional layers with max-pooling layers, performance is
limited due to the rapid reduction in spatial size, and the disjoint nature
of the pooling regions. We have formulated a fractional version of max-
pooling where α is allowed to take non-integer values. Our version of
max-pooling is stochastic as there are lots of different ways of constructing
suitable pooling regions. We find that our form of fractional max-pooling
reduces overfitting on a variety of datasets: for instance, we improve on
the state of the art for CIFAR-100 without even using dropout.

1 Convolutional neural networks
Convolutional networks are used to solve image recognition problems. They can
be built by combining two types of layers:

• Layers of convolutional filters.

• Some form of spatial pooling, such as max-pooling.

Research focused on improving the convolutional layers has lead to a wealth of
techniques such as dropout [10], DropConnect [12], deep networks with many
small filters[2], large input layer filters for detecting texture [5], and deeply
supervised networks [6].

By comparison, the humble pooling operation has been slightly neglected.
For a long time 2× 2 max-pooling (MP2 has been the default choice for build-
ing convolutional networks. There are many reasons for the popularity of MP2-
pooling: it is fast, it quickly reduces the size of the hidden layers, and it encodes

1

ar
X

iv
:1

41
2.

60
71

v4
 [

cs
.C

V
]

 1
2

M
ay

 2
01

5

a degree of invariance with respect to translations and elastic distortions. How-
ever, the disjoint nature of the pooling regions can limit generalization. Addi-
tionally, as MP2-pooling reduces the size of the hidden layers so quickly, stacks
of back-to-back convolutional layers are needed to build really deep networks
[7, 9, 11]. Two methods that have been proposed to overcome this problems are:

• Using 3× 3 pooling regions overlapping with stride 2 [5].

• Stochastic pooling, where the act of picking the maximum value in each
pooling region is replaced by a form of size-biased sampling [13].

However, both these techniques still reduce the size of the hidden layers by a
factor of two. It seems natural to ask if spatial-pooling can usefully be applied
in a gentler manner. If pooling was to only reduce the size of the hidden layers
by a factor of

√
2, then we could use twice as many layers of pooling. Each

layer of pooling is an opportunity to view the input image at a different scale.
Viewing images at the ‘right’ scale should make it easier to recognize the tell-tale
features that identify an object as belonging to a particular class.

The focus of this paper is thus a particular form of max-pooling that we call
fractional max-pooling (FMP). The idea of FMP is to reduce the spatial size
of the image by a factor of α with 1 < α < 2. Like stochastic pooling, FMP
introduces a degree of randomness to the pooling process. However, unlike
stochastic-pooling, the randomness is related to the choice of pooling regions,
not the way pooling is performed inside each of the pooling regions.

In Section 2 we give a formal description of fractional max-pooling. Briefly,
there are three choices that affect the way FMP is implemented:

• The pooling fraction α which determines the ratio between the spatial
sizes of the input and the output of the pooling layer. Regular 2 × 2
max-pooling corresponds to the special case α = 2.

• The pooling regions can either be chosen in a random or a pseudorandom
fashion. There seems to be a trade off between the use of randomness in
FMP and the use of dropout and/or training data augmentation. Random-
FMP seems to work better on its own; however, when combined with ‘too
much’ dropout or training data augmentation, underfitting can occur.

• The pooling regions can be either disjoint or overlapping. Disjoint regions
are easier to picture, but we find that overlapping regions work better.

In Section 3 we describe how our convolutional networks were designed and
trained. In Section 4 we give results for the MNIST digits, the CIFAR-10 and
CIFAR-100 datasets of small pictures, handwritten Assamese characters and
the CASIA-OLHWDB1.1 dataset of handwritten Chinese characters.

2 Fractional max-pooling
Each convolutional filter of a CNN produces a matrix of hidden variables. The
size of this matrix is often reduced using some form of pooling. Max-pooling is

2

Figure 1: Left to right: A 36 × 36 square grid; disjoint pseudorandom FMP
regions with α ∈ { 3

√
2,
√
2, 2,
√
5}; and disjoint random FMP regions for α =

√
2.

For α ∈ (1, 2) the rectangles have sides of length 1 or 2. For α ∈ (2, 3) the
rectangles have sides of length 2 or 3. [Please zoom in if the images appear
blurred.]

a procedure that takes an Nin ×Nin input matrix and returns a smaller output
matrix, say Nout×Nout. This is achieved by dividing the Nin×Nin square into
N2

out pooling regions (Pi,j):

Pi,j ⊂ {1, 2, . . . , Nin}2 for each (i, j) ∈ {1, . . . , Nout}2,

and then setting
Outputi,j = max

(k,l)∈Pi,j

Inputk,l.

For regular 2×2 max-pooling, Nin = 2Nout and Pi,j = {2i−1, 2i}×{2j−1, 2j}.
In [5], max-pooling is applied with overlapping 3 × 3 pooling regions so Nin =
2Nout + 1 and the Pi,j are 3 × 3 squares, tiled with stride 2. In both cases,
Nin/Nout ≈ 2 so the spatial size of any interesting features in the input image
halve in size with each pooling layer. In contrast, if we take Nin/Nout ≈ n

√
2

then the rate of decay of the spatial size of interesting features is n times slower.
For clarity we will now focus on the case Nin/Nout ∈ (1, 2) as we are primarily
interested in accuracy; if speed is an overbearing concern then FMP could be
applied with Nin/Nout ∈ (2, 3).

Given a particular pair of values (Nin, Nout) we need a way to choose pooling
regions (Pi,j). We will consider two type of arrangements, overlapping squares
and disjoint collections of rectangles. In Figure 1 we show a number of different
ways of dividing up a 36 × 36 square grid into disjoint rectangles. Pictures
two, three and six in Figure 1 can also be used to define an arrangement of
overlapping 2× 2 squares: take the top left hand corner of each rectangle in the
picture to be the top left hand corner of one of the squares.

To give a formal description of how to generate pooling regions, let (ai)Nout
i=0

and (bi)
Nout
i=0 be two increasing sequence of integers starting at 1, ending with

Nin, and with increments all equal to one or two (i.e. ai+1 − ai ∈ {1, 2}). The
regions can then be defined by either

P = [ai−1, ai − 1]× [bj−1, bj − 1] or Pi,j = [ai−1, ai]× [bj−1, bj]. (1)

We call the two cases disjoint and overlapping, respectively. We have tried
two different approaches for generating the integer sequence: using random
sequences of numbers and also using pseudorandom sequences.

3

Figure 2: Top left, ‘Kodak True Color’ parrots at a resolution of 384 × 256.
The other five images are one-eighth of the resolution as a result of 6 layers of
average pooling using disjoint random FMP

√
2-pooling regions.

We will say that the sequences are random if the increments are obtained
by taking a random permutation of an appropriate number of ones and twos.
We will say that the sequences are pseudorandom if they take the form

ai = ceiling(α(i+ u)), α ∈ (1, 2), with some u ∈ (0, 1).

Below are some patterns of increments corresponding to the case Nin = 25,
Nout = 18. The increments on the left were generated ‘randomly’, and the
increments on the right come from pseudorandom sequences:

211112112211112122 112112121121211212
111222121121112121 212112121121121211
121122112111211212 211211212112121121

Although both types of sequences are irregular, the pseudorandom sequences
generate much more stable pooling regions than the random ones. To show the
effect of randomizing the pooling regions, see Figure 2. We have taken a picture,
and we have iteratively used disjoint random pooling regions to reduce the size
of the image (taking averages in each pooling region). The result is that the
scaled down images show elastic distortion. In contrast, if we use pseudorandom
pooling regions, the resulting image is simply a faithfully scaled down version
of the original.

3 Implementation
The networks are trainined using an implementation of a sparse convolutional
network [3]. What this means in practice is that we can specify a convolutional

4

11x11
10x10

FMP

7x7

C2 C2 FMP

6x6

4x4

C2

3x3

FMP

2x2

C2

1x1

C1

1x1

Figure 3: Layer sizes for a tiny FMP
√
2 network. The fractions 3

2 ,
6
4 and 10

7

approximate
√
2.

network in terms of a sequence of layers, e.g.

10C2−FMP
√
2−20C2−FMP

√
2−30C2−FMP

√
2−40C2−50C1−output.

The spatial size of the input layer is obtained by working from right to left: each
C2 convolution increases the spatial size by one, and FMP

√
2 layers increase the

spatial size by a factor of
√
2, rounded to the nearest integer; see Figure 3. The

input layer will typically be larger than the input images—padding with zeros
is automatically added as needed. Fractional max-pooling could also easily be
implemented for regular convolutional neural network software packages.

For simplicity, all the networks we use have a linearly increasing number
of filters per convolutional layer. We can therefore describe the above network
using the shorthand form

(10nC2− FMP
√
2)3 − C2− C1− output,

10n indicates that the number of filters in the n-th convolutional layer is 10n,
and the subscript 3 indicates three pairs of alternating C2/FMP layers. When
we use dropout, we use an increasing amount of dropout the deeper we go into
the network; we apply 0% dropout in the first hidden layer, and increase linearly
to 50% dropout in the final hidden layer. We use leaky rectified linear units.

3.1 Model averaging
Each time we apply an FMP network, either for training or testing purposes,
we use different random or pseudorandom sequences to generate the pooling
regions. An FMP network can therefore be thought of as an ensemble of similar
networks, with each different pooling-region configuration defining a different
member of the ensemble. This is similar to dropout [10]; the different values
the dropout mask can take define an ensemble of related networks. As with

5

Figure 4: The effect of repeat testing for a single MNIST trained FMP network.

dropout, model averaging for FMP networks can help improve performance. If
you classify the same test image a number of times, you may get a number of
different predictions. Using majority voting after classifying each test image a
number of times can substantially improve accuracy; see Figure 4.

4 Results

4.1 Without training set augmentation or dropout
To compare the different kinds of fractional max-pooling, we trained FMP net-
works on the MNIST1 set of digits and the CIFAR-100 dataset of small pictures
[4]. For MNIST we used a small FMP network:

input layer size 36× 36 : (32nC2− FMP
√
2)6 − C2− C1− output,

and for CIFAR-100 we used a larger network:

input layer size 94× 94 : (64nC2− FMP
3
√
2)12 − C2− C1− output.

Without using training data augmentation, state-of-the-art test errors for these
two datasets are 0.39% and 34.57%, respectively [6]. Results for the FMP
networks are in Table 1. Using model averaging with multiplicity twelve, we find
that random overlapping FMP does best for both datasets. For CIFAR-100, the
improvement over method using regular max-pooling is quite substantial.

1http://yann.lecun.com/exdb/mnist/

6

http://yann.lecun.com/exdb/mnist/

Dataset and the number pseudorandom random pseudorandom random
of repeat tests disjoint disjoint overlapping overlapping
MNIST, 1 test 0.54 0.57 0.44 0.50
MNIST, 12 tests 0.38 0.37 0.34 0.32
CIFAR-100, 1 test 31.67 32.06 31.2 31.45
CIFAR-100, 12 tests 28.48 27.89 28.16 26.39

Table 1: MNIST and CIFAR-100 % test errors.

To give an idea about network complexity, the CIFAR-100 networks have
12 million weights, and were trained for 250 repetitions of the training data (18
hours on a GeForce GTX 780). We experimented with changing the number of
hidden units per layer for CIFAR-100 with random overlapping pooling:

• Using ‘16nC2’ (0.8M weights) gave test errors of 42.07% / 34.87%.

• Using ‘32nC2’ (3.2M weights) gave test errors of 35.09% / 29.66%.

• Using ‘96nC2’ (27M weights) combined with dropout and a slower rate of
learning rate decay gave test errors of 27.62% / 23.82%.

4.2 Assamese handwriting
To compare the effect of training data augmentation when using FMP pooling
versus MP2 pooling, we used the The Online Handwritten Assamese Charac-
ters Dataset [1]. It contains 45 samples for each of 183 Indo-Aryan characters.
‘Online’ means that each pen stroke is represented as a sequence of (x, y) coor-
dinates. We used the first 36 handwriting samples as the training set, and the
remaining 9 samples for a test set. The characters were scaled to fit in a box of
size 64× 64. We trained a network with six layers of 2× 2 max pooling,

32nC3−MP2− (C2−MP2)5 − C2− output

and an FMP network using 10 layers of random overlapping FMP
√
2 pooling,

(32nC2− FMP
√
2)10 − C2− C1− output.

We trained the networks without dropout, and either

• no training data augmentation,

• with the characters shifted by adding random translations, or

• with affine transformations, using a randomized mix of translations, rota-
tions, stretching, and shearing operations.

7

Pooling method None Translations Affine
6 layers of MP2 14.1 4.6 1.8

10 layers of FMP(
√
2), 1 test 1.9 1.3 0.9

10 layers of FMP(
√
2), 12 tests 0.7 0.8 0.4

Table 2: Assamese % test error with different type of data augmentation.

See Table 2. In a sense, max-pooling and training data augmentation are two
different ways of encoding our apriori knowledge that the meaning of handwrit-
ing is generally invariant under certain kinds of minor distortions. Interestingly,
the FMP network without data augmentation does better than the MP2 net-
work with training data augmentation, suggesting that FMP is a better way of
encoding that information.

4.3 Online Chinese handwriting
The CASIA-OLHWDB1.1 database contains online handwriting samples of the
3755 isolated GBK level-1 Chinese characters [8]. There are approximately 240
training characters, and 60 test characters, per class. A test error of 5.61% is
achieved using 4 levels of MP2 pooling [2].

We used the representation for online characters described in [3]; the charac-
ters were drawn with size 64×64 and additional features measuring the direction
of the pen are added to produce an array of size 64× 64× 9. Using 6 layers of
2 × 2 max-pooling, dropout and affine training data augmentation resulted in
a 3.82% test error [3]. Replacing max-pooling with pseudorandom overlapping
FMP:

(64nC2− FMP
√
2)7 − (C2−MP2− C1)2 − C2− C1− output

results in test errors of 3.26% (1 test) and 2.97% (12 tests).

4.4 CIFAR-10 with dropout and training data augmenta-
tion

For CIFAR-10 we used dropout and extended the training set using affine trans-
formations: a randomized mix of translations, rotations, reflections, stretching,
and shearing operations. We also added random shifts to the pictures in RGB
colorspace. For a final 10 training epochs, we trained the network without the
affine transformations.

For comparison, human performance on CIFAR-10 is estimated to be 6%2.
A recent Kaggle competition relating to CIFAR-10 was won with a test error of
4.47%3 using the same training data augmentation scheme, and architecture

(300nC2− 300nC2−MP2)5 − C2− C1− output.

2http://karpathy.ca/myblog/?p=160
3https://www.kaggle.com/c/cifar-10/

8

http://karpathy.ca/myblog/?p=160
https://www.kaggle.com/c/cifar-10/

Using a pseudorandom overlapping pooling FMP network

(160nC2− FMP
3
√
2)12 − C2− C1− output.

we obtained test errors of 4.50% (1 test), 3.67% (12 tests) and 3.47% (100 tests).

5 Conclusions
We have trained convolutional networks with fractional max-pooling on a num-
ber of popular datasets and found substantial improvements in performance.
Overlapping FMP seems to be better than disjoint FMP. Pseudorandom pool-
ing regions seem to do better than random pooling regions when training data
augmentation is used. It is possible that random pooling might regain the up-
perhand if we fine-tuned the amount of dropout used.

Looking again at the distortions created by random pooling in Figure 2,
note that the distortion is ‘decomposable’ into an x-axis distortion and a y-axis
distortion. It might be interesting to explore pooling regions that cannot be
written using equation 1, as they might encode more general kinds of distortion
into the resulting convolutional networks.

References
[1] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[2] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural net-
works for image classification. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3642–3649, 2012.

[3] Ben Graham. Spatially-sparse convolutional neural networks. 2014.

[4] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Technical report, 2009.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In F. Pereira, C.J.C.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

[6] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and
Zhuowen Tu. Deeply-Supervised Nets, 2014.

[7] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. ICLR,
2014.

[8] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang. CASIA online and offline
Chinese handwriting databases. In Proc. 11th International Conference
on Document Analysis and Recognition (ICDAR), Beijing, China, pages
37–41, 2011.

9

www.idsia.ch/~juergen/cvpr2012.pd
www.idsia.ch/~juergen/cvpr2012.pd
http://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1409.5185

[9] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. 2014.

[10] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. Journal of Machine Learning Research, 15:1929–
1958, 2014.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. 2014.

[12] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Lecun, and Rob Fergus. Reg-
ularization of Neural Networks using DropConnect, 2013. JMLR W&CP
28 (3) : 1058–1066, 2013.

[13] Matthew D. Zeiler and Rob Fergus. Stochastic Pooling for Regularization
of Deep Convolutional Neural Networks. ICLR 2013.

10

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/proceedings/papers/v28/wan13.html
http://jmlr.org/proceedings/papers/v28/wan13.html
http://arxiv.org/abs/1301.3557
http://arxiv.org/abs/1301.3557

	1 Convolutional neural networks
	2 Fractional max-pooling
	3 Implementation
	3.1 Model averaging

	4 Results
	4.1 Without training set augmentation or dropout
	4.2 Assamese handwriting
	4.3 Online Chinese handwriting
	4.4 CIFAR-10 with dropout and training data augmentation

	5 Conclusions

